
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2024

SEGAC: Sample Efficient Generalized Actor Critic for the SEGAC: Sample Efficient Generalized Actor Critic for the

Stochastic On-Time Arrival Problem Stochastic On-Time Arrival Problem

Honglian GUO

Zhi HE

Wenda SHENG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Yingjie ZHOU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, Theory

and Algorithms Commons, and the Transportation Commons

Citation Citation
GUO, Honglian; HE, Zhi; SHENG, Wenda; CAO, Zhiguang; ZHOU, Yingjie; and GAO, Weinan. SEGAC: Sample
Efficient Generalized Actor Critic for the Stochastic On-Time Arrival Problem. (2024). IEEE Transactions on
Intelligent Transportation Systems. 1-16.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8704

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Honglian GUO, Zhi HE, Wenda SHENG, Zhiguang CAO, Yingjie ZHOU, and Weinan GAO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8704

https://ink.library.smu.edu.sg/sis_research/8704

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 1

SEGAC: Sample Efficient Generalized Actor Critic
for the Stochastic On-Time Arrival Problem
Hongliang Guo1, Zhi He2, Wenda Sheng2, Zhiguang Cao3, Yingjie Zhou1 and Weinan Gao4

Abstract—This paper studies the stochastic on-time arrival
(SOTA) problem in transportation networks and introduces a
novel reinforcement learning-based algorithm, namely sample
efficient generalized actor critic (SEGAC). Different from almost
all canonical SOTA solutions, which are usually computationally
expensive and lack generalizability to unforeseen destination
nodes, SEGAC offers the following appealing characteristics.
SEGAC updates the ego vehicle’s navigation policy in a sample
efficient manner, reduces the variance of both value network and
policy network during training, and is automatically adaptive to
new destinations. Furthermore, the pre-trained SEGAC policy
network enables its real-time decision-making ability within
seconds, outperforming state-of-the-art SOTA algorithms in sim-
ulations across various transportation networks. We also suc-
cessfully deploy SEGAC to two real metropolitan transportation
networks, namely Chengdu and Beijing, using real traffic data,
with satisfying results.

Index Terms—Generalized Actor Critic, Stochastic On-Time
Arrival (SOTA), Sample Efficiency, Variance Reduction.

I. INTRODUCTION

NAVIGATING reliably in stochastic transportation net-
works is of crucial importance for ensuring a satisfac-

tory travelling experience and has thus become a prominent
research topic in the field of intelligent transportation system
(ITS) over the past two decades [1]. While the term ‘reliability’
has different definitions in the reliable navigation domain, and
a brief literature review is presented in Section II, this paper
focuses on the stochastic on-time arrival (SOTA) problem,
whose objective is to find an apriori path or a dynamic routing
policy with the maximal on-time arrival probability.

The SOTA problem finds extensive applications in various
time-critical navigation scenarios, such as emergency medical
services, timely catch up of air flights and/or scheduled
appointments [2]. Mainstream SOTA solutions either use dy-
namic programming (DP)-based methods to recursively esti-
mate the optimal policy’s value function at a given node or em-
ploy mathematical programming (MP)-based methods which
formulate SOTA as a mathematical optimization problem,
and resort to off-the-shelf optimization solvers, e.g., CPLEX,
Gurobi, for the optimal solution. However, these conventional

1College of Computer Science, Sichuan University (SCU), Chengdu, China,
610064. yjzhou09@gmail.com. Corresponding author: Yingjie Zhou.

2School of Automation Engineering, University of Electronic Science and
Technology of China (UESTC), Chengdu, China, 611731.

3School of Computing and Information Systems, Singapore Management
University, 178902, Singapore. zhiguangcao@outlook.com

4State Key Laboratory of Synthetical Automation for Process Industries,
Northeastern University, Shenyang, China.

This work was supported in part by the 111 Project under Grant No.
B21044 and Sichuan Science and Technology Program under Grant No.
2023NSFSC1965.

methods have their limitations. For instance, DP-based meth-
ods are computationally expensive and thus are infeasible
for real-time decision-making in large-scale transportation
networks. On the other hand, MP-based methods, although
providing globally optimal solutions, may struggle to handle
the dynamic and stochastic nature of transportation networks
efficiently.

Moreover, to the best of our knowledge, almost all state-
of-the-art solutions to the SOTA problem are ‘all-to-one’,
i.e., offer solutions from ‘all’ origin nodes to one fixed
destination node, or ‘one-to-one’, i.e., offer solutions from one
origin node to one specific destination node. This limitation
restricts their applicability to scenarios where dynamic routing
to various destination nodes is required, such as ride sharing
platforms or autonomous vehicles navigating through an urban
environment with different drop-off locations.

In this paper, we study the SOTA problem from reinforce-
ment learning (RL) perspective, and propose a sample efficient
generalized actor critic (SEGAC) method as an ‘all-to-all’
solution to the SOTA problem, i.e., SEGAC’s resulting policy
network applies to ‘all’ origin nodes and ‘all’ destination
nodes, without the need of re-training. SEGAC comprises
(1) a generalized actor-critic network module, which is able
to update the policy network for the non-additive SOTA
objective; (2) an off-policy policy gradient correction module,
which uses importance sampling to calculate the target policy’s
gradient with the trajectory data collected by a behavior policy;
(3) a node embedding module which maps nodes to condensed
real-valued vectors; and (4) a variance reduction module,
which reduces the generalized actor-critic network’s variance.

With the four functional modules, SEGAC makes the fol-
lowing contributions to the research field of SOTA: (1) SEGAC
generalizes the canonical actor critic method to fit with the
non-additive SOTA objective; (2) SEGAC is sample efficient,
in that it is able to reuse the trajectory data generated by
past behavior policies for current policy network’s parameter
update; (3) SEGAC offers an ‘all-to-all’ solution to the SOTA
problem, i.e., we do not need to re-train SEGAC for a new
destination and/or origin node; (4) SEGAC offers a low-
variance solution during training stages due to the variance
reduction module.

The remainder of the paper is organized as follows. We
present a brief literature review of reliable navigation with a
focus on the SOTA problem along the aspects of navigation
objectives, prevailing methodologies and travel-time assump-
tions in Section II, and then introduce the basic background
knowledge of RL, and SOTA’s problem setup from RL’s
perspective, in Section III. SEGAC is introduced in Section IV

Scott
高亮

Scott
高亮

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 2

and compared with state-of-the-art DP/MP-based methods, the
vanilla actor critic method and two recently proposed RL
baselines for the SOTA problem in a range of transportation
networks in Section V. We deploy SEGAC to two metropolitan
transportation networks, i.e., Chengdu and Beijing, with real
traffic data in Section VI, and end the paper with conclusion
and future work in Section VII.

II. LITERATURE REVIEW

In this section, we conduct a brief literature review of reli-
able navigation in stochastic transportation networks. The term
‘reliability’ in the reliable navigation domain can be defined as
the navigation policy’s (1) maximal stochastic on-time arrival
(SOTA) probability [3], [4], (2) minimal linear combination
of mean and standard deviation travel time [5], i.e., mean-
std shortest path, or (3) minimal travel time satisfying a given
confidence level(α) [6], [7], i.e., α-reliable shortest path. Since
this paper targets the SOTA problem, we review SOTA-related
methodologies and travel-time assumptions in the remainder
of this section, and interested audiences are referred to [8],
[9] for comprehensive reviews of other reliable navigation
methodologies. Table I delivers a bird’s-eye-view of the SOTA
literature, and details will be presented in the following two
subsections.

TABLE I
BIRD’S-EYE VIEW OF THE SOTA LITERATURE

Travel Time Assumptions Methodologies

With/Without
Model

Model-based
[1], [10]–[16] DP-based

[4], [12], [13], [17]–[20]Model-free
[21]–[25] MP-based

[21]–[23], [25], [26]Spatial
Correlation

Spatially Independent
[2], [4], [9], [11]–[13], [16], [19]

Spatially Correlated
[1], [15], [17], [27] RL-based

[9], [24]

Temporal
Correlation

Stationary
[1], [3], [4], [15], [21], [22], [26] Distribution

Induced

Gaussian [1], [15], [16]
Time-Varying

[17], [18], [27]–[30]
SLN [27]
Lévy [10]

A. Methodologies for the SOTA Problem

The stochastic on-time arrival problem in ITS is to find an
adaptive routing policy (policy-based SOTA) or an apriori path
(path-based SOTA), which navigates the ego vehicle to the
destination with maximal on-time arrival probability. In this
paper, we categorize the SOTA methodologies into (1) DP-
based methods, (2) MP-based methods, (3) RL-based methods,
and (4) specific distribution induced methods.

DP-based methods for the SOTA problem typically ap-
ply the Bellman principle of optimality to formulate the
mathematical model of the problem and recursively update
each node’s estimated maximal on-time arrival probability,
see [4], [12], [13], [17]–[20] as examples. A typical example
within the category is the successive approximation (SA)
algorithm [4], which has been deemed as the pioneering DP-
based SOTA solutions. SA describes the relationships between
adjacent nodes’ maximal on-time arrival probabilities through
convolution integrals, and the adjacent node with the maximal
estimated SOTA probability is chosen as the next executing
node. While DP-based methods are straightforward to un-
derstand and capable of delivering a stable SOTA solution,

they require the availability of full travel-time distribution and
incur the non-polynomial convolutional computation, which
prevents the real-time decision-making ability.

On the other hand, MP-based methods are usually deemed
as data-driven solutions, which formulate SOTA as a math-
ematical optimization problem with pre-collected travel-
time samples, and employ off-the-shelf optimization solvers,
e.g., CPLEX and Gurobi, for the ultimate solution, see [21]–
[23], [25], [26] as examples. Cao et al. formulate the path-
based SOTA problem as a cardinality minimization problem,
and then use L1-norm approximation to transform the orig-
inally formulated problem into a mixed integer linear pro-
gramming (MILP) problem, which is solved by the canonical
optimization solver [21]. Similarly, Yang and Zhou consider
the spatial-temporal travel-time dependencies, and also for-
mulate the SOTA problem into an MILP framework. Then,
they propose a one-step mixed integer programming (OS-
MIP) method to calculate the final solution [23]. MP-based
methods for the SOTA problem are model-free/data-driven
solutions, which do not need the well-calibrated travel-time
distribution models. However, the formulated mathematical
problem is usually an MILP, which cannot be solved within
polynomial time. Hence, MP-based methods are typically
computationally expensive and cannot be applied to real-time
application scenarios.

Recently, there has been an emerging trend of applying
reinforcement learning (RL) methods to solve the SOTA
problem. Cao et al. formulate the SOTA problem within the
Markov decision process (MDP) framework, and propose a
practical Q-learning (PQL) method, which uses the multi-
layer perceptron to approximate RL agent’s Q values, i.e., the
corresponding nodes’ on-time arrival probabilities [24]. Guo et
al. propose a cascaded temporal difference (CTD) method,
which simultaneously estimate the mean and variance of a
given routing policy [9]. With the normal distribution as-
sumption of the travel time, CTD can be applied to solve
the SOTA problem. Most recently, Guo et al. invent a DRL-
Router, which employs distributional reinforcement learning
to estimate the full travel-time distribution of a given routing
policy, and it is potentially applicable for a range of reliable
navigation objectives including SOTA [31]. Since SEGAC also
belongs to the RL-based methods, we articulate the differ-
ences/advantages of SEGAC when compared to the existing
RL-based solutions, i.e., PQL, CTD and DRL-Router: (1)
SEGAC is essentially an off-policy RL method, and hence is
much more sample efficient than PQL, CTD and DRL-Router,
which are essentially on-policy methods; (2) SEGAC offers an
‘all-to-all’ solution, which is more general than other RL-based
router, which can only offer ‘all-to-one’ solutions, and (3) both
PQL and CTD impose basic travel-time model assumptions,
e.g., PQL needs the mean and variance of the K-shortest paths
to be known, and CTD assumes a Gaussian distribution of the
travel time, while SEGAC is completely model-free, without
any travel-time distribution assumption.

Apart from reinforcement learning, machine learning-based
methods, such as neural-heuristic analysis, have also been ap-
plied to the vehicle routing domain. Neural-heuristic methods
combine the power of neural networks with traditional heuris-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 3

tics to address vehicle routing problems. These approaches
leverage neural networks for learning complex spatial patterns
and making predictions, while heuristics provide structured
rules for guiding the decision-making process, see [32]–[36]
as examples. However, to the best of our knowledge, neural-
heuristic methods are mostly applied to the vehicle routing
problem (VRP), which aims at determining the most efficient
way to deliver goods or services to a set of customers or
locations with a fleet of vehicles while minimizing costs
or maximizing efficiency. However, in this paper, we target
navigating a single vehicle to one fixed destination with
the maximal SOTA probability in stochastic transportation
networks.

Besides the three aforementioned types of SOTA solu-
tions, there exist a few research works, which target efficient
SOTA solutions for specific travel-time distributions, e.g., nor-
mal distribution [16], multi-variate Gaussian distribution [1],
[15], shifted log-normal (SLN) distribution [27], Lévy dis-
tribution [10]. For example, when assuming that the edges’
travel time follows independent normal distributions, Lim et
al. propose an efficient λ-optimal path finding method, which
confines the optimal SOTA solution within a set of λ-optimal
paths, with known upper and lower bound of λ [16]. Later,
Guo et al. extend the results to the multi-variate Gaussian
distribution use case, and prove that the SOTA problem is
equivalent to a mean-std shortest path problem, which can be
solved by a polynomial-complexity algorithm [1]. With the
same travel-time distribution assumption, Gao et al. make use
of the conjugate relationship between the posterior and prior
multi-variate Gaussian distribution, and propose a Gaussian
process proactive path planning (GP4) method for the policy-
based SOTA problem [15].

B. Travel-Time Assumptions

The SOTA solution strategies vary with different travel-
time distribution assumptions of the underlying transportation
network. In this paper, we categorize the transportation net-
work’s travel-time distribution modeling along the taxonomies
of (1) whether a travel-time distribution modeling is needed
or not; and (2) travel-time distribution’s spatial and temporal
correlation characteristics.

Most of the research works in reliable navigation are offer-
ing model-based solutions, where the underlying transporta-
tion network’s travel-time distribution is needed as algorithm
inputs, see [1], [10]–[16]. For example, Prakash proposes
a decreasing order of time (DOT) algorithm [18], which
discretizes the travel-time distribution within a given time
interval as histograms, and employ DP to iteratively calculate
the optimal routing policy given the remaining time budget.
The author also delivers a ‘Pruning’ algorithm in the same
paper, which outputs an apriori path with the maximal SOTA
probability.

On the other hand, a few research works are provid-
ing model-free/data-driven solutions to the SOTA problem,
see [21]–[25] as examples. The related methodologies typi-
cally make use of the pre-collected travel-time samples instead
of travel-time distribution models for the SOTA solution. For

example, Cao et al. propose a practical Q-learning (PQL)
method, which uses a neural-network represented function
approximator to estimate the on-time arrival probability of
a given node [24]. The pre-collected travel-time samples are
used to calculate the training targets of the neural network,
and in this way, PQL is deemed as a model-free/data-driven
solution to the SOTA problem.

Another perspective of dichotomizing the research works
in reliable navigation along the taxonomies of travel-time
distribution assumptions is its spatial and temporal correlation
characteristic. The simplest and most commonly used assump-
tion is that the travel-time distribution is independent and sta-
tionary, i.e., the edge’s travel-time distribution is independent
from each other, and does not change over time, see [2], [4],
[9], [11]–[13], [16], [19] as examples.

Meanwhile, there are research works targeting spatially cor-
related travel-time distributions and/or time-dependent trans-
portation networks [1], [17], [18], [27]–[29], [37]. For ex-
ample, Nie and Wu study the SOTA problem where the
travel-time distribution has limited spatial and temporal depen-
dencies, and use the first-order stochastic dominance theory
to gradually prune the candidate path set to the optimal
one [17]. Guo et al. study the reliable navigation problem with
multi-variate Gaussian distribution assumption, and propose a
Gaussian process path planning (GP3) method, which solves
the SOTA problem by transforming it to an equivalent mean-
std shortest path problem [1]. Yang and Zhou investigate the
time-dependent travel-time distribution use case; formulate the
SOTA problem into the mixed integer linear programming
(MILP) framework, and employ off-the-shelf MILP solvers,
e.g., CPLEX and Gurobi, for the ultimate solution [23].

Here, we wish to articulate that this paper targets the
independent and stationary travel-time distribution use case,
and treats the spatially correlated and time-varying travel-time
distribution as one of our future work directions.

III. RL BACKGROUNDS AND PROBLEM FORMULATION

Since SEGAC is essentially an off-policy reinforcement
learning method for the SOTA problem, we introduce
RL-related backgrounds including Markov decision process
(MDP), temporal difference (TD) learning, policy gradient
(PG) and actor critic (AC), and also lay down SOTA’s prob-
lem formulation towards the end of the section. A list of
major notations used in the paper is given in Table VII of
Appendix A, where the first set of notations is transportation
network related; the second set is SEGAC and/or RL related.

A. Reinforcement Learning Backgrounds

An RL agent aims at maximizing its expected discounted
cumulative reward through interacting with the environment
and optimizing its decision-making policy [38]. The envi-
ronment’s underlying dynamics is modelled as a Markov
decision process (MDP), defined by the tuple (S, A, P[s′|s, a],
P[r|s, a], γ), where S and A represent the RL agent’s state
space and action space, respectively. P[s′|s, a] and P[r|s, a]
refer to the (unknown) state-transition probability and re-
ward function, respectively, and γ is the discount factor. The

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 4

RL agent’s objective is to find/learn an optimal policy π∗,
which maximizes the expected discounted cumulative reward,
i.e., E[

∑∞
k=0 γ

krk].
One of the canonical methods for solving the RL problem

is temporal difference (TD) learning, which enables the RL
agent to learn from incomplete sequences of experiences. TD
error (δ) measures the discrepancy between the expected return
and the estimated value, providing a learning signal for policy
improvement. In TD learning, the state-value function V (s) is
updated iteratively with the TD error and a learning rate α:

V (st)← V (st) + αδt, (1)

where δt = Rt+1+γV (st+1)−V (st). TD methods, such as Q-
learning [39] and SARSA [38], have been applied to solving
RL problems, offering a balance between sample efficiency
and bias-variance trade-off.

On the other hand, policy gradient (PG) methods focus
on directly parameterizing the policy πθ(a|s) and optimizing
it to maximize the expected return. The objective is to find
the policy parameter vector θ which maximizes the expected
return, i.e., J(θ). Policy gradients are estimated using the
gradient of the expected return, with respect to the policy
parameters:

∇J(θ) = E

[
T∑

t=0

∇θπθ(at|st)Q(st, at)

]
, (2)

where Q(st, at) is the state-action value which can be esti-
mated with temporal difference (TD) learning, or Monte Carlo
(MC) sampling.

Considering the high variance of PG methods during
training stages, researchers propose the actor critic (AC)
method [40], which serves as a synergy between value-based
RL methods, e.g., SARSA, and policy-based RL methods,
e.g., PG. AC methods combine the advantages of policy
gradient and value function estimation. An actor network
parameterizes the policy, while a critic network approximates
the state-value function. The critic evaluates the value of state-
action pairs, guiding the actor’s policy updates through TD
error. The actor’s policy parameters are updated based on the
policy gradient, while the critic’s parameters are updated to
minimize the TD error. This combination enhances learning
stability and convergence in RL tasks.

B. SOTA Problem Formulation

The SOTA reliable navigation problem is to find an apriori
path or an adaptive routing policy, depending on user’s pref-
erence, which navigates the ego vehicle from an origin node
o to a destination node d, with the maximal on-time arrival
probability before a given time budget T . The underlying
stochastic transportation network is represented by a directed
and connected graph G(N ,E), where N (|N | = n) refers
to the set of nodes and E (|E | = m) refers to the set of
edges. Denote cij as edge ij’s travel time, which is a random
variable (RV), and Pod as the complete set of feasible paths
connecting o to d.

The path-based SOTA problem can be formulated as:

maximize
x

P(cx ≤ T)

subject to x ∈Pod,
(3)

where T is the user-specified path planning budget, cx is
Path x’s total travel time. While for the policy-based SOTA
problem, the output is an adaptive routing policy π, which
takes the ego vehicle’s current residing node i, destination
node d and remaining budget Ti as inputs, and outputs the
next executing edge ij, i.e., ij = π(i, d, Ti). Denote tπ(o, d)
as the total travel time (an RV) when the ego vehicle starts at
o; follows policy π for en-route decision making and arrives
at d, and the problem is to:

maximize
π

P(tπ(o, d) ≤ T)

subject to ij = π(i, d, Ti),

Tj = Ti − tij ,
(4)

where tij is the instantiated travel time of edge ij, Ti and Tj
are the remaining budgets for node i and node j, respectively.
The term ‘adaptive’ refers to the fact that the ego vehicle is
able to adapt its decision-making policy en-route with the ever-
changing remaining budget Ti.

Examining Eq. (4), we can see that if the routing policy
π does not take the real-time remaining budget Ti as one of
the inputs, and outputs an edge ij based on the pre-departure
budget T , it becomes a non-adaptive routing policy, which
is essentially the solution to the path-based SOTA problem
defined in Eq. (3). Therefore, it is easy to switch between
policy-based solution and path-based solution with a policy
network representation of π. With real-time remaining budget
Ti as the input, π offers the policy-based solution, on the other
hand, with only the pre-departure budget T as input, π offers
the path-based solution to the SOTA problem.

IV. SAMPLE EFFICIENT GENERALIZED ACTOR CRITIC

This section presents the core RL methodology for SOTA,
namely sample efficient generalized actor critic (SEGAC).
As the SOTA objective is essentially non-additive, it makes
the canonical policy gradient theorem invalid; furthermore,
the canonical TD method, e.g., SARSA, is also inapplicable
in that the Bellman optimality condition is violated by the
non-additive nature of the SOTA objective. In the following
subsections, we will present (1) the generalized policy gradient
theorem, which applies to the non-additive SOTA problem; (2)
an on-policy extended value function approximation algorithm,
which extends the canonical TD learning method to the
SOTA use case; (3) the integrated generalized actor critic
method with corresponding off-policy corrections for sample
efficiency; (4) the variance reduction module for SEGAC and
(5) the state space encoding mechanism and feature training
process, which enables SEGAC with the ‘all-to-all’ solution
characteristic. Note that SEGAC is able to output both path-
based and policy-based SOTA solutions, we focus on the
policy-based SOTA solution in the main presentation flow,
and explain, in Section IV-F, how we feed the policy/actor
network with a different feature set, which fosters the path-
based SOTA solution. We end the section with the algorithm’s

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 5

Fig. 1. The SEGAC framework: (1) the node embedding module maps nodes
into condensed d-dimensional real-valued vectors, which facilitate SEGAC’s
generalization ability across different destination nodes; (2) µθ is the behavior
policy generating the trajectory sequences (τ), and πθ is the evaluation policy
whose policy parameters (θ) are to be updated; (3) the Generalized Policy
Gradient (GPG) module estimates the gradients of the behavior policy µθ ,
and when combined with the weighted importance sampling module, it is
transformed to OP-GPG, which estimates the policy gradient of πθ ; (4) the
E-VFA module estimates the TD-error of πθ , and the control variate module
decreases the variance of E-VFA; (5) GPG and E-VFA are fed into SEGAC,
which outputs the final policy gradient update direction of πθ .

computational complexity analysis. Fig. 1 displays SEGAC’s
overall framework, whose composing modules are presented
in the following subsections.

A. Generalized Policy Gradient for SOTA

In this subsection, we present the generalized policy gra-
dient theorem which updates the parameters of the policy
network1. We use the one-hot encoder to represent the ego
vehicle’s current residing node (i) as well as the destination
node (d), and then concatenate them with the remaining budget
Ti to form the state representation, e.g., sk = (ψ(i);ψ(d);Ti),
where ψ(j) refers to the mapping of j to the one-hot en-
coder. The action (a) corresponds to which edge to execute.
The policy network πθ is a multi-layer perceptron (MLP),
which maps the state (sk) to probabilistic action selections,
i.e., P[ak = a] = π(a|sk;θ).

Defining Js(πθ) = P[tπ(o, d) ≤ T] and τ (j) =(
s
(j)
0 , a

(j)
0 , r

(j)
1 , s

(j)
1 , a

(j)
1 , . . . , s

(j)
Hj−1, a

(j)
Hj−1, r

(j)
Hj
, s

(j)
Hj

)
as the

j
th

trajectory sample generated by π, where R(τ (j)) =∑Hj−1
k=0 r

(j)
k+1 is the instantiated total travel time for τ (j), we

lay down the generalized policy gradient theorem whose proof
process is presented in Appendix B.

Theorem 1 (The Generalized Policy Gradient Theorem). The
derivative of Js(πθ) with respect to θ is the expectation of
the product of the πθ-induced trajectory’s SOTA probability
and the gradient of the log of policy πθ, i.e., ∇θJs(πθ) =
Eτ∼π[P[R(τ) ≤ T]∇θ log πθ(τ)], where τ is πθ-induced
trajectory, R(τ) is τ ’s total travel time (an RV), and πθ(τ)
refers to the probability of generating τ by πθ.

Theorem 1 lays a solid theoretical foundation of applying
PG-related techniques to solve the SOTA problem. In

1Note that conforming to RL conventions, in the PG context, the ego
vehicle’s decision-making mechanism is called the ‘policy network’. While
in the AC context, the same mechanism is referred to as the ‘actor network’.
In essence, the policy network is the same as the actor network.

practice, suppose that we have M trajectory samples
generated by πθ, i.e., ∀j ∈ {1, 2, . . . ,M}, we have τ (j) =(
s
(j)
0 , a

(j)
0 , r

(j)
1 , s

(j)
1 , a

(j)
1 , . . . , s

(j)
Hj−1, a

(j)
Hj−1, r

(j)
Hj
, s

(j)
Hj

)
, we

can approximate the expectation term with Monte Carlo
sampling, and get:

∇θJs(πθ)

=Eτ∼π

[
P[R(τ) ≤ T]∇θ log πθ(τ)

]
≈ 1

M

M∑
j=1

1{R(τ (j)) ≤ T}∇θ log πθ(τ
(j))

=
1

M

M∑
j=1

(
1{R(τ (j)) ≤ T} ×∇θ

Hj−1∑
k=0

(
log π(a

(j)
k |s

(j)
k ;θ)

+ logP[r(j)k+1, s
(j)
k+1|s

(j)
k , a

(j)
k]

))
=

1

M

M∑
j=1

(
1{R(τ (j)) ≤ T}×

Hj−1∑
k=0

∇θ log πθ(a
(j)
k |s

(j)
k)

)
, (5)

where 1{statement} is the indicator function, which returns 1
if the statement is true, and returns 0 if the statement is false.
Note that in Eq. (5), the derivation of the last line makes use of
the fact that the environmental dynamics (transition probability
and reward function) does not depend on θ, i.e., ∀ 0 ≤ k ≤
Hj − 1, and thus we have ∇θ logP[r(j)k+1, s

(j)
k+1|s

(j)
k , a

(j)
k] = 0.

With the generalized policy gradient theorem and Eq. (5),
we present the on-policy generalized policy gradient (OP-
GPG) algorithm for the SOTA problem, as depicted in Al-
gorithm 1.

Algorithm 1: On-Policy Generalized Policy Gradient
Input: (1) origin o, destination d; (2) time budget: T ;

(3) learning rate: α; (4) max. iteration: Tmax;
(5) num. of episodes per iteration: M ;

Output: Policy network πθ;
Init: (1) Randomly initialize the policy network πθ;

(2) counter←− 0;
1 while counter ≤ Tmax − 1 do
2 Run πθ and collect M trajectories, i.e., τ (j);
3 Calculate ∇θJs(πθ) according to Eq. (5);
4 Update the policy network’s parameter as:

θ = θ + α∇θJs(πθ);
5 counter←− counter + 1;

6 Final.

B. Extended Value Function Approximation (E-VFA)

The last subsection presents the OP-GPG algorithm for
the SOTA problem. However, examining Eq. (5), we can
see that the ‘rewarding’ to a given policy πθ, is too
sparse, i.e., 1{R(τ (j)) ≤ T} ∈ {0, 1}. For example, if
1{R(τ (j)) ≤ T} = 0, the corresponding policy’s parameter
is not updated at all. While in practice, the policy fails to lead
the ego vehicle to arrive on time, and it should be penalized.
A naive implementation is to subtract all the policy’s return
by a constant factor (0.5), i.e., 1{R(τ (j)) ≤ T} − 0.5, and

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 6

use the altered return as the computation basis for policy
update. However, subtracting the policy’s return by a constant
factor (0.5) for all the SOTA problem configurations, i.e., all
origin-destination (OD) pairs (o and d) and all budgets (T),
is inefficient and may prolong OP-GPG’s convergence time.
This paper proposes an extended value function approximation
(E-VFA) method to estimate the evaluation policy’s on-time
arrival probability when given OD and T , and use the E-VFA
estimates as the subtracting baseline.

Define bπϕ(s) as the E-VFA estimated on-time arrival proba-
bility for policy π at state s, e.g., bπϕ(s) = P[tπ(o, d) ≤ T]. We
adopt the same state representation scheme for E-VFA as that
of the policy network πθ, e.g., s = (ψ(o), ψ(d), T)⊤ if the
ego vehicle is at node o, with time budget T and destination
node d. Note that bπϕ(s) is also an MLP parameterized by ϕ.
Next, we present a corollary displaying the extended Bellman
equation of bπϕ(s), and use it as the basis for the E-VFA
algorithm.

Corollary 1. The extended Bellman equation for the SOTA
objective is expressed as:

bπϕ(s) =
∑
a

(
πθ(a|s)

∑
s′

P[s′|s, a]bπϕ(s′)
)
. (6)

In Corollary 1, the probability transition function, P[s′|s, a],
includes both the ego vehicle’s residing node transition and
the remaining budget transition, e.g., from T (s) to T (s′),
after executing action a. The proof process of Corollary 1 is
straightforward and omitted in the main manuscript. Interested
audiences are referred to the publicly available code repository
(see Section V) for details. Note that the extended Bellman
equation as expressed in Eq. (6) does not contain the reward
function, i.e., P[r|s, a], explicitly, in that it is already implicitly
expressed in the remaining budget (T (s′)) as a part of the next
time-step state (s′).

Corollary 1 provides the basis for estimating a given policy’s
on-time arrival probability in a bootstrapped way with tem-
poral difference (TD) learning. Next, we express the E-VFA
algorithm with one-step TD method in Algorithm 2. Note that
one may also choose to use multi-step TD, TD(λ) or Monte
Carlo (MC) to instantiate the on-policy E-VFA algorithm. We
omit the corresponding details in the main manuscript for
presentation sanity, and put the respective pseudo codes in the
code repository. In Algorithm 2, for Line 8, when calculating a
given state (sk)’s on-time arrival probability under π, we first
extract the vehicle’s current residing node i, destination node
d, and remaining budget Ti. If Ti < 0, we set bπ

ϕ−(sk) = 0;
else if i = d, we set bπ

ϕ−(sk) = 1, otherwise, we feed the
corresponding feature vector into the MLP, which calculates
the value for bπ

ϕ−(sk).

C. Sample Efficient Generalized Actor Critic (SEGAC)

The last subsection introduces the E-VFA algorithm, which
estimates the on-time arrival probability of the evaluation
policy (π). In this subsection, we will first integrate OP-
GPG and E-VFA to reach the on-policy generalized actor
critic (OP-GAC) algorithm for the SOTA problem. After that,

Algorithm 2: Extended Value Function Approximation
Input: (1) Policy network πθ; (2) mini-batch size: K;

(3) max. episodes: Tmax; (4) max. training
iteration: Titer

Output: E-VFA estimated baseline bπϕ;
Init: (1) Initialize replay memory D; (2) Randomly

initialize ϕ for bπϕ; (3) initialize the target
network’s parameter ϕ− = ϕ; (4) j ←− 1;

1 while j ≤ Tmax do
2 Randomly initialize origin o, destination d and

budget T ;
3 Run πθ and collect the trajectory, i.e., τ (j) =(

s
(j)
0 , a

(j)
0 , r

(j)
1 , s

(j)
1 , . . . , s

(j)
Hj−1, a

(j)
Hj−1, r

(j)
Hj
, s

(j)
Hj

)
;

4 ∀ 0 ≤ k ≤ Hj − 1, store transition
(s(j)k , a

(j)
k , r

(j)
k+1, s

(j)
k+1) in D;

5 j ←− j + 1;

6 foreach j ∈ {1, 2, . . . , Titer} do
7 Sample K mini-batch transitions

(sk, ak, rk+1, sk+1) from D;
8 Set yk = bπ

ϕ−(sk+1);
9 Perform a stochastic gradient descent step on

1
K

∑K
k=1(yk − bπϕ(sk))2 with respect to ϕ;

10 Reset ϕ− = ϕ;

11 Final.

we introduce the off-policy versions of OP-GPG and E-
VFA, which ultimately upgrade OP-GAC to sample efficient
generalized actor critic (SEGAC).

1) On-Policy Generalized Actor Critic: With E-VFA es-
timated baseline, i.e., bπϕ(s), we can improve the OP-GPG
algorithm to the generalized actor critic version. In generalized
actor critic, we replace the calculation of Js(πθ)’s gradient as:

∇θJs(πθ) =
1

M

M∑
j=1

((
1{R(τ (j)) ≤ T} − bπϕ(s)

)
×

Hj−1∑
k=0

∇θ log πθ(a
(j)
k |s

(j)
k)

)
, (7)

where the corresponding notation symbols have been intro-
duced in the last two subsections, respectively, and one may
also refer to Table VII of Appendix A for brief descriptions.
With Eq. (7), one can reach the on-policy generalized actor
critic (OP-GAC) algorithm, as shown in Algorithm 3. The
algorithm flow process is similar to that of Algorithm 1.
However, within the ‘while’ loop, after collecting M trajecto-
ries, OP-GAC will first update the E-VFA estimated baseline
function bπϕ, and then use it as the subtracting baseline to
calculate the gradient of Js(πθ).

2) Off-Policy Generalized Policy Gradient: The on-policy
generalized actor critic algorithm (as depicted in Algorithm 3)
works well for the SOTA problem in the reliable navigation
domain. However, it is sample inefficient, in that both OP-GPG
and E-VFA need the ‘on-policy’ trajectory data collected from
the evaluation policy π, to update the respective parameters. In

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 7

Algorithm 3: On-Policy Generalized Actor Critic
Input: (1) origin o, destination d; (2) time budget: T ;

(3) learning rate: α; (4) max. iteration: Tmax;
(5) num. of episodes per iteration: M ;

Output: Policy network πθ;
Init: (1) Randomly initialize the policy network πθ;

(2) counter←− 0;
1 while counter ≤ Tmax − 1 do
2 Run πθ and collect M trajectories, i.e., τ (j);
3 Calculate bπϕ with E-VFA;
4 Calculate ∇θJs(πθ) according to Eq. (7);
5 Update the policy network’s parameter as:

θ = θ + α∇θJs(πθ);
6 counter←− counter + 1;

7 Final.

practice, one needs a sample efficient algorithm, which is able
to make use of the ‘past’ policy generated trajectory data to
update the ‘current’ actor/policy network’s and critic/baseline
network’s parameters. Conforming to the RL conventions, we
name the ‘past’ policy as the behavior policy, denoted as
µθ

2. In the following, we will introduce (1) the off-policy
generalized policy gradient theorem, which serves as the
theoretical foundation of the off-policy GPG algorithm and
(2) the importance sampling correction mechanism for the off-
policy E-VFA algorithm.

Theorem 2 (Off-Policy Generalized Policy Gradient The-
orem). The gradient of Js(πθ) for behavior policy (µθ)
generated trajectory τ can be expressed as:

∇Js(πθ) = Eτ∼µθ
[P[R(τ) ≤ T](∇θ log πθ(τ))ρ(τ)], (8)

where ρ(τ) = πθ(τ)/µθ(τ) is the importance sampling ratio
of π to µ with respect to trajectory τ .

The proof process of Theorem 2 is presented in Appendix C.
With Theorem 2, we deliver the off-policy generalized policy
gradient approximation procedure for πθ with M trajectory
samples generated by µθ as follows:

∇θJs(πθ) =
1

M

M∑
j=1

(
1{R(τ (j)µ) ≤ T}

×
Hj−1∑
k=0

∇θ log πθ(a
(j)
k |s

(j)
k)ρ(τ (j)µ)

)
, (9)

where τ
(j)
µ is the j

th
trajectory data generated by µθ, and

the importance sampling ratio is expressed as: ρ(τ (j)µ) =∏Hj−1
k=0

π(ak|sk)
µ(ak|sk) . We skip the pseudo code presentation of off-

policy generalized policy gradient as it is quite similar to
Algorithm 1 by merely replacing the calculation procedure
of ∇θJs(πθ) with Eq. (9).

2Note that both the behavior policy µθ and the evaluation policy πθ , are
essentially MLPs. Here, θ are generally referring to the MLP parameters, and
we do not mean that µθ and πθ share the same parameter values.

3) Off-Policy Extended Value Function Approximation: The
next module in SEGAC is to instantiate an off-policy E-VFA
algorithm, which is able to make use of the behavior policy
(µθ) generated trajectory data to approximate the evaluation
policy (π)’s on-time arrival probability at any given state
s. Recall Corollary 1, we can see that, essentially, for any
state s, we have bπϕ(s) = Ea∼π(a|s),s′∼P[s′|s,a] b

π
ϕ(s

′). When a
is generated by behavior policy µ, we can use importance
sampling ratio correction method to reach the estimate of
bπϕ(s) as follows:

bπϕ(s) = Ea∼µ(a|s),s′∼P[s′|s,a]
π(a|s)
µ(a|s)

bπϕ(s
′), (10)

where π(a|s)
µ(a|s) is the importance sampling ratio. With Eq. (10),

we can reach the off-policy E-VFA algorithm whose pseudo
code is depicted in Algorithm 4.

Algorithm 4: Off-Policy E-VFA
Input: (1) Evaluation policy network πθ; (2) behavior

policy network µθ; (3) mini-batch size: K; (4)
max. episodes: Tmax; (5) max. training
iteration: Titer

Output: Off-Policy E-VFA estimated baseline bπϕ;
Init: (1) Initialize replay memory D; (2) Randomly

initialize ϕ for bπϕ; (3) initialize the target
network’s parameter ϕ− = ϕ; (4) j ←− 1;

1 while j ≤ Tmax do
2 Randomly initialize origin o, destination d and

budget T ;
3 Run µθ and collect the trajectory, i.e., τ (j)µ =(

s
(j)
0 , a

(j)
0 , r

(j)
1 , s

(j)
1 , . . . , s

(j)
Hj−1, a

(j)
Hj−1, r

(j)
Hj
, s

(j)
Hj

)
;

4 ∀ 0 ≤ k ≤ Hj − 1, store transition
(s(j)k , a

(j)
k , r

(j)
k+1, s

(j)
k+1) in D;

5 j ←− j + 1;

6 foreach j ∈ {1, 2, . . . , Titer} do
7 Sample K mini-batch transitions,

e.g., (sk, ak, rk+1, sk+1), from D;
8 Set yk = π(ak|sk)

µ(ak|sk)b
π
ϕ−(sk+1);

9 Perform a stochastic gradient descent step on
1
K

∑K
k=1(yk − bπϕ(sk))2 with respect to ϕ;

10 Reset ϕ− = ϕ;

11 Final.

4) Sample Efficient Generalized Actor Critic: With the off-
policy GPG theorem, and the off-policy E-VFA algorithm
for baseline calculation, we can reach the SEGAC algorithm,
which makes use of the behavior policy generated trajectory
for the evaluation policy network’s parameter update. The core
of SEGAC is to update the actor network’s parameter with the

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 8

Algorithm 5: Sample Efficient Generalized Actor
Critic (SEGAC)

Input: (1) origin o, destination d; (2) time budget: T ;
(3) learning rate: α; (4) max. iteration: Tmax;
(5) pre-collected num. of trajectories: M ; (6)
behavior policy µθ

Output: Policy network πθ;
Init: (1) Randomly initialize the policy network πθ;

(2) counter←− 0;
1 Run µθ and collect M trajectories, i.e., τ (j);
2 while counter ≤ Tmax − 1 do
3 Calculate bπϕ with the off-policy E-VFA algorithm;
4 Calculate ∇θJs(πθ) according to the off-policy

generalized policy gradient approximation
equation in Eq. (11);

5 Update the policy network’s parameter as:
θ = θ + α∇θJs(πθ);

6 counter←− counter + 1;

7 Final.

baseline subtracted generalized policy gradient as follows:

∇θJs(πθ) =
1

M

M∑
j=1

(
(1{R(τ (j)µ) ≤ T} − bπϕ(s

(j)
0))

×
Hj−1∑
k=0

∇θ log πθ(a
(j)
k |s

(j)
k)ρ(τ (j)µ)

)
. (11)

The pseudo code is depicted in Algorithm 5. Note that, in
Algorithm 5, we set an independent behavior policy, i.e., µθ,
as the trajectory collection policy, and reuse the data for pa-
rameter update of the evaluation policy’s actor-critic network.
In this way, we depict the off-policy GPG and off-policy E-
VFA update process explicitly. While in practice, we can just
use the past evaluation policies as the behavior policy, and use
the collected trajectory data from past evaluation policies to
update the current evaluation policy’s parameters.

D. Variance Reduction for SEGAC

The last subsection presents SEGAC as a sample-efficient
solution to the SOTA problem. However, in practice, one of
the main issues of SEGAC is its high variance due to the
importance sampling ratio. In this subsection, we propose (1)
the weighted importance sampling (WIS) method to reduce the
variance of off-policy GPG, and (2) the control variate (CV)
method to reduce the variance of off-policy E-VFA.

1) Weighted Importance Sampling for Off-Policy GPG: Al-
though it can be proved that the expectation of the importance
sampling ratio is equal to one, i.e., Eτ∼µθ

[ρ(τ)] = 1, it has
high variance especially when π and µ are quite different
from each other. In order to reduce the variance during the
generalized policy gradient’s approximation procedure, we
replace the importance sampling ratio

(
ρ(τ

(j)
µ)

)
in Eq. (9)

with the weighted importance sampling, denoted as ρ̃. The
weighted importance sampling for τ (j) given M pre-collected
trajectories is calculated as ρ̃(τ (j)µ) = ρ(τ

(j)
µ)/

∑M
j=1 ρ(τ

(j)
µ).

With ρ̃(τ (j)µ) for τ (j)µ , the off-policy generalized policy gradi-
ent approximation procedure for πθ can be calculated as:

∇θJs(πθ) =
1

M

M∑
j=1

(
1{R(τ (j)µ) ≤ T}

×
Hj−1∑
k=0

∇θ log πθ(a
(j)
k |s

(j)
k)ρ̃(τ (j)µ)

)
. (12)

It is straightforward to verify that 0 ≤ ρ̃(τ
(j)
µ) ≤ 1,

and in most cases, ρ̃(τ (j)µ) has much smaller variance than
that of ρ(τ (j)µ). However, note that the off-policy generalized
policy gradient approximation procedure for πθ as described in
Eq. (12) is a biased estimate, but with much smaller variance
than the unbiased one expressed in Eq. (9). In practice, one
can choose between Eq. (9) and Eq. (12) depending on one’s
trade-off preferences between ‘bias’ and ’variance’.

2) Control Variate for Off-Policy E-VFA: For the off-policy
E-VFA algorithm, one can also replace the importance sam-
pling ratio in Eq. (10) with the weighted importance sampling
to reduce variance. However, since the importance sampling
ratio is only with respect to one state-action pair instead of the
whole trajectory, replacement with WIS (ρ̃) is not reducing
the variance significantly. The key factor that makes the E-
VFA estimates exhibit high variance is that if π(a|s)/µ(a|s)
is too small, e.g., approaches zero, the target value also shrinks
to almost zero, which makes the stochastic gradient descent
update move towards a ‘wrong’ (high variance) direction.

In this paper, we propose a control variate (CV) method,
which offsets the ‘shrinked’ target value with a ‘remedy’ value
as follows:

yk =
π(ak|sk)
µ(ak|sk)

bϕ−(sk+1) +
(
1− π(ak|sk)

µ(ak|sk)
)
bϕ(sk), (13)

where the related variables can be referred to in Line 8
of Algorithm 4. Replacing Line 8 of Algorithm 4 with
Eq. (13) yields the variance-reduced off-policy E-VFA al-
gorithm, which we do not display the contents in the main
manuscript, due to its high similarity to Algorithm 4. Note
that the expected value of the added term in Eq. (13),
i.e.,

(
1 − π(ak|sk)

µ(ak|sk)
)
bϕ(sk), is zero, and it functions to reduce

the variance of the estimation process of E-VFA. Therefore,
the term is named as the ‘control variate’.

E. State Space Encoding and Feature Training

So far, we have introduced the sample efficient generalized
actor critic method with two variance reduction techniques.
One more characteristic of SEGAC is the ‘cold start’ reliable
navigation functionality, which means that the well-trained
SEGAC is able to output an up-to-standard routing policy
when we set an ‘unforeseen’ destination node. The function-
ality is implemented through condensed state space encoding
and feature training.

In Section IV-A, we encode the ego vehicle’s current
residing node (i) as well as the destination node (d) with
the one-hot embedding scheme. However, one-hot embed-
ding essentially leads to a tabular solution, which is un-
generalizable to new destination nodes. In this paper, we adopt

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 9

the random embedding initialization and post feature training
method as proposed in [41] to embed the nodes in Graph
G and thereby endow SEGAC with the generalizable reliable
navigation functionality.

Let φ : {0, 1}n −→ Rd̃ be a random embedding func-
tion, which maps the one-hot embedded n-dimensional node
vector to the d̃-dimensional real-valued vector. Recall (in
Section IV-A) that ψ(i) maps node i to the n-dimensional one-
hot embedded vector, we can initialize the feature of any node
i in Graph G to the d̃-dimensional real-valued feature space,
i.e., ∀ i ∈ N , we have φ(ψ(i)) as node i’s d̃-dimensional
real-valued feature encoding. With φ, we can encode the ego
vehicle state as follows: for example, the ego vehicle is at node
i, with destination node d and remaining deadline Ti, we can
embed the feature space as si = [φ(ψ(i));φ(ψ(d));Ti], which
is a (2d̃+ 1)-dimensional real-valued vector.

The random embedding function φ endows SEGAC with
the generalization ability, however, the embedded feature is
meaningless, and we need a method to update the feature
vector to reach meaningful representations. Recall the off-
policy generalized policy gradient approximation procedure in
Eq. (9) or Eq. (12), one can update the first 2d̃ dimensional
vectors (Ti is the remaining budget which cannot be updated)
by treating si itself also as a part of the policy network’s
parameters. Similarly, referring to Line 9 of Algorithm 4, one
can also update si by treating it as a part of the critic network’s
parameters. In this way, the feature space of si is updated
gradually towards meaningful representations, and SEGAC is
able to output up-to-standard routing policies for unforeseen
destination nodes. We will showcase the generalization func-
tionality of SEGAC with experimental results in Section V-C.

F. Path-based SEGAC

Up to this point, the description of SEGAC primarily
focuses on its capability of generating a dynamic routing
policy based on the ego vehicle’s current residing node (i),
remaining budget Ti, and the destination node d. However, if
the need arises for SEGAC to provide a pre-defined path-based
solution for the SOTA problem, a straightforward adjustment
can be made. Specifically, we configure the input features
provided to the actor/critic network to include:

• origin node (o): signifying the starting point of the SOTA
problem;

• pre-departure budget (T): representing the initial path
planning budget;

• current residing node (i): indicating the ego vehicle’s
current residing node;

• destination node (d): specifying the SOTA problem’s final
destination.

One can observe that the ego vehicle’s decision-making at
the intermediate node i does not take the remaining budget Ti
as input, but rather depends on the initial budget T at node o.
In this way, SEGAC ensures that the resulting routing policy
is deterministic and consistently connects the specified origin
node o with the destination node d, thus providing a predefined
path for addressing the SOTA path problem.

G. Computational Complexity Analysis

In this subsection, we use the big O notation [42] to analyze
the computational complexity of SEGAC’s training process as
depicted in Algorithm 5. Examining Algorithm 5, we find that
the core computational load happens between Line 3 and Line
6. Line 3 is essentially calculating the subtracting baseline
obtained from the off-policy E-VFA algorithm. As bπϕ is a
multi-layer perceptron, with the number of input features as
2d̃ + 1, number of hidden features as 2 × (2d̃ + 1), and
number of output features as 1, we have the computational
complexity of calculating the subtracting baseline as bπϕ as
O(2× (2d̃+1)2+2× (2d̃+1)), which can be represented as
O(d̃2) when omitting the non-leading terms. Line 4 functions
to calculate the off-policy policy gradient approximation with
Eq. (11), whose computational complexity can be expressed
as O(M × 1 × H̄ × [(2 × (2d̃ + 1)2 + 2 × (2d̃ + 1)) + 2 ×
(2 × (2d̃ + 1)2 + 2 × (2d̃ + 1))]), where H̄ =

∑M
j=1Hj/M

refers to the average trajectory length of the pre-collected
M trajectories. When omitting the non-leading terms, we
can get that the computational complexity of Line 4 can be
expressed as O(MH̄d̃2). Line 5 updates the policy parameters
which simply has a computational complexity of O(d̃). Line
3 to Line 5 are executed for Tmax times. Therefore, the total
computational complexity of SEGAC’s training process can
be expressed as O(d̃2 +MH̄d̃2 + d) × Tmax, which can be
simplified asO(MH̄d̃2Tmax). From the expression, we can see
that SEGAC is a polynomial computational complexity algo-
rithm, with respect to the number of pre-collected trajectories
(M), the average trajectory length (H̄), the node embedding
dimension (d̃), and the maximum training episodes Tmax.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate and compare SEGAC’s per-
formance with state-of-the-art SOTA solutions in a range of
transportation networks. For state of the arts, we select (1)
decreasing order of time (DOT) [18], (2) one-step mixed
integer programming (OS-MIP) [23], (3) fourth moment ap-
proach (FMA) [2], (4) integer linear programming (ILP) [26],
(5) Gaussian process path planning (GP3) [1], (6) practi-
cal Q-learning (PQL) [24], (7) cascaded temporal difference
(CTD) [9]. Note that DOT and FMA are most recently
proposed DP-based methodologies for the SOTA problem;
OS-MIP and ILP are representative MP-based algorithms
for SOTA; GP3 is a recently proposed special distribution
(Gaussian) induced algorithm for the SOTA problem; and PQL
and CTD are two recently proposed RL-based SOTA solutions,
with CTD only applicable to Gaussian travel-time distribution
assumptions. Additionally, since SEGAC is a generalized actor
critic method, we also implement the vanilla actor critic (AC)
method as the comparative baseline. Note that AC aims at
maximizing the policy’s expected cumulative return, which
corresponds to the least expected time (LET) path in the path
planning domain.

Table II summarizes the related parameter configurations for
state-of-the-art SOTA solutions and SEGAC. All algorithms
are implemented in Python 3.7, and we conduct the experi-
ments on a 3.60 GHz, AMD Ryzen 5, 3600, 6-Core desktop

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 10

TABLE II
ALGORITHM PARAMETERS

Para. Description Algorithm Value
α learning rate SEGAC, CTD, PQL 1e-3
M pre-collected trajectories SEGAC 100
Tmax Max. iterations SEGAC,ILP,OS-MIP 2e4
d̃ node embedding dimension SEGAC 32
S # of travel time samples ILP, OS-MIP 50
Epimax maximum episode number SEGAC, CTD 8e4
ᾱ variance learning rate CTD 1e-3
ϵ exploration strategy CTD, PQL 0.05
K # of shortest paths PQL 5
ϑ accuracy threshold FMA 0.05
K1 Max. # of policy evaluation FMA 200
K2 Max. # of policy iteration FMA 200
δ time window duration DOT 0.01
ηr relative tolerance GP3 0.05

processor with the 64-bit version of Windows 10 operating
system and 16GB RAM. The source code of SEGAC and
all selected state-of-the-art SOTA solutions are publicly avail-
able3. In the following several subsections, we will (1) evaluate
both the on-policy and off-policy functional modules within
SEGAC, i.e., OP-GPG, OP-GAC, off-policy GPG, SEGAC,
and variance-reduced SEGAC, with a simple yet illustrative
network; (2) benchmark SEGAC’s performance and efficiency
(in terms of the decision-making/planning time) with state-
of-the-art SOTA solutions in four canonical transportation
networks, namely Sioux Falls network (SFN), Anaheim, Win-
nipeg and Chicago Sketch; (3) evaluate SEGAC’s unique
functionality of providing the ‘all-to-all’ routing service in
Anaheim, Winnipeg, and Chicago Sketch4; and (4) perform the
ablation study of SEGAC in all four transportation networks.

A. SEGAC’s Functional Module Evaluation

In this subsection, we perform the ‘unit test’ of SEGAC in
a simple network as shown in Fig. 2(a). The corresponding
edges’ travel time distributions are displayed in Fig. 2(b).
Note that SEGAC is a model-free solution to the SOTA
problem, and thus it is not confined to any specific distribution
model. The reason we choose normal distribution as the
edges’ distribution models, is that in this way, we are able
to calculate, analytically, a given policy’s true on-time arrival
probability, and hence evaluate the correctness and optimality
of all functional modules within SEGAC.

(a) The simple network (b) Travel-time distribution

Fig. 2. The Simple Network for Unit Test of SEGAC.

In Fig. 2(a), the ego vehicle is supposed to navigate from
Node 1 to Node 3, with time budgets T = 19 and T = 21,

3https://github.com/YoZo-X/SEGAC
4Note that we skip SEGAC’s generalization evaluation in SFN, in that the

size of the network is too small, and one can simply enumerate all OD pairs
and perform training separately.

respectively. With the given edges’ distribution models, we
can calculate that: (1) for T = 19, the ego vehicle should
take Edge 2 and Edge 4 as the optimal path, which has an
SOTA probability of Φ(19−20√

8
) = 0.36; (2) for T = 21, the

ego vehicle should take Edge 1 and Edge 3 as the optimal
path, which has an SOTA probability of Φ(21−20√

0.2
) = 0.99.

Here, Φ(x) refers to the cumulative distribution function
(CDF) of the standard normal distribution. Next, we evaluate
OP-GPG, OP-GAC, off-policy GPG, SEGAC and variance-
reduced SEGAC to see whether they ultimately converge to the
optimal path5. For all off-policy modules within SEGAC, we
fix the behavior policy µθ as selecting available actions/edges
from the uniform randomness, e.g., at Node 1, µθ selects Edge
1 and Edge 2 with equal probabilities of 0.5.

0 50 100 150 200
Episodes

0%

10%

20%

30%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

OP-GPG
OP-GAC

(a) T = 19

0 25 50 75 100
Episodes

75%

80%

85%

90%

95%

100%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

OP-GPG
OP-GAC

(b) T = 21

Fig. 3. Learning Processes of On-Policy Modules in SEGAC.

Fig. 3(a) and Fig. 3(b) show the learning processes of on-
policy modules within SEGAC for T = 19 and T = 21,
respectively. In the figure, we observe that OP-GPG learns
faster than OP-GAC on the difficult task, i.e., T = 19,
which has less than 40% on-time arrival probability, while
OP-GAC converges faster than OP-GPG for the easy task,
i.e., T = 21. We conjecture the underlying reason is that when
facing the difficult task, OP-GPG will put emphasize on the
sparse reward, and ‘drag’ the policy out of bad performance.
While for the easy task, since there are already a lot of
positive rewards, OP-GPG is ‘satisfied’ with the current policy,
which makes the policy slow to change with the self-rewarding
mechanism. For OP-GAC, even when facing a lot of positive
rewards, the baseline subtraction might still deem the policy
as non-optimal, and update the policy towards better ones.

0 50 100 150 200
Episodes

10%

20%

30%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

off-policy GPG
SEGAC
SEGAC+WIS+CV

(a) T = 19

0 50 100 150 200
Episodes

75%

80%

85%

90%

95%

100%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

off-policy GPG
SEGAC
SEGAC+WIS+CV

(b) T = 21

Fig. 4. Learning Processes of Off-Policy Modules in SEGAC.

5Note that E-VFA and off-policy E-VFA are merely baseline estimators
for OP-GAC and SEGAC, respectively, and thus we cannot independently
evaluate the corresponding performance.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 11

0.95 1.0 1.05
Time Budget(×tLET)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

ed
 S

O
TA

 P
ro

ba
bi

lit
y

SEGAC
DOT
OS-MIP
FMA
ILP

GP3
PQL
CTD
AC

(a) Sioux Falls Network

0.95 1.0 1.05
Time Budget(×tLET)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
ed

 S
O

TA
 P

ro
ba

bi
lit

y

SEGAC
DOT
OS-MIP
FMA
ILP

GP3
PQL
CTD
AC

(b) Anaheim

0.95 1.0 1.05
Time Budget(×tLET)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
ed

 S
O

TA
 P

ro
ba

bi
lit

y

SEGAC
DOT
OS-MIP
FMA
ILP

GP3
PQL
CTD
AC

(c) Winnipeg

0.95 1.0 1.05
Time Budget(×tLET)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
ed

 S
O

TA
 P

ro
ba

bi
lit

y

SEGAC
DOT
OS-MIP
FMA
ILP

GP3
PQL
CTD
AC

(d) Chicago Sketch

Fig. 5. The Performance Comparison of SEGAC and State-of-the-art SOTA Solutions.

0.95 1.0 1.05
Time Budget(×tLET)

5

4

3

2

1

0

1

2

3

4

5

Pl
an

ni
ng

 T
im

e
/lo

g(
s)

SEGAC
DOT
OS-MIP

FMA
ILP
GP3

PQL
CTD
AC

(a) Sioux Falls Network

0.95 1.0 1.05
Time Budget(×tLET)

5

4

3

2

1

0

1

2

3

4

5

Pl
an

ni
ng

 T
im

e
/lo

g(
s)

SEGAC
DOT
OS-MIP

FMA
ILP
GP3

PQL
CTD
AC

(b) Anaheim

0.95 1.0 1.05
Time Budget(×tLET)

5

4

3

2

1

0

1

2

3

4

5

Pl
an

ni
ng

 T
im

e
/lo

g(
s)

SEGAC
DOT
OS-MIP

FMA
ILP
GP3

PQL
CTD
AC

(c) Winnipeg

0.95 1.0 1.05
Time Budget(×tLET)

5

4

3

2

1

0

1

2

3

4

5

Pl
an

ni
ng

 T
im

e
/lo

g(
s)

SEGAC
DOT
OS-MIP

FMA
ILP
GP3

PQL
CTD
AC

(d) Chicago Sketch

Fig. 6. The Efficiency Comparison (Decision-Making/Planning Time) of SEGAC and State-of-the-art SOTA Solutions (The unit of y-axis is log of seconds).

For the off-policy modules within SEGAC, i.e., off-policy
GPG, SEGAC and variance-reduced SEGAC, the related per-
formance evolution process for both T values are reported
in Fig. 4(a) and Fig. 4(b), respectively6. In both figures,
we observe that both SEGAC and variance-reduced SEGAC
(SEGAC+WIS+CV in the figure) are converging faster than
off-policy GPG, in that they make better use of the behavior
policy generated trajectory samples with baseline subtraction
and importance sampling ratio normalization. We further ob-
serve that there is no significant difference in terms of learning
rate between SEGAC and variance-reduced SEGAC for the
simple network, in that there are altogether only two decision-
making stages, and the importance sampling ratio

(
ρ(τ)

)
does not fluctuate significantly among different trajectories.
However, for large scale networks, variance-reduced SEGAC
exhibits low-variance convergence characteristics, and we re-
port the related comparative results in the publicly available
github repository.

B. Performance Comparison with State of the Arts

This subsection compares the performance and efficiency
of SEGAC with the pre-selected collection of state-of-the-
art SOTA solutions in four canonical transportation networks,
namely Sioux Falls network (SFN), Anaheim, Winnipeg, and
Chicago Sketch. The network details, i.e., the number of nodes
and edges, are presented in Table III.

The edges’ mean travel times of all the four transportation
networks are publicly available [43], and we follow the same

6Here, we separate the showcase of SEGAC’s on-policy and off-policy
modules, in that the key characteristic of off-policy modules is sample/data
efficiency, instead of faster convergence.

TABLE III
TEST NETWORK SUMMARY

Test network # of edges(m) # of nodes(n)
Sioux Falls Network (SFN) 76 24
Anaheim 914 416
Winnipeg 2836 1052
Chicago Sketch 2950 933

procedure as proposed in [44] to generate the standard de-
viation value of each edge in the network. Specifically, we
set σij = Uniform(0, κ)µij , where κ = 0.4, and assume that
all edges’ travel time follow the normal distribution. Note that
although SEGAC is model free, DOT requires full distribution
models; CTD and GP3 require the (multi-variate) Gaussian
distribution assumption to be applicable to the SOTA problem.
Therefore, we choose normal distribution in the experiments.

For performance evaluation, we randomly generate 50
origin-destination (OD) pairs with rejection (reject those OD
pairs which are too near to each other) for Anaheim, Winnipeg,
and Chicago Sketch and 5 OD pairs for SFN since it is a
relatively small network with the fewest number of nodes
and edges. Following the work in [15], for each selected OD
pair, we also evaluate three use cases, with T = 0.95× tLET,
T = 1.0 × tLET and T = 1.05 × tLET, respectively. Note that
tLET refers to the corresponding OD pair’s least expected travel
time. Unlike canonical machine learning problems, which
gauge the performance of an algorithm with classification
accuracy or F1 score, the SOTA navigation problem is essen-
tially a decision-making problem, and we use the evaluating
algorithms’ averaged SOTA probability over all 50 OD pairs
as the performance metric for comparison.

Fig. 5 shows the performance comparisons between SEGAC

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 12

and state-of-the-art SOTA solutions for all four transportation
networks. In the figure, we can observe that (1) almost all
algorithms’ performance patterns are consistent, i.e., the SOTA
probability increases as we increase the planning budgets; (2)
SEGAC achieves, on average, the best performance across the
four transportation networks for all evaluated budget values;
(3) all algorithms including SEGAC are yielding quite similar
performance metrics when we set T = 1× tLET, in that when
T = 1× tLET, most of the time, the optimal routing policy is
to take the LET path with 50% SOTA probability; and (4) AC
merely outputs the LET path, which corresponds to a mediocre
performance among others. We believe that the underlying
reason of SEGAC achieving better SOTA performance than
other machine learning (ML)-based algorithms, i.e., PQL and
CTD, mainly attributes to SEGAC’s off-policy nature, which
enables it to reuse the past trajectories for the additional
training process. While both PQL and CTD are essentially
on-policy learning algorithms, which essentially discards all
past trajectory data for the current policy’s training process.

For a well-trained SEGAC network, the decision-making
time depends only on how fast we can compute a given actor
network’s output, which merely involves simple algebraic
computations. Therefore, SEGAC is able to make decisions in
real time, i.e., less than one second for the referred hardware
setup. Fig. 6 shows the decision-making time comparisons for
all the algorithms. In the figure, we can see that all learning
algorithms, i.e., SEGAC, CTD, PQL and AC are able to make
online decisions within one second, while DP-based and MP-
based planning methods incur relatively more time before
reaching the respective SOTA solutions. Here, we wish to note
that since CTD is essentially a tabular solution to the SOTA
problem, its decision making time is the shortest among all
benchmark algorithms. However, CTD presumes that the travel
time follows the single variate normal distribution, and thus
cannot be applied to other travel-time distribution models or
offer a model-free solution. Moreover, SEGAC possesses a
unique ‘all-to-all’ navigation characteristic among all SOTA
solutions, which will be evaluated in the next subsection.

C. SEGAC’s Generalization Ability Evaluation

One unique characteristic of SEGAC when compared with
almost all other SOTA solutions is that SEGAC is able to
offer the ‘all-to-all’ routing service, i.e., the well-trained actor-
critic network has the generalization ability to navigate the ego
vehicle for a completely new OD pair that has not been trained
before. The underlying reason is that the real-valued node em-
bedding vector endows SEGAC with the generalized decision-
making ability. Since state-of-the-art SOTA algorithms offer
either ‘one-to-one’ solution or ‘all-to-one’ solution, and cannot
supply the ‘all-to-all’ routing service, we evaluate SEGAC’s
generalization ability without making comparisons with the
aforementioned baseline algorithms in this subsection.

For Anaheim, Winnipeg, and Chicago Sketch, we randomly
generate 100 OD pairs with rejection (reject those OD pairs
which are too near to each other), and train SEGAC with the
first 50 OD pairs, and test SEGAC’s performance with the
remaining 50 OD pairs. For each training/testing OD pair, we

set three budget values, i.e., T = 0.95 × tLET, T = 1 × tLET
and T = 1.05 × tLET. Note that in this subsection, we omit
the Sioux Falls network, in that (1) the size of SFN is too
small (24 nodes altogether as shown in Table III) to generate
100 different OD pairs with rejection requirements; (2) the
node embedding dimension (d̃ = 32) is larger than the total
number of nodes in SFN (24), which makes the embedding
process and thus generalization ability less meaningful. In this
case, one may simply enumerate all the destination nodes, and
perform the training process separately.

0 250 500 750 1000
Episodes

0%

20%

40%

60%

80%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

0.95
1.0
1.05

(a) Anaheim

0 250 500 750 1000
Episodes

0%

20%

40%

60%

80%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

0.95
1.0
1.05

(b) Winnipeg

0 250 500 750 1000
Episodes

0%

20%

40%

60%

80%

O
n

Ti
m

e
Ar

ri
va

l P
ro

ba
bi

lit
y

0.95
1.0
1.05

(c) Chicago Sketch

Fig. 7. The Generalization Ability Test of SEGAC.

Fig. 7 shows the learning processes of SEGAC’s general-
ization ability for the three transportation networks. In the
figure, we can see that SEGAC is able to output an up-
to-standard performance for completely un-trained OD pairs.
For example, for T = tLET, SEGAC is able to reach 50%
SOTA probability after around 100 training episodes. Here, we
wish to note that in order for SEGAC to have a ‘meaningful’
generalization ability, the testing OD pairs need to have been
encoded properly during the training process, i.e., the testing
OD pairs have been visited by SEGAC’s routing policy during
training.

D. Ablation Study of SEGAC

In the last three subsections, we perform the ‘unit test’ of
SEGAC in a simple network, benchmark SEGAC’s perfor-
mance and efficiency with state-of-the-art SOTA solutions in
four realistic transportation networks, and evaluate SEGAC’s
generalization ability in Anaheim, Winnipeg and Chicago
Sketch, respectively. This subsection performs the ablation
study by comparing the performance of GPG, GPG+ (GPG
with a constant baseline subtraction), GPG+E-VFA, OP-GPG,
OP-GPG+ (OP-GPG with a constant baseline subtraction)
and SEGAC (OP-GPG+off-policy E-VFA). Two key consid-
erations are as follows: (1) The constant subtraction base-
line for GPG+ and OP-GPG+ is set at 0.5. (2) The first
three algorithms, namely, GPG, GPG+, and GPG+E-VFA,
are categorized as on-policy RL algorithms. On the other
hand, the last three algorithms, which include OP-GPG, OP-
GPG+ and SEGAC, fall under the domain of off-policy RL
algorithms. It’s worth mentioning that the primary advantage
of off-policy RL algorithms lies in their sample efficiency. To
highlight this aspect, we have set a relatively smaller maximum
iteration number (Tmax = 1e3). This allows for on-policy
RL algorithms to not reach the ultimate convergence, thus
showcasing the benefits of off-policy RL algorithms.

Table IV presents the results of our ablation study, with
several noteworthy findings: (1) For small testing networks like
SFN and Anaheim, both on-policy and off-policy algorithms

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 13

TABLE IV
ABLATION STUDY OF THE SEGAC ALGORITHM

Testing
Network

T
(×tLET) GPG GPG+ GPG+

E-VFA OP-GPG OP-GPG+ SEGAC

SFN
0.95 0.3686 0.3703 0.3784 0.3744 0.3756 0.3795
1.0 0.4986 0.5040 0.5050 0.5028 0.5029 0.5045
1.05 0.6592 0.6659 0.6689 0.6565 0.6631 0.6700

Anaheim
0.95 0.2612 0.2695 0.2705 0.2688 0.2719 0.2718
1.0 0.5067 0.5056 0.5116 0.5040 0.5060 0.5155
1.05 0.7580 0.7603 0.7607 0.7592 0.7610 0.7616

Winnipeg
0.95 0.2405 0.2413 0.2427 0.2493 0.2505 0.2591
1.0 0.5010 0.5049 0.5059 0.5070 0.5110 0.5187
1.05 0.7591 0.7609 0.7699 0.7846 0.7850 0.7991

Chicago
Sketch

0.95 0.2512 0.2525 0.2597 0.2653 0.2750 0.2809
1.0 0.5016 0.5044 0.5134 0.5158 0.5202 0.5291
1.05 0.7706 0.7750 0.7860 0.7795 0.7969 0.8106

exhibit reasonably good and barely discernible performance in
terms of the SOTA probability across different time budgets.
(2) for large-scale testing networks, such as Winnipeg and
Chicago Sketch, the advantages of incorporating a baseline
estimator (E-VFA) and utilizing off-policy modules become
more evident. Specifically, GPG+E-VFA outperforms the other
two on-policy algorithms, and off-policy algorithms consis-
tently achieve better SOTA performance than their counter-
parts, primarily due to their sample efficiency. (3) Notably,
SEGAC which integrates both an off-policy actor network
(OP-GPG) and an off-policy value network (off-policy E-
VFA), delivers the best overall performance in Winnipeg and
Chicago Sketch.

VI. PERFORMANCE EVALUATION IN METROPOLITAN
TRANSPORTATION NETWORKS: CHENGDU AND BEIJING

In the last section, we perform the ‘unit test’ of SEGAC in
a self-constructed simple network; compare SEGAC’s perfor-
mance and decision-making time with state-of-the-art SOTA
solutions in a range of canonical transportation networks, and
showcase SEGAC’s generalization ability to new OD pairs.
However, for all the evaluation networks, we presume that the
edges’ travel times follow the normal distribution, and use it
to get the required data samples for SEGAC’s training and
testing. While SEGAC is a ‘model-free’ solution to the SOTA
problem, which does not pose any travel-time distribution
modeling constraint. Therefore, in this section, we deploy
SEGAC to two metropolitan transportation networks, namely
Chengdu and Beijing, with real traffic data.

The two metropolitan transportation networks, as illustrated
in Fig. 8, represents the main transportation networks of
Chengdu, China and Beijing, China, respectively. Travel speed
samples of the edges are measured through loop detectors,
which, together with the link lengths, are provided in [45]
and [22], respectively.

Since the travel time distributions are different in different
times slots of the day, e.g., peak hour, off-peak hour, and across
different types of the day, e.g., weekday, weekend, we separate
the real traffic data into four different groups, namely, weekday
peak hour7, weekday off-peak hour, weekend peak hour,

7peak hours are defined as the following two time slots: (1) between 7:30am
to 9:30am, and (2) between 5:00pm to 7:00pm.

(a) Chengdu (b) Beijing

Fig. 8. Illustration of the two metropolitan transportation networks

weekend off-peak hour. In the following, we will evaluate how
SEGAC and other state-of-the-art SOTA algorithms perform
in different types of time slots i.e., weekday, weekend, peak
hour, off-peak hour, and different path planning budgets (T)
e.g., tight budget (T = 0.95 × tLET) and loose budget (T =
1.05× tLET). For each use case, e.g., off-peak hour, weekday,
tight budget, we randomly generate 50 OD pairs, and train the
respective SOTA algorithms, and report the averaged arrival
on-time probability for Chengdu and Beijing, in Table V and
Table VI, respectively. Note that we eliminate several state-
of-the-art SOTA solutions in that (1) we cannot apply ILP
and OS-MIP to Chengdu and Beijing, in that the inherent
integer programming will cause the program to quit; (2) GP3
and CTD assume that the underlying travel-time distribution is
(multi-variate) Gaussian, which is not the case for real traffic
data, therefore, we did not include the respective algorithms’
performance; (3) the canonical AC algorithm, when applied
to the path planning domain, is essentially searching for the
LET path connecting the origin node with the destination
node. AC’s training time is huge in metropolitan transportation
networks, and its ultimate performance is exactly the same
as that of an LET path. Therefore, in the experiment, we
just straightforwardly evaluate the LET path’s performance in
different use cases, and replace the algorithm AC as LET.

Examining Table V and Table VI, we can see that (1)
SEGAC achieves the best performance in the peak hour use
cases, i.e., weekday peak hour and weekend peak hour for both
two networks; (2) for off-peak hour use cases, the LET path
already offers up-to-standard service in most configurations.
For (1), we conjecture that in peak hour, there are many ‘good’
path selection options, and it is difficult to calculate the exact
optimal one with planning-based methods. Therefore, SEGAC
excels in learning to make the optimal decision and achieves
the best overall performance. While for (2), in off-peak hour,
since there is not much traffic, the optimal path is relatively
simple, and in most cases, it is exactly the LET path. In this
case, all algorithms are yielding similar performance, and LET
has the best overall performance in most cases.

VII. CONCLUSION AND FUTURE WORK

This paper proposes the sample efficient generalized actor
critic (SEGAC) algorithm for the stochastic on-time arrival
(SOTA) problem in transportation networks. While canoni-
cal SOTA solutions either incur high-complexity convolution
computation (DP-based solution) or call up off-the-shelf in-
teger linear programming solvers (MP-based solution), which

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 14

TABLE V
PERFORMANCE COMPARISON OF SEGAC, FMA DOT, PQL AND LET

FOR DIFFERENT TRAVEL TIME BUDGETS IN CHENGDU NETWORK

Period of analysis T (×tLET) SEGAC FMA DOT PQL LET

Weekday
(Peak hour)

0.95 0.3238 0.3168 0.3076 0.3131 0.3151
1.0 0.5034 0.4999 0.4946 0.4857 0.4999
1.05 0.6871 0.6854 0.6757 0.6179 0.6848

Weekday
(Off-peak hour)

0.95 0.2824 0.2825 0.2526 0.2798 0.2862
1.0 0.4812 0.4943 0.4979 0.4769 0.4999
1.05 0.7032 0.7083 0.7063 0.7028 0.7137

Weekend
(Peak hour)

0.95 0.3328 0.3258 0.3185 0.2965 0.3204
1.0 0.5023 0.5000 0.4945 0.4881 0.5000
1.05 0.6925 0.6812 0.6754 0.6677 0.6795

Weekend
(Off-peak hour)

0.95 0.2772 0.2803 0.2539 0.2564 0.2807
1.0 0.4907 0.4949 0.4959 0.4557 0.5000
1.05 0.7104 0.7241 0.7160 0.6791 0.7192

TABLE VI
PERFORMANCE COMPARISON OF SEGAC, FMA DOT, PQL AND LET

FOR DIFFERENT TRAVEL TIME BUDGETS IN BEIJING NETWORK

Period of analysis T (×tLET) SEGAC FMA DOT PQL LET

Weekday
(Peak hour)

0.95 0.3486 0.3184 0.3457 0.3418 0.3466
1.0 0.5155 0.4812 0.5012 0.5000 0.5000
1.05 0.6534 0.6511 0.6528 0.6432 0.6518

Weekday
(Off-peak hour)

0.95 0.3486 0.3409 0.3439 0.3459 0.3493
1.0 0.4997 0.4931 0.4966 0.4992 0.5000
1.05 0.6572 0.6517 0.6529 0.6551 0.6578

Weekend
(Peak hour)

0.95 0.3542 0.2914 0.3416 0.3409 0.3414
1.0 0.5181 0.4926 0.5018 0.4999 0.5000
1.05 0.6536 0.6400 0.6435 0.6263 0.6530

Weekend
(Off-peak hour)

0.95 0.3415 0.3408 0.3433 0.3370 0.3433
1.0 0.5005 0.4912 0.4999 0.5000 0.5000
1.05 0.6648 0.6565 0.6570 0.6659 0.6666

inherently possess non-polynomial computational complexity,
SEGAC treats the SOTA problem from reinforcement learn-
ing’s perspective. Within SEGAC, we propose the generalized
policy gradient (GPG) and the extended value function ap-
proximation (E-VFA) modules to cope with the non-additive
nature of the SOTA problem, and also upgrade both modules
to the respective off-policy versions for sample efficiency. Two
variance reduction techniques (weighted importance sampling
and control variate) are also proposed to reduce the variance
of SEGAC. Compared with state-of-the-art SOTA solutions,
SEGAC offers a (1) model-free, (2) sample-efficient, (3) all-
to-all, and (4) fast decision-making solution to the SOTA
problem, and we validate those characteristics with a series
of experiments in several canonical transportation networks.

In the future, we would like to extend SEGAC’s application
to spatial and temporal correlated travel-time distribution use
cases. Furthermore, we are also keen on proposing an offline
version of SEGAC, which is able to be trained with human-
driver collected travel-time samples and in this case, SEGAC
does not need a pre-set behavior policy to collect data samples.
Another interesting future work direction is to apply modern
machine learning based approaches, e.g., neural heuristic anal-
ysis, to solving the SOTA problem.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, As-
sociate Editor, and three anonymous reviewers for reviewing

the manuscript and providing the invaluable comments and
suggestions.

REFERENCES

[1] H. Guo, X. Hou, Z. Cao, and J. Zhang, “GP3: Gaussian process path
planning for reliable shortest path in transportation networks,” IEEE
Transactions on Intelligent Transportation Systems (T-ITS), vol. 23,
no. 8, pp. 11 575–11 590, 2022.

[2] H. Guo, Z. He, C. Gao, and D. Rus, “Navigation with time limits in
transportation networks: A fourth moment approach,” IEEE Transactions
on Intelligent Transportation Systems (T-ITS), vol. 23, no. 11, pp. 1–16,
2022.

[3] Y. Liu, S. Blandin, and S. Samaranayake, “Stochastic on-time arrival
problem in transit networks,” Transportation Research Part B: Method-
ological (TR-B), vol. 119, pp. 122–138, 2019.

[4] Y. Fan, R. Kalaba, and J. Moore, “Arriving on time,” Journal of
Optimization Theory and Applications, vol. 127, no. 3, pp. 497–513,
2005.

[5] A. Khani and S. D. Boyles, “An exact algorithm for the mean–
standard deviation shortest path problem,” Transportation Research Part
B: Methodological, vol. 81, pp. 252–266, 2015.

[6] S. Biswal, G. Ghorai, and S. Mohanty, “α-reliable shortest path problem
in uncertain time-dependent networks,” International Journal of Applied
and Computational Mathematics, vol. 8, no. 4, p. 164, 2022.

[7] M. Filipovska and H. S. Mahmassani, “Reliable least-time path estima-
tion and computation in stochastic time-varying networks with spatio-
temporal dependencies,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2020, pp. 1–6.

[8] Z. Zang, X. Xu, K. Qu, R. Chen, and A. Chen, “Travel time reliability
in transportation networks: A review of methodological developments,”
Transportation Research Part C: Emerging Technologies (TR-C), vol.
143, p. 103866, 2022.

[9] H. Guo, X. Hou, and Q. Peng, “CTD: Cascaded temporal difference
learning for the mean-standard deviation shortest path problem,” IEEE
Transactions on Intelligent Transportation Systems (T-ITS), vol. 23,
no. 8, pp. 10 868–10 886, 2022.

[10] A. Agafonov, V. Myasnikov, and A. Maksimov, “Approximation of the
road segments travel time using Lévy distributions in the reliable shortest
path problem,” in Journal of Physics: Conference Series, vol. 1368,
no. 3. IOP Publishing, 2019, p. 032008.

[11] A. Flajolet, S. Blandin, and P. Jaillet, “Robust adaptive routing under
uncertainty,” Operations Research, vol. 66, no. 1, pp. 210–229, January
2018.

[12] M. Niknami and S. Samaranayake, “Tractable pathfinding for the
stochastic on-time arrival problem,” in Experimental Algorithms, A. V.
Goldberg and A. S. Kulikov, Eds. Springer International Publishing,
2016, pp. 231–245.

[13] L. Shen, H. Shao, L. Zhang, and J. Zhao, “The global optimal algo-
rithm of reliable path finding problem based on backtracking method,”
Mathematical Problems in Engineering, vol. 2017, pp. 1–10, 2017.

[14] F. Manseur, N. Farhi, C. N. Van Phu, H. Haj-Salem, and J.-P. Lebacque,
“Robust routing, its price, and the tradeoff between routing robustness
and travel time reliability in road networks,” European Journal of
Operational Research (EJOR), vol. 285, no. 1, pp. 159–171, 2020.

[15] C. Gao, H. Guo, and W. Sheng, “GP4: Gaussian process proactive path
planning for the stochastic on time arrival problem,” IEEE Transactions
on Vehicular Technology (T-VT), vol. 70, no. 10, pp. 9849–9862, 2021.

[16] S. Lim, C. Sommer, E. Nikolova, and D. Rus, “Practical route planning
under delay uncertainty: Stochastic shortest path queries,” in Robotics:
Science and Systems (RSS), 2012, pp. 249–256.

[17] Y. M. Nie and X. Wu, “Reliable a priori shortest path problem with
limited spatial and temporal dependencies,” in Transportation and Traffic
Theory 2009: Golden Jubilee. Springer, 2009, pp. 169–195.

[18] A. Arun Prakash, “Algorithms for most reliable routes on stochastic and
time-dependent networks,” Transportation Research Part B: Method-
ological (TR-B), vol. 138, pp. 202–220, 2020.

[19] B. Y. Chen, C. Shi, J. Zhang, W. H. Lam, Q. Li, and S. Xiang,
“Most reliable path-finding algorithm for maximizing on-time arrival
probability,” Transportmetrica B: Transport Dynamics, vol. 5, no. 3, pp.
248–264, 2017.

[20] G. Sabran, S. Samaranayake, and A. Bayen, “Precomputation techniques
for the stochastic on-time arrival problem,” in Proceedings of the Meet-
ing on Algorithm Engineering and Experiments (ALENEX). Society
for Industrial and Applied Mathematics, 2014, pp. 138–146.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 15

[21] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “Finding the
shortest path in stochastic vehicle routing: A cardinality minimization
approach,” IEEE Transactions on Intelligent Transportation Systems (T-
ITS), vol. 17, no. 6, pp. 1688–1702, 2016.

[22] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “Improving the
efficiency of stochastic vehicle routing: A partial Lagrange multiplier
method,” IEEE Transactions on Vehicular Technology (T-VT), vol. 65,
no. 6, pp. 3993–4005, 2015.

[23] L. Yang and X. Zhou, “Optimizing on-time arrival probability and
percentile travel time for elementary path finding in time-dependent
transportation networks: Linear mixed integer programming reformula-
tions,” Transportation Research Part B: Methodological (TR-B), vol. 96,
pp. 68–91, 2017.

[24] Z. Cao, H. Guo, W. Song, K. Gao, Z. Chen, L. Zhang, and X. Zhang,
“Using reinforcement learning to minimize the probability of delay oc-
currence in transportation,” IEEE Transactions on Vehicular Technology
(T-VT), vol. 69, no. 3, pp. 2424–2436, 2020.

[25] Y. Pan, “A nonlinear mixed integer programming method to find the re-
liable shortest path in a stochastic network,” in 16th COTA International
Conference of Transportation Professionals, 2016, pp. 71–77.

[26] Z. Cao, Y. Wu, A. Rao, F. Klanner, S. Erschen, W. Chen, L. Zhang,
and H. Guo, “An accurate solution to the cardinality-based punctuality
problem,” IEEE Intelligent Transportation Systems Magazine (MITS),
vol. 12, no. 4, pp. 78–91, 2020.

[27] K. K. Srinivasan, A. Prakash, and R. Seshadri, “Finding most reliable
paths on networks with correlated and shifted log–normal travel times,”
Transportation Research Part B: Methodological (TR-B), vol. 66, no. C,
pp. 110–128, 2014.

[28] B. Y. Chen, W. H. K. Lam, A. Sumalee, Q. Li, and M. L. Tam, “Reliable
shortest path problems in stochastic time-dependent networks,” Journal
of Intelligent Transportation Systems, vol. 18, no. 2, pp. 177–189, 2014.

[29] M. Ruß, G. Gust, and D. Neumann, “The constrained reliable shortest
path problem in stochastic time-dependent networks,” Operations Re-
search, vol. 69, no. 3, pp. 709–726, 2021.

[30] K. Ahmadi and V. Allan, “Congestion-aware stochastic path planning
and its applications in real world navigation,” in Proceedings of the 13th
International Conference on Agents and Artificial Intelligence - Volume
2: ICAART,, INSTICC. SciTePress, 2021, pp. 947–956.

[31] H. Guo, W. Sheng, C. Gao, and Y. Jin, “DRL-Router: Distributional
reinforcement learning-based router for reliable shortest path problems,”
IEEE Intelligent Transportation Systems Magazine (MITS), pp. 2–19,
2023.

[32] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations,
2018.

[33] J. Li, Y. Ma, R. Gao, Z. Cao, A. Lim, W. Song, and J. Zhang, “Deep
reinforcement learning for solving the heterogeneous capacitated vehicle
routing problem,” IEEE Transactions on Cybernetics, vol. 52, no. 12,
pp. 13 572–13 585, 2022.

[34] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 9, pp. 5057–5069, 2021.

[35] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “POMO:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
21 188–21 198.

[36] R. Zhang, C. Zhang, Z. Cao, W. Song, P. S. Tan, J. Zhang, B. Wen,
and J. Dauwels, “Learning to solve multiple-TSP with time window
and rejections via deep reinforcement learning,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–12, 2022.

[37] G. Andonov and B. Yang, “A new formulation of the shortest path
problem with on-time arrival reliability,” ArXiv, vol. abs/1804.07829,
2018.

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[39] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[40] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in
Neural Information Processing Systems (NeurIPS), S. Solla, T. Leen,
and K. Müller, Eds., vol. 12. MIT Press, 1999, pp. 1008–1014.

[41] K. Kumar, P. Passban, M. Rezagholizadeh, Y. Lau, and Q. Liu, “From
fully trained to fully random embeddings: Improving neural machine
translation with compact word embedding tables,” in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), vol. 36, no. 10, Jun.
2022, pp. 10 930–10 937.

[42] D. E. Knuth, “Big omicron and big omega and big theta,” ACM Sigact
News, vol. 8, no. 2, pp. 18–24, 1976.

[43] H. Bar-Gera, “Transportation network test problems,”
Last Accessed May 11 2023. [Online]. Available:
https://github.com/bstabler/TransportationNetworks

[44] Y. Zhang and A. Khani, “An algorithm for reliable shortest path
problem with travel time correlations,” Transportation Research Part
B: Methodological, vol. 121, no. C, pp. 92–113, 2019.

[45] F. Guo, D. Zhang, Y. Dong, and Z. Guo, “Urban link travel speed dataset
from a megacity road network,” Scientific Data, vol. 6, no. 61, pp. 1–8,
05 2019.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 16

LIST OF ACRONYMS
AC actor critic

CDF cumulative distribution function
CTD cascaded temporal difference
CV control variate

DOT decreasing order of time
DP dynamic programming

E-VFA extended value function approxima-
tion

FMA fourth moment approach

GP3 Gaussian process path planning
GP4 Gaussian process proactive path plan-

ning
GPG generalized policy gradient

ILP integer linear programming
ITS intelligent transportation system

LET least expected time

MC Monte Carlo
MDP Markov decision process
MILP mixed integer linear programming
ML machine learning
MLP multi-layer perceptron
MP mathematical programming

OD origin-destination
OP-GAC on-policy generalized actor critic
OP-GPG on-policy generalized policy gradient
OS-MIP one-step mixed integer programming

PG policy gradient
PQL practical Q-learning

RL reinforcement learning
RV random variable

SA successive approximation
SEGAC sample efficient generalized actor

critic
SFN Sioux Falls network
SLN shifted log-normal
SOTA stochastic on-time arrival

TD temporal difference

VRP vehicle routing problem

WIS weighted importance sampling

Hongliang Guo received his BE and ME in Beijing
Institute of Technology, China, in 2005 and 2007
respectively. He holds a PhD degree from Stevens
Institute of Technology, USA. He has been serv-
ing as postdoc researchers in Nanyang Technolog-
ical University (NTU) and Massachusetts Institute
of Technology (MIT), respectively. In 2021, He
joins the institute of infocomm research (I2R) in
A*STAR, Singapore, as a senior scientist. His re-
search interests include reliable planning and learn-
ing under uncertainties, and multi-robot exploration

and coordination in unknown environments.

Zhi He received his Bachelor of Engineering with
the first class honor in School of GLASGOW Col-
lege, University of Electronic Science and Technol-
ogy of China (UESTC) in 2020, and he is currently
pursuing his master’s degree majoring in Control
Science and Engineering at UESTC. His research
interest includes learning and planning in uncertain
environments, and time-constrained mobile robot
navigation.

Wenda Sheng received his Bachelor’s degree with
the first class honour in School of Automation
Engineering, University of Electronic Science and
Technology of China (UESTC) in 2020, and he is
currently pursuing his master’s degree majoring in
Control Science and Engineering at UESTC. His re-
search interest includes distributional reinforcement
learning for reliable shortest path, and reinforcement
learning for safe autonomous navigation in dynamic
environments.

Zhiguang Cao received the Ph.D. degree from
Interdisciplinary Graduate School, Nanyang Techno-
logical University in 2016. He received the B.Eng.
degree in Automation from Guangdong University
of Technology, Guangzhou, China, and the M.Sc. in
Signal Processing from Nanyang Technological Uni-
versity, Singapore, respectively. He was a Research
Fellow with the Energy Research Institute @ NTU
(ERI@N), a Research Assistant Professor with the
Department of Industrial Systems Engineering and
Management, National University of Singapore, and

a Scientist with the Agency for Science Technology and Research (A*STAR),
Singapore. He joins the School of Computing and Information Systems,
Singapore Management University, as an Assistant Professor. His research
interests focus on learning to optimize (L2Opt).

Yingjie Zhou (M’14) received his Ph.D. degree
in the School of Communication and Information
Engineering from University of Electronic Science
and Technology of China (UESTC), China, in 2013.
He is currently an associate professor in the College
of Computer Science at Sichuan University (SCU),
China. He is the Director of Institute of Network and
Intelligent Systems at SCU. He has been a visiting
scholar in Department of Electrical Engineering of
Columbia University, New York and Bell Laborato-
ries, Murray Hill, New Jersey. His current research

interests include network management, behavioral data analysis, and resource
allocation. He has served as a Program Vice-Chair of IEEE International
Conference on High Performance Computing and Communications (IEEE
HPCC), a Local Arrangement Chair of IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (IEEE BMSB), and the
TPC member for various IEEE conferences.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023 17

Weinan Gao received the B.Sc. degree in Automa-
tion from Northeastern University, Shenyang, China,
in 2011, the M.Sc. degree in Control Theory and
Control Engineering from Northeastern University,
Shenyang, China, in 2013, and the Ph.D. degree in
Electrical Engineering from New York University,
Brooklyn, NY, USA in 2017. He is currently a
Professor with the State Key Laboratory of Syn-
thetical Automation for Process Industries at North-
eastern University, Shenyang, China. Previously, he
was an Assistant Professor of Mechanical and Civil

Engineering at Florida Institute of Technology, Melbourne, FL, USA in
2020-2022, an Assistant Professor of Electrical and Computer Engineering
at Georgia Southern University, Statesboro, GA, USA in 2017-2020, and
a Visiting Professor of Mitsubishi Electric Research Laboratory (MERL),
Cambridge, MA, USA in 2018. His research interests include reinforcement
learning, adaptive dynamic programming (ADP), optimal control, cooperative
adaptive cruise control (CACC), intelligent transportation systems, sampled-
data control systems, and output regulation theory. He is the recipient of
the best paper award in IEEE Data Driven Control and Learning Systems
Conference (DDCLS) in 2023, IEEE International Conference on Real-time
Computing and Robotics (RCAR) in 2018, and the David Goodman Research
Award at New York University in 2019. Dr. Gao is an Associate Editor of
IEEE Transactions on Neural Networks and Learning Systems, IEEE/CAA
Journal of Automatica Sinica, Control Engineering Practice, Neurocomputing,
and IEEE Transactions on Circuits and Systems II: Express Briefs, a member
of Editorial Board of Neural Computing and Applications, and a Technical
Committee member in IEEE Control Systems Society on Nonlinear Systems
and Control and in IFAC TC 1.2 Adaptive and Learning Systems.

APPENDIX A
NOTATION SYMBOLS

TABLE VII
LIST OF MAJOR NOTATIONS USED IN THE PAPER

Notations Descriptions
G(N , E) The stochastic transportation network

i, j, o, d
Node index, with o representing the origin,
d representing the destination, i, j, o, d ∈ N

ij Edge index, ij ∈ E
cij Edge ij’s travel time (an RV)
Pod Complete set of feasible paths connecting o to d
cx Path x’s total travel time (an RV)
T The pre-departure budget from node o
Ti The remaining budget at node i
S RL agent’s state space
A RL agent’s action space
P[s′|s, a] State-transition probability
P[r|s, a] Reward function
τ, τ (j) One sampled trajectory (on-policy trajectory)
R(τ (j)) Total travel time of τ (j)
πθ The routing policy, i.e., the actor/policy network
vπϕ The value function, i.e., critic network’s output
Gπθ (sk, ak) The estimated cumulative reward from (sk , ak)
tπ(o, d) Total travel time (an RV) following π from o to d
Js(πθ) Evaluation policy’s on-time arrival probability
bπϕ(s) Estimated on-time arrival probability for π at s
µθ The behavior policy (for data generation)
τ
(j)
µ The jth sampled trajectory from behavior policy µθ
Hj The length of the sampled trajectory (τ (j)µ)
H̄ The averaged length of the sampled trajectories
ρ(τ) The importance sampling ratio of π to µ w.r.t. τ
ρ̃(τ) The weighted importance sampling ratio w.r.t. τ
M Total number of collected trajectories from π or µ
K Mini-batch sample size
ψ One-hot embedding function
φ Real-valued embedding function
d̃ The dimension of real-valued node embedding
Tmax max. training episodes of SEGAC

APPENDIX B
PROOF OF THEOREM 1

Proof.

∇θJs(πθ) = ∇θP[tπ(o, d) ≤ T]

= ∇θ

∫
τ

P[R(τ) ≤ T]πθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θπθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θπθ(τ)

πθ(τ)
πθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θ log πθ(τ)πθ(τ) dτ

= Eτ∼πθ
[P[R(τ) ≤ T]∇θ log πθ(τ)].

In the proof process, πθ(τ) refers to the probability that
trajectory τ is generated by πθ.

APPENDIX C
PROOF OF THEOREM 2

Proof.

∇θJs(πθ) = ∇θP[tπ(o, d) ≤ T]

= ∇θ

∫
τ

P[R(τ) ≤ T]πθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θπθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θπθ(τ)

πθ(τ)

πθ(τ)

µθ(τ)
µθ(τ) dτ

=

∫
τ

P[R(τ) ≤ T]∇θ log πθ(τ)ρ(τ)µθ(τ) dτ

= Eτ∼µθ
[P[R(τ) ≤ T]

(
∇θ log πθ(τ)

)
ρ(τ)].

	SEGAC: Sample Efficient Generalized Actor Critic for the Stochastic On-Time Arrival Problem
	Citation
	Author

	tmp.1712221867.pdf.qg8FR

