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Active Code Learning: Benchmarking
Sample-Efficient Training of Code Models

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon

Abstract—The costly human effort required to prepare the training data of machine learning (ML) models hinders their practical
development and usage in software engineering (ML4Code), especially for those with limited budgets. Therefore, efficiently training
models of code with less human effort has become an emergent problem. Active learning is such a technique to address this issue that
allows developers to train a model with reduced data while producing models with desired performance, which has been well studied in
computer vision and natural language processing domains. Unfortunately, there is no such work that explores the effectiveness of active
learning for code models. In this paper, we bridge this gap by building the first benchmark to study this critical problem - active code
learning. Specifically, we collect 11 acquisition functions (which are used for data selection in active learning) from existing works and
adapt them for code-related tasks. Then, we conduct an empirical study to check whether these acquisition functions maintain
performance for code data. The results demonstrate that feature selection highly affects active learning and using output vectors to select
data is the best choice. For the code summarization task, active code learning is ineffective which produces models with over a 29.64%
gap compared to the expected performance. Furthermore, we explore future directions of active code learning with an exploratory study.
We propose to replace distance calculation methods with evaluation metrics and find a correlation between these evaluation-based

distance methods and the performance of code models.

Index Terms—Active Learning, Machine Learning for Code, Benchmark, Empirical Analysis

1 INTRODUCTION

Leveraging machine learning (ML) to help developers
solve software problems (ML4Code) [1] has been a hot
direction in both software engineering (SE) and ML com-
munities in recent years. Deep learning (DL), one of the
advanced ML techniques, has achieved great success in
various software tasks, such as code summarization [2],
code clone detection [3], and vulnerability detection [4].
Typically, developing a code model involves two main steps:
first, building a pre-trained model that learns general code
information; second, fine-tuning this model using datasets
that target a specific downstream task. Both components
contribute to the success of ML4Code and are still under
exploration for further improving the performance of code
models.

Generally, pre-trained code models can be easily accessed
from open resources, e.g., Hugging Face [5], or built by using
self-supervised learning without data labeling effort. This
means that for developers planning to use code models, the
first step of pre-trained model preparation is not challenging
and can be fully automated. However, collecting datasets to
fine-tune pre-trained models is not easy. The main reason is
that the general fine-tuning process follows the procedure of
fully-supervised learning, which requires carefully labeled
training data. Unfortunately, the data labeling process is
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time-consuming and labor-intensive [4].

To alleviate the aforementioned heavy effort of training
data labeling, active learning [6] is used to enable sample-
efficient model training in other famous fields, e.g., computer
vision [7] and natural language processing [8]. The key
idea of active learning is to iteratively select a subset of
training data to label and use them to train the model.
The existing studies [9] have shown that labeling only a
few (less than 10%) training data can train a model with
similar performance as the model trained by using the
entire training data. In this way, the labeling effort can be
significantly reduced and made flexible to a fixed budget.
However, despite being well-studied in many application
domains, the usefulness of active learning in ML4Code is
still unknown. Researchers mainly focus on designing new
model architectures, proposing novel code representation
methods, and studying more software tasks. The study of
how to lighten the model training cost is missed. There is a
need to provide a benchmark to support the exploration of
this important problem.

In this paper, we aim to bridge this gap and build
a benchmark to study how active learning can help us
efficiently build code models — active code learning. We
collect acquisition functions (i.e., active learning methods)
that can be used for code data from existing studies [9], [10].
In total, we implement 11 acquisition functions (including
random selection). These functions can be categorized into
five output-uncertainty-based functions, four clustering-
based functions, and one function that uses both the input
and output information for the selection. Then, based on
these collected acquisition functions, we conduct experiments
on six datasets (including classification tasks and non-
classification tasks) and four famous pre-trained code models
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to answer the following research questions:

RQ1: What features should be used for clustering-
based acquisition functions? Feature selection [11] is an
important problem for clustering methods. However, it is
unclear which features should be used for clustering-based
methods in active code learning. Our first study is to explore
how different features affect the effectiveness of active code
learning. Here, we consider three types of features, code
tokens, code embedding vectors, and model output vectors.
Findings: The results show that clustering-based methods
are sensitive to the used features. Interestingly, in more than
half of cases (60%), output vector-based acquisition functions
achieve significantly better results than code token and code
embedding-based functions.

RQ2: How do acquisition functions perform on code
models? After determining features to use, we compare
all the acquisition functions across different tasks. Findings:
Firstly, contrary to the previous study [10], which suggests
that simple techniques perform better for active learning,
we found that clustering-based methods consistently outper-
form simple uncertainty methods in our considered binary
classification code tasks (Clone detection and vulnerability
detection). Secondly, unlike prior research [9], [10], which
shows that only a small set of training data (less than
10%) is sufficient to produce good models, our results
on non-classification tasks (code summarization and code
translation) indicate that existing methods are not yet capable
of achieving this goal. There is at least a 30% performance
gap between the models trained by active learning (with 10%
data) and the models trained using the entire training data.
Finally, our case study reveals that smaller token distribution
differences between the selected code data and the whole
training data and higher code token (and label) diversity
contribute to the acquisition functions to produce code
models with better performance. In total, in the first two
studies, we trained 9900 models considering each labeling
budget. The training process takes more than 5000 GPU
hours.

Exploratory study. Additionally, using our benchmark,
we conduct a study to further explore potential directions for
proposing new acquisition functions. We focus on clustering-
based methods since existing methods can not perform well
on non-classification tasks. Concretely, due to clustering-
based methods tending to select diverse data (data have
a bigger distance to each other), we first check if there is
a correlation between the distance of selected data and the
accuracy of the trained model. Then, we propose a novel view
to consider the distance of code for active learning — using
evaluation metrics (e.g., CodeBERT Score) as distance calculation
methods. Based on the evaluation, we found that, for non-
classification code tasks, 1) there is no correlation between
the distance (calculated by Cosine similarity and Euclidean
distance) of selected data to each other and the accuracy of
models. 2) There is a weak correlation between the evaluation
metrics-based distance of selected data to each other and the
accuracy of models, indicating that future proposed methods
can be based on evaluation metrics-based distance.

To summarize, the main contributions of this paper are:

e This is the first work that builds a benchmark for
sample-efficient training across both classification and non-
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Fig. 1. Overview of active learning.

classification code tasks. The source code as well as the datasets
can be found on our project site [12]].

e Our analysis, grounded in empirical study from this
work, reveals a significant divergence from established
findings [9], [10] in image and text data when applied to
code data.

o We design a novel strategy that uses evaluation metrics to
quantify the distance between code pairs to support future
research when proposing new acquisition functions.

The rest of this paper is organized as follows. Section 2]
briefly introduces the background of this work. Section
presents the benchmark and the empirical study. Section
presents our exploratory study. Section [5| discusses the
limitations of our work. Section [f] summarizes related works,
and the last section concludes this paper.

2 BACKGROUND
2.1

Active learning is a well-known technique that enables
sample-efficient model training. Figure depicts the
overview workflow of active learning. Given an unlabeled
dataset and a model under training, the first step of active
learning is to choose the features used for conducting data
sampling. Generally, two types of features can be used,
1) the data features itself (e.g., image pixels, and code
tokens), and 2) features extracted from the model (e.g.,
output probabilities, and code embeddings). After obtaining
the features, acquisition functions are used to select the
most valuable data for labeling. Here, important means the
model can learn more information from this kind of data and
achieve better performance on test data. Finally, developers
label these selected data and use them to train the model. In
this way, developers can train a model under a fixed labeling
budget. When a new budget is allowed, developers repeat
this process and further enhance the trained model.

The acquisition function is the most important part
of active learning which decides the quality of labeled
training data. Existing acquisition functions can be roughly
divided into two groups, output-uncertainty-based functions,
and clustering-based functions. Output-uncertainty-based
functions obtain the model predictions of the unlabeled
data first and then use some uncertainty metrics (Entropy
of output probabilities) to rank these data and select the
most uncertain ones for training. The intuition behind this
type of function is that uncertain data are usually close to
the decision boundaries of the model, thus, training the
model using these data can force the model to build clear
boundaries and improve its correctness. Clustering-based

Active Learning
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functions assume that the models have better performance if
they learn more diverse data information. Thus, people use
different distance methods to measure the distance of data
to each other and select the central data for model training,
e.g., using K-means to do data clustering and then select the
center data.

In this work, we follow the previous works [9], [10] and
collect and implement 11 acquisition functions for active code
learning. Let X be the training data and € X be an input
sample. NNV is the number of classes. y and y,, are the ground-
true label and predicted labels. p;(z) represents the predicted
probability of x belonging to the ith class. Table [I] presents
these acquisition functions with their brief descriptions. For
detailed information on each function, please refer to the
original paper.

2.2 Machine Learning for Code (ML4Code)

ML4Code [1] is a new but hot direction in the current soft-
ware engineering research field. The basic idea of ML4Code is
to train a machine learning model to solve software problems,
for example, program repair, vulnerability detection, and
code summarization. Machine learning models and training
data play key roles in ML4Code. For machine learning
models, due to the naturalness of software, researchers
believe model architectures that are good at handling text
data are also promising for solving code data. Thus, the
famous code models mainly come from modifying natural
language models. For instance, CodeBERT [18] is a bi-modal
extension of the Bidirectional Encoder Representations from
Transformers (BERT) [19] which was proposed for natural
language processing. The training data are usually processed
by some code representation techniques to transfer the raw
data to a machine-readable format, e.g., transfer the strings
of code to a sequence of tokens with integer format. How
to design this transformation (i.e., code representation) is
another research topic that highly affects the performance of
trained models.

In this work, we focus on the most practical paradigm of
ML4Code - building models of code for specific downstream
code tasks by fine-tuning pre-trained code models. Existing
studies [18]], [20] already demonstrated that fine-tuning pre-
trained models can achieve better results than training the
models from scratch. Here, the pre-trained code model
has been trained on multi-language datasets, therefore,
they already learned general information of code, e.g., the
pre-trained CodeBERT model learns knowledge from six
datasets with different programming languages. As a result,
developers only need to prepare their dataset for a specific
task and use it to fine-tune the pre-trained model.

3 BENCHMARK

After collecting massive acquisition functions whose effec-
tiveness on image data and text data has already been
demonstrated in previous studies, we plan to study their
unknown use case — if they are still useful for efficient
training models of code. As mentioned in Section 1, we have
two main questions want to answer, 1) since features used
for clustering-based acquisition functions are important and
highly related to the final performance of active learning, we
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explore for each acquisition function, which kind of feature
is suitable for conducting code selection. 2) As the previous
study [10] claimed that — simple methods perform well on
active learning, we want to check if this conclusion still holds
on active code learning. Concretely, we compare output-
uncertainty-based functions (i.e., simple methods mentioned
in [10]) with clustering-based functions with carefully chosen
features.

3.1

To address the question of suitable feature selection (RQ1),
we first prepare different versions of clustering-based acqui-
sition functions based on the features they use. Note that,
output-based acquisition functions directly use the output-
probability to measure the uncertainty of the corresponding
inputs. Since the output probability has a fixed format, one-
hot vectors, there are no feature selection problems in such
acquisition functions. Then, we conduct active learning on
different code tasks using these functions and compare the
performance of trained models. we can draw conclusions
about which features are most suitable for each acquisition
function. Here, we focus on three types of features from
different perspectives, 1) code embeddings, 2) sequence of
code tokens, and 3)model output vectors.
¢ Code Embeddings It is common to consider code em-
beddings as the input of clustering methods since code
embeddings produced by pre-trained code models can
present the general information of code. Code embedding
is similar to the image data after image pre-processing. In
our study, code embeddings extracted from the fine-tuned
code models which can better represent the downstream
task are used as the features.
« Sequence of code tokens Regardless of the code repre-
sentation techniques, the raw program will be converted
into a sequence of integer values. Thus, it is also possible
to use these sequences as the inputs of the clustering
methods. It is similar to using the pixel numbers of images
as inputs. The only difference is that code tokens often
with bigger data space, i.e., the image pixels are from 0
to 255, while the range of code tokens depends on the
vocabulary size, which is generally much bigger than 255,
e.g., the vocabulary size of our used CodeBERT model is
50265.
Model outputs Different from the above two features that
have been widely explored in other fields and can be
easily considered for active code learning, in our study,
we propose to use the model outputs as the input features
of clustering methods. The intuition behind this idea is
that the output can be seen as the understanding of the
model on this input data which should be useful for data
selection. Specifically, for classification tasks, we use the
one-hot output probabilities as the features, and for the
non-classification tasks, the output vectors produced by
decoders are used as the features.

Study Design

For the comparison of each acquisition function (RQ?2),
the main goal is to find the recommended function that has
consistently better performance than others in active code
learning. At the same time, we also compare the output-
uncertainty-based functions and clustering-based functions
to determine if the previous findings [10] hold true in
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TABLE 1
Our considered acquisition functions. Both: classification and non-classification tasks.

Method Name Support Tasks  Description

Random Both Randomly select a budget of data.
Least Confidence (LC) [13] Classification ~ Select the data with the least top-1 probability.
N
DeepGini [14] Classification Select data with minimum Gini impurity > (p; (1:))2.
i=1
count(r e(yl,...,uT
Bayesian Active Learning by Disagreement (BALD) [15] Classification ~ Select data minimum disagreement count(mode(yg vy )) over T' dropouts.
Entropy [13] Classification  Select data with the minimum Shannon entropy on output probabilities.
. ] - Select data with a minimum difference between the top-1 probability
Margin [13] Classification d .
and top-2 probability.
. . . | . Select a subset that 1) is far away from the labeled data,
Contrastive Active Learning (CAL) [16] Classification 2) included data samples have big output divergence.
K-Means (KM) |7 Both Use the K-means clustering method to divide data into K groups and select
the center of each group.
K-Center (KC) [7] Both Iteratively select data that are far from the labeled data.
BADGE [17] Both Select data by using K-means on the gradient embedding level.
Coreset |7 Both An advanced version of K-Center with a distance upper bound.

active code learning. Here, based on the first study, we use
suitable features as the input for clustering-based acquisition
functions and perform code selection.

3.2 Dataset and Model

Table 2] presents the datasets and models we used in the study.
We follow the previous works [21]], [22], [23] and consider
five code tasks and one dataset per task including a multi-
class classification task (problem classification), two binary
classification tasks (clone detection and vulnerability detec-
tion), and two non-classification tasks (code summarization
and code translation).

o Problem classification is a multi-class classification task.
Given a program, the model predicts the target problem
that the program solves. We use the dataset JAVA250 [24]
provided by IBM for this task. JAVA250 contains 250 code
problems, e.g., problem: write a program which prints the
heights of the top three mountains in descending order.

e Clone detection is a well-studied task in the software
engineering field to lighten the effort of software main-
tenance. The main purpose of this task is to check if
two programs are semantically equivalent. Thus, code
clone detection is often seen as a binary classification
problem. In our study, we use the dataset provided by
BigCloneBench [25] which contains a large number of Java
code clone pairs. Besides, for the computation friendly, we
follow the previous work [22] and only use a subset of
data from BigCloneBench.

« Vulnerability detection is a security-critical task that aims
at localizing the vulnerable functions in source code to
protect the software. Given a program, the code model
identifies whether the program is vulnerable or not, which
is also a binary classification problem. We use Devign [26]
for this task which is constructed by four C libraries.

o Code summarization is a common code task for helping de-
velopers understand code snippets. Given a program, the
model generates natural language comments to describe
the functionality of this program. We use two datasets
provided by Microsoft [27] in our study.

e Code translation transfers programs from one language to
another which is a typical task for software migration. In
this work, we study this task using the dataset provided
by [27] which focuses on translating Java programs to C#
programs.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

For the code models, we focus on pre-trained code models
since they achieved much better results than models trained
from scratch [18], [20] and are widely studied now. We
follow the previous work [22] and use two well-known
pre-trained code models in our study, CodeBERT [18] and
GraphCodeBERT [20]. Besides, we added one advanced
pre-train model CodeT5 [23] in our work. Note that, we
found CodeT5 is already well pre-trained for our studied
two non-classification tasks, using active learning to fine-
tune it can not significantly improve its performance, e.g.,
the pre-trained CodeT5 model already has around 16 BLEU
score on code summarization task (JavaScript), and after the
fine-tuning, the BLEU score is also less than 17. Therefore,
we only train CodeT5 for classification tasks and build
another model RoBERTa (Robustly Optimized BERT) [28] for
non-classification tasks. Other models can be easily added
and evaluated to our provided project. Considering the
downstream tasks, the pre-trained model is used as an
encoder to generate code embeddings, and a decoder is
followed to produce the final results for a specific code
problem. For example, a dense layer is used as the decoder
to produce the output probabilities of classification tasks. The
same as the original works of our considered code models,
during the fine-tuning, we also fine-tune the parameters
of pre-trained encoders to ensure a better performance on
downstream tasks. Then, we briefly introduce the two pre-
trained models here, and the detailed model information can
be found on our project site [12].

e CodeBERT is a bimodal model that shares a similar
architecture with the well-known BERT model in the field
of natural language processing. The CodeBERT model
is initialized through pre-training with six code datasets
featuring various programming languages such as Java
and Python. During the training process, programs are
transformed into sequences of tokens, which is similar
to text data. As a result, CodeBERT is able to learn the
semantic information of code data.

¢ GraphCodeBERT is a newer pre-trained code model that
incorporates both sequences of tokens and data-flow infor-
mation to learn code knowledge. This allows pre-trained
code models to understand the structural information of
programs and generate more precise code representations.
In our study, the base model is learned by this combination
of code information and fine-tuned for our considered
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TABLE 2
Details of datasets and models. Accuracy (%) for problem classification and vulnerability detection, F1-score (%) for clone detection, and PPL/BLEU
for code summarization and code translation.

Classification

Task Dataset Language Train/Dev/Test CodeBERT GraphCodeBERT CodeT5
Problem Classification Java250 Java 62500/-/12500 98.10% 98.49% 98.39%
Clone Detection BigCloneBench Java 90102 /4000/4000 97.15% 97.05% 97.87%
Vulnerability Detection Devign C 21854/2732/2732 63.76% 62.26% 62.85%

Non-Classification
Task Dataset Language Train/Dev/Test CodeBERT GraphCodeBERT RoBERTa
Code Summarization CodeSearchNet  JavaScript  58025/3885/3291  3.85/14.34 3.79/14.89 5.15/13.34
Code Summarization CodeSearchNet Ruby 24927/1400/1261 4.04/12.80 3.99/13.54 5.15/11.25
Code Translation CodeTrans Java-C# 10300/500/1000 1.44/78.57 1.43/79.15 1.44/76.99

downstream tasks only using the code token information.
The reason is that we found in some downstream tasks,
adding the data-flow information to fine-tune the model
harms the performance of models, e.g., for the problem clas-
sification task, adding data-flow information and without
data-flow information, the accuracy of fine-tuned models
is 82.30% and 98.39%, respectively.

e RoBERTa is a variant of the BERT [19] model. The differ-
ence lies in the pre-training strategy. Compared to BERT,
the training of RoBERTa lasts longer with bigger batches
and additional new training data. Rather than performing
masking once during data pre-processing, as done in BERT,
RoBERTa employs the dynamic masking strategy where
the masking is performed every time when feeding a
sequence to the model during pre-training. Additionally,
both the masked language modeling (MLM) objective and
the next sentence prediction (NSP) loss are applied in the
BERT pre-training procedure, while RoBERTa removes the
NSP loss to improve the downstream task performance.
Furthermore, RoBERTa is trained with a larger byte-level
Byte-Pair Encoding (BPE) vocabulary while BERT uses the
character-level BPE vocabulary. RoBERTa is widely used as
the basic baseline for code learning [18], [20]. In this work,
we employ RoBERTa for non-classification tasks.

e CodeT5 is a variant of the Text-To-Text Transfer Trans-
former (T5) [29] model specifically tailored for code
understanding tasks. It adopts the same architecture as
T5 but incorporates code-specific knowledge. CodeT5 is
pre-trained on a large corpus of code with accompanying
natural language comments. It employs the Masked Span
Prediction (MSP) objective during pre-training. Addition-
ally, two auxiliary tasks, Identifier Tagging (IT) and Masked
Identified Prediction (MIP), are applied to fuse more code-
specific structural information into the model. It achieved
superior results in multiple downstream tasks such as code
translation and defect detection. In this work, we employ
CodeTs5 for classification tasks.

3.3 Evaluation Metrics

Our study contains three types of code tasks. For each task,
we use the most practical metrics to evaluate the trained
models.

Accuracy on the test data is the basic way to evaluate the
performance of multi-class classification models. It calculates
the percentage (%) of correctly classified data over the entire
input data.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fl-score is a commonly used metric for binary classi-
fication problems. It calculates the harmonic mean of the
precision and recall scores. Given that, true positive (TP)
represents the number of samples correctly predicted as
positive, false positive (FP) represents the number of samples
wrongly predicted as positive, and false negative (FN)
represents the number of samples wrongly predicted as
negative, Fl-score is calculated as:

TP
TP+ 1(FP+FN)

F1 — score =

Perplexity (PPL) is a widely used metric to evaluate
language models. PPL can be seen as the loss of language
models that can record the logs of the training process. A
lower PPL score means a better performance of the model.
Recently, researchers applied PPL to record to evaluate
the code summarization models [30]. Specifically, PPL is
calculated by:

1 t
PPL(X) = cxp{—g Z log pg(zi|T<;)}
i=0

where X = (xg, 1,...,x¢) is the set of code tokens, and
logpg(z;|x<;) is the log-likelihood of the ith token condi-
tioned on the preceding tokens z «; by the model.

BLEU (Bilingual Evaluation Understudy) is a metric to
evaluate the quality of the generated text to another (the
reference). Simply, BLEU score is calculated by:

N
BLEU = BP x exp Y _ wylogpy,

n=1

The value of N depends on the used N-gram precision,
and the weights w,, = N / 4. In our study, 4 is used. p,, is
the ratio of length n sub-sequences in both the candidate se-
quence and the reference. BP is the brevity penalty calculated

by:
BP = {

where c is the length of the generated sequence and r is the
length of the reference sequence.

Besides, to perform a significance test for the comparison
between different acquisition functions, we conduct statistical
analysis by using Student’s ¢-test [31] in our study.

1, ifc>r
61”/“, ife<r
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3.4 Configurations

Training configuration. Considering the hyperparameters
used for model training, we follow the previous work [22]]
and use the same batch size and learning rate for each model.
All the detailed settings can be found on our project site. For
model fine-tuning, we set the training epoch as 10 which is
enough to ensure the convergence of models.

Active learning configuration.We initialize the mod-
els (which is a common setting of active learning that we
start from a model with a little knowledge of the datasets)
by training them on randomly selected 500 samples. We set
the labeling budget as 1% of the entire training set and do 10
times iterations of active learning.

Acquisition function configuration. For all clustering-
based methods, we follow the previous work [9] and set the
number of centers as the labeling budget. For BALD, we set
the times of dropout prediction as 20. For all clustering-based
methods, to get more precise code information, we obtain
the embedding features from the fine-tuned encoders.

3.5

The project is based on Python-3.6 and PyTorch-1.10.2 frame-
work. The key implementation of code models is modified
from the open source project [27]. We adopt acquisition
functions implemented by [9], [10] that are used for image
data and text data to code data. All the source code can be
found on our project site. We conduct all the experiments
on a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. We repeat all the experiments
five times to reduce the influence of randomness and report
the average results in the following sections.

Implementation and Environment

3.6 RQ1: Feature Selection

First, we explore the features of clustering-based acquisition
functions. Figure 2] and Figure 3| depict the performance of
models trained by different labeling budgets. Here, we only
list the results of CodeBERT models and the whole results
can be found on our project site.

From the results, we can see that the same acquisition
function could train models with significantly different per-
formances depending on the features used. In particular, for
the K-Means, K-Center, and Coreset functions, the performance
difference is substantial and should not be overlooked. In
contrast, the BADGE function is relatively stable compared to
the others. Then, we analyze the most suitable features that
should be used for each function for solving each code task.
Table[3|displays the percentage of each function that produces
models with the best performance across all labeling budgets.
Surprisingly, overall, the results demonstrate that the output
vectors extracted from the models are superior features com-
pared to code tokens and code embeddings. This suggests
that active code learning should focus on output vectors
rather than input vectors when conducting data selection,
unlike active learning for image and text data. We also use ¢-
test metric to test the signification of the comparison. Table 4]
summarizes the results. This result also indicates that the
output feature is the best one among our considered features.
For example, for clone detection tasks, the output feature
beats token and embedding features in KM, BADGE, and
Coreset three acquisition functions.
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TABLE 3
Ratio of trained models achieving best results using different features.
KM KC BADGE Coreset Average
Problem Classification
Token 0% 0% 0% 0% 0%
Embedding  10%  100% 40% 40% 47.5%
Ouput 90% 0% 60% 60% 52.5%
Clone Detection
Token 0% 40% 0% 0% 10%
Embedding  10% 60% 0% 40% 27.5%
Output 90% 0% 100% 60% 62.5%
Vulnerability Detection
Token 0% 0% 10% 0% 2.5%
Embedding 0% 70% 0% 70% 35%
Output 100%  30% 90% 30% 62.5%
Code Summarization
Token 50% 0% 20% 0% 17.5%
Embedding  45% 0% 15% 0% 15%
Output 5% 100% 65% 100% 67.5%
Code Translation
Token 100%  60% 0% 10% 42.5%
Embedding 0% 0% 0% 40% 10%
Output 0% 40% 100% 50% 47.5%
TABLE 4
Comparison between different features (¢-test).
KM KC Badge  Coreset
Problem Classification
Token vs. Embedding -0.9431 -1.7146  -0.6646 -1.7504
Token vs. Output -1.6223 -1.6208  -0.6277 -1.6824
Embedding vs. Output  -0.6610 52458  -0.2266 0.3993
Clone Detection
Token vs. Embedding -1.9726  -0.5992 -1.1039  -2.7805
Token vs. Output -2.1633 1.8298 -2.3139 -3.1667
Embedding vs. Output  -1.6111 3.7102  -2.6944 -3.0582
Vulnerability Detection
Token vs. Embedding -3.0216  -10.8523  -0.0595 -11.7910
Token vs. Output -5.4160  -9.6567  -3.3622  -11.9319
Embedding vs. Output  -2.1204  0.1349  -2.7474  -0.6913
Code Summarization
Token vs. Embedding -0.2400 2.0836  2.4792 2.8578
Token vs. Output -7.3257 6.2842  0.5840 6.5609
Embedding vs. Output  -7.0504 4.6275 -1.9706 4.0003
Code Translation
Token vs. Embedding -1.3914  -2.0507 1.2889 1.0177
Token vs. Output -0.7749  0.139% 2.1774 1.1127
Embedding vs. Output  0.6059 1.9714 0.9068 0.0563

Besides, we observe that the feature selection of some
acquisition functions also depends on the types of down-
stream tasks. In both classification tasks, output vectors and
code embeddings are the best choices for K-Means and K-
center, respectively. However, In the non-classification code
summarization task, the choices become code tokens and
output vectors. On the other hand, output vectors are the
most useful features for BADGE and Coreset regardless of the
type of tasks.

Based on the experimental results, we provide recom-
mendations for the feature selection in clustering-based
acquisition functions for active code learning.

¢ K-Means-C (KM-C): use model output vectors (code
tokens) for classification (non-classification) tasks.

¢ K-Center-C (kC-C): use code embeddings (model output
vectors) for classification (non-classification) tasks.

« BADGE-C: use model output vectors for all code tasks.

« Coreset-C: use model output vectors for all code tasks.
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Fig. 2. Results of different feature-based active code learning on classification tasks.

Answer to RQ1: Feature selection highly influences the
effectiveness of clustering-based acquisition functions
to perform active learning. Surprisingly, in most (60%)
cases, leveraging output vectors extracted from models in
active learning outperforms using code tokens and code
embeddings, resulting in improved performance of code
models.

3.7 RQ2: Acquisition Function Comparison

After studying the feature selection, we compare all acqui-
sition functions on different code tasks. Here, we use our
recommended features to build the clustering-based function.
Table [f presents the results of classification tasks.
Acquisition function comparison in classification tasks.
For the multi-class classification task (problem classification),
we can see that output-uncertainty-based methods often
achieve better results than the clustering-based methods.
In which, Margin which only uses the top-1 and top-2
probabilities of the outputs performs the best in 5 out of
6 cases. This phenomenon draws a similar conclusion to
the previous work [10]], that simple methods perform well
on active learning. However, regarding the binary classi-
fication task (clone detection and vulnerability detection),
interestingly, the results show that the previous conclusion
cannot stand. For the clone detection task, in all cases,
clustering-based methods outperform simple methods (output-
uncertainty-based methods). Table 6] shows the results of the
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comparison between BADGE-C (the best clustering-based
method) and all output-uncertainty-based methods on the
code clone detection task. The results also demonstrate that
except for labeling budget 10%, BADGE-C outperforms sim-
ple methods in this task. For the vulnerability task, clustering-
based methods also perform the best in 6 out of 9 cases.
In summary, the first conclusion we can draw is — no
acquisition functions consistently perform better than others,
and findings [10]] from previous works can not be directly
applied to active code learning.

Acquisition function comparison in non-classification
tasks. Then, move to the non-classification task (two code
summarization tasks and the code translation task), Table
Table [8} and Table [9] show the results. The first finding
reveals disparate conclusions drawn from the utilization
of different evaluation metrics. For instance, the PPL scores
demonstrate that KC-C is the best acquisition function for
code summarization tasks while the BLEU scores suggest
Coreset-C. However, regardless of the evaluation metrics we
used, the gap between the performance of active learning-
trained models and the performance of models trained by
using the entire data is big. For example, for JavaScript-
CodeBERT, under 10% labeling budget, the best PPL score
and BLEU score we get are 5.1313 and 10.09, which are
33.28% and 29.64% lower than the 3.85 and 14.34 computed
from the model trained by entire training data. These results
are totally different from the ones drawn by the classification
tasks that using 10% data can train a model with similar
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Fig. 3. Results of different feature-based active code learning on non-classification tasks. JS is short for JavaScript.

and even better performance, e.g., for the clone detection
task, models trained with 10% (97.79%) data have better
performance than the models trained by entire training data
(97.15%). Therefore, we can say that active code learning in
non-classification code tasks is still in a very early stage, the
conclusions from classification tasks can not be migrated to
non-classification tasks.

Labeling budgets study. To study how many labeling
budgets we need for active code learning to train a good
model (with similar performance to the model trained by
using the whole training data), we further conduct studies
by increasing the labeling budgets for vulnerability detection
and non-classification tasks that 10% labeling budgets are
not enough. The results can be found in the Appendix.

Comparison between acquisition functions to random
selection. Additionally, to investigate the importance of
using suitable acquisition functions in active code learning,
we compare the best acquisition functions in each task to the
random selection function. Specifically, we compare Margin,
Badge, KM, and Coreset to Random for problem classifi-
cation, clone detection, vulnerability detection, and three
non-classification tasks, respectively using T-test. Table
presents the coefficient and P-value for this comparison.
From the results, we can see that, in 16 out of 18 cases, the
statistical results demonstrate that the selected acquisition
functions achieve better results than the random selection.
Besides, in half of these 16 cases, the models trained by
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the selected acquisition functions have significantly (with
a P-value less than 0.03) better performance than models
trained using random selection. We can conclude that, when
using active code learning to prepare the code models, the
acquisition function is important and needs to be carefully
considered.

Answer to RQ2: In contrast to previous work on classifica-
tion tasks [10], our findings reveal that simple methods are
ineffective for the binary code classification task — clone
detection and vulnerability detection. Clustering-based
acquisition functions consistently outperform output-
uncertainty-based functions in this task. In addition, active
learning is ineffective for non-classification tasks such as
code summarization, as the performance of models trained
via active learning lags behind those trained using the
entire dataset by at least 29.64%.

3.8 Case Study

To check how each acquisition function works, we follow
the work [32] to study the characteristics of its selected code
data. In addition to the 1) label diversity considered by [32],
we add two code distribution features in our study, 2) token
difference between the selected data and the whole training
data, and 3) the token diversity of selected data.
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TABLE 5
Model performance of active learning trained models for two classification tasks. Values highlighted in red and blue indicate the best and second best.
Output: output-uncertainty-based methods. Clustering: clustering-based methods. Upper: upper bound achieved by all acquisition functions.

CodeBERT GraphCodeBERT CodeT5

1% 5% 10% 1% 5% 10% 1% 5% 10%

Problem Classification
Output LC 29.61 5290 59.14 3399 5693 61.06 3584 4752 50.64
Output Gini 4396 9095 97.75 4431 93.02 98.04 5261 9424 98.18
- Random 48.01 9267 95.09 5505 93.75 9576 58.08 9396 95.82
Output BALD 40.63 9451 9786 50.83 9432 98.02 5529 9562 98.12
Output Entropy  42.67 90.05 97.67 4450 9221 9799 5231 9375 98.15
Output Margin 5122 9541 9791 5776 9633 98.16 59.62 9699 98.22
- CAL 29.99 5451 6499 34.04 5768 6533 3478 56.58 67.76
Clustering KM 51.69 9442 9765 5738 9541 9799 4836 87.32 95.01
Clustering KC 4784 9401 9773 5618 9557 97.33 4444 8746 9393
Clustering  Badge 4641 9433 9739 5348 9531 9791 52.04 9557 9791
Clustering  Coreset  47.96 9423 9766 5635 9548 9724 4710 9652 98.21
Upper 51.69 9541 9791 5776 9633 98.16 59.62 9699 98.22

Clone Detection

Output LC 80.08 83.51 90.85 7990 8173 90.12 93.48 9475 95.66
Output Gini 8545 96.58 96.74 8445 9641 97.18 9530 97.02 96.50
- Random 84.22 9598 96.86 84.83 9552 96.81 94.18 97.12 96.99
Output BALD 87.61 96.81 97.16 88.73 96.47 97.12 9411 9497 96.75
Output Entropy 86.16 9632 96.89 8528 96.89 9717 9540 97.01 96.72
Output Margin 86.38 96.82 9692 8492 97.02 9717 9546 9698 96.67
- CAL 79.57 9110 95.14 77.60 8845 92.06 9264 9287 96.55
Clustering KM 87.88 97.01 97.10 8780 9692 9723 9558 9730 96.78
Clustering KC 8748 95.07 9779 8577 96.85 97.62 9625 9690 97.50
Clustering  Badge 88.17 9710 9727 90.60 9725 97.09 96.70 97.70 97.14
Clustering  Coreset 86.45 9695 9696 9210 97.19 97.06 96.52 97.22 97.10
Upper 88.17 9710 9779 9210 9725 97.62 96.70 97.70 97.50

Vulnerability Detection
LC 56.34 56.73 58.09 56.27 5712 5784 5599 55.12 56.46
Output Gini 5712 5873 5947 57.01 59.64 60.28 55.81 5723 57.59
- Random 56.51 5774 59.00 57.14 5853 59.29 5571 56.19 57.02
Output BALD 5750 5841 59.63 5717 5935 59.69 56.48 5694 58.60
Output Entropy 57.00 5848 5925 5719 5931 59.79 5630 56.79 5791
Output Margin 56.85 5842 5944 5727 59.15 59.77 56.13 5649 57.93
- CAL 5635 5745 58.13 57.07 58.67 5919 5647 5720 58.00
Clustering KM 5730 59.15 5990 57.63 5949 60.52 56.59 57.27 58.57
Clustering KC 56.62 5854 5998 57.06 57.66 59.10 56.38 56.48 57.88
Clustering  Badge 56.90 5851 59.27 57.06 5883 59.33 56.13 56.32 57.32
Clustering  Coreset 56.56 57.69 59.01 5699 5837 59.75 56.27 5693 57.48
Upper 5750 59.15 5998 57.63 59.64 60.52 56.59 57.27 58.60

Label diversity measures the label balance of selected
data which is quantified using the entropy score of label
TABLE 6 histograms.

Comparison between BADGE and output-uncertainty-based methods
(t-test). Task: clone detection.

1% 5% 10%
CodeBERT
BADGE-C vs. LC 8.4889 5.9074 6.2645
BADGE-C vs. Gini 2.5009 4.0470 3.1028
BADGE-C vs. Blad 0.4731 1.7192 0.5137
BADGE-C vs. Entropy ~ 2.1334 2.2341 1.7796
BADGE-C vs. Margin 1.9832 1.6134 2.1428
GraphCodeBERT
BADGE-C vs. LC 23.2590 10.0688 12.3815
BADGE-C vs. Gini 114256  3.4707 -0.5947
BADGE-C vs. Blad 1.8989 2.8951 -0.2334
BADGE-C vs. Entropy ~ 10.2222 1.5331 -0.7654
BADGE-C vs. Margin 121774 19214 -0.4843
CodeT5
BADGE-C vs. LC 18.7178  6.5411 3.8040
BADGE-C vs. Gini 2.3301 1.2324 0.2511
BADGE-C vs. Blad 7.4407 1.1518 0.1810
BADGE-C vs. Entropy ~ 3.5711 1.4365 2.0307
BADGE-C vs. Margin 12.3686  1.6058 3.4134
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Token difference measures the token difference between
the selected code and the whole training code. Specifically,
we build the histograms of tokens in the selected code
data and the whole training code data. Then, we normalize
the values of histograms to 0 to 1. Finally, we calculate
the absolute difference between the two histograms as the
difference value.

Token diversity is similar to the label diversity. We use
the entropy score of the token histograms to quantify the
diversity of selected tokens.

We adopt a balanced approach by selecting one classi-
fication task and one non-classification task for this case
study. Regarding classification, problem classification is
chosen for its consistent performance superiority among
available tasks, supported by three distinct models. Mean-
while, regarding non-classification, we focus on code sum-
marization (JavaScript), leveraging its larger dataset size
for robust statistical analysis. To facilitate fair comparisons,
we employ the same model architecture for both tasks.
CodeBERT is selected over GraphBERT due to its lower
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TABLE 7
PPL of active learning trained code summarization models with different
training budgets. Values highlighted in red indicate the best. Upper:
upper bound achieved by all acquisition functions.

JavaScript Ruby
1% 5% 10% 1% 5% 10%
Roborta
Random 59526 57142 5.6593 | 5.8720 5.6888 5.6546
KM-C 59747 5.6990 5.6503 | 5.8696 5.7227  5.6443
KC-C 57308 5.5647 5.6282 | 5.6726 5.5735 5.5833
Badge-C 5.8927 5.6350 5.5887 | 5.8509 5.7256  5.6471
Coreset-C 57286 55235 5.5146 | 5.6729 55642 5.5909
Upper 57286 55235 55146 | 5.6726 55642 5.5833
CodeBERT
Random 56771 53407 5.2038 | 56671 54198 5.3662
KM-C 56840 5.3586 5.2219 | 5.6819 5.4662  5.4050
KC-C 55978 52082 5.1313 | 55565 5.2313 5.1992
Badge-C 5.6654 5.3214 5.2079 | 5.6623 5.4067 5.3487
Coreset-C~ 5.6013 52222 5.1334 | 55536 5.2158 5.1796
Upper 55978 5.2082 5.1313 | 55536 5.2158 5.1796
GraphCodeBERT
Random 53806 5.1560 5.0938 | 5.3806 5.1560 5.0938
KM-C 53852 51589 5.0821 | 54038 5.1843 5.1100
KC-C 52883 5.0748 5.0178 | 54366 5.2179 5.1881
Badge-C 53630 5.1379 5.0639 | 5.5942 5.3490 5.3015
Coreset-C 52912  5.0987 5.0346 | 54368 5.2120 5.1412
Upper 52883 5.0748 5.0178 | 53806 5.1560 5.0938
TABLE 8

PPL of active learning trained code translation models with different
training budgets. Values highlighted in red indicate the best. Upper:
upper bound achieved by all acquisition functions.

1% 5% 10%
RoBERTa
Random 3.5825 3.2714 2.8544
KM-C 3.5628 3.3849 29817
KC-C 3.1155 2.8576 2.7099
Badge-C 3.3967 29880 2.6429
Coreset-C ~ 3.0766 2.8869 2.7516
Upper 3.0766  2.8576  2.6429
CodeBERT
Random 29491 24044 1.9459
KM-C 29369 24787  1.9409
KC-C 3.0087 25677  1.6580
Badge-C 2.7917 22928 1.8422
Coreset-C~ 3.0072 2.3149 1.6485
Upper 27917 22928 1.6485
GraphCodeBERT
Random 2.6850 2.1740 1.7254
KM-C 2.8086 23040 1.6766
KC-C 2.8934 23440 1.6113
Badge-C 2.7820  2.2095 1.6900
Coreset-C ~ 2.7724 22982  1.5398
Upper 2.6850 2.1740  1.5398

model complexity and wider community adoption. Table
presents the characteristic results of the selected data by
different acquisition functions and Table [12|summarizes the
correlation between the characteristic and the performance of
trained models. From the results, we can see that, there is a
clear correlation (with an absolute coefficient value from 0.50
to 0.97) between the characteristics of selected data and the
performance of the trained models using these selected data.
Concretely, 1) when the selected code data have a smaller
code token distribution difference to the token distribution
of the whole training data, the trained code models have
better performance, and 2) when the selected code data have
higher token/label diversity, the trained code models have
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TABLE 9
BLEU score of active learning trained code summarization models with
labeling budget 10%. Values highlighted in red indicate the best.

CS-Ruby CSJS CT
RB CB GCB RB CB GCB RB CB GCB
Random 7.60 9.62 1010 824 1036 11.60 2093 3793 39.58
KM 745 994 1037 822 1015 1144 2018 3346 36.97
KC 765 996 1032 780 1046 1155 1846 39.13 41.71
Badge 747 941 9.84 801 1071 1170 1981 3755 40.20
Coreset 772 10.09 1042 778 1045 1171 1934 39.71 4221
TABLE 10

Comparison between the best acquisition function and random selection.
Comparison method: T-test.

CB GCB T5
Problem Classification
Margin vs. Random Coefficient  23.8281 24.1301 19.8977
P-value 0.0003 0.0007 0.0007
Clone Detection
Badge vs. Random Coefficient 4.5579 5.7687 1.8635
) P-value 0.0531 0.0284 0.3912
Vulnerability Detection
KM vs. Random Coefficient 1.6347 3.0595 2.3576
P-value 0.2658 0.0914 0.1126
RB CB GCB
Code Summarization-JavaScript
Coreset vs. Random Coefficient  -3.5122  -1.7361  -1.6903
P-value 0.0025 0.0996 0.1082
Code Summarization-Ruby
Coreset vs. Random Coefficient  -5.0270  -4.1700 1.0314
P-value 0.0001 0.0006 0.3160
Code Translation

Coreset vs. Random Coefficient  -3.7578  -0.8499 0.1577
P-value 0.0014 0.4065 0.8765

better performance.

Finding: Acquisition functions that select data with
smaller token distribution differences to the whole training
data and higher code token (label) diversity can produce
code models with better performance.

TABLE 11
Characteristic of selected data.

Problem Classification

Token Token Label

difference  diversity  diversity
LC 881.18 7.78 6.14
Gini 849.95 7.80 7.58
Random 856.22 7.77 7.77
BALD 846.83 7.80 7.62
Entropy 857.24 7.80 7.57
Margin 859.58 7.80 7.74
CAL 994.89 7.64 5.74
KM 839.22 7.76 7.07
KC 783.44 7.94 7.72
Badge 847.61 7.83 7.76
Coreset 854.69 7.81 7.57

Code Summarization
Random 1495.39 8.55 -
KM 1569.46 8.51 -
KC 807.31 8.79 -
Badge 857.30 8.68 -
Coreset 807.31 8.79 -
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TABLE 12
Correlation between data features and the performance of trained
models.

Coefficient ~ P-value

Problem Classification
Token difference -0.6951 0.0176
Token diversity 0.5003 0.1171
Label diversity 0.8252 0.0018

Code Summarization
Token difference 0.8572 0.0634
Token diversity -0.9662 0.0074

4 EXPLORATORY STUDY

As discussed in Section [3] active code learning for non-
classification code summarization tasks is still in an early
stage. In this section, we tend to explore the potential
directions to propose new effective acquisition functions
and mainly focus on non-classification code tasks as existing
acquisition functions are effective enough to produce good
code models for classification tasks. Since clustering-based
acquisition functions are the main techniques used for non-
classification tasks, the main goal of our exploratory study is
to explore ways to improve this type of acquisition function.

The key idea of clustering-based acquisition functions is
to select a diverse set of data, each data sample in this set
has big distances from the others. As a result, the calculation
of the distance between each data is important in clustering-
based functions. Thus, the straightforward way to improve
the existing acquisition functions is to provide a precise
way to measure the distance between code pairs (or their
features). Generally, in the existing acquisition functions, the
distance is computed by the Euclidean distance between two
vectors that represent two programs. The main concern of
this distance calculation is that vectors, e.g., code tokens,
code embeddings, and output vectors, highly rely on code
representation techniques or code models. It is difficult to
say such computed distance can represent the real distance
between two programs.

Fortunately, recent research has proposed some evalua-
tion metrics [33], [34] for code generation. Roughly speaking,
different from the existing distance methods, these metrics
are specifically designed for code to measure the similarity
between the machine-generated code snippets and the
reference. The studies conducted by the original works show
that there is a strong connection between the evaluation
metrics and human preference. Inspired by these works, we
propose to use the evaluation metrics as the distance methods for
the clustering-based acquisition functions. Ideally, this new
distance should be more precise and the active code learning
should be more effective.

4.1

To validate our conjectures, we empirically explore the
following two problems:

Study Design

o Is there a connection between the distance of selected data to
each other and the performance of trained models based on
these data? Through this study, we explore the probability
of improving active code learning from the perspective
of providing new distance methods for clustering-based
acquisition functions.
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o Is there a connection between the existing distance methods and
the code evaluation metrics? Through this study, we explore
whether our proposed distance methods are different from
the old ones or not. The positive answer demonstrates that
evaluation-metric-based methods cannot be replaced by
the existing distance methods.

Addressing the first problem follows the following steps:

Step 1 We prepare two groups of models, the first group
contains the initialized models (the same as the initialized
models used in section 3| - models trained using 500 initial
training data) that represent models in the early stage of
active learning, and the second group includes models that
have already been trained using 5% of training data that
represent models at a late stage of active learning. In this
way, we can see if the correlation we want to study holds in
models with different performances. Note that we have prior
knowledge of the data used to train the models.

Step 2 We conduct active code learning by using Random
acquisition function for each group of models 100 times and
record the 100 groups of selected data as well as the trained
models for further analysis.

Step 3 We measure the accuracy of the 100 trained models
on the test data and calculate the average distance between
the selected data samples in each group. Finally, we can get
100 accuracy values and corresponding 100 distance values.
Here, the distance can be calculated by different methods.

Step 4 We use Spearman’s rank correlation coefficient
to compute the correlation between the accuracy and the
distance provided by step 3.

For the second problem, we use different distance calcu-
lation methods in Step 3 to obtain the distance scores and
then use Spearman’s rank correlation coefficient to compute
the correlation between these distance methods.

4.2 Setup

We select one classification task (problem Classification)
and one non-classification task (Code summarization for
JavaScript programs) to conduct this exploratory study. For
both tasks, we choose CodeBERT as our base model. For
the distance calculation methods, we consider four in this
study, cosine similarity as distance, Euclidean distance, BLEU
score as distance, and CodeBERTScore [34] as distance. Here,
CodeBERTScore is a state-of-the-art evaluation metric for
code generation. It uses pre-trained contextual embeddings
to vectorize each token in the reference program and the
generated program first. Then, it computes the pairwise
cosine similarity between every embedded token in the
reference and every encoded token in the generated code.
Finally, the maximum similarity score in each row of the
pairwise matrix is used to compute the final similarity of
these two programs. We compute the cosine distance and
Euclidean distance based on both input embedding (code
embedding) and output vectors. For BLEU-based distance,
we compute it using both the sequence of input and output
tokens. Since CodeBERTScore can be only computed on
the code data, we only use the input data to calculate this
distance.

4.3 Results Analysis

Table presents the results of the correlation between
data distance and model accuracy. Surprisingly, the results
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TABLE 13
Correlation between the selected data distance to each other and the
performance of trained models based on these data. Each value
represents the correlation coefficient. Model.: model at the early stage
of active learning. Model;: at the late stage of active learning. i(o):
input(output)-based feature. Value with * indicates the P-value is less

than 0.05.
Classification Non-classification
(Accuracy) (PPL)

Modele Model; Modele  Model,;

Cosine; 0.0589 -0.2555% 0.0705 0.1328
Euclidean; -0.0773  -0.2262* 0.0868 0.0947
BLFEU; 0.0309 -0.0589 0.0504 -0.1699
Cosine, 0.1018 -0.3118* 0.1108 0.2241*
FEuclidean, 0.1134 -0.2764* 0.1364 0.2108*

BLEU, 0.0506 0.0309 0.053 -0.079
CodeScore 0.0463 -0.0203 0.0128 -0.1965*

indicate that regardless of the code tasks, when the model
has a poor performance, i.e., at the early stage of active code
learning, the trained model performance is not related to the
diversity (the distance of data to each other) of used training
data. However, for a model that was already trained on a
few data and with a good performance, i.e., at the late stage
of active code learning, the conclusion changed. Considering
the classification task, there is a weak correlation between
the cosine and Euclidean distance with the accuracy of the
models. That means clustering-based acquisition functions
that use these two distance calculation methods are promis-
ing to train a model with high accuracy. As already shown
in table [5} all these acquisition functions based on Euclidean
distance achieve good performance in classification tasks.
Considering the non-classification task, the results show
this correlation based on the input embeddings becomes
weaker, e.g., for cosine similarity, the correlation results of
Coreset; change from -0.2555 to 0.1328 in Model;. This is
also the reason that the existing acquisition functions do
not work well on code summarization tasks based on the
token embeddings and have no advantage over random
selection as shown in table [7] and table 0] However, there
is a clear correlation between the Euclidean (Fuclidean,)
and Cosine (Cosine,) distance computed based on the
output vectors of selected data and the performance of
trained models, which is constant with the conclusion drawn
in RQ1. On the other hand, we can see there is a weak
correlation between the evaluation scores-based distance
and the accuracy of models which does not happen in our
considered two classification tasks. The correlation result
of CodeBERTScore on M odel; is significant (with a p-value
less than 0.05). These results lead to a promising direction of
proposing new acquisition functions that use evaluation
metrics as the distance calculation method for the code
summarization task.

Takeaway: In non-classification code summarization tasks,
our analysis shows that in the selected dataset, greater dis-
tances between data samples as calculated by evaluation-
metrics-based distance methods lead to better model
performance.

Table [14] presents the results of the correlation between
different distance calculation methods. For models with low
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TABLE 14
Correlation between different distance calculation methods. Each value
represents the correlation coefficient. Model.: model at the early stage
of active learning. Model;: model at the late stage of active learning.
i(0): input(output)-based feature. Value with * indicates the P-value is
less than 0.05.

Classification Non-classification

Model. Model, Model, Model;

Cosine;-Euclidean; 0.9438*  0.9155* 09717  0.9769*
Cosine;-BLEU; -0.0943 -0.0356  -0.1012  -0.0111
Cosine;-Code BERT Score -0.2522 -0.0838  -0.4600*  -0.0030
Euclidean;-BLEU; -0.0963 -0.0230  -0.0856  -0.0856
Euclidean;-Code BERT Score ~ -0.2457  -0.0615  -0.4176*  -0.0038
BLEU,;-CodeBERT Score 0.6464*  0.6464* 0.2422 0.2422
Cosineo-Euclidean, 0.9531*  0.9244*  0.9769*  0.9802*
Cosineo,-BLEU, 0.0513 -0.0378 -0.0745 0.0621
Euclidean,-BLEU, -0.0374  -0.0558  -0.0671 -0.0216

performance (Model.), there is always a correlation between
cosine similarity or Euclidean distance with CodeBERTScore,
which means CodeBERTScore is able to produce similar
distance ranking of data to the existing distance methods
in these models. Combining the conclusion from the last
study, we can see that for Model., all methods have a similar
distance ranking of data, but this ranking is not connected to
the performance of models. However, for M odel;, we can see
there is no correlation between cosine and Euclidean to the
BLEU and CodeBERTScore. That is the reason why cosine
and euclidean (BLEU and CodeBERTScore) correlate with the
model performance while BLEU and CodeBERTScore (cosine
and euclidean) do not have this correlation in our considered
classification (non-classification) tasks.

Takeaway: Distance methods that are correlated with
model performance produce significantly different rank-
ings of data compared to methods that do not exhibit such
a correlation.

4.4 Case Study

According to our exploratory study, we know that evaluation
metrics are promising to be used as distance methods
in clustering-based acquisition functions. In this part, we
conduct a case study to show if it can really help im-
prove such acquisition functions. Specifically, we modify
the distance calculation method in the Coreset function from
Euclidean distance to BLEU and run experiments on code
summarization tasks on Ruby. The reason we choose Ruby is
that running evaluation metrics (especially CodeBERTScore)
is time-consuming, e.g., it takes more than one month to run
an active learning experiment once on code summarization
tasks of JavaScript since it contains 2 times more training
data than Ruby. The reason for choosing Coreset is that it
performs the best in code summarization of Ruby as shown
in table [/l and table 9] However, since CodeBERTScore does
not support Ruby language now, we can only replace the
original distance method in Coreset with the BLEU metric.
Note that we still use the Euclidean distance between code
embeddings to compute Pairwise Distances which is the
initial step of Coreset. It is almost impossible to use the BLEU
score here (the time cost is monthly). The algorithm of our
modified Coreset is shown as Algorithm 1}

Figure [ depicts the results. We can see that Coreset with
a BLEU score at the input level performs significantly better
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Algorithm 1: Coreset with BLEU

: X _l: labeled data
X _w: unlabeled data
M: model under training
budget: labeling budget
Output : X_seleted: selected data
1 X_seleted = |
2 Dis = Pairwise_Distances(X _u, X_I)
3 wnit_data = X_u(Min(Dis))
4 X _seleted.append(init_data)
5 X_u=X_u\ init_data
6
7
8
9

Input

count_num =1
while count_num < budget do
BLEU_list = BLEU (init_data, X _u)
wnit_data = X_u(Min(BLEU _list))
10 X _seleted.append(init_data)
11 X_u=X_u\init_data
12 count_num+ =1
13 end
14 return X _seleted;

5714 Code Token Code Token
o~ Code Embecaing o Code Embedaing
Output 5.6 . ®- Output
o Bty
Output BLEY

1% 2% 3% 4% 5% 6% 7% 8%
Labeling Budget

9% 10% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Labeling Budget

(a) CodeBERT (b) GraphCodeBERT

Fig. 4. Active learning with Coreset acquisition functions. Code task: code
summarization for Ruby. BLEU: replacing original Euclidean distance
in Coreset to BLEU metric at the input level. Output BLEU: replacing
original Euclidean distance in Coreset to BLEU metric at the output level.

than Coreset with Euclidean distance calculated from code
tokens and code embeddings. These results demonstrate the
potential of using evaluation metrics as distance methods in
active learning. However, using output vectors as clustering
features which is also proposed by us is still the best choice
which achieves the best results among all the cases. There
is a big room to be improved in terms of the performance
of trained models and how to propose a new acquisition
function based on the evaluation metrics is still an open
problem and our future research.

5 DISCUSSION
5.1

Recently, large deep-learning models, especially foundation
models like GPT-4 [35] have gained huge attention and
achieved many state-of-the-art results in various application
domains. This hot trend almost changes the research focus of
ML4Code from designing new code model architectures or
code representation techniques to how to reuse these foun-
dation models for our specific code tasks. Generally, model
reuse involves a fine-tuning step that further optimizes the
model parameters and improves performance. As a result,
active code learning becomes more and more important
since it allows us to fine-tune the pre-trained models with a
controllable human effort, i.e., budgets allocated for labeling

The Importance of Active Code Learning
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the datasets used in fine-tuning. This technique provides
opportunities for researchers and developers with limited
resources to leverage and improve existing big models.

5.2 Threat to Validity

The external threat lies in our considered acquisition func-
tions used for active learning, code tasks and datasets, and
code models. For the acquisition functions, we collect 10
functions that are specifically proposed for active learning
and already studied the most in recent works [9], [10].
Other functions such as neural coverage methods are not
considered since they are proposed for a different purpose.
For code tasks and datasets, we consider both classification
tasks that study important problems, problem classification,
clone detection, and code summarization. For code models,
we prepare two well-known code pre-trained models. Based
on our open-source projects, other tasks, and models can be
easily added to our benchmark. The internal threat can be
the implementation of acquisition functions and code models.
All implementations of acquisition functions are based on
the existing active learning works [9], [36], [37] and after
carefully checking. The implementation of code models is
also modified from the famous open source project [27]. The
construct threat can be the configuration of active learning.
Since this is the first work that studies active code learning,
we follow our best practice to initialize the code models and
set the labeling budgets. Besides, since we compare code
models under the same labeling budgets, the comparison
results are not affected by the configuration of active learning.

6 RELATED WORK

We review related works in two aspects: empirical study on
active learning and empirical study on code learning.

6.1

Since active learning plays an important role in efficient
model training, multiple works [8], [38]], [39], [40] conducted
empirical studies on this topic. Ramirez-Loaiza ef al. [41]
compared different active learning methods using different
measurements and concluded that improvements obtained
by active learning for one performance measure often came
at the expense of another measure. Heilbron et al. [42] studied
active learning for a specific task, action localization. They
found that using acquisition functions the select previously
labeled data and combine them with the newly selected
data is a more useful strategy of active learning for action
localization. More recently, Hu et al. [9] explored the limita-
tions of active learning. They studied adversarial robustness
and the ability to handle model compression of models
trained by using active learning. The results showed that
models trained with active learning can achieve competitive
test accuracy but suffer from robustness and compression
ability loss. Michael et al. [10] conducted a replicability study
and showed that the simple active learning methods, e.g.,
DeepGini, perform better in active learning than neuron
coverage-based methods. The most recent work is [36] which
did a very large empirical study of 19 active learning methods
including both fully-supervised active learning methods and
semi-supervised active learning methods. They concluded

Empirical Study on Active Learning
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that semi-supervised learning benefits active learning and
should be considered in proposing new methods.

Different from the existing works which mainly study
image data or conventional text data, our work is the first
one to focus on program data which is the key type of data
in the software engineering field.

6.2 Empirical Study on ML4Code

ML4Code gained huge attention recently, researchers also
conducted multiple empirical studies to explore the problems
in the ML4Code field. In the very early work [43]], Chirkova et
al. empirically study the backbone model architecture of
the later code models-Transformer on different code tasks,
code completion, function naming, and bug fixing. They
found that Transformers can utilize syntactic information in
source code to solve code tasks. Niu ef al. [44] conducted a
large-scale empirical study to compare pre-trained models
of source code. In total, we studied 19 pre-trained models
and 13 software tasks and gave fine-grained suggestions
for using and evaluating these models. Steenhoek et al. [45]
studied the deep learning models for a specific code task,
vulnerability detection. Their experimental results showed
that models trained by specific types of vulnerability perform
better than models trained by all vulnerabilities. Increasing
the size of the training dataset has limited benefits to the
performance of trained models. Jiang et al. [46] conducted
the first study of pre-trained model reuse. Concretely, they
interviewed practitioners from Hugging Face and identified
the challenges of pre-trained model reuse, e.g., missing at-
tributes, discrepancies, and model risks. Besides considering
only the clean performance of models of code, Mastropaolo et
al. [47] studied the robustness of GitHub Copilot which is a
famous code generation model. They generated semantically
equivalent natural language descriptions based on the seed
description and checked if Copilot can generate the same
code functions as the ones generated by the seed description.
They found that almost half of the semantically equivalent
but different method descriptions result in different code
recommendations which means the code generation models
are not robust. Hu et al. [48] provided shifted datasets and
studied the generalization ability of code models under
data distribution shift. They found that code models are
not robust and can not handle distribution shifts properly.
Finally, Nie et al. [49] studied the influence of used evaluation
methods on code summarization and found that different
evaluation methods lead to conflicting results which should
gain attention for users during testing the code models.

More recently, researchers employed large language mod-
els (LLM) to solve code-related tasks and reported impressive
results [50], [51], [52]. Xia et al. [53] used LLM to solve
automated program repair problems and achieved SOTA
results with acceptable budgets. Deng et al. [54] utilized LLMs
to synthesize unusual programs to test deep learning libraries
and found 49 unknown bugs in famous deep learning
frameworks. Ma et al. [55] empirically studied the ability of
ChatGPT (the most famous LLM) on program syntax, static,
and dynamic understanding. The results demonstrate that
ChatGPT is good at analyzing syntax and static information
of programs, but tends to generate non-existent semantic
information.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

The above works focused on the clean performance,
robustness, challenges of reuse, and evaluation methods of
code models. However, none of them studied the important
problem of how to reduce the labeling effort of training data
and efficiently train the code models, which is our main
purpose.

6.3 Active Learning for Code

Active learning has been applied to solve software tasks
due to its cost-saving ability. Moskovitch et al. [56] proposed
a very early framework to use active learning methods to
detect malicious code. In the work, the Margin selection
strategy has been considered to select new code from the
code pool. Inspired by this work, other works also tried
to employ active learning in other software domains, e.g.,
Nir et al. used active learning to identify new unknown
malware in Android systems [57] and Windows OS [58].
Recently, Berezov et al. [59] combined active learning and
code generation techniques to help build code benchmarks.
In their work, the Greedy Sampling [60] acquisition function
was used to select the most valuable code for the active
learning component. The latest work [61] employed active
learning to predict software performance (execution time).
Four acquisition functions such as Random Sampling and
Coreset Sampling have been studied in this work.

Compared to the previous works, each of which only
considers a single type of code task (e.g., malware detection),
limited acquisition functions (no more than four), and
simple models (e.g., Graph2Vec), our work provides the
first benchmark that covers various types of code tasks, over
10 types of acquisition functions, and advanced pre-trained
code models.

7 CONCLUSION

This paper introduced the first benchmark and an empirical
study for the important yet unexplored problem — active
code learning. Our experimental results demonstrated that
active code learning is effective in training code models with
expected high performance for classification tasks such as
problem classification and clone detection. However, it is
still in the early stage for non-classification tasks like code
summarization. Besides, we conducted an exploratory study
to show using evaluation metrics as distance calculation
methods is a promising way to propose new clustering-based
acquisition methods. We believe that our benchmark as well
as empirical studies will provide developers and researchers
insights into efficiently reusing (i.e., with little human effort)
existing large pre-trained models for their specific code tasks.
In the future, we plan to

¢ extend our benchmark to support semi-supervised learn-
ing and combine it with active learning to future improve
the effectiveness of active code learning.

o explore clustering ensemble methods to combine the
clustering results produced by different features (e.g.,
output vectors and evaluation-based metrics) to enhance
active code learning.
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APPENDIX

In this section, since the 10% labeling budget is not enough
for vulnerability detection, code summarization, and code
translation tasks to train a model with similar performance as
the model trained by using all the training data, we provide
more results of active code learning by increasing the labeling
budgets to explore the upper bound. Note that, in this study,
we only consider the acquisition function that performs the
best with a labeling budget of less than 10%, that is, KM
for vulnerability detection and Coreset for non-classification
code tasks.

Table presents the results, we can see that, for code
summarization tasks, the active learning strategy is not suit-
able for the RoBERTa model that models trained using 90%
data still have a big performance gap to the baseline model.
It is an interesting future direction to explore the potential
reason behind this phenomenon. For other models, 50% to
90% labeling budgets can produce a model with similar
performance as the fully trained model. Considering other
tasks, 50% labeled data are enough to train a vulnerability
detection model with a similar performance to the fully
trained model, and active learning for code translation is
a challenging task that needs 90% of labeled training data
to train a good model. Besides, we found that active code
learning has the potential to train code models with better
performance than fully trained models. As shown by the
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TABLE A1
Increasing the budgets of active code learning. Results with a red
background indicate that active learning achieved better results than the
normally trained model using all training data.

10% 30% 50%  70% 90%  Baseline
Code Summarization-JavaScript

RB 7.78 8.65 9.54 1024 10.88 13.43
CB 1045 1259 1425 14.04 1513 14.34
GCB 11.17 1349 1511 15.07 1647 14.89
Code Summarization-Ruby
RB 7.72 7.85 8.73 9.71 9.78 11.25
CB 10.09 10.02 1086 9.95 1255 12.80
GCB 1042 1238 13.89 13.80 13.90 13.54
Code Translation
RB 19.34 3561 56.16 6342 7472 76.99
CB 39.71 5579 7298 75.84 7898 78.59
GCB 4221 5921 7381 7641 80.09 79.15
Vulnerability Detection
CB 59.90 6058 6292 6345 63.80 63.76
GCB 60.52 60.44 6159 62.69 62.86 62.26

CodeT5 5857 59.90 6098 6244 6345 62.85

results, there are 13 cases active learning trained models
outperform fully trained models.
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