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Learning an Interpretable Stylized Subspace for
3D-aware Animatable Artforms

Chenxi Zheng, Bangzhen Liu, Xuemiao Xu, Huaidong Zhang, and Shengfeng He, Senior Member, IEEE

Abstract—Throughout history, static paintings have captivated viewers within display frames, yet the possibility of making these
masterpieces vividly interactive remains intriguing. This research paper introduces 3DArtmator, a novel approach that aims to represent
artforms in a highly interpretable stylized space, enabling 3D-aware animatable reconstruction and editing. Our rationale is to transfer
the interpretability and 3D controllability of the latent space in a 3D-aware GAN to a stylized sub-space of a customized GAN, revitalizing
the original artforms. To this end, the proposed two-stage optimization framework of 3DArtmator begins with discovering an anchor in
the original latent space that accurately mimics the pose and content of a given art painting. This anchor serves as a reliable indicator of
the original latent space local structure, therefore sharing the same editable predefined expression vectors. In the second stage, we train
a customized 3D-aware GAN specific to the input artform, while enforcing the preservation of the original latent local structure through
a meticulous style-directional difference loss. This approach ensures the creation of a stylized sub-space that remains interpretable and
retains 3D control. The effectiveness and versatility of 3DArtmator are validated through extensive experiments across a diverse range
of art styles. With the ability to generate 3D reconstruction and editing for artforms while maintaining interpretability, 3DArtmator opens
up new possibilities for artistic exploration and engagement.

Index Terms—3D-aware GANs, stylized animation, facial attribute editing.

✦

1 INTRODUCTION

A RTISTIC works serve as a reflection of artists’ inspira-
tions and perspectives on life, expressed in a creative

and imaginative manner that has evolved alongside human
history. While these artworks encapsulate profound intro-
spections, subjective interpretations of existence, and fer-
vent admiration for life, the stories they tell remain unheard.
As a result, traditional static artworks often fail to resonate
with ordinary viewers, hindering their ability to appreciate
the inner spirit and beauty encapsulated within. However,
in the era of deep learning, advancements in technology
have made it more accessible for regular users to customize
and stylize artistic content. This transformative process is
gradually reshaping the way people create, consume, and
share art, from everyday applications such as style im-
age manipulation to virtual concepts like the metaverse.
Consequently, there is a growing demand to rebuild the
interactions between artists and audiences. This leads us to
an intriguing question: “Can we breathe life into existing
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artworks, facilitating more vivid and resonating human-
art interactions, all while preserving their original content
and style?” This question gives rise to the problem of “3D
Animatable Artforms”, which involves the extraction of three-
dimensional facial information from the given artistic face
images while simultaneously maintaining the integrity of
their content and style.

The unique properties of artistic portraits, however, in-
troduce significant challenges in the realm of animating
3D artforms. Artistic representations, often rendered from a
side view, frequently involve severe facial occlusion. This as-
pect makes it particularly challenging to accurately recover
details in the parts of the face that are not visible. Moreover,
the task of collecting multi-view consistent portraits is ren-
dered impractical due to the inherent uniqueness of artistic
works. In addition, the distinctive and personalized artistic
styles, characterized by elements such as brush strokes,
outlined edges, and exaggerated forms, create a substantial
domain gap when juxtaposed with real human faces, further
complicating the problem-solving process in this context.

Neural stylization [15], [19], [34], [38] is an effective tech-
nique for emulating styles from diverse images [4], [12], [24],
[25] or specific domains [7], [34], [38] onto target contents.
The ability of deep networks [19], [25] to capture and change
visual styles has been demonstrated in 2D image stylization,
such as creating a picture in the style of Van Gogh’s iconic
starry sky. However, the application of these methods in 3D
stylization under unrestricted camera poses is hindered by
their limitation in stylizing the given view of the content
image. Recent advances in 3D content stylization [16], [31],
[61] have focused on leveraging the superior capabilities of
neural radiance field (NeRF) [28]. These approaches have
yielded impressive outcomes, characterized by enhanced vi-
sual quality and consistent geometric detail. To address the
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(a) Input (b) 3D Reconstruction (c) Expression Editing

Fig. 1: We propose 3DArtmator that learns an interpretable stylized sub-space to enable 3D-aware reconstruction and
editing of portraits in arbitrary artforms.

demand for generating 3D content, additional research has
delved into the stylization of 3D GANs, such as EG3D [2]
and GRAM [8]. Nevertheless, prevailing methods mainly
focus on encoding the style of reference images while dis-
regarding the remaining content, leading to style-similar
but content-irrelevant images that fail to align with our
requirements.

A straightforward solution for animating a given art-
work is to combine GAN inversion [39], [49], [52] and cross-
domain translation [11], [22], [66]. A previous method [18]
has adopted this idea by training the entire generative
model to predefined artistic styles. Content-preserving
novel views are synthesized by inverting a reference image
to its most similar latent code. However, the adversarial
training involved in GAN’s domain adaptation necessitates
numerous images with the same style. Given the diverse
categories of art styles worldwide, integrating all styles
into a single model becomes an extremely challenging task.
Consequently, the model must be adapted separately for
each style, leading to the impractical and costly issue of data
collection.

To achieve a more efficient and user-friendly 3D art
animation, we propose reducing the training cost by ani-
mating artwork with just a single input image. Optimizing
a latent code to simultaneously reconstruct invisible content
and produce images consistent with a specific art style is
impractical, primarily due to the substantial domain gap
between the realms of real facial features and artistic styles.
On the other hand, even though the original latent space
might produce visually similar results to the given art, they
suffer from an out-of-domain problem [11], [47], [48] that
limits their interpretability and editability. This limitation
restricts their applications in exploring more practical artis-
tic possibilities.

In this paper, we propose 3DArtmator, an approach to

establish an interpretable stylized space of a generator that
exhibits the same editability as a 3D-aware GAN in the
real domain. Our idea is to mimic the original latent space
structure within a new stylized space. However, achieving
a perfect alignment between the stylized space and the
original latent space with a single style image is not possible.
Instead of aiming for global consistency, we argue that
achieving a locally interpretable sub-region suffices our one-
shot setting. Consequently, our 3DArtmator adopts a two-
step, two-generator training architecture. In the first step,
we locate a local anchor and its corresponding structure
that minimizes the transfer cost between the two spaces.
In the second stage, we enforce the one-shot training of a
customized 3D-aware GAN, which shares the same stylized
subspace structure as the local sub-region, guided mainly
by a style-directional difference loss. This objective function
aims to maintain co-linearity with the directions between
the different spaces. Our proposed 3DArtmator enables
easy reconstruction of a diverse range of artforms in 3D
while preserving interpretability within the stylized sub-
space. This leads to flexible and coherent 3D artistic editing
without the need for a massive amount of training data.

2 RELATED WORK

Generative 3D-aware Image Synthesis. Neural Radiance
Fields (NeRF) have been introduced into 3D-aware Gen-
erative Adversarial Networks (3D GAN) [2], [3], [8], [40],
showcasing impressive capabilities in high-fidelity novel
view synthesis. Pioneering studies such as GRAF [40] and
pi-GAN [3] aim to generate radiance fields from unstruc-
tured 2D images for 3D-aware image synthesis through
differentiable volumetric rendering. Subsequent works have
further improved synthesis quality by employing two-stage
rendering [2], [13], [33] or exploring novel 3D representa-
tions [8], [41], [55], [65]. Despite significant advancements
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in 3D GANs, direct application to artistic images fails to
recover the underlying 3D geometry due to the substantial
domain gap between real photographs and intricate artistic
paintings.

Neural Stylization Deep neural stylization architectures
have achieved remarkable results in transferring styles from
either arbitrary images [4], [12], [15], [19], [24], [25], [43]
or predefined domains [7], [34], [38], [56]. By incorporat-
ing temporal consistency with defined optical flows [6] or
long-term correlations [1], [5], [42], neural style transfer
techniques have also been extended to videos. However,
existing image and video stylization methods are limited
in their consideration of specific views. Without proper
integration of 3D geometry representations, these neural
stylization methods often suffer from heavy blurriness and
cross-view inconsistencies when applied to off-the-shelf
novel view synthesis frameworks. To achieve more robust
and multi-view consistent stylization, recent works have
employed Neural Radiance Fields (NeRF) [28] as implicit
scene descriptors. By designing stylization networks, these
approaches enable NeRF to predict color-related parame-
ters based on a given reference image [10], [16], [31], [61]
or textual descriptions [51] of the desired style. However,
learning the stylization network typically requires multiple
views of the same scene as input constraints. In contrast, our
proposed approach enables the animation of any artforms
using only a single image.

Domain Adaptation on GANs. Transferring GANs
across domains has proven to be practical in both 2D [11],
[17], [50], [59] and 3D-aware [14], [18] image synthesis
through domain adaptation. In this process, a GAN model
pretrained on real images is further fine-tuned on the target
dataset, resulting in excellent results in synthesizing diverse
and high-fidelity images with different styles. With the
inheritance of the semantic-meaningful latent space, the
adapted model also preserves the editing ability of the
original GANs. However, existing adaptation techniques
often require large-scale datasets for adversarial training,
which can be time-consuming and impractical for certain
artforms that may require professional guidance. Recent
studies on few-shot [22], [29], [32] and one-shot domain
adaptation [64], [66] have attempted to modify the GAN’s
style using only a small number of images or even a single
image. Instead of adapting the entire GAN space to the
target style, we aim to explore the generative ability and
bring arbitrary artistic images to life while maintaining
consistency across views and preserving content.

3 METHOD

3.1 Overview
For a given artform, the objective of our method is to learn a
3D interpretable representation of the stylized portrait. Since
most of the artforms are delivered in one shot, the lack of
3D information raises a challenge to rebuild the stylized
portrait from novel views. To learn the 3D representation
of the stylized portrait solely from single-view supervision,
our insight is to leverage the 3D priors embedded within
3D-aware GANs [2], [8], [55]. These 3D priors provide an
interpretable latent space pretrained on the real portrait do-
main [21]. By incorporating these 3D priors and leveraging

the interpretability of pretrained 3D-aware latent space, we
gain the capability to effectively rebuild and manipulate
portraits, thereby enhancing the fidelity and editability of
the resulting 3D portraits.

Drawing upon the aforementioned insight, our pro-
posed 3DArtmator aims to acquire an interpretable styl-
ized space, facilitating the editing of a given painting in
a manner that ensures multi-view consistency and style
transferability. We propose to mimic a locally interpretable
sub-region of the original latent space within the target style
space. The optimization involves two progressive stages,
including Content-Analogous Subspace Localization (Sec. 3.2)
and Directional-Guided Subspace Stylization (Sec. 3.3). In the
first stage, we recover the 3D information of the reference
artwork via a content-analogous identification loss. This
is achieved by optimizing a real portrait that closely re-
sembles the content depicted in the given painting as an
anchor in the 3D-aware GANs’ local space. For the second
stage, capitalizing on the multi-view consistency of the real
domain, we introduce a style-directional difference loss,
which ensures the co-linearity of the style directions across
multiple views. Such that the local space can be effectively
transferred from the real domain to the art domain while
maintaining interpretability and consistent style character-
istics. The overall architecture of our 3DArtmator is shown
in Fig. 2.

3.2 Content-analogous Subspace Localization

Reconstructing a 3D-aware portrait presentation without
multi-view supervision is challenging. To avoid the com-
plex and deficient estimation of spatial properties (e.g., 3D
geometry and depth), we leverage the hidden 3D priors of
the pretrained 3D-aware GANs and convert the estimation
of 3D properties into a local sub-region location problem.
Specifically, our goal is to optimize an anchor in the latent
space of 3D-aware GANs, whose nearby latent are inter-
pretable and have less cost on adapting to the stylized space
of the referenced style. To achieve this, given a reference
image of artform with a manually specified view ϑ as
inputs, we search for the optimal latent code z∗ in the real
portrait space that produces the most identity-similar image
to the reference image from the view ϑ.

Suppose we have a pretrained 3D generator Gori, the
process of rendering an image from a given view ϑ can be
formulated as:

Iori,ϑ = Gori(z, ϑ). (1)

Given a referenced portrait Iref , we are searching for an
anchor z that has less transferring cost to Iref . The distance
between Iref and Iori,ϑ are minimized in the perspective
of style and structure, leading to the following content-
analogous identification loss:

Lcr = λ1Lperc(Iori,ϑ, Iref ) + λ2Lpix(Iori,ϑ, Iref ), (2)

where Lperc and Lpix indicates the LPIPS loss [62] and L2-
norm pixel-wise loss respectively. With the above restriction,
the optimal anchor z∗ in the pretrained latent space is
localized by:

z∗ = argmin
z

Lcr. (3)
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Fig. 2: Our proposed 3DArtmator consists of two progressive optimization steps, including the content-analogous subspace
localization and the directional-guided subspace stylization. For localizing the content-analogous subspace, we optimize
a random noise to generate the most identity-similar real portrait with the reference painting. For directional-guided
subspace stylization, we adopt the style direction of the reference view between the real portrait and the reference painting
as directional guidance. The other directions of generated views are forced to align with the guided style direction in the
style space.

In this way, the optimal anchor collaborated with its sub-
space can preserve the content associated with the reference
portrait. While maintaining the editability inherited from
the original latent space, this subspace enables the subse-
quent transfer learning of the target stylized space.

3.3 Directional-guided Subspace Stylization

With the interpretable latent subspace localized by latent
optimization in the real space, the following step is to trans-
fer it to the stylized space of the given painting. Since we
have only one artwork, directly learning the style in one shot
will lead to severe overfitting and break the interpretability
of the subspace. To address this concern, we propose to
train the generator Gtrn with the proposed style-directional
difference loss.

3.3.1 Style-directional Difference Loss

Compared with portraits from the real world, artworks
contain more hand-crafted traces, introducing extra diffi-
culty in embedding the style within the subspace. Directly
applying a 2D spatial alignment (e.g., LPIPS loss) between
the rendered target-style image at view ϑ and the portrait
is helpful in 2D style transfer but fails in 3D scenarios.
The one-shot supervision easily leads to deterioration in
radiance rendering, such that the occluded radiances in
the field are blurred or vitrified. Artifacts such as the

sticker effect and tortuosity happen due to the absence
of depth and limited contextual information, resulting in
non-stereoscopic surfaces and asymmetric faces. Besides,
an insufficient viewpoint will lead to the ambiguity of 3D
property estimation, which deteriorates the interpretability
of the original subspace.

To achieve stable style transfer for the subspace, we
propose to boost the geometric consistency of the result-
ing stylized space with directional guidance and jointly
optimize the 3D generator from multiple view constraints.
Since the stylized portrait is available in only one view,
we achieve a 3D-consistent artistic stylization optimization
by extracting the style-directional difference from the styl-
ized portrait. The style-directional difference is calculated
between the anchor and the referenced portrait image in the
stylized space and serves as a constraint for the stylization of
arbitrary views. Previous text-guided translation methods
guide the transfer by the difference between the feature of
two style descriptions tsrc and ttgt, which is denoted as
δt = ET (ttgt) − ET (tsrc), where ET represents the text
encoder of a pretrained CLIP [36]. Inspired by this, we
exploit the difference of the style features extracted from
the image pair I∗ori,ϑ = Gori(z

∗, ϑ) and Iref as directional
guidance, which is denoted as:

δguide = E(Iref )− E(I∗ori,ϑ), (4)

where E represents the feature encoder that projects the
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(a) Input (b) Results (c) Input (d) Results

Fig. 3: 3D reconstruction with AniFaceGAN. (a) & (c) are the reference paintings, while (b) & (d) are the multi-view
rendering results of the reconstructed 3D portrait. The images in the central column of (b) & (d) are the rendering results
with the same view of the reference painting.

image into a style space S . δguide is treated as a stan-
dard direction for optimization. We expect the directions
of sample pairs from other unspecific views can maintain
the co-linearity that is directionally aligned with δguide. To
achieve this goal, we randomly sample N views {ϑi}Ni=0 and
construct N image pairs (I∗ori,ϑi

, I∗trn,ϑi
) with the pretrained

generator Gori and the trainable generator Gtrn, where

I∗ori,ϑi
= Gori(z

∗, ϑi),

I∗trn,ϑi
= Gtrn(z

∗, ϑi).
(5)

The style directions are calculated for each views ϑi by:

δϑi
opt = E(I∗trn,ϑi

)− E(I∗ori,ϑi
). (6)

Our style-directional difference loss is calculated by the
negative cosine similarity (⟨·, ·⟩) between the style guidance
δguide and the set of {δϑi

opt}Ni=0 for optimization:

Ldir =
N∑
i=0

1− ⟨δguide, δϑi
opt⟩. (7)

3.3.2 Overall Objective
Noticed that the style-directional difference loss evaluates
the co-linearity between two spaces but does not directly
supervise the capturing of the spatial features of the art
portrait. To produce a reconstructed 3D portrait that has
consistent content with the reference image, we apply an
extra spatial constraint on Gtrn. Therefore, the spatial align-
ment loss concerning the latent code z∗ and the specific view
ϑ is defined as follows:

Lspa = Lperc(Gtrn(z
∗, ϑ), Iref ), (8)

where LPIPS is adopted as the perceptual loss.
Finally, we optimize the 3D generator Gtrn with the

following loss for cross-view stylization:

Lstyle = λ3Ldir + λ4Lspa. (9)

4 EXPERIMENT

4.1 Implementation Details

We employ the CLIP [36] encoder to project the images into
the stylized space. Here we adopt AniFaceGAN [55] as our
backbone to facilitate its 3D prior and editatbility on the real
domain. The rendered images I∗trn,ϑi

and I∗ori,ϑi
in Eq. (6)

are both augmented before image encoding. In each training
iteration, we randomly selected N = 1 in Eq. (7) for cross-
view stylization. Moreover, we adopt Adam [23], [57], [58]
as the optimizer in our 3DArtmator. In the first stage, the
latent code z is initialized randomly and optimized with a
learning rate of 2e − 2. In the second stage, the trainable
generator Gtrn is optimized with a learning rate of 1e − 5.
The weight factors in Eq. (2) and Eq. (9) are all set as 1.0.
The single optimization take is completed within 20 minutes
using a single 40GB NVIDIA A100 Tensor Core GPU.

4.2 3D Reconstruction

In Fig. 3, we present several challenging scenarios encoun-
tered in the realm of 3D Artistic Animation. These instances
share a common characteristic where the portraits deviate
from the forward direction, resulting in significant occlu-
sion. However, our 3DArtmator framework successfully
achieves high-fidelity 3D reconstruction across a diverse
range of artforms. When viewed from the specified angle ϑ,
the rendered image exhibits remarkable visual similarities
to the input, effectively capturing the distinctive artistic
features, such as brush stroke styles. Notably, when ob-
served from alternative perspectives, 3DArtmator excels in
reconstructing identities, including the intricate estimation
of facial attributes, such as the curvature of the jawline
and the distinct stereo bridge of the nose. These outcomes
highlight the efficacy of our approach in capturing and
representing the intricate details of artistic portraits.

Despite the high fidelity, 3DArtmator demonstrates the
ability to generalize to different artforms. Even when pro-
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(a) Input (b) FOMM (c) PIR (d) MRAA (e) LIA (f) Ours

Fig. 4: Comparison of 3D reconstruction quality with face reenactment methods. The input artistic paintings are resized to
128×128 resolution. The rendering images with a large twisting angle related to the original view are presented on the left
of each column, while the right two are with smaller view discrepancies.

vided with a single portrait as input, 3DArtmator success-
fully extracts the stylistic essence faithfully and efficiently
guides the optimization process to align unspecified views
with the artistic domain. This capability is exemplified in
Fig. 3, where a diverse collection of artforms, including
decorative painting, sketch, watercolor, and oil painting,
showcases the remarkable generalizability of 3DArtmator
across different painting styles.

4.3 Comparison
4.3.1 Comparison with Face Reenactment
We compare our method with existing face reenactment ap-
proaches, which were originally pretrained on VoxCeleb [30]
and directly applied to artistic animation without further
fine-tuning. To provide a wider range of observation views,
the driving videos used for the reenactment approaches are
generated using pretrained AniFaceGAN [55]. Specifically,
we considered FOMM [44], PIRenderer [37], MRAA [45],
and LIA [53] for comparison purposes. The visualization
results are presented in Fig. 4.

Near the specified view ϑ, the reenactment methods
exhibit the ability to produce high-quality images. However,
as the viewpoint deviates further from the frontal orienta-
tion, identity alteration becomes evident in the reenactment
results (Fig. 4b, Fig. 4c, and Fig. 4d), or geometric distortion
occurs (Fig. 4e). These phenomena can be attributed to
the inherent dependence on the geometric properties of
the driving videos employed by FOMM, PIRenderer, and
MRAA, which inevitably leads to a degradation in maintain-
ing the reference identity. In contrast to the aforementioned
reenactment approaches, our 3DArtmator method operates
without driving videos and reconstructs a 3D-consistent
portrait. As a result, our approach exhibits superior visual
performance, particularly when faced with significant devi-
ations in viewpoints.

We conducted a corresponding user study involving 20
video clips reconstructed by the above methods, with over
50 participants engaged in the study. They were tasked

TABLE 1: A user study on fidelity, consistency, and inter-
pretability. We report the average rank of each method with
the standard deviation over all participants. The smaller
values indicate the higher acceptance rate of the audiences.
The best records are marked in bold.

Methods Fidelity 3D-Consistency Interprebility
FOMM 2.61± 0.60 2.45± 0.65 2.23± 0.64

PIR 2.88± 0.31 3.05± 0.31 2.90± 0.31
MRAA 4.43± 0.32 4.36± 0.33 3.79± 0.32

LIA 2.60± 0.34 2.60± 0.32 2.57± 0.31
3DArtMator 1.47± 0.31 1.65± 0.32 1.81± 0.31

with ranking the visual quality of the videos based on
three criteria: reconstruction fidelity, 3D consistency, and
interpretability, respectively. As shown in Tab. 1, the sta-
tistical results are calculated by the average ranking of
each method over all the participants. Overall, the user
study confirms the superiority of our 3DArtmator method
in terms of reconstruction fidelity and 3D consistency, while
maintaining competitive performance in editing capabilities
when compared to existing face reenactment approaches.

4.3.2 Comparison with AniFaceGAN-based Methods

To highlight the effectiveness of 3DArtmator, we con-
duct comparisons with other stylization methods across
three distinct style domains: Ukiyoe [35], Metface [20], and
Webtoon 1, as illustrated in Fig. 5. For each domain, we
randomly select a set of 50 stylized images, denoted as Φsty ,
and apply two renowned stylization techniques: FreezeG 2

and StyleGAN-NADA [11], to the AniFaceGAN model.
Subsequently, we utilize PTI [39] to optimize the latent code
corresponding to the in-domain stylized portrait, enabling a
comprehensive comparison of the stylization capabilities.

1. Naver Webtoon Datasets. https://github.com/bryandlee/naver-
webtoon-data

2. Freezing generator for pseudo image translation.
https://github.com/bryandlee/FreezeG.
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(a) Input (b) PTI∗ (c) FreezeG+PTI∗ (d) NADA+PTI∗ (e) 3DArtmator

Fig. 5: Comparison with stylization methods based on AniFaceGAN. The styles from top to bottom are Ukiyoe, MetFace,
and Webtoon, respectively. ∗ denotes implemented by the authors.

For an in-depth analysis, we begin by evaluating the
outcomes of directly applying PTI to the pre-trained An-
iFaceGAN. This contrasts with our subspace localization
approach (detailed in Sec. 3.2). PTI incorporates a local-
ity regularization term [39] that aims to limit significant
changes in the latent space region surrounding the opti-
mized anchor. However, the goal of stylization typically in-
volves a comprehensive shift in the entire feature space. This
makes the locality regularization term counterproductive, as
it attempts to preserve the original feature space.

To better align PTI with the target style domain, we
adjust the model by reducing the weight λloc of the lo-
cality loss to 1e − 4. Despite this adjustment, as shown in
Fig. 5b, PTI still struggles with issues like pixel degradation
and composition artifacts. 3DArtmator, on the other hand,
effectively mitigates these problems through its directional
guidance (more discussion can be found in Sec. 4.5).

As an alternative approach to mitigate artifacts, we ex-
plore pre-stylizing the pretrained AniFaceGAN before in-
version. This involves adopting the adversarial transferring
techniques of FreezeG and the CLIP guidance of StyleGAN-
NADA, replacing their generators with AniFaceGAN in
practice. In adversarial stylization, we freeze the first five
out of eight SIREN [26] layers in AniFaceGAN and optimize
the discriminator with the stylized image set Φsty from
scratch using the non-saturating GAN loss [27]. For CLIP-
guided stylization, we construct a set of real images Φreal,
matching the number in the stylized set Φsty . These real
images are synthesized by AniFaceGAN to emulate the style
of the real domain. The differences between Φreal and Φsty

are used to calculate the CLIP directions, which guide the
optimization.

The results, showcased in Fig. 5c and Fig. 5d, reveal
that while the stylized AniFaceGAN provides a strong style
prior, it compromises reconstruction accuracy, even more
than using PTI alone. This issue arises because stylization

(a) Input (b) Dr. 3D (c) AgileGAN3D∗ (d) 3DArtmator

Fig. 6: 3D reconstruction of EG3D-based methods. The styles
from top to bottom are Ukiyoe, MetFace, and Webtoon,
respectively. (a) the reference input. (b) the results of Dr. 3D.
(c) the results of AgileGAN3D (d) the results of our 3DArt-
mator. ∗ denotes implemented by the authors.

with limited data tends to reduce the expressiveness of
the latent space, consequently degrading the quality of
inversion. The less accurate anchor in such scenarios ex-
poses subsequent pivotal tuning to significant feature dis-
crepancies, leading to overfitting at optimized viewpoints.
This observation is further supported by the quantitative
evaluations in Sec. 4.4 and Sec. 4.3.4.
4.3.3 Comparison with EG3D-based Methods

We compare 3DArtmator with Dr. 3D [18] and Agile-
GAN3D [46] in three artistic domains, i.e., Ukiyoe [35],
Metface [20], and Webtoon. Dr. 3D is a 3D-aware domain
adaptation framework, which requires a large-scale set of
portrait paintings from the same artistic domain. We directly
utilize the pretrained checkpoints of Dr .3D and apply GAN
inversion for portrait reconstruction. AgileGAN3D is an ef-
ficient two-stage few-shot stylization framework, including
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TABLE 2: Quantitative comparison for 2D Face Reenactment
methods (VIDEO DRIVEN) and AniFaceGAN-based meth-
ods (3DGAN). The best two records are marked in bold and
underlined. ∗ denotes implemented by the authors.

Methods LPIPS↓ PSNR↑ SSIM↑
V

ID
EO

D
R

IV
EN

FOMM 0.3695 20.8539 0.6331
PIR 0.3718 21.0825 0.5838

MRAA 0.4343 18.3001 0.4749
LIA 0.3704 21.1195 0.6091

3D
G

A
N PTI∗ 0.3552 20.5301 0.6105

FG+PTI∗ 0.3781 19.6122 0.5799
NADA+PTI∗ 0.3579 20.0995 0.6078
3DArtmator 0.3428 21.1798 0.6177

style prior creation and subsequent guided transfer learn-
ing. For the style prior creation, we first transfer the original
StyleGAN2 with 20 stylized samples following StyleGAN-
NADA [11] and construct a training set that contains 1,000
real-stylized sample pairs. This training set is utilized for
transfer learning. During the guided transfer learning, we
adopt a pretrained GOAE [60] encoder for 3D GAN inver-
sion and finetune the pretrained EG3D with transfer learn-
ing loss and guidance loss. Note that for each new domain,
both Dr. 3D and AgileGAN3D require extra training data
for stylization, while 3DArtmator can efficiently render the
3D portrait from any single portrait image.

The qualitative results are shown in Fig. 6. Dr. 3D
maintains a satisfying 3D consistency, but the identity of
the reconstructed scene is not strictly the same as the input
portrait. AgileGAN3D exhibits geometric artifacts in its
reconstructions, a challenge akin to the issue of unfaithful
inversion discussed in Sec. 4.3.2. 3DArtmator in Fig. 6d
excels in achieving precise and 3D-consistent reconstruction.
It reaches a level of reconstruction performance comparable
to that of Dr. 3D, while not requiring an extensive collection
of training data.

4.3.4 Quantitative Evaluation

Due to the lack of 3D stylized datasets, we construct
a multi-views synthesis dataset with Dr. 3D to provide
pseudo ground truth for quantitative evaluation. Specifi-
cally, Nq synthesized portraits

{
zi|0 ≤ i ≤ Nq

}
are man-

ually selected from a series of randomly sampled latent
codes, which have no distinct artifacts and yield strict 3D
consistency. For each portrait zi, we further render im-
ages of Nv views with yaws ϑj uniformly sampled from[
π
5 ,−

π
5

]
. Therefore, the resulted image set is denoted as{

xi,j |0 ≤ i ≤ Nq, 0 ≤ j ≤ Nv

}
, where xi,j = Q(zi, ϑj); Q

and zi represents the Dr. 3D generator and random noise,
respectively. In practice, the values of Nq and Nv are set as
50 and 7, respectively.

To evaluate the performances of different models, we
take the front view of each synthesized portrait xj =
Q(z, ϑj), where ϑj = 0, as the input single-view images
for 3D reconstruction. After obtaining the reconstructed
portrait, we further render images for the rest Nv − 1 views
for evaluation.

We denote the optimized latent code and generator for
each scene as zi and Gi. Following previous works [28],
reconstruction accuracy s is calculated between the single-
view generated image x̂i,j = Gi(zi, ϑj) and pseudo

(a) AniFaceGAN (b) AgileGAN3D

Fig. 7: Results of GAN inversion to the latent space of
pretrained / stylized 3D GANs. AniFaceGAN and Agi-
leGAN3D are selected as examples. For each GAN, the
leftmost column shows the input images, while the right
part presents the inversion results to the pretrained latent
space and stylized latent space, respectively. The top row
presents the generated image of initial latent codes before
inversion.

ground-truth pairs with similarity metric m(·, ·), i.e., s =
Ei,j [m(x̂i,j , xi,j)]. The evaluated metrics include LPIPS [62],
PSNR, and SSIM [54]. Before calculating the pair-wise sim-
ilarity, we crop the image and obtain the face region to
eliminate the impact of background and implicit coordinate
differences.

The quantitative results are presented in Tab. 2. We
compare 3DArtmator with 2D face reenactment methods
(top part in Tab. 2) and combinations of 2D stylization
methods and AniFaceGAN (bottom part in Tab. 2). Fol-
lowing Sec. 4.3.1, we obtain the multi-view images with
face reenactment methods by driving the stylized single
input with a 3D consistent video. For 3DGAN experi-
ments, all frameworks are implemented with the same back-
bone AniFaceGAN. Image stylization methods (FreezeG
and StyleGAN-NADA [11]) are incorporated to transfer
AniFaceGAN to the target domain before applying single
image inversion [39]. Note that the extra stylized set Φsty

introduced in Sec. 4.3.2 are provided during the stylization
for FreezeG and StyleGAN-NADA, while PTI [39] and our
3DArtmator only rely on a single image.
4.4 Analysis of Latent Space Expressiveness

The reason for the powerful editability of GANs is
the rich and comprehensive representation within the la-
tent space. Thus, preserving the expressiveness of latent
space during optimization is crucial for faithful and flexible
3D stylization. As previously discussed in Sec. 4.3.2 and
Sec. 4.3.3, after transferring the generator to a given style,
the generated results of existing stylization methods exhibit
undesirable artifacts, such as pixel degradation and sticker
effect. In this section, we conduct several experiments to



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(a) AniFaceGAN (b) AgileGAN3D

Fig. 8: The diversity of latent space for the pretrained /
stylized 3D GANs. For each GAN, we randomly sample
12 latent codes in the latent space, and present 12 generated
images using the same latent codes in both the pretrained
and stylized latent space. The results are listed in the left
two columns and the right two columns, respectively. Note
that the latent codes of the corresponding position in the left
columns and the right columns are the same.

evaluate the latent spaces of these methods and 3DArtmator,
and explain the undesirable behaviors mentioned above
from the perspective of latent space expressiveness.

Considering AniFaceGAN and AgileGAN3D as exam-
ples, we first compare the inversion results of applying PTI
to the pretrained latent space and the latent space after
stylization, respectively. The results are shown in Fig. 7. We
find that the images generated from the pretrained latent
space exhibit more diverse details and suitable attributes.
In contrast, images generated from the stylized latent space
fail to preserve the identities of the input images, on the
other hand, are much more similar to the images generated
from the initial latent codes. These phenomenons indicate
a potential degeneration of the pretrained latent space after
stylization. The decline of its expressiveness results in the
failure of the optimization-based GAN inversion approach.

We further investigate the original latent space of
the pretrained 3D GANs Greal and the stylized one
Gsty for more experimental evidence. We construct a set{
(zi, ϑi)|0 ≤ i ≤ Nl

}
, which consisting of Nl = 1, 000

pairs of randomly sample latent codes zi and corre-
sponding render views ϑi. Subsequently, we generate two
paired image sets Φreal =

{
xi
real|0 ≤ i ≤ Nl

}
and Φsty ={

xi
sty|0 ≤ i ≤ Nl

}
, where xi

real = Gori(z
i, ϑi) and xi

sty =
Gsty(z

i, ϑi). Qualitatively, we select 12 pairs of images
from Φreal and Φsty for visualization. As shown in Fig. 8,
compared with the origin latent space, the images generated
from the stylized latent space tended to be homologous, and
exhibit similar appearances and textures. We also quantita-
tively evaluate the diversity of Φreal and Φsty using the
LPIPS. Concretely, dreal and dsty are calculated by dreal =
Ei,j,i ̸=j [m(xi

real, x
j
real)] and dsty = Ei,j,i ̸=j [m(xi

sty, x
j
sty)],

respectively, where m(·, ·) represents the LPIPS. The values
of dreal and dgsty are 0.5301 and 0.3902 for AniFaceGAN.
For AgileGAN3D, dreal and dsty are 0.6408 and 0.4790. The
diversity of the latent space is decreased after stylization.

In conclusion, stylizing GANs without enough data
deteriorates the expressiveness of latent space, leading
to difficulties in localizing the latent code to the correct
subspace. Therefore, the inversion cannot accurately
reproduce the original structure details of the input image,
resulting in geometric artifacts. Generally, it is hard to
collect enough data on a certain style domain to transfer
the latent space without degeneration. Compared with
the aforementioned stylization methods, it is reasonable
for 3DArtmator to first localize the subspace within the
original latent space that has more expressiveness for better
reconstruction, which also benefits the following stylization.

4.5 Ablation Study

We conduct ablation studies to verify the effectiveness of
the proposed components, including the content-analogous
subspace localization, style-directional guidance, and spa-
tial constraint. We visualize three cases that have various
complexities as shown in Fig. 9. Mona Lisa (row 1 in Fig. 9)
is relatively simple as it possesses a facial structure similar
to the real domain. Red Madras Headdress (row 2 in Fig. 9)
is a fusion of vibrant colors and intricate patterns. The crux
of this case is the feasibility of modeling the heavy outlines
of edges in the 3D portrait. Van Gogh’s portrait (row 3 in
Fig. 9) is another type of hard case, as the facial structure
and texture are distinct from the real domain. Therefore, it is
imperative to evaluate the reconstruction of occluded parts.

There exists an enormous feature gap between the re-
constructed portrait and the reference artistic image. With-
out the subspace localization, i.e., randomly initializing the
latent code and fixing it when stylizing the subspace, both
the content and style need to be jointly optimized, leading
to a complex optimization task of local facial attribute
reconstruction. In the case of Mona Lisa, the 3D identity
is initialized with a male, making the generator difficult to
"grow the long hair" during the later stylization. Compared
with the outcomes of the full model, this variant produces
more geometrical artifacts, as highlighted in the dash areas
in Fig. 9.

Without style-directional guidance, the reconstruction is
supervised from only one perspective, and therefore the
spatial information cannot be estimated correctly, resulting
in geometrical artifacts. In terms of Mona Lisa, the obscured
half of the nose cannot be elongated together with the
visible half, leading to the asymmetry of facial attributes.
Red Madras Headdress demonstrates a manifest sticker effect,
where the rough stroke edges are not recognized as visual
boundaries, but are directly attached to the skin as the
texture. This impairs the stereoscopic effect and reduces
vividness. In the case of Van Gogh’s self-portrait, the occluded
part suffers from severe pixel degradation. The unsuper-
vised right face gradually degrades into transparent voxels,
which greatly deteriorates the quality of the 3D portrait.
The above samples fully illustrate the significance of style-
directional difference loss in achieving a multi-view coher-
ent stylization.
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(a) Input (b) w/o Subspace Localization (c) w/o Directional Guidance (d) w/o Spatial Alignment (e) Full

Fig. 9: Ablation study of our three components. We showcase (b) the reconstructed 3D portrait without the content-
analogous subspace localization, (c) the reconstructed 3D portrait without the style-directional guidance, and (d) the
reconstructed 3D portrait without the spatial alignment loss. The reference paintings from top to bottom are Mona Lisa, Red
Madras Headdress, and Van Gogh, respectively.

(a) Input (b) Optimization of the target view ϑ

Fig. 10: Target view optimization. (a) is the stylized input,
while (b) shows the rendering of the trainable target view
ϑ. The leftmost column of (b) is the initial target view, while
the rightmost is the optimized view ϑ∗. The images from the
left to the right show the optimization process.

Furthermore, we explore the influence of jointly optimiz-
ing the latent code z and the user-defined target pose ϑ in
Eq. (3), which can be defined as z∗, ϑ∗ = argminz,ϑ Lcr .
Fig. 10 delineate the progession of optimizing ϑ against
input artistic examples depicted on the left. The top row
of Fig. 10 affirm the potential for automatic pose alignment
with the given input. Nonetheless, the suboptimal poses
might occur as presented in the middle and bottom rows
in Fig. 10, particularly prevalent when the input involves
intricate color combinations. Specifically, the bottom row
exhibits a situation where the input portrait’s hair is mis-
takenly identified as background, leading to a misjudged

(a) Input (b) Happiness (c) Contempt (d) Surprised

Fig. 11: 3D manipulation of our 3DArtmator. (a) shows
the referenced portraits. (b) & (c) & (d) illustrate the 3D
reconstructed portraits after editing by the expression of
happiness, contempt, and surprise, respectively.

pose estimation. One possible explaination is that the loss
Lcr excessively prioritizing the color and texture alignment
over the preservation of facial orientation coherence. As a
result, for the faithful reconstruction of artistic portraits, the
adoption of a fixed pose ϑ is recommended.

4.6 3D Manipulation
To verify the capability of 3D artistic animation, we conduct
experiments regarding the interpretability of the stylized
generator. Following AniFaceGAN [55], which supports a
wide range of facial attribute manipulation by alternating
expression code zexp, we employ three micro-expressions
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(a) Input (b) Multi-view Visualization

Fig. 12: 3D reconstruction of stylized animals. (a) is the
stylized input, while (b) is the multi-view results of the
reconstructed 3D scenes. Three styles are watercolor, manga,
and marble statue, respectively.

that involve the editing of multiple attributes. To illustrate
the interpretability of our transferred style space, we manip-
ulate the expressions by alternating the expression codes [9].
We visualize the multi-view edited portraits in Fig. 11.

The results indicate that 3DArtmator supports 3D-
consistent editing after optimization. Notice that the unseen
features such as the teeth in Fig. 11 are not concluded in the
portrait, but still can be coherently stylized and integrated
into the reconstructed portrait. This is due to the transfer
of the interpretable subspace, which adapts the unseen
features automatically.

Comparing the same expression manipulation on the
separately optimized cases, the same expression code en-
ables the homogeneous control, indicating that 3DArtmator
preserves the interpretability of the backbone [55].

4.7 Extend to Other Domains
Ideally, 3DArtmator is not restricted to stylizing human

portraits but enables generalization to other domains with
the corresponding pretrained checkpoint. In Fig. 12, we
extend 3DArtmator to achieve the stylized reconstruction
for animal faces, with three different styles (watercolor,
manga, and marble statue). We employ the weights
pretrained on CATS [63]. The results in Fig. 12 demonstrate
the extensibility of 3DArtmator to other categories of
artforms with complex shapes, such as animal faces.

5 CONCLUSION

In this paper, we present 3DArtmator, a specialized 3D-
aware framework designed for animating artworks. To
preserve the interpretability of the pretrained generator,
we utilize an anchor within the latent space, allowing for
disentangment of scene reconstruction and style transfer.
This approach enables 3DArtmator to achieve exceptional
adaptation performance while retaining interpretability in
the optimized new domain. Experimental results on diverse
artforms demonstrate the effectiveness of our approach.

Limitation. While our 3DArtmator has achieved im-
pressive results in the one-shot 3D stylization of general
artistic styles, it does face limitations when it comes to
stylizing more challenging styles, such as paintings with

(a) Input (b) Multi-view Visualization

Fig. 13: Failure cases. The input images are paintings of
Pablo Picasso and Amedeo Modigliani.

drastic structural deviation from the canonical face. Some
failure cases are shown in Fig. 13. For example, Picasso’s
self-portrait has oversized features and does not conform
to the perspective of a real human face, thus failing to
recover the obscured parts. Another example is Modigliani’s
portrait, which has a longer and curved nose. Instead of
stretching the nose to attain a correct geometry, 3DArtmator
directly maps the texture to the lip, leading to artifacts in
other views. These artforms exhibit less structural similarity
with the real domain, making it difficult to compensate
for missing spatial information solely based on a single-
view image. Besides, 3DArtmator requires instance-level
optimization, which may not be as flexible as the 2D face
reenactment methods.

Future works. Stylization with intricate styles remains a
problem of 3DArtmator to be solved in the future. Since the
features of a flat image are insufficient for fully perceiving
the style in the 3D space, our future efforts will focus on in-
troducing extra complementary information to enhance the
expressiveness of styles, such as 2D landmarks supervision
and stronger stylistic priors.
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