
Automatic Detection and Analysis towards
Malicious Behavior in IoT Malware

1st Sen Li
School of Future Technology

Tianjin University
Tianjin, China

senli@tju.edu.cn

2nd Mengmeng GE
School of Computer Science and Engineering

Nanyang Technological University
Singapore

mengmeng.ge@ntu.edu.sg

3rd Ruitao FENG
School of Computing and Information Systems

Singapore Management University
Singapore

rtfeng@smu.edu.sg

4th Xiaohong Li
College of Intelligence and Computing

Tianjin University
Tianjin, China

xiaohongli@tju.edu.cn

5th Kwok Yan Lam
School of Computer Science and Engineering

Nanyang Technological University
Singapore

kwokyan.lam@ntu.edu.sg

Abstract—Our society is rapidly moving towards the digital
age, which has led to a sharp increase in IoT networks and de-
vices. This growth requires more network security professionals,
who are focused on protecting IoT systems. One crucial task is
to analyze malicious software to gain a deeper understanding
of its functionalities and response methods. However, malware
analysis is a complex process that requires the use of various
analysis tools, including advanced reverse engineering techniques.
For beginners, parsing complex binary data can be particularly
challenging as they may be strange with these tools and the
basic principles of analysis. Even for experienced analysts,
understanding reverse engineering binary files and assembly lists
is daunting.

Facing these challenges, we propose a two-fold solution. Firstly,
we create a detailed list of analysis tools and construct a malware
analysis framework aimed at simplifying the analysis process.
The framework will list the key data points that need to be
addressed in the analysis, providing analysts with the tools and
information needed for effective malware analysis. Secondly, we
will demonstrate that advanced analysis techniques by providing
analysis scripts which automate the reverse engineering process
in malware analysis. To evaluate the accuracy of our behavior
classification system, we will use our framework and analysis
scripts to analyze known malware samples. Then, we will com-
pare the accuracy of script-based analysis results and evaluate
their ability to identify malicious software behavior. Our research
results indicate that by following our framework and using our
scripts, we can detect over 80% critical malware behaviors in
known samples, which highlights the potential of simplifying
the process of malware analysis, making it easier to learn and
implement.

Index Terms—IoT malware, Automatic analysis, Malicious
behavior analysis

I. INTRODUCTION

The Internet of Things (IoT) has rapidly changed the way

we live and work in society. Be it in healthcare with blood

sugar monitoring devices or with smart bulbs to help our

homes be more efficient [1], IoT devices have changed how we

interact with the digital world and have also become integral

components of our daily lives and critical infrastructure. And

it brings an estimated 100 billion devices to be online by 2025

[2], IoT Networks and devices are going to become more and

more commonplace.

Unfortunately, the rapid popularity of IoT devices has not

escaped the attention of cybercriminals and malicious actors.

Although these devices provide us with convenience, effi-

ciency, and innovation, they also introduce new and important

security challenges. Due to the diversity of IoT devices,

the motivations behind malware targeting these devices have

become diverse, such as financial interests, political agendas,

or cyber espionage activities. This makes IoT devices more

likely to become a key target for criminals and malicious

actors. Unlike ordinary devices, IoT devices typically have

a large number of low-quality code and architecture defects

[3], which makes them more likely to stimulate the interest of

network criminals and malware writers. In addition, many IoT

devices are still using outdated firmware and different levels of

security measures, making them more susceptible to malware

attacks.

For instance, the Mirai malware is an iconic example in

the IoT field, quickly gaining widespread attention as one

of the earliest malware types targeting IoT devices. Mirai

rapidly scans devices on the network that still use default

login credentials, enabling hackers to simultaneously control

over 400,000 devices for malicious purposes [4]. This allows

hackers to easily control the computing power of these devices

and launch highly destructive attacks. Once Mirai’s source

code was publicly released, it would lead to the emergence

of more malware. One of the most prominent attacks was

directed at the DNS service provider Dyn, resulting in the

temporary shutdown of hundreds of well-known websites,

including Twitter, Netflix, Reddit, and Github, for several

hours [4]. The rise and wide dissemination of Mirai have

underscored the security issues associated with IoT devices. It

reveals that many IoT devices are not designed and deployed

with basic security measures in mind, such as changing default

1332

2023 IEEE International Conference on Data Mining Workshops (ICDMW)

DOI: 10.1109/ICDMW60847.2023.00171

credentials or regularly updating firmware. This malware has

also sparked broader discussions on IoT device security and

prompted researchers and industry practitioners to explore new

ways to protect the IoT ecosystem from threats.

IoT malware has increasingly become more prevalent. With

an estimated 700% increase in attacks during the pandemic

[5], it becomes evident that the diverse range and rapid

growth of malware within the Internet of Things (IoT) presents

significant challenges to security researchers and practitioners.

Consequently, security experts and researchers must develop

more effective methods for detecting, identifying, preventing,

and mitigating these threats. Concurrently, detecting and pin-

pointing the crucial malicious behaviors within IoT malware

are becoming increasingly critical.

However, in the struggle against malware, the process

required to analyze the malware is often unlike the targets

in the tasks of detection [6]–[9], requiring not only a detailed

understanding of its operation [10] during security analysis but

also identifying its malicious behavior [11] and functionality

[12] through various methods. This complexity makes malware

analysis cumbersome and requires a significant amount of

manpower and time resources to be invested. Secondly, in the

face of constantly evolving malware, attackers use increasingly

complex emerging technologies to confuse and conceal their

true intentions and activities, which further increases the

difficulty for security personnel to analyze malware behavior.

To tackle this challenge, our work aims to establish an

analysis framework for IoT malware and develop a malicious

behavior identification system. This system will empower

researchers to swiftly discern the purpose and detailed ex-

ecution of specific malware behaviors. In doing so, it will

mitigate the impact of IoT malware and automate the process

of identifying malicious behavior in IoT malware, ultimately

enhancing analysis efficiency.

In this paper, we conduct a manual analysis of a substantial

volume of IoT malware samples and generate malware reports

to gain insights into the malware analysis procedure. Building

on this, we establish a malware analysis framework that

connects malicious behavior with its intricate implementation.

Finally, we develop an automatic malicious behavior recog-

nition system to quickly identify fine-grained malicious be-

haviors [13] of malware and point out the implementation of

each fine-grained malicious behavior in malware.

In summary, we make the following main contributions:

• We establish a malware analysis framework. This frame-

work can be used by researchers to conduct malware

analysis according to its steps. It will organize the key

tools and technologies required for malware analysis

and formulate a workflow that includes all necessary

steps, tools, and technologies for systematic malware

analysis. Subsequently, we will generate detailed analysis

reports to provide comprehensive information on malware

samples.

• We develop a system for classifying malware behavior in

the IoT. This system enables us to identify and classify

malicious behavior based on the code implementation of

Fig. 1. Gafgyt‘s Malicious behavior

malware samples. It will greatly accelerate our ability to

understand the intention and threat level of fine-grained

malicious behavior exhibited by malware.

• We establish an automated analysis system for IoT mal-

ware. We build the automated analysis system based

on Ghidra’s API. When analyzing malware, using this

system can quickly and accurately identify malicious

behavior, thereby improving the efficiency and speed of

IoT malware analysis.

II. APPROACH

In this section, we introduce our workflow and implemen-

tation methods, which primarily consist of the following three

aspects: (1) Behavior Analysis and Behavior Category Map-

ping: We conduct malware analysis to identify key malicious

behaviors and categorize them into three distinct categories.

(2) Analysis Framework Construction: We compile a detailed

workflow and analysis framework, incorporating essential

tools, techniques, and specific methods required during the

analysis process. This framework enables systematic and or-

ganized malware analysis. (3) Establishment of an Automated

Analysis System: Based on the knowledge acquired above, we

develop an automated analysis system using Ghidra. This sys-

1333

Gafgyt Malware

Malware Evasion Anti-Analysis Information Gathering Persistence Command & Control Action On Objectives

Obfuscation, hides
process name

Killing processes
�(Hiding resource usage)

Fork, anti-debugging,
checking if debugger is

attached to�main
process

Obfuscation, encrypting
server name

Obfuscation, encrypting
variable names /

stripping symbol table

Signal handler to
prevent terminate signal

Get our IP on entry
from /proc/net/route

Monitors ioctl channels
to prevent watchdog

shutdown

Adds malware to run
control file

TCP connection attempt
to CNC server is made

Testing DDoS Stopping

Ping

UDP

KILLATTK

TCP

FTP

SVH

KILLALL

STOP/Stop/stop

No Yes

Successful?

Fig. 2. Gafgyt’s Malicious Behavior Category Mapping

tem facilitates rapid malware analysis, detection, identification,

and localization.

A. Behavior Analysis and Behavior Category Mapping

We obtain malware and conduct critical malicious behavior

analysis on the malware, then classify and map the observed

critical malicious behaviors.

We first obtain over 100 IoT malware samples from various

honeypots, which can be easily obtained from malware sample

websites. In order to ensure the persuasiveness of key behav-

iors, we refer to the classification results of VirusTotal. Sec-

ondly, in order to cover all key malicious behaviors of malware

as much as possible, we conduct a comprehensive analysis

of malware based on the malware attack chain and combine

dynamic and static analysis techniques. Through the above

dual analysis, we obtain the key behaviors and implementa-

tions of each malware sample. By analyzing multiple malware

samples, we can observe common patterns and techniques that

hackers use to make malware more effective. Next, based on

the results of these analyses, we classify the key malicious

behaviors based on their functions and combine them with

the MITRE ATT&CK matrix, and provide detailed definitions

for each category after division. By categorizing malicious

behaviors, security professionals can quickly understand the

functional intent and purpose of key malicious behaviors.

Therefore, a standard category definition is still necessary.

Standard categorization can help capture program structural

information, communication, and control flow. This will

help provide more comprehensive information on malware

behavior [14]. As shown in Figure 1, Based on the attack

chain of the malware family, we have listed all observed

behaviors. Based on the functionality of key malicious

behaviors, we divide them into three categories: initial stage,

preparation stage, and attack stage. Then we map all observed

malicious behaviors to these three categories. In order to link

malware behavior with specific implementations, we have

listed detailed information in each behavior, mainly including

header files, system calls, and parameters. Next, in order to

provide a clearer description of the classification and the

specific implementation of key malicious behaviors under

each category, as shown in Figure 2, we use the well-known

Gafgyt family in IoT malware as an example for behavior

detection, recognition, and behavior category mapping.

1) Initial Stage: The initialization phase is to establish a

foothold in the device, ensure its stable operation on the target

system, and execute subsequent malicious behaviors, which

may include data collection, obfuscation, anti-debugging, etc.

The initialization phase is the first step in implementing these

behaviors [15]. The following are the key malicious behaviors

observed during the initialization phase of the analysis process

and their implementation.

Anti-debugging. During the initial stage of malware, attack-

ers typically attempt to use fork anti-debugging techniques to

evade dynamic analysis [16]. Gafgyt malware often uses forks

and exit system calls to attempt to interfere with and prevent

the debugger from attaching. One implementation method is

to use fork() twice to create another child process within

one child process. Then, by using the waitpid() function,

once a second child process is created, the main process

quickly shuts itself down. The purpose of this strategy is to

prevent the debugger from tracking the rapid shutdown of the

main process, thereby preventing it from detaching itself and

stopping the execution of the second child process, which will

continue to execute the rest of the malware.

Persistence. Running control persistence is sometimes used

1334

by Gafgyt malware to ensure its existence in the system. Run

control persistence is a technology adopted by Gafgyt mal-

ware, aimed at ensuring that the malware will automatically

start every time an infected system restarts, thereby maintain-

ing its continuous activity [17]. By modifying the system’s

startup configuration, Gafgyt malware ensures that regardless

of whether the security tool terminates or removes the malware

process, it can start the malware process when the system

restarts. This allows the malware to remain present on the

infected system and continue to execute its malicious activities.

When Gafgyt malware infects the system, it will modify the

system’s startup configuration to add a new malware startup

entry. In Linux systems, especially on IoT devices, this is

typically achieved by editing the rc.local or rc.conf files. In

this way, malware ensures that it is activated every time when

the system starts to maintain its existence.

Obfuscation. The Gafgyt malware often uses some techni-

cal means to confuse its process name to increase its detection

difficulty [18]. Some security tools may identify and intercept

malicious processes based on their names. By modifying the

process name, malware can effectively evade the detection

of these security tools, thereby continuously lurking in the

system. In addition, this behavior also helps malware disguise

itself as a legitimate process, making it more difficult for sys-

tem administrators to identify it as an abnormal situation and

take necessary clearance measures. This confusion technique

is typically achieved by utilizing the PR SET NAME option

of a system call called prctl.

Signal Handling. The Gafgyt malware often utilizes signal

processing to control and manipulate its process behavior.

For example, using the SIGPIPE signal can prevent malware

from self-closing when the CNC server closes its socket.

This signal-processing technology is typically used to ensure

that malware does not automatically shut down when the

connection is disconnected. This process can be achieved by

calling the Signal system call.

Killing Processes. The malware sometimes chooses to kill

other processes running in the system. Similarly, with the

help of a system call called kill, the malware can release

system resources to support its malicious behavior. This helps

to provide the malware with sufficient resources to execute

its malicious activities, while avoiding detection by using this

method to terminate security tools or monitor processes that

may discover their existence and alert system administrators.

2) Preparation Stage: The preparation phase is a crucial

part of malware, providing attackers with the necessary re-

sources and information to ensure the success of the attack.

At this stage, attackers usually invest a lot of time and effort

to ensure the effectiveness and concealment of the attack. The

following are the key malicious behaviors observed during the

analysis process that belong to the preparation stage and their

implementation.

Get IP Address of Device. After the initial stage, The

Gafgyt malware will take further measures to prepare for

deeper operations. It will obtain its local IP address, which

is necessary for communication with the CNC server that

attempts to connect later [19]. At this point, the malware

will create a socket and send domain name system (DNS)

queries for the infected device from that socket. Through this

socket, malware can use the getsockname() function to query

and retrieve the address information of the socket, including

the IP address.

Connect to Server. In order to obtain further instructions

from the attacker, the malware will need to establish a

connection with the CNC server. This will require creating

a SOCK STREAM type socket using the TCP protocol. A

“stream socket” or “SOCK STREAM” socket is a type of

socket that provides a reliable, bidirectional, byte stream

communication channel that connects two endpoints. This is

necessary to ensure accurate communication with the CNC

server and the ability to send and receive instructions. After

creating this socket, use the connect() system call for socket

communication to communicate with the CNC server.

3) Attack Stage: The attack phase is the main part of

malware, and after establishing contact with the CNC server,

the malware will receive command strings from the CNC

server. When receiving these command strings, malware will

use the receiving system call associated with the socket created

when establishing contact with the CNC server. After receiving

the command, any string will be processed and compared with

the command string. If the commands match, the malware

will execute its expected attack behavior. The observed attack

behaviors through analysis include: Distributed Denial of

Service (DDoS) attacks, such as UDP Flood Attacks, KILL

Attacks, and Scanners.

DDoS Attack. The specific implementation process for

DDoS Attacks is as follows:

1) Receive the address of the attack target from the attacker.

2) Tokenize the target addresses (In the case of multiple

targets).

3) Receive the following parameters: destination, port, time,

subnet mask, packet size, and time polling interval.

4) Use sockets and the netinet library to obtain the IP

address of the target.

5) Create a socket.

6) If spoofing is set, create a forged packet IP address.

7) Enter a while loop and repeatedly send data packets for

a certain amount of time.

In other words, DDoS attacks involve processing target

addresses received from attackers, matching them with their IP

addresses, and then repeatedly sending packets in an attempt

to overwhelm the target server.

Kill Attack. The specific implementation process of Kill

Attack is as follows: After receiving the attack command, the

malware will traverse the active processes and terminate them

using the kill system call. Similar to the initial stage, killing a

process may be done to free up resources or attempt to evade

potential detection systems. It may also be to shut down any

operations that are running on IoT devices.

1335

Scanner. The specific implementation process of Scanner

is as follows: When running Scanner to spread malware, the

malware first obtains information about the maximum number

of processes it can run by using getdtablesize(). Next, it will

use file descriptors as much as possible and use custom remote

state data structures to track the status of these file descriptors.

Each file descriptor attempts to establish a connection with a

random IP address and checks if they are using telnet. At

the same time, monitor each file descriptor to see if they are

connecting to a new device, successfully connecting, or closing

due to a connection interruption. If successfully connected, the

malware will attempt to forcibly enter the new device and grant

a shell from which it can download and spread the malware.

Next, the malware uses the file descriptor methods in the select

libraries of various systems to search for login and password

responses. Finally, once the shell is obtained, the malware will

use the send() method to send a string command, download

and execute the malware from the CNC server.

B. Analysis Framework Construction

When conducting malware behavior analysis, our main

goal is to summarize the key malicious behaviors and specific

implementation methods [14].

1) Analysis Process: To achieve this goal, we utilize both

static and dynamic analysis methods [10] to make the anal-

ysis of malware more comprehensive. For a malware to be

analyzed, the specific analysis process is as follows:

Analysis based on VirusTotal. We first use an antivirus

program to check if malware has been identified. These

antivirus tools rely on signature-based detection and heuristic-

based detection [20]. Signature-based detection relies on view-

ing collected malicious file databases [21], which typically

use hash algorithms such as MD5, SHA1, or SHA256 to

generate unique hash values for files, such as SHA256. The

heuristic-based detection method relies on behavior and pattern

matching analysis to identify suspicious files [22]. Usually,

each antivirus program uses different signature and heuristic

detection methods. In order to obtain the most comprehensive

coverage, we will check multiple antivirus programs to see if

there is any available information. A useful tool is VirusTotal,

which is a malware online search website that aggregates

information on many antivirus products and online scanning

engines. VirusTotal can match malware samples with various

antivirus programs in the database.

Analysis based on Ghidra. In order to reverse engineer

ELF files, we use a tool called Ghidra. Ghidra’s working

principle is to decompose binary code into smaller fragments

and analyze each fragment independently [23]. When we

load a binary file into Ghidra, it automatically recognizes the

instruction set and file format. Then, it decomposes the binary

files into assembly code for our research. In the assembly

process starting from Ghidra, we first analyze the entry points

of malware programs. By tracking entry points, we can easily

find the main functions and understand the operations of

malware programmed by the creator of the malware.

Fig. 3. Dynamic Analysis with Radare2

By analyzing the assembly code, we can infer function calls

and values to understand the functionality of malware. A very

useful tool in Ghidra is its built-in decompiler, which can

convert assembly code into higher-level code that is easier

to understand. This helps us better understand the execution

process of the program. Based on Ghidra, we are able to record

the key malicious behaviors of various malware samples,

including those intentionally confused or analyzed by malware

authors.

Advanced Analysis based on Ghidra. However, creators of

malware utilize reverse analysis techniques in general, which

increases the difficulty for analysts to analyze malware.

In our research, we observe that some common anti-reverse

analysis techniques in IoT malware include: Code obfuscation,

Anti-debugging, and Packers. etc.

Fortunately, Ghidra is a very powerful decompiler that

can counter many of these reverse analysis techniques. For

example, it has built-in code analysis functions that can auto-

matically perform feature analysis such as data flow analysis,

control flow analysis, and function recognition. We can assist

us in our analysis work by generating function IDs online.

Based on the architecture information obtained earlier, we can

generate a function ID and then use Ghidra’s function ID

database file to analyze the signature of the function. Even

when the symbol table has been stripped, Ghidra’s function

ID tool is still able to effectively identify common system

calls and functions, greatly aiding our analysis process.

Analysis based on Radare2. For functions that cannot

be identified through Ghidra’s analysis tools, we can use

debugging tools such as Radare2 or GDB for advanced

dynamic analysis as shown in Figure 3. Debugging allows

us to execute instructions one by one at a convenient time

1336

and selectively execute specific functions without having

to run the entire program [24]. By using a debugger, we

can jump inside a single function to better understand its

code functionality and the specific implementation of key

malicious behaviors.

2) Malware Analysis Framework: By utilizing various mal-

ware analysis techniques, we can record multiple key be-

haviors in malware samples to help us comprehensively and

deeply understand malware. As shown in Figure 4, To help

us achieve this goal, we have constructed a malware analysis

framework to standardize and simplify the analysis process

of malware samples. This framework follows the malware

analysis techniques we mentioned earlier.

We start with basic static analysis and use VirusTotal

to record detection information, detailed information about

files, and relationships between files in our framework. In

addition to basic static analysis, VirusTotal also provides built-

in sandboxes for dynamic analysis, where they place files into

internal system sandboxes such as Linux Zenbox to run. Based

on all analysis results, we record all suspicious behaviors to

assist us in further reverse engineering of malware.

After completing the basic analysis, we begin the process

of reverse engineering. Based on the information in the basic

analysis, we may need to take additional steps. For example,

if the symbol table has been stripped, we need to generate

and download a function signature to assist in identifying the

function ID [25]. We will follow the above analysis framework

for all malware analysis, record the key malicious behaviors

analyzed in the malware samples, and track their specific

implementation methods.

C. Establishment of an Automated Analysis System

Based on the results of the above analysis, we begin to

build an automated IoT malware behavior analysis system.

This system will automatically analyze malware samples,

classify key malicious behaviors discovered, record their

implementation methods and specific locations, and output

information to easily readable text files. This greatly simplifies

the malware analysis process for security professionals, and

can help them quickly obtain suspicious malicious behavior

categories of malware, enabling them to quickly take response

measures.

1) Malware Analysis Script: Based on the comprehensive

consideration of various aspects of the malware automatic

analysis system, we have decided to use Ghidra’s script func-

tion for development. We utilize the scripting language and

API provided by the Ghidra reverse engineering framework

to automatically execute and customize various tasks related

to analyzing binary files. Through Ghidra scripting, we can

automate and write scripting tasks using Java or Python. The

script interface allows us to automate tasks such as data

extraction, symbol renaming, function recognition, and more.

For our project, we have decided to use Java scripting because

Java is Ghidra’s native language. This means that Java will

IIoT Malware Analysis Framework

Malware Source: http://98.159.98.37/x86

Input the malicious file into VirusTotal:

VirusTotal Result

Detection Score: 44/63
Identified Malware Families: Gafgyt, Mirai

Details

Basic Properties
MD5: 75c207f575c6e8948e2a431496e02e46
SHA-1: 7f4542978b172a5a0dcc3657545cadf24575f4e2
SHA-256:
73f43564bfa83fea599274bfc99769362b5070f0d46bcb34da75180e9441be89
Magic: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not
stripped
File size: 112.13kb

ELF Info
Class: ELF64
Data: 2's complement, little endian
OS ABI: UNIX-System V
Required Architecture: Advanced Micro Devices x86-64

Relations Contacted IP addresses: 98.159.98.37

Behavior
Observed Behavior
Data Obfuscation: Sample contains strings that are user agent strings indicative of HTTP
manipulation

Fig. 4. IoT Malware Analysis Framework

provide us with all the functionality of the Ghidra API and

allow us to leverage many existing Java libraries.

1 public void run() throws Exception {
2 ...
3 // obtain function using ghidra’s API
4 Function func = getFirstFunction();
5 // Use a while loop to cycle through functions
6 while (func != null && !monitor.isCancelled()) {
7 ...
8 // Behaviour analysis methods
9 ...

10 func = getFunctionAfter(func);
11 }
12 }

Listing 1. Function Iteration

2) Implementation of an Automated Analysis Script: In our

project, the goal of analyzing IoT malware is to summarize the

key malicious behaviors and specific implementation methods

of IoT malware. Therefore, We want to automatically analyze

the key malicious behaviors and their specific implementations

of malware through scripts, we must be clear about the specific

implementation methods for manual analysis, including:

Identify key functions and code snippets: Analyze dis-

assembly to identify key functions and code snippets that

may provide insights into the functionality and behavior of

executable files. Analyze control flow: Use Ghidra’s flow chart

feature to analyze the control flow of executable files and

identify the main execution paths. Analyze data structure: Use

Ghidra’s data structure view to analyze the data structures used

in executable files, such as arrays, structures, and linked lists.

This helps determine how the program stores and processes

data. View the strings used: Analyze the strings used in the

assembly list, such as file names, comments, or conditional

checks, which may provide clues about the intended use of

the malware creator.

Based on this, we can use Ghidra’s scripting function to

1337

simulate the above analysis method, thereby achieving auto-

matic analysis of malicious behavior in IoT malware. Based

on the execution process of malware, we can know that the

script will first check whether the function contains behavior

under the “initial stage” node, followed by the “preparation

stage” and “attack stage”.

Therefore, As shown in Listing 1, a function iterator is

used to cycle through each function obtained from reverse

engineering the malware sample. This enables us to search

through the entire binary effectively. For each behavior ob-

served in our earlier analysis, we create a method to search

through the function and detect individual behavior based

on the implementations observed and demonstrated in the

flow chart. Within each method, we return an object array

that contains information on whether a particular behavior is

detected, the Assembly implementation of the behavior, and

most importantly the location where the behavior is detected.

Anti-debugging. Based on our previous analysis of fork anti

debugging techniques, malware typically uses process forking

and closing to avoid debugger detection. Due to the fact that

process forking and closing typically follow a certain pattern,

we can add a method to the script to detect the presence of this

pattern in the function. As shown in Listing 2, Our script can

utilize Ghidra’s instruction API to iterate and detect function

calls, determining when to make function calls by checking

the instruction stream type. The script will detect whether the

program calls the fork, waitpid, fork, and exit system calls

in order, by comparing them with a specified function array

to track each system call and match it with the previously

mentioned pattern.

1 private Object[] antiDebugCheck(Function tgtFunc){
2 ...
3 // obtain listing from ghidra program
4 Listing plist = currentProgram.getListing();
5 ...
6 // we set a target sequence that would be

indicative of the fork anti-debugging behaviour
7 String[] target = {"fork", "waitpid", "exit", "

fork", "exit"};
8 ...
9 // We use an instructino iterator to iterate

through all instructions in the function
10 InstructionIterator iter = plist.

getInstructions(tgtFunc.getBody(), true);
11 while (iter.hasNext() && !monitor.isCancelled()

) {
12 Instruction ins = iter.next();
13 Address addr = ins.getAddress();
14 // Check if the instructions match our

target sequences
15 if (ins.getFlowType().isCall()) {
16 if(getFunctionAt(ins.getFlows()[0]).getName

().equals(target[count])) {
17 ...
18 }
19 }
20 }
21 }

Listing 2. Anti-Debugging Detection

Obfuscation. For process name confusion, we know that it

is implemented using the prctl call with the PR SET NAME

option set. As shown in Listing 3, to detect this behavior,

we can use Ghidra’s cross reference script to search for all

references to the prctl function call.

After finding the prctl function call, we can use Ghidra’s

decompiler interface to identify all parameters in the prctl

function call and check if the PR SET NAME option (value

15) has been set. If set, the detection location and its imple-

mentation method will be written to the report file.

1 DecompInterface ifc = new DecompInterface();
2 ifc.openProgram(currentProgram);
3 TaskMonitor taskmonitor = new ConsoleTaskMonitor();
4 DecompileResults res = ifc.decompileFunction(

tgtFunc,0,taskmonitor);
5 HighFunction hfunc = res.getHighFunction();
6 Iterator<PcodeOpAST> opiter = hfunc.getPcodeOps();
7 while (opiter.hasNext()) {
8 PcodeOp op = opiter.next();
9 if (op.getOpcode() == PcodeOp.CALL) {

10 if(getFunctionAt(op.getInput(0).getAddress
()).getName().equals("prctl") && op.getInput(1).
getOffset() == 15) {

11 println("prctl name change found");
12 }
13 }
14 }

Listing 3. Obfuscatio Detection

Killing Processes and Signal Handling. Signal processing

and process termination are also detected and recorded in re-

port files by tracking cross references and function parameters.

Persistence: For persistence, we know that it is achieved

by adding content to the runtime control file. Therefore, by

Ghidra’s search function, we can search for run control strings

in the program, which may indicate an attempt to manipulate

the run control file. If such a string is detected, it will return

its position in memory. Afterwards, we can check for any

references to the file and whether to try using the fopen/fclose

function call to edit the file. As shown in Listing 4, we

can use Ghidra’s Symbol interface to check if fopen is used

on the runtime control file. Then, the implementation of the

entire attempt can be accurately determined between fopen and

fclose function calls. Afterwards, we will record the detected

behavior, implementation, and location in the report file.

1 Reference refs[] = instr.getReferencesFrom();
2 for (int i = 0; i < refs.length; i++) {
3 if (refs[i].getReferenceType().isCall()) {
4 Address tgt = refs[i].getToAddress();
5 Symbol sym = getSymbolAt(tgt);
6 String sname = sym.getName();
7 if (sname.equals("fopen")) {
8 count += 1;
9 startCount = true;

10 }
11 if (sname.equals("fclose")) {
12 count -= 1;
13 }
14 }
15 }
16 if (startCount && count == 0) {
17 Address endAddr = instr.getAddress();
18 AddressSet addrSet = new AddressSet();
19 addrSet.addRange(startAddr, endAddr);
20 objArray[2] = addrSet;
21 return objArray;
22 }

Listing 4. Persistence Detection

1338

Get IP Address of Device. In the preparation phase, accord-

ing to our analysis, EasySoft usually sends DNS requests, and

then calls the getsockname() function to identify the IP address

of the infected device. Therefore, we can use Ghidra’s cross

referencing function to search for getsockname() function

calls. If such a function call is detected, we can conclude

that the function is attempting to obtain the IP address of

the device. After finding any references to getsockname,

we will search for the socket() function call to determine

its implementation, as based on our previous analysis and

flowchart, this will be an indicator for obtaining the local IP.

Connect to Server. Similar to prctl behavior checking,

we use Ghidra’s decompiler interface to check the parameters

passed during function calls. Then, we use Ghidra’s pseudo

code (also known as P-code) interface to filter out the pa-

rameters passed to the connect function call. We intentionally

use P-code because it is a low-level, platform-independent

representation of machine code used by the Ghidra disas-

sembler and decompiler [26]. Given that IoT devices cover

a wide range of platforms, this makes them particularly useful

in analyzing IoT malware samples. Since we know that any

reliable bidirectional communication attempt will require a

flow socket (integer value 1) and a TCP protocol connection

(integer value 0), we can filter based on the parameters of

the function call and only select cases where the appropriate

socket type and protocol are used. From here, we can add it to

the report to detect CNC server connection attempt behavior.

1 // The address which we want to check if
instruction is in a loop

2 Address addr = op.getSeqnum().getTarget();
3 //Use basic block model api to get basic blocks for

analysis
4 BasicBlockModel blockModel = new BasicBlockModel(

currentProgram);
5 ConsoleTaskMonitor monitor = new ConsoleTaskMonitor

();
6 AddressSetView funcAddrSet = tgtFunc.getBody();
7 println("Address to string: " + addr.toString());
8 // Get the blocks of target address
9 CodeBlock[] block2 = blockModel.

getCodeBlocksContaining(addr,monitor);
10 Address startAddr = block2[0].getFirstStartAddress

();
11 // We use a dfs algorithm to check if there are any

loops within the flow graph.
12 HashSet<CodeBlock> visited = new HashSet<>();
13 Stack<CodeBlock> stack = new Stack<>();
14 stack.push(block2[0]);
15 boolean isWhileLoop = false;
16 while (!stack.isEmpty()) {
17 CodeBlock currBlock = stack.pop();
18 visited.add(currBlock);
19 CodeBlockReferenceIterator destinations =

currBlock.getDestinations(monitor);
20 while (destinations.hasNext()) {
21 CodeBlockReference destblockRef = destinations.

next();
22 CodeBlock destblock = destblockRef.

getDestinationBlock();
23 if (visited.contains(destblock)) {
24 if (destblock.getFirstStartAddress() ==

startAddr)
25 isWhileLoop = true;
26 break;
27 }

28 if (funcAddrSet.contains(destblockRef.
getDestinationAddress())) {

29 stack.add(destblock);
30 }
31 }
32 }

Listing 5. While Loop Check

DDoS Attack. After connecting to the CNC server, malware

will need to receive instructions from the CNC server. There-

fore, we can check whether the function made a recv() function

call to parse the information received from the socket. Due to

the fact that Gafgyt malware is known as botnet malware,

its main malicious activity is mostly concentrated in DDoS

attacks. After conducting malware analysis, we determine that

during DDoS attacks, the malware would repeatedly create a

network connection to the victim’s server and then repeatedly

send network packets to it, attempting to flood its server.

Therefore, as shown in Listing 5, we can use the connect()

function call to detect malicious DDoS behavior. By using

function blocks, we can check whether the connect() function

call is within the loop, indicating repeated sending of net-

work packets. If detected, then determine the implementation

method, check the time of socket creation, and wait until the

connect() function call is made. Then insert the information

into the report log.

3) Utilizing the Malware Analysis Script: To use this script,

users first need to download and save the script. Simply

input the script into Ghidra’s script folder and open the

Script Manager. Afterward, users only need to open the

script when they want to analyze the binary file, first run

Ghidra’s automatic analysis, and then run the corresponding

automatic detection script. The script will further analyze

based on Ghidra’s automatic analysis results, obtain relevant

key malicious behaviors and their implementation methods, as

well as location information, and ultimately form a complete

malicious behavior analysis report for users to read. Based on

this report, users can quickly understand detailed information

about key malicious behaviors of malware.

III. EVALUATION

In this section, we demonstrate the power of automated

analysis script.

A. Experiment Setup

In our experiment, we first obtain new malware samples

from the malware bazaar and manually analyze them accord-

ing to our developed analysis framework. Manual analysis can

delve into each malware sample, identify malicious behavior

within it, and record them. As shown in Figure 5, these

manual analysis results serve as our benchmark for subsequent

automated analysis comparisons. Then, we use the automated

script we built to analyze new malware samples obtained from

the malware market and generate a report file. Then extract and

record the detected behavior from the generated report file.

At the same time, in order to evaluate the differences

between the results of our automated analysis script and

existing solutions, we compare the analysis results of our

1339

Malware Analysis Reports Comparison

MalwareHash
Number of Malicious Behaviors Detected

Ghidra Script Manual Analysis
179387e44acac... 13 14
2b85778959c5f... 8 10
2d08cabf21996... 8 9
39dd070ea397d... 9 10
3bb0c13d6fc45... 16 18
489963f24cd60... 8 10
512fc8546c9e7... 8 10
5805fb0757ccb... 15 17
73f43564bfa83... 25 28
8371943e6c6f1... 14 17
b379d138e0bfa... 10 12
b9eeaa5c661b5... 13 16
c29859c0acdf6... 16 18
c5702da4f46e6... 25 28
d08b9242657a1... 8 10
e3e77719d13c5... 19 29
eb101b9e7a0cf... 13 14
eb3094e350e6a... 15 16
f62321904855f... 10 12
fcd71773cb0f4... 8 9

Sum 261 307

Fig. 5. Analysis Results

constructed automated analysis script with the more mature

existing Sandbox. In this experiment, we decided to use

Joe Sandbox to analyze malware samples to identify their

behavior, as it provides the best behavioral feedback among

the commonly used sandboxes in VirusTotal and the VirusTotal

community.

B. Evaluation Indicators

Our main evaluation metric is based on the number of key

malicious behaviors identified from malware analysis. In the

process of malware analysis, we pay special attention to the

attack behavior and malicious functions of malware, including

but not limited to establishing connections with command

and control servers, executing distributed denial of service

(DDoS) attacks, bypassing analysis and detection mechanisms,

obtaining system permissions, and so on. These key mali-

cious behaviors are crucial for evaluating the effectiveness

and accuracy of malware analysis methods. We measure the

performance of automated analysis methods by analyzing the

number of these behaviors to help enhance network security

and threat detection capabilities. Meanwhile, with the help of

these evaluation indicators, we can have a more comprehensive

understanding of the characteristics and behavior of malware,

which can help strengthen defense measures for IoT security.

0

5

10

15

20

25

30

35

17
93

87
e4

4a
cac

...

2b
85

77
89

59
c5

f...

2d
08

cab
f21

99
6..

.

39
dd

07
0e

a3
97

d..
.

3b
b0

c1
3d

6fc
45

...

48
99

63
f24

cd
60

...

51
2fc

85
46

c9
e7

...

58
05

fb0
75

7c
cb

...

73
f43

56
4b

fa8
3..

.

83
71

94
3e

6c
6f1

...

b3
79

d1
38

e0
bfa

...

b9
eea

a5
c6

61
b5

...

c2
98

59
c0

acd
f6.

..

c5
70

2d
a4

f46
e6

...

d0
8b

92
42

65
7a

1..
.

e3
e7

77
19

d1
3c

5..
.

eb
10

1b
9e

7a
0c

f...

eb
30

94
e3

50
e6

a..
.

f62
32

19
04

85
5f.

..

fcd
71

77
3c

b0
f4.

..

N
um

be
r o

f M
al

ic
io

us
 B

eh
av

io
rs

 D
et

ec
te

d

Malware Sample

Joe Sandbox Ghidra Script Manual Analysis

Fig. 6. Experiment Results

C. Experiment Results

From our experimental results, automated scripts can detect

85% of the malicious behavior detected in the manual analysis

as shown in Figure 6. However, there are still some behaviors

that we cannot detect using scripts. For example, a hard-coded

string sent by a malware attacker to the server to notify them

of successfully entering the malware version of the device is

difficult to detect due to the highly irregular strings involved.

We hope that through further improvements, we will be able

to improve the accuracy of the script.

Compared to the currently available sandbox-based auto-

mated analysis methods, our automated analysis script has

improved accuracy by 30%. Given the presence of anti-

analysis techniques in malware and the need for proactive

malicious activities during the analysis process, the accu-

racy of automated analysis based on sandboxes that rely

on dynamic analysis may be greatly challenged, resulting

in significantly lower detection rates. In addition, automated

sandboxes place more emphasis on malware detection rather

than reverse engineering, as they do not focus on reverse

engineering. Therefore, when malicious behavior is detected,

our developed scripts provide more insights into malware and

provide implementation details about the detected behavior.

IV. DISCUSSION AND FUTURE WORK

A. Development of a Comprehensive Dataset

Although we have collected and analyzed a considerable

dataset in our experiment, it is not exhaustive enough. Future

work can focus on collecting a larger and more diverse dataset

of malware samples, especially those specifically targeting IoT

devices. By adding samples from different kinds of malware

families, automated scripts will be able to detect more behavior

in different samples. This will enable us to have a more

comprehensive understanding of the behavioral characteristics

of different malware samples.

B. Incorporating within a Sandbox

We can try integrating Ghidra into a sandbox environment

to achieve more powerful automation of the analysis process.

Based on this, we can combine basic static and dynamic

analysis with Ghidra’s advanced reverse engineering static

1340

analysis to further simplify the analysis process for researchers

and analysts.

C. Development of a Real-time Detection System

Our project focuses on detecting key malicious behaviors

of malware and providing specific behavior implementation

details. However, developing a real-time detection system that

can analyze the behavior of malware running on IoT devices

will be beneficial for strengthening IoT security construction.

This requires further development of a feature dictionary based

on malicious and benign behavior for use within IoT programs.

Then, we can use a combination of system hooks and event

listeners to monitor system/function calls related to malware

behavior, thereby intercepting and recording calls in real time.

V. CONCLUSION

In this paper, we develop a malware analysis framework to

examine IoT technology behavior. We harness Ghidra’s script-

ing capabilities to automate the reverse engineering process

within this framework, enabling rapid analysis of malware

samples. Our experiments validate the effectiveness of our

approach in identifying and analyzing malware behavior. It

efficiently and accurately identifies malware behavior, offering

valuable insights into how malware operates in IoT devices.

Overall, our project has advanced IoT malware behavior

analysis. By continuously refining our methods, we can en-

hance the defense of IoT devices and their connected networks

against persistent malware threats.

REFERENCES

[1] T. N. Gia, M. Ali, I. B. Dhaou, A. M. Rahmani, T. Westerlund,
P. Liljeberg, and H. Tenhunen, “Iot-based continuous glucose monitoring
system: A feasibility study,” Procedia Computer Science, vol. 109,
pp. 327–334, 2017, 8th International Conference on Ambient Systems,
Networks and Technologies, ANT-2017 and the 7th International
Conference on Sustainable Energy Information Technology, SEIT
2017, 16-19 May 2017, Madeira, Portugal. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050917310281

[2] R. T. D. B. D. Schmidt, “The world in 2025 - predictions for the next ten
years,” in 2015 10th International Microsystems, Packaging, Assembly
and Circuits Technology Conference (IMPACT). IEEE, 2015.

[3] A. Wang, R. Liang, X. Liu, Y. Zhang, K. Chen, and J. Li, “An
Inside Look at IoT Malware,” in Industrial IoT 2017: Industrial IoT
Technologies and Applications. Springer, Cham, 2017.

[4] C. K. G. K. A. S. J. Voas, “DDoS in the IoT: Mirai and Other Botnets,”
in ICECCS. IEEE, 2017.

[5] H. N. H. Security. Iot malware attacks rose 700% during
the pandemic - help net security. [Online]. Available:
https://www.helpnetsecurity.com/2021/07/20/iot-malware-attacks-rose/

[6] R. Feng, Y. Liu, and S. Lin, “A performance-sensitive malware detection
system on mobile platform,” in Formal Methods and Software Engi-
neering, Y. Ait-Ameur and S. Qin, Eds. Cham: Springer International
Publishing, 2019, pp. 493–497.

[7] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W. Lin,
“MobiDroid: A Performance-Sensitive Malware Detection System on
Mobile Platform,” in 2019 24th International Conference on Engineering
of Complex Computer Systems, 2019.

[8] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
Performance-Sensitive Malware Detection System Using Deep Learning
on Mobile Devices,” IEEE Transactions on Information Forensics and
Security, 2020.

[9] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “SeqMobile: An
Efficient Sequence-Based Malware Detection System Using RNN on
Mobile Devices,” in 2020 25th International Conference on Engineering
of Complex Computer Systems, 2020.

[10] A. H. Michael Sikorski, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012.

[11] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label classifica-
tion for android malware based on active learning,” IEEE Transactions
on Dependable and Secure Computing (TDSC), 2022.

[12] G. Meng, R. Feng, G. Bai, K. Chen, and Y. Liu, “Droidecho: an
in-depth dissection of malicious behaviors in android applications,”
Cybersecurity, vol. 1, no. 1, pp. 1–17, 2018.

[13] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label classifica-
tion for android malware based on active learning,” IEEE Transactions
on Dependable and Secure Computing, pp. 1–18, 2022.

[14] G. Meng, R. Feng, G. Bai, K. Chen, and L. Yang, “Droidecho: an in-
depth dissection of malicious behaviors in android applications.”

[15] O. Alrawi, C. Lever, K. Valakuzhy, K. Snow, F. Monrose, M. Anton-
akakis et al., “The circle of life: A {large-scale} study of the {IoT}
malware lifecycle,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3505–3522.

[16] M. Saad and M. Taseer, “The study of the anti-debugging techniques
and their mitigations,” International Journal for Electronic Crime Inves-
tigation, vol. 6, no. 3, pp. 33–44, 2022.

[17] T. Hasan, J. Malik, I. Bibi, W. U. Khan, F. N. Al-Wesabi, K. Dev, and
G. Huang, “Securing industrial internet of things against botnet attacks
using hybrid deep learning approach,” IEEE Transactions on Network
Science and Engineering, vol. 10, no. 5, pp. 2952–2963, 2023.

[18] S. Torabi, M. Dib, E. Bou-Harb, C. Assi, and M. Debbabi, “A strings-
based similarity analysis approach for characterizing iot malware and in-
ferring their underlying relationships,” IEEE Networking Letters, vol. 3,
no. 3, pp. 161–165, 2021.

[19] J. Choi, A. Anwar, A. Alabduljabbar, H. Alasmary, J. Spaulding,
A. Wang, S. Chen, D. Nyang, A. Awad, and D. Mohaisen, “Under-
standing internet of things malware by analyzing endpoints in their static
artifacts,” Computer Networks, vol. 206, p. 108768, 2022.

[20] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, “A survey of iot
malware and detection methods based on static features,” ICT Express,
vol. 6, no. 4, pp. 280–286, 2020.

[21] S. Gaba, S. Nagpal, A. Aggarwal, R. Kumar, and S. Kumar, “An
analysis of internet of things (iot) malwares and detection based on static
and dynamic techniques,” in 2022 Seventh International Conference on
Parallel, Distributed and Grid Computing (PDGC), 2022, pp. 24–29.

[22] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware
detection methods,” in Proceedings of the 3rd Hackers’ Workshop on
computer and internet security (IITKHACK’09), 2009, pp. 74–79.

[23] K. N. Kris Eage, The Ghidra Book The Definitive Guide. No Starch
Press, 2020.

[24] Z. Liu, L. Zhang, Q. Ni, J. Chen, R. Wang, Y. Li, and Y. He, “An
integrated architecture for iot malware analysis and detection,” in IoT
as a Service: 4th EAI International Conference, IoTaaS 2018, Xi’an,
China, November 17–18, 2018, Proceedings 4. Springer, 2019, pp.
127–137.

[25] X. Yin, S. Liu, L. Liu, and D. Xiao, “Function recognition in stripped
binary of embedded devices,” IEEE Access, vol. 6, pp. 75 682–75 694,
2018.

[26] D. Votipka, M. N. Punzalan, S. M. Rabin, Y. Tausczik, and M. L.
Mazurek, “An investigation of online reverse engineering community
discussions in the context of ghidra,” in 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2021, pp. 1–20.

1341

