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Attribute-hiding fuzzy encryption for
privacy-preserving data evaluation

Zhenhua Chen, Luqi Huang, Guomin Yang, Willy Susilo, Xingbing Fu, Xingxing Jia

Abstract—Privacy-preserving data evaluation is one of the
prominent research topics in the big data era. In many data
evaluation applications that involve sensitive information, such as
the medical records of patients in a medical system, protecting
data privacy during the data evaluation process has become an
essential requirement. Aiming at solving this problem, numerous
fuzzy encryption systems for different similarity metrics have
been proposed in literature. Unfortunately, the existing fuzzy
encryption systems either fail to achieve attribute-hiding or
achieve it, but are impractical. In this paper, we propose a new
fuzzy encryption scheme for privacy-preserving data evaluation
based on overlap distance, which can work in an integer domain
while achieving attribute-hiding. In particular, we develop a
novel approach to enable an accurate overlap distance to be
fast calculated. This technique makes the number of pairing
operations during decryption stage negative correlation with
the size of the threshold, which is pretty practical for some
applications especially with a large threshold. Additionally, we
provide a formal security analysis of the proposed scheme,
followed by a comprehensive experimental. Also we show that
our scheme can be well applied to some scenarios, such as
fuzzy keyword searchable encryption and attribute-hiding closest
substring encryption.

Index Terms—Fuzzy encryption, predicate encryption,
attribute-hiding, data evaluation, overlap distance

I. INTRODUCTION

The rapid development of information and communications
technology has greatly affected many aspects of our daily
life. A huge amount of data are being generated/collected
daily by end users and devices (e.g., IoT sensors) and these
data form a valuable asset in the information age. Data
analysis techniques have been employed by both public and
private sectors to exploit the potential and valuable information

This work was supported in part by the National Natural Science Foundation
of China under Grant 61872289 and Grant 62172266, in part by the Guangxi
Key Laboratory of Trusted Software under Grant KX202308, and in part by
the Henan Key Laboratory of Network Cryptography Technology LNCT2020-
A07. Corresponding author:Luqi Huang
Z.Chen is with the College of Computer Science and Technology, Xi’an
University of Science and Technology, Xi’an 710054, China. Z.Chen is also
with the Guangxi Key Laboratory of Cryptography and Information Security,
Guilin University of Electronic Technology, Guilin 541004, China.
W.Susilo and L.Huang are with the Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia.
Guomin Yang is with the School of computing and information systems,
Singapore Management University, Singapore.
X.Fu is with the School of Cyberspace, Hangzhou Dianzi University,
Hangzhou 310018, PR China.
X.Jia is with the School of Mathematics and Statistics, Lanzhou University,
Lanzhou 730000, China.

from these massive data. To make the data analysis more
accurate and efficient, data evaluation refers to as a process of
determining the merit, worth and significance of data by using
certain evaluation criteria governed by a set of measurements.
It can assist the data analyzer to select available data for
analysis. However, some data are sensitive in nature (e.g.,
medical data), and therefore it is important to ensure that these
sensitive data, often including their attributes (or metadata), are
well-protected during the evaluation process. Hence, privacy-
preserving data evaluation has become a prominent research
topic in recent years.

One typical application of privacy-preserving data evalua-
tion is privacy-preserving medical data analysis and clinical
diagnosis in an electronic health record system (see Fig.
1), where patients (or elderly people in Aged Care Center)
with chronic diseases or severe illnesses are equipped with
implanted or on-body medical sensors to monitor various kinds
of physiology symptoms and collect the corresponding data,
e.g., smart heart rate monitor can detect patients’ heart beats
per minute to avoid heart rate overboard, and blood sugar-
sensing wearable device can track the patients’ glucose levels
to ensure that the right amount of insulin is released at the right
time, etc. The collected data will provide valuable information
to doctors for analyzing diseases and performing diagnosis.
However, medical data, including both patients’ records and
symptoms, are very sensitive personal information. It is crucial
to prevent leakage or abuse of patients’ personal data when
the data are stored in a medical database and further used in a
data evaluation process. Therefore, it has become an important
issue how to ensure patients’ privacy in an electronic health
record system. For protecting the privacy of their data, patients
often encrypt their data (health records and symptoms) prior to
sending them to a storage server in hospital. At the later point,
the doctor will check whether a patient’s symptoms satisfy a
certain criteria of the disease based on an appropriate similarity
metric without learning anything else about patients’ health
records and symptoms, and if and only if the criteria are met,
the doctor is able to conceal the patients’ health records and
perform more investigations.
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Fig. 1. Privacy-preserving clinical data analysis

Another similar example of privacy-preserving data evalua-
tion is about privacy-preserving food health rating (see Fig. 2).
A food industry develops a new product and makes a request
on its health rate (e.g., 5/4/... stars) to a Food Inspection
Agency. The Food Inspection Agency can determine its health
rate based on the evaluation on the ingredients of new product.
However, the recipe of new product is often a commercial
secret of the food industry, who would not want its product
formula to be known by anyone else except the target evaluator
of Food Inspection Agency. That is, only and if only a certain
similarity metric is met between the recipe of the new product
and a criteria provided by the agency. The agency is able
to conceal the recipe of a new product and returns complete
decisions on its health rate to the food industry.

Fig. 2. Privacy-preserving food inspection

From the above application scenarios, we observe that to
manage the privacy-preserving data evaluation, the “overlap
distance” is often taken as an important role, to measure
the similarity between the data attributes and an evaluation
criteria but in a secure manner rather than in a clear text. To
apply privacy-preserving data evaluation based on an overlap
distance in the above applications, the crux of a privacy-
preserving data evaluation system lies in three properties:
fuzziness, efficiency, and attribute-hiding. Nevertheless, it is
a challenging task to achieve the above properties simulta-
neously in one system. Fuzzy encryption schemes have been
introduced in the literature for the purpose of fuzziness based
on different similarity metrics such as Hamming distance,
Edit distance, Overlap distance, Mahalanobis distance and
Set difference. Unfortunately, among all the existing schemes,
most of them just provide message privacy but no protection
on attributes’ privacy [1], [2], [3], [4], [5]. On the other hand,

some fuzzy schemes with attribute-hiding can only work in a
binary domain [6], [7]. Therefore, in this paper, we attempt
to design a new fuzzy encryption scheme under the public-
key setting which works in an integer domain and meanwhile
achieves attribute-hiding. Particularly, this new scheme is able
to measure the overlap distance between a target integer string
and an attribute integer string associated with a message in a
high-level secure manner - attribute-hiding but with a higher
efficiency.

A. Our contributions

To apply privacy-preserving data evaluation based on an
overlap distance, in this paper we present a new construction
of attribute-hiding fuzzy encryption (AHFE) for an overlap
distance in an integer domain. The crux of a privacy-preserving
data evaluation system lies in three properties: fuzziness,
attribute-hiding and efficiency. In order to achieve these goals,
we first show how to conduct fuzziness based on the overlap
distance between two strings in an integer domain via some
ingenious transformation, and then present a concrete con-
struction of fuzzy encryption with an attribute-hiding property
by leveraging a modified version of inner product encryption
(IPE) [8] along with a novel calculation mechanism to improve
efficiency. Specifically, the main contributions of our work are
summarized as follows:

• We develop some new techniques for constructing
attribute-hiding fuzzy encryption in an integer domain
rather than a binary domain. Although the existing fuzzy
identity based encryption (IBE) scheme [7], a version
closest to our system has already achieved attribute-hiding
in a binary domain and a naive approach is to realize
our system by leveraging their idea, the main obstacle
is that if we transform an integer string into a binary
one and leverage the scheme in [7] to realize fuzziness
straightforwardly, it will raise a misjudgment described in
related work later. As a result, we develop a new encoding
to conduct the overlap distance between two strings in
an integer domain. Further, we borrow the technique of
the dual paring vector space in IPE [8] after slightly
modified to realize attribute-hiding property. Similarly, a
same obstacle will be arise if we employ the scheme in
[6] to cope with our issue since they can only conduct a
binary domain instead of an integer one. All these will
be detailed later.

• For a higher efficiency, we modify the technique of
privacy-preserving mapping in [9] and derive a new cal-
culation mechanism for a fast decryption. This technique
enables our construction to fast decrypt the ciphertext
without a loop to try all possible decryption keys one by
one and thus enjoys the benefit of the number of pairing
operations during decryption stage negative correlation
with the size of the threshold. Accordingly, it is pretty
practical for some applications especially with a large
threshold. As opposed to ours, the existing fuzzy encryp-
tion scheme [7] is impractical since the computational
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complexity of pairing operations during decryption stage
is exponential with threshold.

• We prove the security of our AHFE scheme under a well-
defined security model. We also implement our AHFE
scheme to demonstrate its efficiency in real experiments.
In addition, we will discuss some interesting applications
of our scheme, including fuzzy keyword searchable en-
cryption and attribute-hiding closest substring encryption.

B. Related work

In 2005, Sahai and Waters [10] first addressed the notion
of fuzziness in the field of identity-based cryptography, a
new encryption mechanism initiated by Shamir [11] in 1984,
where a private key of identity can decrypt a ciphertext
encrypted with a slightly different identity. Later, Sahai and
Waters also introduced the notion of attribute-based encryption
(ABE) in literature [10], an advanced IBE version with more
expresiveness. In an IBE system, private keys were issued by
a fully trusted key generation center that was introduced to
verify all identities when issuing users’ private keys.

Therefore in the IBE system, the key generation center is
capable of generating private keys for all users and it has the
ability to access the messages of each user. The problem is
named as key escrow. How to solve the key escrow problem
existed in IBE system is certificateless public-key encryption
(CL-PKE) [12], later than IBE invented by Al-Riyami and
Paterson. Roughly speaking, their idea was to combine the
functionality of public key encryption with that of identity
based encryption. Also, Lewko and Waters [13] provided an
alternative solution, named decentralized ABE. However, our
effort has focused on the IBE system, which was inherent with
a fully trusted third party.

In 2015, Guo et al. [1] introduced distance-based encryption
equipped with Mahalanobis distance in measurement, if and
only if the distance between two identity vectors is no greater
than a threshold the ciphertext will be decrypted successfully.
Similarly, Guo et al. [2] in 2016 also provided the closest sub-
string encryption by measuring the overlap distance between
substrings from two main strings, respectively. In the same
year, Phuong et al. [3] came up with an edit-distance based
encryption which is to measure the similarity between two al-
phabet strings. Recently, [4], [5] devoted themselves to develop
a new public key encryption with fuzzy matching functionality
which can test whether two encrypted messages is equal or not
based on a certain similarity metric. Specifically, the former
is based on whether the edit distance between two encrypted
messages is less than a threshold, and the latter is based on Vi
‘ete’s formula for testing two messages of ciphertexts equal
or not without the care of some designated wildcard bits.
However, the above fuzzy encryption schemes all can only
achieve payload-hiding, a weaker security than attribute-hiding
in the sense that it can only guarantee the traditional message
privacy without protection on attribute privacy.

For the existing fuzzy encryption schemes with attribute-
hiding [14], [6], [7], Boneh and Waters [14] constructed a

hidden vector encryption which can support a certain fuzzi-
ness in the sense that the encryption system only asks two
components in two vectors are identical in the rest positions
without the care of the wildcard positions. Unlike ours, they
fail to support the fuzziness based on a threshold. Dodis et
al. [6] proposed a fuzzy extractor that allows exact recovery
of a secret string when a given another string is close enough
to the secret string until the distance between them is less
than a threshold. However, in their mechanism the two strings
are only restricted to working in a binary domain instead of
an integer domain. Zhang et al. [7] put forward an anony-
mous fuzzy IBE for similarity search by testing whether the
Hamming distance between two identity vectors in a binary
domain is no greater than a threshold. However, it is noticed
that this scheme will raise a misjudgment when we leverage it
to cope with an integer domain like ours. The main obstacle
is that if we transform an integer string into a binary string
straightforwardly, the hamming distance between two binary
vectors which is greater than a threshold will also be searched
successfully but not really. Also, the same obstacle will arise
if we employ the scheme [6] to cope with our issue.

As mentioned above, the previous works have pursued
the following directions falling into either payload-hiding
fuzzy encryption [1], [2], [3], [4], [5], or fuzzy schemes
with attribute-hiding but failing to support threshold [14] or
restricted in a binary domain [6], [7]. Regarding how to design
a fuzzy encryption under IBE mechanism which can work in
an integer domain but with a higher security – attribute-hiding,
little attention has been paid to it. To address this issue, in this
work we put forward a new attribute-hiding fuzzy encryption
scheme in an integer domain.

C. Organization

The paper starts with the problem formulation in Section 2.
Section 3 presents the system and security definitions. Section
4 presents preliminaries and Section 5 provides a concrete
construction. Section 6 proves the security of the scheme. The
implementation of AHFE scheme and comparison analysis
are illustrated in Section 7. Section 8 offers two application
examples of our schemes to fuzzy keyword search encryption
and attribute-hiding closest substring encryption. Finally, we
conclude our work in Section 9.

II. PROBLEM FORMULATION

A. System components

From Fig. 3, our evaluation system involves three parties:
a key generation center (or system administrator) who is
responsible for the system setup and key extraction for an
evaluator; a user (i.e., the patient in Fig. 1 and the food
industry in Fig. 2) who encrypt their individual data and would
like to collaborate a privacy-preserving evaluation on their
encrypted data by an authorized evaluator; an evaluator (i.e.,
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Fig. 3. System model

the doctor in Fig. 1 and the inspector in Fig. 2) who is allowed
to perform an evaluation based on these received data and
further make a complete decision for users.

1. Key generation center: A key generation center is respon-
sible for generating system parameters and master pub-
lic/secret key pair. Additionally, it computes a private key
based on a received target string along with a threshold
and sends the private key to an evaluator.

2. User: A user is responsible for transmitting encrypted data
based on a message along with its attribute string to an
evaluator.

3. Evaluator: An evaluator is allowed to investigate data
transferred from a user if and only if the overlap dis-
tance between the target string and the attribute string
associated with data is no less than the threshold. If so,
it is able to download the user’s encrypted data from a
storage server and learn the message to make a further
corresponding evaluation. Finally, the evaluator returns
a complete decision to the user based on the evaluation
result.

B. Threat model

In this paper, the key generation center is fully trusted,
which will not collude with any entity to peep data contents.
The user is assumed to be honest. In other words, it honestly
generates ciphertexts forward to an evaluator. The evaluator
is supposed to be honest-but-curious. It honestly responds to
the request and executes the evaluation as it is defined and
returns the actual results to the user but may be “curious” about
the user’s sensitive data and try to learn more information
motivated by financial interests or economic incentives.

C. System requirements

A secure evaluation system should satisfy the following
features and security requirements.

1. Availability: The authorized evaluator is allowed to learn
the message from the user when the overlap distance

between a user’s attribute string and a target string is
no less than a threshold.

2. Efficiency: The system is able to process data evaluation
efficiently.

3. Attribute-hiding (Anonymous): The evaluator cannot ac-
quire the user’s attributes during the evaluation process.

4. Message privacy: The evaluator is not be able to learn
the user’s message if the overlap distance is less than the
threshold.

III. SYSTEM AND SECURITY DEFINITIONS

A. Definition of AHFE

Let * = {1, . . . , ;} be an attribute universe and ; be a
positive integer. ( and (′ are two different strings of length
= and each element of both is from universe *. Our AHFE
scheme consists of four algorithms as follows:

• Setup(1_, =, ;): The key generation center taking as input
a security parameter _, the length of strings = and the
size of universe ;, the setup algorithm outputs a master
key pair (<?: , <B:).

• KeyGen(<?:, <B:, (′, C): The key generation center tak-
ing as input the master public key <?: , the master
secret key <B: , a string (′ and a threshold C, the keygen
algorithm outputs a private key B:(′ .

• Enc(<?:, <, (): A user taking as input the master public
key <?: , a message < and a string (, the encryption
algorithm outputs a ciphertext 2C( .

• Dec(<?:, B:(′ , 2C( , =, C): An evaluator taking as input the
master public key <?: , the ciphertext 2C( , the private
key B:(′ , the length of strings =, and the threshold C, the
decryption algorithm outputs the message < if the overlap
distance between ( and (′ is no less than the threshold C.

Correctness: For all (′ and ( ∈ {1, . . . , ;}=, all
< ∈ G) , let (<?:, <B:) '←− Setup(1_, =, ;), B:(′

'←−
KeyGen(<?:, <B:, (′, C) and 2C(

'←− Enc(<?:, <, (). If
we have $E4A;0?�8BC ((′, () ≥ C, < '←− Dec(<?:, B:(′ ,
2C( , =, C), otherwise Pr[⊥←− Dec(<?:, B:(′ , 2C( , =, C)] > 1 −
n (_) where n (_) is a negligible function.

B. Security model

Okamoto et al. [8] proposed an efficient IPE on dual pairing
vector spaces (DPVS) with selectively fully attribute-hiding
against chosen plaintext attacks. Similarly, our security is de-
fined with indistinguishability under selective-string, chosen-
plaintext attacks (IND-sS-CPA), which also achieves selec-
tively fully attribute-hiding after slightly modifying Okamoto
et al’s definition [8] in matching and non-matching queries.
Specifically, the matching queries are changed from an inner
product of two vectors being zero to an overlap distance of
two strings greater than or equal to a threshold. Meanwhile,
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non-matching queries is changed to an overlap distance of two
strings is less than a threshold. Moreover, there is an extra
restriction on matching queries in our security model in that,
we require $E4A;0?�8BC ((′, ( (0) ) = $E4A;0?�8BC ((′, ( (1) )
where ( (0) and ( (1) are two challenge strings chosen by the
adversary ahead of attack, and (

′
is any string queried by the

adversary. The security of AHFE is captured by the following
game interaction between an attacker A and a challenger C.

1. A outputs two challenge attribute strings ( (0) , ( (1) .
2. Setup is run to generate keys <?: and <B: , and <?:

is given to A.
3. A may adaptively make a polynomial number of key

queries for predicate strings (′, under the following
condition

$E4A;0?�8BC ((′, ( (0) ) = $E4A;0?�8BC ((′, ( (1) ).

In response, A is given the corresponding key B:(′
'←−

KeyGen(<?:, <B:, (′, C).
4. A outputs two challenge plaintexts < (0) , < (1) . If there

exists a key query (′ satisfying

$E4A;0?�8BC ((′, ( (0) ) = $E4A;0?�8BC ((′, ( (1) ) = 3 ≥ C

two challenge plaintexts are equal, i.e., < (0) = < (1) .
5. A random bit 1 is chosen. A is given 2C( (1)

'←−
Enc(<?:, < (1) , ( (1) ).

6. The adversary may continue to issue key queries for more
predicate strings (′, subject to the restriction given in
steps 3 and 4. A is given the corresponding key B:(′

'←−
KeyGen(<?:, <B:, (′, C).

7. A outputs a bit 1′, and wins if 1′ = 1.

The advantage of A in the above game is defined as
�3E����A (_) = Pr[A F8=B] − 1/2 for any security parameter
_.

Definition 1. We say that a AHFE scheme is selectively
secure against chosen plaintext attacks if for any polynomial-
time adversaries A, the advantage �3E����A is negligible.

IV. PRELIMINARIES

A. Dual pairing vector spaces

In our construction, an overlap distance between two strings
will be transformed into a calculation on inner product of two
vectors. Thus, we can leverage IPE technique to deal with our
issue. IPE first introduced by Katz et al. [15] aims to solve the
disjunction of equality tests, which is based on a composite-
order group. Soon after, Park et al. [16] present an improved
IPE under a prime-order group. However, both of them can
decrypt successfully restricted to two conditions that not only
the inner product between two attribute vectors is zero but
also the additional random elements satisfying some equal-
ities, which are functioned as to achieve the attribute-hiding
property and prevent the order of components in ciphertexts or

secret keys from being changed, should be canceled out later
in the decryption phase. Unlike them, in 2009, Okamoto et al.
[8] provided a new IPE based on DPVS to ease construction,
whose decryption only requires one condition – the inner
product is zero. That is the main reason why we chose the
IPE based on DPVS for our construction. Furthermore, in
our construction we need to compute different inner products,〈
®-, ®. 9

〉
= 0 for 9 = 1, . . . , = − C + 1. From a practical point

of view, however, the performance of the scheme [16] is not
so satisfying. Therefore, we choose an efficient IPE based on
DPVS provided by Okamoto [8]. For interested readers, please
refer to the literature [8]. Below, we introduce DPVS briefly.

Let # – dimensional vector space V be

#︷        ︸︸        ︷
G × · · · × G over

F@ , canonical basis A be (a1, . . . ,a# ) of V, where a8 =

(

8−1︷   ︸︸   ︷
0, . . . , 0, �,

#−8︷   ︸︸   ︷
0, . . . , 0) and pairing 4 : V × V → G) . Addi-

tionally, ?0A0<V is defined as ?0A0<V (@,V,G) ,A, 4)
'←−

G�%+ (
>1

(1_, #), - = (j8, 9 )
*←− �! (#, F@), (h8, 9 ) = (-) )−1,

b8 =
∑#
9=1 j8, 9a 9 , B = (b1, . . . , b# ), b∗

8
=

∑#
9=1 h8, 9a 9 ,

B∗ = (b∗1, . . . , b
∗
#
).

B. Privacy preserving mapping supporting comparison

A privacy preserving mapping (PPM) supporting compari-
son enables a user with his/her private key to map data items
into images such that, with a set of images, any entity can
determine the <, =, > relationship among the corresponding
data items. For interested readers, please refer to the literature
[9] for the details. For a higher efficiency, in our construction
we will leverage the idea of PPM to locate the correct private
key to decrypt a ciphertext as fast as possible.

Inspired by the idea in [9], we develop a brand-new PPM
as a building block plugged into the DPVS IPE for fast
decryption in our construction. The main modification is that
we replace G and H of PPM in [9] with an inner product
of two vectors and a threshold, respectively. Accordingly, the
comparison between G and H is changed to such one between
an inner product and a threshold.

C. Decisional Linear Assumption (DLIN)

The DLIN problem [17] is to guess V ∈ {0, 1}, given
(?0A0<G, �, � b , � ^ , � X b , �f^ , .V)

'←− G�!� #
V

(1_), where

G�!� #
V

(1_): ?0A0<G := (@,G,G) , �, 4)
'←− G16? (1_),

^, X, b, f
*←− F@ , .0 := � X+f , .1

*←− G, return

(?0A0<G, �, � b , � ^ , � X b , �f^ , .V), for V
*←− {0, 1}.

For a probabilistic machine D, we define the advan-
tage of D for the DLIN problem as: �3E�!� #D :=
| Pr[D(1_, r) −→ 1|r '←− G�!� #0 (1_)] − Pr[D(1_, r) −→
1|r '←− G�!� #1 (1_)] |. The DLIN assumption [17] is: For
any probabilitic polynomial-time adversary D, the advantage
�3E�!� #D (_) is negligible in _.
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D. A key lemma

Definition 2: Problem 1 is to guess V ∈ {0, 1},
given (?0A0<V, B̂, B̂∗,h∗V,1, {h

∗
8
}8=2,...,= ·; , g∗V,1, eV , 6

X) '←−
G%1
V
(1_, =, ;), where

G%1
V
(1_, =, ;): (?0A0<V,B,B∗)

'←− G����
>1

(1_, = · ; + 5),
l, g, X, d, W, i, o

*←− F@ ,
B̂ = (b0, . . . , b= ·;+1, b= ·;+4),
B̂∗ = (b∗0, . . . , b

∗
= ·;+1, b

∗
= ·;+3),

h∗0,1 = Xb
∗
1 + Wb

∗
= ·;+3,

h∗1,1 = Xb
∗
1 + gb

∗
= ·;+2 + Wb

∗
= ·;+3,

h∗
8
= Xb∗

8
for 8 = 2, . . . , = · ;,

g∗0,1 = Xb
∗
= ·;+1 + ob

∗
= ·;+3,

g∗1,1 = Xb
∗
= ·;+1 + gb

∗
= ·;+2 + ob

∗
= ·;+3,

e0 = lb1 − lb= ·;+1 + ib= ·;+4,
e1 = lb1 − lb= ·;+1 + db= ·;+2 + ib= ·;+4,
return (?0A0<V, B̂, B̂∗,h∗V,1, {h

∗
8
}8=2,...,= ·; , g∗V,1, eV , 6

X) for

V
*←− {0, 1}.

For a probabilistic machine B, we define the advantage of
B for Problem 1 as: �3E%1

B (_) = | Pr[B(1_, r) → 1|r '←−
G%1

0 (1
_, =, ;)] − Pr[B(1_, r) → 1|r '←− G%1

1 (1
_, =, ;)] |.

Lemma 1: For any adversary B, there is probabilistic
machines D1 and D2, whose running times are essentially
the same as that of B, such that for any security parameter _,
�3E%1

B (_) ≤ �3E
�!� #
D1

(_) + �3E�!� #D2
(_) + 10/@.

Sketch proof : Problem 1 is slightly modified from the
Problem 1 in [8] which is first presented by Okamoto. For
our security proof, we add g∗0,1 and g∗1,1 whose structures are
similar to h∗0,1 and h∗1,1 in [8]. Since h∗0,1 and h∗1,1 in [8]
are indistinguishable, g∗0,1 and g∗1,1 are also indistinguishable
here. Moreover, we add one term, −lb= ·;+1 both in e0 and e1.
Since e0, e1 in [8] are indistinguishable, and −lb= ·;+1 will not
benefit the guess of V ∈ {0, 1} for e0, e1. Therefore e0 and e1
here are also indistinguishable and the extra term 6X is helpless
for the adversary to win the game. Except these modifications,
the rest remains unchanged. Therefore the above Lemma 1
employed in our proof still follows the framework of security
proof in [8].

V. OUR CONSTRUCTION

A. Overview of Technique

In this section, we show how to construct an attribute-
hiding fuzzy encryption in an integer domain but with a higher
efficiency. We cannot combine the techniques of IPE in [8] and
the idea in [9] straightforwardly to achieve the capabilities
required in our scheme. Thus, it is a challenge to achieve
the fuzziness, efficiency and attribute-hiding in one encryption
system simultaneously.

• Fuzziness. In public key fuzzy encryption with attribute-
hiding, [7] employed the Hamming distance plugged into
IPE to introduce the concept of fuzziness. Nevertheless, it

is noticed that this scheme will raise a misjudgment when
we leverage it to cope with an integer domain as in ours.
In order to conduct the fuzziness in an integer domain
without a misjudgment, we develop two new encoding
techniques as follows.
String encoding and threshold encoding. Let * =

{1, . . . , ;} be an attribute universe and ; be a positive
integer. According to the following rule I, two strings
( = {B1B2 . . . B=} and (′ = {B′1B

′
2 . . . B

′
=} can be encoded

two (= · ;) – dimension vectors ®* and ®+ , respectively,
where 9 = 1, . . . , =.

®*{B1B2...B= } =
{
D8 = 1, 8 5 8 = B 9 + ( 9 − 1) · ;
D8 = 0, otherwise

I

®+{B′1B′2...B′= } =
{
E8 = 1, 8 5 8 = B′

9
+ ( 9 − 1) · ;

E8 = 0, otherwise

In order to embed a threshold C into the above vector ®+ ,
we should add =− C+1 bits, C, . . . , = at the end of it for all
possible decryption cases, which eventually consists of a
vector ®. = ( ®+, C, . . . , =). On the other hand, we simply
need to add one bit ”−1” at the end of vector ®*, i.e., ®- =
{ ®*,−1}. Consequently, we have the resulted two vectors
®- = ( ®*,−1) = (G1, . . . , G= ·; ,−1) and ®. = ( ®+, C, . . . , =) =
(H1, . . . , H= ·; , H= ·;+1, . . . , H= · (;+1)−C+1). Besides that, =−C+1
separate vectors ®. 9 can be deprived from vector ®. , where
®. 9 = ( ®+, H= ·;+ 9 ), 9 = 1, . . . , = − C + 1.

• Efficiency. The existing attribute-hidng fuzzy encryption
[7] demands a loop to try all possible decryption keys
one by one and unavoidably blows up the computational
complexity of decryption exponential with threshold. To
improve the efficiency, we borrow the idea of privacy-
preserving mapping in [9] and come up with a modified
version suitable to our construction as follows. First,
during decryption process, we build a new list L3. It
is generated from part of ciphertexts and the list L1
from private keys to index all possible overlap distances
and the corresponding decryption keys for the successful
decryption. Second, we use part of ciphertexts and private
keys to compute the result J , which is functioned as to
test the overlap distance. If the overlap distance between
two strings is no less than the threshold, one item in
the list of L3/J can be found its trace in the list L2
produced from ciphertexts. Then the correct decryption
key will be picked up immediately according to the index
of this item in the list L2. Otherwise, no any correct
decryption key can be found. This technique enables our
scheme to fast decrypt the ciphertext without the need to
iteratively try all possible decryption keys one by one and
the computational complexity of decryption is negative
correlation with threshold. Therefore, it is practical for
some real-life applications, especially those with a large
threshold.

• Attribute-hiding. To achieve the attribute-hiding secu-
rity, the technique of DPVS is introduced in IPE [8], we
also leverage this technique but with a slight modification
to reach the attribute-hiding in our construction. We
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modify it as follows: 1) Transform two attribute vectors
to multiple vectors in order to embed all possible values
of the threshold for fuzziness; 2) Separate one private key
in literature [8] into multiple private keys in order to test
the overlap distance and locate the correct decryption key
for fast decryption.

B. Scheme

In this section, we present a concrete scheme of attribute-
hiding fuzzy encryption (AHFE) which integrates our new
encoding and PPM mechanisms as well as the DPVS technique
[8] to achieve three functionalities: fuzziness, efficiency, and
attribute-hiding. Set *, (, (′, =, ; as before, with the restriction
@ � 2= 1. Now we describe our construction as follows:

• Setup(1_, =, ;): (?0A0<V,B = (b0, . . . , b= ·;+4),B∗ =

(b∗0, . . . , b
∗
= ·;+4))

'←− G����
>1

(1_, = · ; + 5), U *←− F@ , B̂ =
(b0, . . . , b= ·;+1, b= ·;+4), B̂∗ = (b∗0, . . . , b

∗
= ·;+1, b

∗
= ·;+3),

return <?: = (1_, ?0A0<V, B̂, {6U
8

)
}, 8 ∈ {0, . . . , =}),

<B: = (B̂∗, U).
• KeyGen(<?:, <B:, (′, C):
f, [, A0, . . . , A=, e0, . . . , e=−C

*←− F@ , the key
generation algorithm first transforms string (′ to
vector ®. = (H1, . . . , H (= ·;)+(=−C)) ) = ( ®+, C, . . . , =). It then
computes:

k∗1 = (0,

= ·;︷   ︸︸   ︷
f ®+ , fC, 0, [, 0)B∗ ,

t∗0 = (1,

= ·;︷    ︸︸    ︷
A0 ®+ , A0C, 0, e0, 0)B∗ ,

t∗1 = (1,

= ·;︷    ︸︸    ︷
A1 ®+ , A1 (C + 1), 0, e1, 0)B∗ ,

...

t∗=−C = (1,

= ·;︷   ︸︸   ︷
A=−C ®+, A=−C=, 0, e=−C , 0)B∗

and generates a list L1 = {6 (U
8+8f) }, 8 ∈ {0, . . . , = − C}.

The keygen algorithm returns B:(′ = (k∗1, t
∗
0, t
∗
1, . . . ,

t∗=−C ,L1).
• Enc(<?:, <, (): l, i, Z

*←− F@ , the encryption algorithm
first transforms string ( to vector ®- = (G1, . . . , G (= ·;)+1) =
( ®*,−1). Then, it computes:

21 = (Z,

= ·;︷    ︸︸    ︷
l ®* ,−l, 0, 0, i)B, 22 = 6

Z

)
<, 23 = 6

l ,

and generates a list L2 = {6lU
8

)
}, 8 ∈ {0, . . . , =}. The Enc

algorithm returns 2C( = (21, 22, 23,L2).
• Dec(<?:, B:(′ , 2C( , =, C):
(C4? 1. Compute 4(23, 6

(U8+8f) ) = 6
l (U8+8f)
)

for each
item in the list L1 and generate a new list L3 =

{6l (U
8+8f)

)
} with an index list I = {0, . . . , = − C}.

1 To avoid incorrect decryption, namely, the decryption keys corresponding to
indexes greater than @/2 will not appear in the list we build during decryption
phase.

(C4? 2. Compute 4(21,k
∗
1) = 6

lf ( ®* · ®+−C)
)

, set it as J .

Next we compute 6l (U
8+8f)

)
/J = 6

lU8+lf8−lf ( ®* · ®+−C)
)

,
8 ∈ {0, . . . , = − C} and these results consisit of the
items in the list T . If the overlap distance between (

and (′ is greater than or equal to the threshold C and
then, there exists one item in T being the format of
6lU

8

)
, which must fall into the list L2 with the index

3,
〈
®* · ®+

〉
− C = 3 ≥ 0.

(C4? 3. Compute < = 22/4(21, t
∗
3
), return <.

Correctness If the overlap distance between ( and (′

is 3 + C, then
〈
®* · ®+

〉
= 3 + C. Therefore, we are able to

locate the correct decryption key C∗
3
= (1,

= ·;︷    ︸︸    ︷
A3 ®+ , A3 (3+

C), 0, e3)B∗ , which is able to decrypt ciphertext succcess-
fully. Consequently, 4(21, t

∗
3
) = 6Z+lA3 ( ®* · ®+−(3+C))

)
= 6

Z

)
.

Conversely, for those overlap distances between ( and (′

less than the threshold, i.e., 3 < C, there are no any corret
decryption keys for them.

VI. SECURITY

A. Security discussion

• Multiple evaluation attack. A multiple evaluation attack
occurs when an adversary decrypts the same ciphertext
multiple times aiming at revealing the attribute set en-
capsulated in the ciphertext. To resist this attack, we
introduce items 6U

8

, 8 ∈ 0, . . . , = − C in the list L1 dur-
ing private key generation. As a result, the same items
6U

8

)
, 8 ∈ 0, . . . , = − C will be regenerated in the first step

of the decryption algorithm, which will consist of a new
list L3. All these items cannot be modified by anyone
including the adversary, such as through adding some
new items 6U

8

)
, such that 8 < 0 into L3. This technique

will prevent the adversary from decrypting the ciphertext
with an illegitimate decryption key. That is, the adversary
will fail to decrypt the ciphertext with such a key that
the overlap distance between two strings less than a
threshold because the illegitimate key 6U

8

, 8 < 0 will not
arise in the List L3. However, the multiple evaluation
attack will not prevent the adversary from learning the
overlap distance once decryption is successful if he holds
a legitimate decryption key. Even so, the adversary still
learns nothing about the knowledge of attribute and the
security of attribute-hiding is still remained.

• Private key computable attack. Without accessing the
key generation center, the adversary tries to figure out
a valid decryption key with a specific evaluation string
from some known decryption keys associated with differ-
ent evaluation strings through linear operation on them
since pieces of decryption keys seem linear with each
other. However, this effort will be unsuccessful because
different randoms are embedded into different pieces of
decryption keys to resist this attack and these randoms are
chosen by the key generation center, which is unknown
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to anyone. Therefore, the adversary will learn nothing
about the knowledge of attributes and messages if no a
valid decrypton key issued by the key generation center.

B. Semi-functional algorithms

Semi-functional keys:

k∗1 = (0,

= ·;︷   ︸︸   ︷
f ®+ , fC, ^ , [, 0)B∗ ,

t∗0 = (1,

= ·;︷    ︸︸    ︷
A0 ®+ , A0C, q0 , e0, 0)B∗ ,

...

t∗=−C = (1,

= ·;︷       ︸︸       ︷
A=−C ®+ , A=−C=, q=−C , e=−C , 0)B∗ ,

where ^, q0, . . . , q=−C
*←− F@ .

Semi-functional ciphertexts:

21 = (Z,

= ·;︷ ︸︸ ︷
l ®* (1) ,−l, d , 0, i)B, 22 = 6

Z

)
< (1) , 23 = 6

l .

where d
*←− F@ .

Normal keys:

k∗1 = (0,

= ·;︷   ︸︸   ︷
f ®+ , fC, 0 , [, 0)B∗ ,

t∗0 = (1,

= ·;︷    ︸︸    ︷
A0 ®+ , A0C, 0 , e0, 0)B∗ ,

...

t∗=−C = (1,

= ·;︷       ︸︸       ︷
A=−C ®+ , A=−C=, 0 , e=−C , 0)B∗ ,

Normal ciphertexts:

21 = (Z,

= ·;︷ ︸︸ ︷
l ®* (1) ,−l, 0 , 0, i)B, 22 = 6

Z

)
< (1) , 23 = 6

l .

C. Outline of proof

At the top-level strategy of the security proof, we employ
the dual system encryption originated from Waters [18]. As
same as [18], we define ciphertexts and secret keys which
also have two forms, normal and semi-functional. The real
system only uses normal ciphertexts and normal secret keys,
and semi-functional ciphertexts and keys are only used in a
sequence of security games for the security proof.

However, there are three main differences between the
security proof in [18] and ours. First, in the security proof in
[18], the challenge ciphertext and all non-matching keys are
changed to semi-functional, i.e., the former has random values
in the 4-wise hidden subgroups and the latter has random
values in the 3-wise hidden subgroups, respectively, while in

ours the challenge ciphertext and all non-matching keys are
changed to semi-functional, i.e., they have random values in
the 1-dimensional hidden subspaces of DPVS. Second, the
security model in [18] only allows non-matching queries while
in our security model, we also allow matching queries as
well as non-matching ones. Lastly, in the security proof in
[18], the first game changes the challenge ciphertext to semi-
functional and then all non-matching keys are modified from
normal to semi-functional one by one through a sequence
of games. After that, challenge ciphertext is turned into an
encryption over a random number in the last game while in
ours, we change challenge ciphertext and non-matching keys
from normal to semi-functional simultaneously. After that, the
challenge ciphertext becomes an unbiased form in the last
game which is an encryption over a random vector and a
random number.

We employ Game 0 (original selective-security game)
through Game 2.

Game 0: All matching and non-matching keys are normal.
The challenge string ( (1) is encoded into ®* (1) and the chal-
lenge ciphertext is normal over ( ®* (1) , < (1) ), where 1 ∈ {0, 1}
is a random bit.

Game 1: The matching keys remain normal while the non-
matching keys are changed into semi-functional. Meanwhile,
the challenge ciphertext is also changed into a semi-functional
over ( ®* (1) , < (1) ).

Game 2:
Case 1. Two challenge plaintext are not equal: < (0) ≠ < (1) .

All queried keys are non-matching and semi-functional. The
challenge ciphertext is a semi-functional encryption. The chal-
lenge ciphertext (21, 22, 23) is like as follows:

21 = (Z
′
,

= ·;︷               ︸︸               ︷
l0 ®* (0) + l1 ®* (1) ,−l, d, 0, i)B, 22 = 6

Z

)
< (1) , 23 =

6l , where Z
′
, Zl0, l1

*←− F@ .
Case 2. Two challenge plaintext are equal: < (0) = < (1) = <.

The matching keys are normal while non-matching keys
are semi-functional. The challenge ciphertext 21 is a semi-
functional encryption. The challenge ciphertext (21, 22, 23) is
like as follows:

21 = (Z,

= ·;︷               ︸︸               ︷
l0 ®* (0) + l1 ®* (1) ,−l, d, 0, i)B, 22 = 6

Z

)
<, 23 = 6

l ,

where l0, l1
*←− F@ .

D. Proof

Since the security of the IPE on DPVS [8] we leveraged is
almost tightly reduced to the DLIN assumption in the standard
model, we also have the following theorem.

Theorem 1: The proposed AHFE scheme is selectively
fully attribute-hiding against chosen plaintext attacks under
the DLIN assumption.

For any adversary A, there exist probabilistic machines D1
and D2, whose running times are essentially the same as that
of A, such that for any security parameter _,
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�3E����A (_) ≤ �3E�!� #D1
(_) + �3E�!� #D2

(_) + n ,

where n = 12/@.
To prove this theorem, we employ Game 0 through Game

2. Let �3E (0)A (_) be �3E����A (_) in Game 0, and �3E8A (_)
(8 = 1, 2) be the advantage of A in Game 8. We present
two lemmas (Lemma 2 and 3) that evaluate advantage gaps
between neighbouring games and Lemma 4 that turns out the
adversary in the last game is zero, i.e., �3E (2)A (_) = 0. From
these lemmas as well as Lemma 1, we have

�3E����A (_) = �3E (0)A (_)

≤
1∑
8=0
|�3E (8)A (_) − �3E

(8+1)
A (_) | + �3E (2)A (_)

≤ �3E%1
B (_) + 2/@

≤ �3E�!� #D1
(_) + �3E�!� #D2

(_) + 12/@.

Lemma 2: For any adversary A, there exists a probabilistic
machine B1, whose running time is essentially the same as that
of A, such that for any security parameter _,

|�3E (0)A (_) − �3E
(1)
A (_) | ≤ �3E

%1
B1
(_) + 1/@.

proof. In order to prove Lemma 2, we will show the distri-
bution of public key, queried decryption keys and challenge
ciphertext in Game 0 and that in Game 1 are indistinguishable.
For that purpose, we construct a probabilistic machine B1
against Problem 1 by using any adversary A in a security
game (Game 0 or 1) as a black box as follows:

1) B1 is given Problem 1 instance (?0A0<V, B̂, B̂∗,h∗V,1,
{h∗

8
}8=2,...,= ·; , g∗V,1, eV , 6

X).
2) B1 plays a role of challenger in the security game against

an adversary A.
3) When B1 obtains the challenge strings ( (0) , ( (1) com-

mited by adversary A in the step 1 of the game and
then transforms them to ®* (0) , ®* (1) . B1 selects chal-
lenge bit 1

*←− {0, 1}. For ®4 = (1, 0, . . . , 0) with
= · ; dimensions and ®4′ = (1, 0, . . . , 0) = ( ®4, 0) with
= · ; + 1 dimensions, there exists a matrix Π1 = (c8, 9 ) ∈
�! (= · ;, F@), Π2 = (c′

8, 9
) ∈ �! (= · ; + 1, F@) such

at ®4 = ®* (1) · Π1 and ®4′ = ( ®* (1) ,−1) · Π2. Since
®* (1) ≠ ®0, B1 calculates such Π∗1 and Π∗2, and sets
Π∗1 = (c∗

8, 9
) = (Π)1 )

−1 and Π∗2 = (c∗′
8, 9
) = (Π)2 )

−1.
Public parameter <?: is then calculated as follows
and B1 returns <?: to A: d8 =

∑= ·;
9=1 c8, 9b 9 from

Π1, d∗
8
=

∑= ·;
9=1 c

∗
8, 9
b∗
9

from Π∗1, 8 = 1, . . . , = · ;, D̂ =

(b0,d1, . . . ,d= ·; , b= ·;+1, b= ·;+4). B1 chooses U ∈ F@ and
sets <?: = (1_, ?0A0<V, D̂, {6U

8

)
}, 8 ∈ {0, . . . , =}).

4) When a key query is issued for a vector ®+ trans-
formed from a predicate string (′, B1 calculates ®I =
(I1, . . . , I= ·;) = ®+ ·Π∗1, ®I′ = (I′1, . . . , I

′

= ·;+1) = ( ®+, 3) ·Π
∗
2,

where 3 is for

$E4A;0?�8BC ((′, ( (0) ) = $E4A;0?�8BC ((′, ( (1) ) ≥ C.

B1 picks up random numbers k, k0, . . . , k=−C , ^, ^0, . . . ,
^=−C , [, e0, . . . , e=−C and calculates:

k∗1 = I1 (kb
∗
1 + ^I

′

1h
∗
V,1) +

= ·;∑
8=2

I8 (kb∗8 + ^I
′

1h
∗
8 )+

C (kb∗= ·;+1 + ^I
′

1g
∗
V,1) + [b

∗
= ·;+3

t∗0 = b∗0 + I1 (k0b
∗
1 + ^0I

′

1h
∗
V,1) +

= ·;∑
8=2

I8 (k0b
∗
8 + ^0I

′

1h
∗
8 )+

C (k0b
∗
= ·;+1 + ^0I

′

1g
∗
V,1) + e0b

∗
= ·;+3,

...

t∗=−C = b∗0 + I1 (k=−Cb
∗
1 + ^=−C I

′

1h
∗
V,1) +

= ·;∑
8=2

I8 (k=−Cb∗8+

^=−C I
′

1h
∗
8 ) + =(k=−Cb∗= ·;+1 + ^=−C I

′

1g
∗
V,1) + e=−Cb

∗
= ·;+3.

Then, B1 returns B:(′ = (k∗1, t
∗
0, . . . , t

∗
=−C , L1 =

{6U8+8 (k+^ XI′1) }, 8 ∈ {0, . . . , =}) to A.
5) After obtaining the challenge plaintexts < (0) , < (1) , B1

calculates and returns challenge ciphertexts s.t. 21 =

Zb0 + eV , 22 = 6
Z

)
< (1) , 23 = 6l ,L2 = {6lU8

)
}, 8 ∈

{0, . . . , =}.
6) After the encryption query, KeyGen oracle simulation

for a key query is executed as above.
7) A outputs bit 1′. If 1 = 1′, B1 outputs V′ = 1.

Otherwise, B1 outputs V′ = 0.

Claim 1: Public parameter <?: generated in step 3 above
has the same distribution as that in Game 0 (and Game 1).

proof. Let � =
©­«
�1 0 0
0 Π1 0
0 0 �2

ª®¬ be square (= · ; +5) × (= · ; +5)

matrix composed of Π1 and the identity matrices �1, �2. Then,
basis D = (b0,d1, . . . ,d= ·; , b= ·;+1, . . . , b= ·;+4) is obtained
from basis B by the linear transformation determined by �.
Hence, its distribution is uniform. Therefore, D in step 3 has
the same distribution as that in Game 0 (and Game 1).

Claim 2: If V = 0 (resp. V = 1), the distribution of
partical ciphertext (21, 22, 23) generated in step 5 is the same
as that in Game 0 (resp. Game 1).

proof. If V = 0, 21 = Zb0 + e0 = (Z, l®4,−l, 0, 0, i)B =
(Z, l ®* (1) · Π1,−l, 0, 0, i)B = (Z, l ®* (1) ,−l, 0, 0, i)D,
22 = 6

Z

)
< (1) , 23 = 6

l , where ®4 = (1, 0, . . . , 0). This is the
target ciphertext in Game 0 with <?: .

If V = 1, 21 = Zb0 + e1 = (Z, l®4,−l, d, 0, i)B =

(Z, l ®* (1) · Π1,−l, d, 0, i)B = (Z, l ®* (1) ,−l, d, 0, i)D,
22 = 6

Z

)
< (1) , 23 = 6

l , where ®4 = (1, 0, . . . , 0). This is the
target ciphertext in Game 1 with <?: .

Claim 3: If V = 0 (resp. V = 1), the distribution of
k∗1, t

∗
0, . . . , t

∗
=−C generated in step 4 and 6 is the same as that

in Game 0 (resp. Game 1 expect with probability 1/@).
proof. First, it is easy to verify that basis

D∗ = (b∗0,d
∗
1, . . . ,d

∗
= ·; , b

∗
= ·;+1, · · · , b

∗
= ·;+4) obtained by

the linear transformation (�) )−1 using Π∗1.
That is, it is dual orthonormal to basis D =
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(b0,d1, . . . ,d= ·; , b= ·;+1, · · · , b= ·;+4), where � is defined
in the proof of Claim 1. Therefore, we can consider
k∗1, t

∗
0, . . . , t

∗
=−C w.r.t this dual orthonormal to basis.

If V = 0,

k∗1 = I1 (kb
∗
1 + ^I

′

1h
∗
0,1) +

= ·;∑
8=2

I8 (kb∗8 + ^I
′

1h
∗
8 )+

C (kb∗= ·;+1 + ^I
′

1g
∗
0,1) + [b

∗
= ·;+3

= (0, (k + ^XI′1)®I, (k + ^XI
′

1)C, 0, [ + W, 0)B∗
= (0, (k + ^XI′1) ®+ · Π

∗
1, (k + ^XI

′

1)C, 0, [ + W, 0)B∗
= (0, (k + ^XI′1) ®+, (k + ^XI

′

1)C, 0, [ + W, 0)D∗ ,

t∗0 = b∗0 + I1 (k0b
∗
1 + ^0I

′

1h
∗
0,1) +

= ·;∑
8=2

I8 (k0b
∗
8 + ^0I

′

1h
∗
8 )+

C (k0b
∗
= ·;+1 + ^0I

′

1g
∗
0,1) + e0b

∗
= ·;+3

= (1, (k0 + ^0XI
′

1)®I, (k0 + ^0XI
′

1)C, 0, e0 + o, 0)B∗
= (1, (k0 + ^0XI

′

1) ®+ · Π
∗
1, (k0 + ^0XI

′

1)C, 0, e0 + o, 0)B∗
= (1, (k0 + ^0XI

′

1) ®+, (k0 + ^0XI
′

1)C, 0, e0 + o, 0)D∗ ,

...

t∗=−C = b∗0 + I1 (k=−Cb
∗
1 + ^=−C I

′

1h
∗
0,1) +

= ·;∑
8=2

I8 (k=−Cb∗8+

^=−C I
′

1h
∗
8 ) + =(k=−Cb∗= ·;+1 + ^=−C I

′

1g
∗
0,1) + e=−Cb

∗
= ·;+3

= (1, (k=−C + ^=−CXI
′

1)®I, (k=−C + ^=−CXI
′

1)=, 0, e=−C + o, 0)B∗
= (1, (k=−C + ^=−CXI

′

1) ®+ · Π
∗
1, (k=−C + ^=−CXI

′

1)=, 0,
e=−C + o, 0)B∗

= (1, (k=−C + ^=−CXI
′

1) ®+, (k=−C + ^=−CXI
′

1)=, 0, e=−C + o, 0)D∗ ,
If V = 1,

k∗1 = I1 (kb
∗
1 + ^I

′

1h
∗
1,1) +

= ·;∑
8=2

I8 (kb∗8 + ^I
′

1h
∗
8 ) + C (kb∗= ·;+1+

^I
′

1g
∗
1,1) + [b

∗
= ·;+3

= (0, (k + ^XI′1)®I, (k + ^XI
′

1)C, ^I
′

1g(I1 + C), [ + W, 0)B∗
= (0, (k + ^XI′1) ®+ · Π

∗
1, (k + ^XI

′

1)C, ^g(I1 + C) (( ®*
(1) ,−1)·

Π2) · (( ®+, 3) · Π∗2)
) , [ + W, 0)B∗

= (0, (k + ^XI′1) ®+, (k + ^XI
′

1)C, ^g(I1 + C) ( ®*
(1) · ®+ − 3),

[ + W, 0)D∗ ,

t∗0 = b∗0 + I1 (k0b
∗
1 + ^0I

′

1h
∗
1,1) +

= ·;∑
8=2

I8 (k0b
∗
8 + ^0I

′

1h
∗
8 )+

C (k0b
∗
= ·;+1 + ^0I

′

1g
∗
1,1) + e0b

∗
= ·;+3

= (1, (k0 + ^0XI
′

1)®I, (k0 + ^1XI
′

1)C, ^0I
′

1g(I1 + C), e0 + o, 0)B∗
= (1, (k0 + ^0XI

′

1) ®+ · Π
∗
1, (k0 + ^0XI

′

1)C, ^0I
′

1g(I1 + C), e0 + o, 0)B∗
= (1, (k0 + ^0XI

′

1) ®+, (k0 + ^0XI
′

1)C, ^0I
′

1g(I1 + C) (( ®*
(1) ,−1)·

Π2) · (( ®+, 3) · Π∗2)
) , e0 + o, 0)D∗ ,

...

t∗=−C = b∗0 + I1 (k=−Cb
∗
1 + ^=−C I

′

1h
∗
1,1) +

= ·;∑
8=2

I8 (k=−Cb∗8+

^=−C I
′

1h
∗
8 ) + =(k=−Cb∗= ·;+1 + ^=−C I

′

1g
∗
1,1) + e=−Cb

∗
= ·;+3

= (1, (k=−C + ^=−CXI
′

1)®I, (k=−C + ^=−CXI
′

1)=, ^=−C I
′

1g(I1+
=), e=−C + o, 0)B∗

= (1, (k=−C + ^=−CXI
′

1) ®+ · Π
∗
1, (k=−C + ^=−CXI

′

1)=, ^=−C I
′

1g(I1+
=), e=−C + o, 0)B∗

= (1, (k=−C + ^=−CXI
′

1) ®+, (k=−C + ^=−CXI
′

1)=, ^=−Cg(I1+
=) (( ®* (1) ,−1) · Π2) · (( ®+, 3) · Π∗2)

) , e=−C + o, 0)D∗ .
Since k, k0, . . . , k=−C , ^, ^0, . . . , ^=−C , [, e0, . . . , e=−C

*←− F@
are freshly generated, k + ^XI′1, k0 + ^0XI

′

1, . . . , k=−C + ^=−CXI
′

1,
^g, [+W, e0+o, . . . , e=−C +o are uniformly and independently
distributed. ^g(I1 + C), ^0g(I1 + C), . . . , ^=−Cg(I1 + =) are also
uniformly and independently distributed if g ≠ 0.

Note that I
′

1 = ®4
′ · ®I′) = (( ®* (1) ,−1) · Π2) · (( ®+, 3) · Π∗2)

) =

( ®* (1) ,−1) ·(Π2 ·Π∗2)
) · ( ®+, 3) = ( ®* (1) ,−1) ·( ®+, 3) = ®* (1) · ®+−3.

1) For a matching key query ®* (1) · ®+ − 3 = 0, the generated
k∗1, t

∗
0, . . . , t

∗
=−C is normal. Therefore, the matching keys have

the same distribution as that in Game 1.
2) For a non-matching key query, since ®* (1) · ®+ − 3 ≠ 0

and ^g(I1 + C), ^1g(I1 + C), . . . , ^=−C+1g(I1 + =) are uniformly
and independently distributed if g ≠ 0, the generated
k∗1, t

∗
0, . . . , t

∗
=−C are semi-functional. Therefore, the generated

keys have the same distribution as that in Game 2 except
with probability of 1/@.

From Claim 1, 2 and 3, when V = 0, the advantage of A
in the above game is equal to that in Game 0, i.e., �3E (0)A (_),
and is also equal to Pr[B(1_, r) → 1|r '←− G%1

0 (1
_, =, ;, C)].

Similarly, when V = 1, we see that the advantage of A in
the above game is equal to that in Game 1, i.e., �3E (1)A (_),
and is also equal to Pr[B(1_, r) → 1|r '←− G%1

1 (1
_, =, ;, C)].

Therefore, |�3E (0)A (_) − �3E
(1)
A (_) | ≤ �3E%1

B (_) + 1/@. This
completes the proof of Lemma 2.

Lemma 3: For any adversary A, |�3E (1)A (_)−�3E
(2)
A (_) | ≤

1/@.
proof. To prove Lemma 3, we will show the distribution of

public key, @B queried private keys and challenge ciphertexts
in Game 1 and that in Game 2 are indistinguishable. For that
purpose, we define new dual orthonormal bases (D,D∗) of V
as follows:

We generate l0, l1, \
*←− F@ and set ®l = l0 ®* (0) +l1 ®* (1) ,

®b = ( ®l,−l0 − l1), if < (0) = < (1) , \ = 0, and

d= ·;+2 = b= ·;+2 − \b0 −
= ·;+1∑
8=1

b8b8 ,

d∗0 = b∗0 + \b
∗
= ·;+2,

d∗8 = b∗8 + b8b∗= ·;+2, 8 = 1, . . . , = · ; + 1,
®b1 = (b1, . . . , b= ·;+1)) ,
®b∗1 = (b

∗
1, . . . , b

∗
= ·;+1)

) ,

®d∗1 = (d
∗
1, . . . ,d

∗
= ·;+1)

) .
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That is, ©­«
b0
b1

d= ·;+2

ª®¬ = ©­«
1 0 0
0 �= ·;+1 0
−\ −®b 1

ª®¬ ©­«
b0
b1

b= ·;+2

ª®¬
©­«

d∗0
d∗1

b∗
= ·;+2

ª®¬ = ©­«
1 0 \

0 �= ·;+1 ®b)
0 0 1

ª®¬ ©­«
b∗0
b∗1

b∗
= ·;+2

ª®¬
We set D = (b0, . . . , b= ·;+1,d= ·;+2, b= ·;+3, b= ·;+4),

D∗ = (d∗0, . . . ,d
∗
= ·;+1, b

∗
= ·;+2, b

∗
= ·;+3, b

∗
= ·;+4). We then

easily verify that D and D∗ are dual orthonormal. In
the light of the adversary’s view, both (B,B∗) and
(D,D∗) are consistent with public key <?: . We define
the following vectors ®4′ = (1, 0, . . . , 0) = ( ®* (0) ,−1) · Π3,
®4′ = (1, 0, . . . , 0) = ( ®* (1) ,−1) · Π4, where Π3,Π4 ∈
�! (= · ; + 1, F@) and ®H = (H1, . . . , H= ·;+1) = ( ®+, 3) · (Π)3 )

−1,
®H′ = (H′1, . . . , H

′

= ·;+1) = ( ®+, 3) · (Π
)
4 )
−1 similar with Game

1. We also implicitly set −f (ℎ) (( ®+ (ℎ) , C) · ®b) = ](H1 + H
′

1),
−A (ℎ)0 (( ®+

(ℎ) , C) · ®b) = ]0 (H1 + H
′

1), . . ., −A
(ℎ)
=−C (( ®+ (ℎ) , =) · ®b) =

]=−C (H1 + H
′

1) and (H1 + H
′

1) = 0 during key queries, where

f (ℎ) , A (ℎ)0 , . . . , A
(ℎ)
=−C , ], ]0, . . . , ]=−C

*←− F@ and ℎ ∈ {1, . . . @B}.

Claim 4: In Case 1, queried keys and challenge ciphertext
can be expressed as in two ways, in Game 1 over bases
(B,B∗) and in Game 2 over bases (D,D∗) except with
probability 1/@.

proof. In Case 1, only non-matching key queries are allowed
for the adversary. ({k (ℎ)∗1 }ℎ=1,...,@B , {t

(ℎ)∗
0 }ℎ=1,...,@B , . . . ,

{t(ℎ)∗
=−C+1}ℎ=1,...,@B , 21, 22, 23) in Game 1 and in Game 2

respectively are expressed over bases (B,B∗) and (D,D∗) as:

k (ℎ)∗1 = (0, f (ℎ) ®+ (ℎ) , f (ℎ) C, ^ (ℎ) , [ (ℎ) , 0)B∗
= (0, f (ℎ) ®+ (ℎ) , f (ℎ) C, ˜̂(ℎ) , [ (ℎ) , 0)D∗

where ˜̂(ℎ) = ^ (ℎ) − f (ℎ) (( ®+ (ℎ) , C) · ®b),

t(ℎ)∗0 = (1, A (ℎ)0
®+ (ℎ) , A (ℎ)0 C, q

(ℎ)
0 , e

(ℎ)
0 , 0)B∗

= (1, A0 ®+ (ℎ) , A (ℎ)0 C, q̃0
(ℎ)
, e
(ℎ)
0 , 0)D∗ ,

where q̃0
(ℎ)
= q

(ℎ)
0 − \ − A (ℎ)0 (( ®+

(ℎ) , C) · ®b),
...

t(ℎ)∗=−C = (1, A
(ℎ)
=−C ®+ (ℎ) , A

(ℎ)
=−C=, q

(ℎ)
=−C , e

(ℎ)
=−C , 0)B∗

= (1, A=−C ®+ (ℎ) , A (ℎ)=−C=, q̃
(ℎ)
=−C , e

(ℎ)
=−C , 0)D∗ ,

where q̃ (ℎ)=−C = q
(ℎ)
=−C − \ − A

(ℎ)
=−C (( ®+ (ℎ) , =) · ®b).

21 = (Z, l ®* (1) ,−l, d, 0, i)B
= (Z ′, l ®* (1) + d(l0 ®* (0) + l1 ®* (1) ),−l − d(l0 + l1),
d, 0, i)D
= (Z ′, (l + dl1) ®* (1) + dl1−1 ®* (1−1) ,−l − d(l0 + l1),
d, 0, i)D, 22 = 6

Z

)
< (1) , 23 = 6

l ,

where Z ′ = Z+d\ is uniformly and independently distributed
since \

*←− F@ and if d ≠ 0, (l + dl1) ®* (1) + dl1−1 ®* (1−1)
is also uniformly and independently distributed in

span
〈
®* (0) , ®* (1)

〉
since l0, l1

*←− F@ .

Claim 5: In Case 2, keys and the challenge ciphertext can
be expressed as in two ways, in Game 1 over bases (B,B∗)
and in Game 2 over bases (D,D∗) except with probability
1/@.

proof. In Case 2, both non-matching and matching key
queries are allowed for the adversary.

1) Non-matching queried keys are expressed over (B,B∗)
in Game 1 and (D,D∗) in Game 2 as in Case 1, where q̃0

(ℎ)
=

q
(ℎ)
0 − A (ℎ)0 (( ®+

(ℎ) , C) · ®b), . . . , q̃ (ℎ)=−C = q
(ℎ)
=−C − A

(ℎ)
=−C (( ®+ (ℎ) , =) · ®b).

2) Matching keys are expressed over bases (B,B∗) in
Game 1 and (D,D∗) in Game 2 as follows.

k (ℎ)∗1 = (0, f (ℎ) ®+ (ℎ) , f (ℎ) C, 0, [ (ℎ) , 0)B∗
= (0, f (ℎ) ®+ (ℎ) , f (ℎ) C, ˜̂(ℎ) , [ (ℎ) , 0)D∗ ,

where

˜̂(ℎ) = −f (ℎ) (( ®+ (ℎ) , C) · ®b) = ](H1 + H
′

1) = ]( ®4
′ · ®H) + ®4′ · ®H′) )

= ](( ®* (0) ,−1) · Π3 · ( ®+, 3) · Π∗)3 + ( ®*
(1) ,−1) · Π4 · ( ®+, 3) · Π∗)4 )

= ](( ®* (0) ,−1) · ( ®+, 3) + ( ®* (1) ,−1) · ( ®+, 3))
= ]( ®* (0) · ®+ − 3 + ®* (1) · ®+ − 3) = 0,

t(ℎ)∗0 = (1, A (ℎ)0
®+ (ℎ) , A (ℎ)0 C, 0, e (ℎ)0 , 0)B∗

= (1, A (ℎ)0
®+ (ℎ) , A (ℎ)0 C, q̃1

(ℎ)
, e
(ℎ)
0 , 0)D∗

where q̃0
(ℎ)
= −A (ℎ)0 (( ®+

(ℎ) , C) · ®b) = ]0 (H1 + H
′

1) = 0.
...

t(ℎ)∗=−C = (1, A
(ℎ)
=−C ®+ (ℎ) , A

(ℎ)
=−C=, 0, e

(ℎ)
=−C , 0)B∗

= (1, A (ℎ)=−C ®+ (ℎ) , A
(ℎ)
=−C=, q̃

(ℎ)
=−C , e

(ℎ)
=−C , 0)D∗ ,

where q̃ (ℎ)=−C = −A
(ℎ)
=−C (( ®+ (ℎ) , =) · ®b) = ]=−C (H1 + H

′

1) = 0.
As for ciphertext, since Z ′ = Z + d\ and \ = 0, we have

21 = (Z, l ®* (1) + d(l0 ®* (0) + l1 ®* (1) ),−l − d(l0 + l1), d, 0, i)D
= (Z, (l + dl1) ®* (1) + dl1−1 ®* (1−1) ,−l − d(l0 + l1), d, 0, i)D,
22 = 6

Z

)
<, 23 = 6

l , where (l + dl1) ®* (1) + dl1−1 ®* (1−1) are

uniformly and independently distributed in span
〈
®* (0) , ®* (1)

〉
since l0, l1

*←− F@ , if d = 0 except with probability 1/@.
Thus, Game 1 can be conceptually changed to Game 2.

This completes the proof of Lemma 3.

Lemma 4: For any adversary A, �3E (2)A (_) = 0.
proof. The value of 1 is independent from the adversary’s

view in Game 2. Hence, �3E (2)A (_) = 0.

VII. PERFORMANCE ANALYSIS

In this section, we first implement our scheme to test the
time consumption of each algorithm affected by three main
factors including the length of strings =, the size of universes
; and the threshold C. Our experiments are conducted on Visual
Studio 2012 of a PC with Intel Core i7-8700 CPU and 16GB
RAM running 64-bit Windows 10 Profession. We write the
C++ code by utilizing GNU Multiple Precision Arithmetic
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(GMP) [19] and Pairing-Based Cryptography (PBC) libraries
[20]. The experiment utilizes a 160-bit elliptic curve group
built on a curve H2 = G3 + G over the filed F@ , where @ = 512
bits. Second, we provide a theoretical analysis and comparison
between the existing fuzzy encryption schemes and ours in
terms of performance and security.

A. Implementation

Set ; = 10, C = 10, Fig. 2 (a) shows the time cost of each
algorithm with = ranging from 10 to 50. As we can see from
this figure, the time consumption in KeyGen algorithm showed
a quadratic growth with = increasing since there are = − C + 2
key vectors to be generated in this phase and each of them is
(=; + 5) – dimensional. What’s more, the trend of time cost
for the KeyGen algorithm is changeable significantly with =

increasing since the computation of = − C + 2 key vectors is
dominant during the whole execution in order to realize fuzzy
functionality. As for the other three algorithms, the time cost
is linear with =.

Set = = 10, C = 10, Fig. 2 (b) illustrates the time cost of
all algorithms is linear with ; where ; is ranged from 10
to 50. The larger the size of the universe is, the more time
costs are required. As we can see from this figure, although
Setup algorithm is the most costly, this algorithm can be
preprocessed and thus save the time cost to some extent. When
; = 50, the time cost of each algorithm is about 1.681 seconds,
0.315 seconds, 0.176 seconds and 1.526 seconds, respectively.

Set = = 50, ; = 10, Fig. 2 (c) shows the time cost of four
algorithms with C ranging from 10 to 50. Most significantly, we
can see from this figure that the time consumption of KeyGen
algorithm will decrease with the increase of C. The larger C
is, the smaller the gap between = and C becomes, then the
fewer vectors are required in KeyGen algorithm. As a result,
the time cost will become less. Additionally, the time cost of
Setup and Enc algorithms are both independent on C, which
will be optimal in practice in some scenarios, especially with
a large threshold. As for Dec algorithm, the time cost to build
a list will be linear with the threshold.

B. Comparison

To further clarify the performance, we also provide a the-
oretical performance comparison between the existing fuzzy
encryption schemes [1], [2], [3], [4], [5], [6] and ours since
they all are designed under the public-key setting and all of
them support fuzziness based on a threshold but with different
similarity metrics. However, we omit the literature [6] from
Tab.1 since it focuses on how to design a fuzzy exactor from
a general approach and thus falls into another computational
architecture different from ours. From Tab. 1, we can see that
the fuzzy encryption schemes [1], [2], [3], [4], [5] only achieve
payload-hiding security without protecting attributes.

In contrast to the existing fuzzy attribute-hiding scheme [7]
closest to ours, which was designed under a composite-order

group, our scheme is constructed under a prime-order group.
The parameter size and the pairing operations of composite-
order group are much larger (between 10 to 24 times) and
more expensive (between 10 to 192 times slower) than that
in a same scale of prime-order group [21], [22]. On the other
hand, [7] requires testing all possible inner products of two
vectors no less than a threshold in order to decrypt successfully
and therefore the computational complexity of decryption
algorithm is exponential with the threshold. However, the
computational complexity of our decryption algorithm is linear
only with the threshold by taking advantage of the idea of
privacy-preserving mapping as we addressed in contribution.
Due to these two main reasons, our scheme achieves a higher
efficiency. Additionally, it is remarked that the fuzzy identity-
based encryption [7] can only be conducted in a binary domain
while ours works in an integer domain, and what’s worse, their
technique is not available for an integer domain if we trans-
form an integer string into a binary string straightforwardly.

VIII. APPLICATIONS

In this section, we demonstrate two application examples
of the proposed AHFE scheme in some scenarios with a
large threshold. One is how to design fuzzy keyword search
encryption (FKSE) based on a slightly modified version of
AHFE and the other is how to realize attribute-hiding closest
substring encryption (CSE) leveraging our AHFE. To this end,
for the construction of FKSE, we modify the string encoding
in Section 5.1 to suit the encoding of an integer keyword and
as for CSE scheme, it can be achieved from our construction
in Section 5.2 straightforwardly.

A. Fuzzy keyword search encrytpion

FKSE in this paper refers to a searchable encryption system
supporting such a query whether an overlap distance between
two integer keywords sets , and & is no less than a threshold
C. Our FKSE will be practical for some applications in real
life with a large threshold, especially where the threshold C

is as close to the size of universe ; as possible. For example,
in the closest keyword search of FKSE, it will fast search
the target file if and only if an overlap distance between
two integer keyword sets is ; − 1, namely they differ in
only one keyword. In such an application, we see that a fast
search is desirable in PKSE for a practical reason. Therefore,
we develop a new encoding and slightly modify our AHFE
scheme to conduct this application since in our scheme the
computational complexity of decryption is linear with the
threshold.

Now, we define a universe * = {1, . . . , ;} and ; is a positive
integer. Let , = {F1, F2, . . . , F=1 } and & = {@1, @2, . . . , @=2 }
be two integer keyword sets. According to the following rule
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(a) (b) (c)

Fig. 4. Implementation result

Tab. I. Performance comparison

Ciphertext size Key size Decryption cost Security String domain Similarity metric

[1] (= + 1) |� | + |�) | 2 |� | = |� | + 24 Payload Integer Mahalanobis distance
[2] (=1 + 1) |� | + |�) | =2 |� | (3 + 2)4 Payload Integer Overlap distance
[3] (=1 + ;2 + 3) |�2 | +

���2
)

�� (=2 + ;2 + 2) |�2 | ( (=1 + 1) (=2 + 1) + g2)42 Payload Integer Edit distance
[4] (2= + 4) |� | |�) | +

��/@ �� 2=4 + = |� | Payload Integer Edit distance
[5] (! + 2) |� | + 2

��/@ �� ��/@ �� 24 Payload Binary Designate position
[7] (2 ∑C<0G

8=0
(=
8

)
+ 3) |�2 | (2 ∑C+1

8=0
(=
8

)
+ 3) |�2 | (2 ∑C+1

8=0
(=
8

)
+ 3)42 Attribute Binary Hamming distance

Ours (=; + 6) |� | + = |�) | (= − C + 2) (=; + 5) |� | + (= − C + 1) |� | 2(= − C + 1)4 + 2(=; + 5)4 Attribute Integer Overlap distance

Notes: |� | is the size of a prime-order group �.
��/@ �� is the size of a element in /@ . |�2 | and

���2
)

�� denote the size of a composite-order group �2 and a pairing
group with composite-order �2

)
, respectively. 4 and 42 is the bilinear map with a prime-order group and a composite-order group, respectively. =1 and =2 are the

dimensions of two different strings. g is the edit distance between two strings. 3 is the overlap distance between two strings. C<0G is the maximum of threshold.
! is the maximum size of the wildcard set that the ciphertext allows.

II, , and & can be encoded two ; – dimensional vectors ®*
and ®+ as:

®*{F1 ,F2...F=1 } =

{
D8 = 1, 8 5 8 ∈ ,, 8 = 1, . . . , ;
D8 = 0, otherwise

II

®+{@1 ,@2 ,...,@=2 } =

{
E8 = 1, 8 5 8 ∈ &, 8 = 1, . . . , ;
E8 = 0, otherwise

Now, we show how to design a new FKSE scheme from
our AFHE. The new searchable scheme consists of four
algorithms: Setup, Trapdoor, PEKS and Test. However, there
are three main differences when we modify our AFHE suitable
to a new FKES. First, according to the rule II, in the new
scheme the dimension of encoding vectors ®* and ®+ is ;

rather than = · ; in our AFHE and therefore the inputs
of Setup algorithm in the new FKES scheme only need a
security parameter _ and the size of universe ;. Second, a
searchable encryption system stresses “Test" capability instead
of “Decrypt" capability. Therefore, there is no need to use a
private key to decrypt a ciphertext and output a message in a
searchable system. As a result, we cancel out the ciphertext
22 in encryption stage, part of decryption keys from t∗0 to
t∗=−C , and step 3 in decryption period from the original AHFE
scheme. Also, the PEKS algorithm removes the input of <
since the new FKES only needs the trapdoor k∗1,L1 and the
ciphertext 21, 23,L2 to do test functionality. At last, since the
upper bound of overlap distance between two keyword sets
is the size of universe ;, one input of Dec algorithm in our
AFHE = will be replaced with the size of universe ; in the

Test algorithm.

• Setup(1_, ;): Taking as input a security parameter _ and
the size of the universe ;, the setup algorithm computes

(<?:, <B:) ←− ����.(4CD?(1_, ;)
and outputs a key pair (<?:, <B:).

• Trapdoor(<?:, <B:, &, C): Taking as input the key pair
(<?:, <B:), a keyword set & and a threshold C, the
trapdoor algorithm first transforms & into ®+ and then
computes
)& = {k∗1,L1} ←− ����. 4H�4=(<?:, <B:, ®+, C)

• PEKS(<?:,,): Taking as input the public key <?: , a
keyword set , , the PEKS algorithm first transforms ,
into ®* and then computes:

�), = {21, 23,L2} ←− ����.�=2(<?:, ®*)
• Test(<?:, )&, �), , ;, C): Taking as input the public key
<?: , the ciphertext �), , the token )&, the size of an
universe ; and the threshold C, the test algorithm computes

′�;06′←− ����.�42(<?:, )&, �), , ;, C)
Test algorithm outputs ′�;06 = 1′, if the overlap distance
between , and & is no less than threshold C, there exists
one item in T which must fall into the list L2 and the
search is succesful; otherwise, outputs ′�;06 = 0′.

B. Attribute-hiding closest substring encryption

CSE is defined as one that ciphertext associated with a string
( can be decrypted with a private key associated with another
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string (′, if the overlap distance between substrings in ( and
substrings in (′ is no less than a threshold C ′. Unfortunately,
the existing closest substring encryption [2] is payload-hiding
as described in the Introduction. How to design an attribute-
hiding closest substring encryption is challenging. Here, we
present a new CSE scheme leveraging our AHFE after the
original problem is modified slightly, which is shown as fol-
lows. Our CSE is practical in some scenarios especially with a
large threshold, such as facial recognition, DNA matching and
other applications with highly approximate matching requests.

Let * be a universe and the size of * be ;. Set ( =

{B1B2 . . . B=1 } and (
′
= {B′1B

′
2 . . . B

′
=2 }(=1 ≤ =2). In order

to realize closest substring matching between ( and (′,
both will be first transformed two (=2 − =1 + 1) length
strings as (1 = {B1 . . . B=1 , B1 . . . B=1 , . . . , B1 . . . B=1 } and (

′

1 =

{B′1 . . . B
′
=1 , B

′

2 . . . B
′

=1+1, . . . , B
′

=2−=1+1 . . . , B
′
=2 }, and (1, (′1 will

be further encoded into two (= ·;) – dimensional vectors ®* and
®+ accoding to rule I in Section 5.1, where = = =1 (=2 −=1 +1),
C = =1C

′ and ; ramains unchanged.

IX. CONCLUSION

In this paper, we propose a new attribute-hiding fuzzy
encryption scheme under a public-key setting for privacy-
preserving data evaluation, which is able to work in an integer
domain with higher efficiency. Compared with the existing
fuzzy encryption schemes, our proposal achieves a three-fold
functionality simultaneously: fuzziness, attribute-hiding and
efficiency. Finally, as two application examples, we show how
our AHFE scheme can be used to realize fuzzy keyword search
encryption and attribute-hiding closest substring encryption.

More interesting, our effort in this work focused on the
IBE system which inherently relies on a fully trusted third
party. However, locating such a completely trusted third party
proves difficult in real-world scenarios sometimes. Therefore,
the challenging problem is designing more attribute-hiding
fuzzy encryption schemes supporting different metrics but in a
certificateless encryption system or a decentralized ABE one.
All these will be left for our future work.
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