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The suffix array is a fundamental data structure for many applications that involve string 
searching and data compression. We obtain the first in-place suffix array construction 
algorithms that are optimal both in time and space for (read-only) integer alphabets. We 
make the following contributions:

1. For integer alphabets, we obtain the first linear time suffix sorting algorithm which 
uses only O (1) workspace. The input string may be modified during the execution of 
the algorithm, but should be restored upon termination of the algorithm.

2. We strengthen the first result by providing the first in-place linear time algorithm for 
read-only integer alphabets with |�| = O (n) (i.e., the input string cannot be modified). 
This algorithm settles the open problem posed by Franceschini and Muthukrishnan in 
ICALP 2007.

3. Besides, for the read-only general alphabets (i.e., only comparisons are allowed), we 
present an optimal in-place O (n logn) time suffix sorting algorithm.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In SODA 1990, suffix arrays were introduced by Manber and Myers [3] as a space-saving alternative to suffix trees [4,5]. 
Since then, it has been used as a fundamental data structure for many applications in string processing, data compression, 
text indexing, information retrieval and computational biology [6–10]. Particularly, the suffix arrays are often used to com-
pute the Burrows-Wheeler transform [11] and Lempel-Ziv factorization [12]. Comparing with suffix trees, suffix arrays use 
much less space in practice. Abouelhoda et al. [13] showed that any problem which can be computed using suffix trees can 
also be solved using suffix arrays with the same asymptotic time complexity, which makes suffix arrays very attractive both 
in theory and in practice. Hence, suffix arrays have been studied extensively over the last 20 years (see e.g., [14–20]). We 
refer the readers to the surveys [21,22] for many suffix sorting algorithms.

In 1990, Manber and Myers [3] obtained the first O (n log n) time suffix sorting algorithm over general alphabets. In 2003, 
Ko and Aluru [15], Kärkkäinen and Sanders [14] and Kim et al. [23] independently obtained the first linear time algorithm 
for suffix sorting over integer alphabets. Clearly, these algorithms are optimal in terms of asymptotic time complexity. 

✩ This paper extends a preliminary version appeared in the Proceedings of the 25th International Symposium on String Processing and Information 
Retrieval (SPIRE 2018) [1] and a one-page summary appeared in the Proceedings of the 28th IEEE Data Compression Conference (DCC 2018) [2].
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However, in many applications, the computational bottleneck is the space as we need the space-saving suffix arrays instead 
of suffix trees, and significant efforts have been made in developing lightweight (in terms of space usage) suffix sorting 
algorithms for the last decade (see e.g., [24,25,15,26,27,17,28,18–20]). In particular, the ultimate goal in this line of work is 
to obtain in-place algorithms (i.e., O (1) additional space), which are also asymptotically optimal in time.

1.1. Problem setting

Problem: Given a string T = T [0 . . .n − 1] with n characters, we need to construct the suffix array (SA) which contains the 
indices of all sorted suffixes of T (see Definition 1 for the formal definition of SA).

We consider the following three popular settings. Note that the constant alphabets (e.g., ASCII code) is a special case 
of integer alphabets, and the (read-only) integer alphabets is commonly used in practice. We measure the space usage of 
an algorithm in the unit of words same as [17,20], i.e., the standard RAM model is used. A word contains �log n� bits. One 
standard arithmetic or bitwise boolean operation on word-sized operands costs O (1) time.

1. Integer alphabets: Each T [i] ∈ [1, |�|] where the cardinality of the alphabets is |�| ≤ n and each T [i] is stored in a 
word. The input string T may be modified by the algorithm, but should be restored upon termination of the algorithm.

2. Read-only integer alphabets: Each T [i] ∈ [1, |�|] where |�| = O (n). Moreover, the input string T is read-only. Each T [i]
can be read in O (1) time. Here we allow |�| = O (n) rather than |�| ≤ n in Case 1.

3. Read-only general alphabets: The only operations allowed on the characters of T are comparisons. The input string T is 
read-only and we assume that each comparison takes O (1) time. We cannot write the input space, make bit operations, 
even copy an input character T [i] to the work space. Clearly, �(n log n) time is a lower bound for suffix sorting in this 
case, as it generalizes comparison-based sorting.

The workspace used by an algorithm is the total space needed by the algorithm, excluding the space required by the 
input string T and the output suffix array SA. An algorithm which uses O (1) words workspace to construct SA is called an 
in-place algorithm. See Tables 11 and 2 for an overview.

1.2. Related work and our contributions

1.2.1. Integer alphabets
In this case, we allow the algorithm to modify the string T during the execution of the algorithm. We also describe how 

to restore T (if needed) at the end of the algorithm in Appendix C. Chan et al. [29] denote this model as the restore model in 
their paper. We list several previous results and our new result in Table 1. Earlier algorithms that require more than O (n)

words workspace (see Table 1) do not need to modify the string T as they can afford to create a new array with n words 
to store the input.

Nong et al. [30,19] obtained the first nearly linear time algorithm that used sublinear workspace. Recently, Nong [20]
obtained a linear time algorithm which used |�| words workspace without modifying the string T . We improve their results 
as in the following theorem.

Theorem 1. There is an in-place linear time algorithm for suffix sorting over integer alphabets with |�| ≤ n.

Our algorithm is based on the induced sorting framework developed in [15] (which is also used in several previous 
algorithms [17,21,18,30,19,20]). We develop a few elementary, yet effective tricks to further reduce the space usage to 
constant. The proposed algorithm and the new tricks are also useful for the read-only integer and general alphabets.

1.2.2. Read-only integer alphabets
Now, we consider the more difficult case where the input string T is read-only. This is the main contribution of this 

paper. There are many existing algorithms for this case. See Table 1 for an overview. In ICALP 2007, Franceschini and 
Muthukrishnan [17] posed an open problem for designing an in-place algorithm that takes o(n log n) time or ultimately 
O (n) time for (read-only) integer alphabets with |�| ≤ n (in fact, they did not specify whether the input string T is read-
only or not). The current best result along this line is provided by Nong [20], which used |�| words workspace (Nong’s 
algorithm is in-place if |�| = O (1), i.e., constant alphabets). Note that in the worst case |�| can be as large as O (n).

In this paper, we settle down this open problem by providing the first optimal linear time in-place algorithm, as in the 
following theorem. Note that our result is in fact slightly stronger since we allow |�| = O (n) instead of |�| ≤ n mentioned 
in the open problem [17].

Theorem 2 (Main Theorem). There is an in-place linear time algorithm for suffix sorting over integer alphabets, even if the input string 
T is read-only and the size of the alphabet |�| is O (n).

1 Some previous algorithms state the space usages in terms of bits. We convert them into words.

2



Z. Li, J. Li and H. Huo Information and Computation 285 (2022) 104818

Table 1
Time and workspace of suffix sorting alg. for (read-only) integer alphabets �.

Time Workspace (words) Algorithms

O (n2) O (n) [31]
O (n log2 n) O (n) [32]
O (n

√|�| log(n/|�|)) O (n) [33]
O (n log n) O (n) [3,34]
O (n log logn) O (n) [35]
O (n) O (n) [23,14,15]
O (n log log |�|) O (n log |�|/ log n) [26]
O (vn) O (n/

√
v) v ∈ [1,

√
n] [16]

O (n) n + n/ log n + O (1) [18]
O (n2 log n) cn + O (1) c < 1 [24,27]
O ( 1

ε n) � nε + n/ log n + O (1)a [30,19]
O (n2 log n) |�| + O (1) [36]
O (n log |�|) |�| + O (1) [28]
O (n) |�| + O (1) [20]
O (n) O (1) This paper

T is read-only in all algorithms except in the fifth to last row (marked with �).
a Nong et al. [30,19] assumed that the word size is 32 bits and any integer can fit into one 

word. The result listed here is under the standard assumption that a word contains �logn�
bits. It is not hard to verify that the bucket array B in their algorithm requires nε words. They 
also need an n bits array (or equivalently n/ logn words).

Table 2
Time and workspace of suffix sorting algorithms for read-only general alphabets.

Time Workspace (words) Algorithms

O (n log n) O (n) [3,34]
O (vn + n log n) O (v + n/

√
v) v ∈ [2,n] [25]

O (vn + n log n) O (n/
√

v) v ∈ [1,
√

n] [16]
O (n log n) O (1) [17]
O (n log n) O (1) This paper

1.2.3. Read-only general alphabets
Now, we consider the case where the only operations allowed on the characters of string T (read-only) are comparisons. 

See Table 2 for an overview of the results. In 2002, Manzini and Ferragina [24] posed an open problem, which asked 
whether there exists an O (n log n) time algorithm using o(n) workspace. In 2007, Franceschini and Muthukrishnan [17]
obtained the first in-place algorithm that runs in optimal O (n log n) time. Their conference paper is somewhat complicated 
and densely-argued.

We also give an optimal in-place algorithm which achieves the same result, as in the following theorem. In addition, our 
algorithm does not make any bit operations while theirs uses bit operations heavily. Our algorithm is also arguably simpler.

Theorem 3. There is an in-place O (n logn) time algorithm for suffix sorting over general alphabets, even if the input string T is read-
only and only comparisons between characters are allowed.

1.3. Difficulties and our approach

1.3.1. Difficulties
Typically, the suffix sorting algorithms are recursive algorithms. The size of the recursive (reduced) sub-problem is usually 

less than half of the current problem. See e.g., [15,16,21,17–20]. However, all previous algorithms require extra arrays, e.g., 
bucket array (which needs |�| words at the top recursive level and n/2 words at the deep recursive levels), type array (which 
needs n/ log n words) and/or other auxiliary arrays (which need up to O (n) words), to construct the reduced problems and 
use the results of the reduced problems to sort the original suffixes.2

In particular, Nong et al. [18] made a breakthrough by providing the SA-IS algorithm which only required one bucket 
array (which needs max{|�|, n/2} words) and one type array (n/ logn words). Note that the bucket array and type array are 
reused for each recursive level.

Currently, the best result is provided by Nong [20]. However, Nong’s algorithm requires the bucket array at the top 
recursive level, but not required at the deep levels. Hence, it needs |�| words instead of max{|�|, n/2} words. Note that |�|
can be O (n) in the worst case for integer alphabets. For the type array, Nong used this bucket array to implicitly indicate 
the type information.

2 The definitions of bucket array and type array can be found in Section 2.
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Thus, the main technical difficulty is to remove the workspace for the bucket array at the top recursive level since there is no extra 
space to use. Note that it is non-trivial since T is read-only and SA needs to store the final order of all suffixes. Besides, 
the previous sorting steps or tricks may not work if one removes the bucket array. For example, Nong [20] used the bucket 
array to indicate the type information. If the bucket array is removed, then one would need the type array.

1.3.2. Our approach
We briefly describe our optimal in-place linear time suffix sorting algorithms that overcome these difficulties. We provide 

an interior counter trick which can implicitly represent the dynamic LF/RF-entry information (see Section 2 for the definition) 
in SA. Besides, we provide a pointer data structure which can represent the bucket heads/tails in SA. Combining these 
two techniques, we can remove the workspace needed by the bucket array entirely. Note that it is non-trivial for the top 
recursive level which is the most difficult part, since the pointer data structure needs nonconstant workspace and we only 
have O (1) extra workspace. In our algorithm, we divide the sorting step into two stages to address this issue. In order to 
remove the type array, we provide some useful properties and observations which allows us to retrieve the type information 
efficiently. For the general alphabets case, we provide simple sorting steps and extend the interior counter trick to obtain 
an optimal in-place O (n log n) time suffix sorting algorithm.

Organization: The remaining of the paper is organized as follows. Section 2 covers the preliminary knowledge. In Sec-
tion 3, 4 and 5, we describe the framework and the details of our optimal in-place suffix sorting algorithms for the integer 
alphabets, read-only integer alphabets and read-only general alphabets, respectively. Finally, we conclude in Section 6.

2. Preliminaries

Given a string T = T [0 . . .n − 1] with n characters, the suffixes of T are T [i . . .n − 1] for all i ∈ [0, n − 1], where T [i . . . j]
denotes the substring T [i]T [i + 1] . . . T [ j] in T . To simplify the argument, we assume that the final character T [n − 1]
is a sentinel which is lexicographically smaller than any other characters in �. Without loss of generality, we assume 
T [n − 1] = 0.3 Any two suffixes in T must be different since their lengths are different, and their lexicographical order can 
be determined by comparing their characters one by one until we see a difference due to the existence of the sentinel.

Definition 1. The suffix array SA contains the indices of all suffixes of T which are sorted in lexicographical order, i.e., 
suf(SA[i]) < suf(SA[ j]) for all i < j, where suf(i) denotes the suffix T [i . . .n − 1].

For example, if T = “1220”, then all suffixes are {1220, 220, 20, 0} and SA = [3, 0, 2, 1]. Note that SA always uses n words 
no matter what the alphabets � are, since it contains the permutation of {0, . . . , n − 1}, where n is the length of T .

A suffix suf(i) is said to be S-suffix (S-type suffix) if suf(i) < suf(i + 1). Otherwise, it is L-suffix (L-type suffix) [15]. The 
last suffix suf(n − 1) containing only the single character 0 (the sentinel) is defined to be an S-suffix. Equivalently, the suf(i)
is S-suffix if and only if (1) i = n − 1; or (2) T [i] < T [i + 1]; or (3) T [i] = T [i + 1] and suf(i + 1) is S-suffix. Obviously, the 
types can be computed by a linear scan of T (from T [n − 1] to T [0]). We further define the type of a character T [i] to 
S-type (or L-type resp.) if suf(i) is S-suffix (or L-suffix resp.). A substring T [i . . . j] is called an S-substring if both T [i] and 
T [ j] are S-type, and there is no other S-type characters between them, or i = j = n − 1 (the single sentinel). We can define 
L-substring similarly.

Example: We use the following running example for the integer alphabets case throughout the paper. Consider a string T [0 . . .12] =
“2113311331210”.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S

E.g., T [2] is S-type since T [2] < T [3]. All S-substrings are {11, 1331, 11, 1331, 1210, 0}. �
Obviously, the indices of all suffixes, which begin with the same character, must appear consecutively in SA. We denote 

a subarray in SA for these suffixes with the same beginning character as a bucket, where the head and the tail of a bucket 
refer to the first and the last index of the bucket in SA respectively. Moreover, we define the first common character as its 
bucket character. We often use the bucket character to index the bucket. For example, if the bucket character is T [i], we refer 
to this bucket as bucket T [i]. Sometimes we say that we place suffix suf(i) of T into SA, it always means that we place its 
corresponding index i into SA since suf(i) is a substring.

The induced sorting technique, developed by Ko and Aluru [15], is responsible for many recent advances of suffix sorting 
algorithms [21,17,18,30,19,20], and is also crucial to us. It can be used to induce the lexicographical order of L-suffixes from 
the sorted S-suffixes. Before introducing the induce sorting technique, we need the following useful property with respect 
to L-suffixes and S-suffixes (the proof simply follows from the definition of L- and S-suffix).

3 Some previous papers use $ to denote the sentinel. We use 0 here since we consider the integer alphabets.
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Property 1 ([15]). In any bucket, S-suffixes always appear after the L-suffixes in SA, i.e., if an S-suffix and an L-suffix begin 
with the same character, the L-suffix is always smaller than the S-suffix.

Now, we briefly introduce the standard induced sorting technique which needs the bucket array and type array explicitly. 
The bucket array contains |�| integers and each denotes the position of a bucket head/tail in SA. The type array contains n
bits and each entry denotes an L/S-type information for T (i.e., 0/1 for L/S-type).

Inducing the order of L-suffixes from the sorted S-suffixes: Assume that all indices of the sorted S-suffixes are already in 
their correct positions in SA (i.e., in the tail of their corresponding buckets in SA). Now, we define some new notations (e.g., 
LF/RF-entry) to simplify the representation. We scan SA from left to right (i.e., from SA[0] to SA[n − 1]). We maintain an 
LF-pointer (leftmost free pointer) for each bucket which points to the leftmost free entry (called the LF-entry) of the bucket. 
The LF-pointers initially point to the head of their corresponding buckets. When we scan SA[i], let j = SA[i] − 1. If suf( j)
is an L-suffix (indicated by the type array), we place the index j of suf( j) into the LF-entry of bucket T [ j], and then let the 
LF-pointer of this bucket T [ j] point to the next free entry. The LF-pointers are maintained in the bucket array. If suf( j) is 
an S-suffix, we do nothing (since all S-suffixes are already sorted in the correct positions). We give a running example in 
Appendix A.1.

Sorting all S-suffixes from the sorted L-suffixes is completely symmetrical: we scan SA from right to left, maintaining an 
RF-pointer (rightmost free pointer) for each bucket which points to the RF-entry (rightmost free entry) of the bucket.

Lemma 1 ([15]). Suppose all S-suffixes (or L-suffixes resp.) of T are already sorted. Then using induced sorting, all L-suffixes (or S-
suffixes resp.) can be sorted correctly.

The idea of induced sorting is that the lexicographical order between suf(i) and suf( j) is decided by the order of suf(i +1)

and suf( j +1) if suf(i) and suf( j) are in the same bucket (i.e., T [i] = T [ j]). We only need to specify the correct order of these 
L-suffixes in the same buckets since we always place the L-suffixes in their corresponding buckets. Consider two L-suffixes 
suf(i) and suf( j) in the same bucket. We have suf(i + 1) < suf(i) and suf( j + 1) < suf( j) by the definition of L-suffix. Since 
we scan SA from left to right, suf(i + 1) and suf( j + 1) must appear earlier than suf(i) and suf( j). Hence the correctness of 
induced sorting is not hard to prove by induction.

Inducing the order of L-suffixes from the sorted LMS-suffixes: A suffix suf(i) is called an LMS-suffix (leftmost S-type) if T [i]
is S-type and T [i − 1] is L-type, for i ≥ 1. Nong et al. [18] observed that we can sort all L-suffixes from the sorted LMS-
suffixes (instead of S-suffixes) if they are stored in the tail of their corresponding buckets in SA. Roughly speaking, the idea 
is that in the induced sorting, only LMS-suffixes are useful for sorting L-suffixes. One difference from the standard induced 
sorting is that we may scan some empty entries in SA. However, the empty entries can be ignored and all L-suffixes can 
still be sorted correctly. We provide a running example in Appendix A.2.

Lemma 2 ([18]). Suppose all LMS-suffixes of T are already sorted and stored in the tail of their buckets. Then using induced sorting, all 
L-suffixes can be sorted correctly.

After we sort all L-suffixes from the sorted LMS-suffixes, we can induce the order of all S-suffixes from the sorted L-
suffixes by Lemma 1, and sort all suffixes. Now, we introduce how to sort the LMS-suffixes. First, we define some notations. 
A character T [i] of T is called LMS-character if suf(i) is LMS-suffix. A substring T [i . . . j] is called an LMS-substring if both 
T [i] and T [ j] are LMS-characters, and there is no other LMS-character between them, or i = j = n − 1 (the single sentinel). 
Similarly, we can define LML-suffix (leftmost L-type) and LML-substring.

Sort the LMS-suffixes: If we know the lexicographical order of all LMS-substrings, then we can use their ranks to construct 
the reduced problem T1. Sorting the suffixes of T1 is equivalent to sorting the LMS-suffixes of T (see the following example). 
Nong et al. [18] showed that we can use the same induced sorting step to sort all LMS-substrings from the sorted LMS-
characters of T . We briefly sketch their idea. We refer the readers to [18] for the details. We define the LMS-prefix of a suffix 
suf(i) to be T [i . . . j], where j > i is the smallest position in suf(i) such that T [ j] is an LMS character (e.g., the LMS-prefix 
of suf(4) is “31”). Suppose all LMS-characters are stored in the tail of their corresponding buckets in SA. First, we sort all 
LMS-prefix of L-suffixes from the sorted LMS-characters, using one scan of induced sorting from left to right (the same as 
induce the order of L-suffixes from LMS-suffixes). Then we sort all LMS-prefix of S-suffixes from the sorted LMS-prefix of 
L-suffixes (in the same way as inducing the order of S-suffixes from L-suffixes). After this, we have sorted all LMS-substrings 
since all LMS-substrings are LMS-prefix of S-suffixes by the definition of LMS-prefix. The correctness proof follows the same 
argument as in the standard setting.

Example: Continue the running example:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S
LMS ∗ ∗ ∗ ∗

5
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Note that the LMS-substrings are {11331, 11331, 1210, 0}. Their ranks in lexicographical order are {1, 1, 2, 0}. Thus, the reduced problem 
is T1 = 1120. The order of the suffixes of T1 is the same as the order of corresponding LMS-suffixes of T . The suffix array of the reduced 
problem T1 is solved recursively. �

Note that in this preliminary section, the induced sorting steps are not in-place since they require explicit storage for the 
bucket and type arrays.

3. Suffix sorting for integer alphabets

3.1. Framework

To avoid confusion, we recall that an LMS-character is a single character, an LMS-substring is a substring which begins 
with an LMS-character and ends with an LMS-character (and there is no other LMS-character between them) or is the 
single sentinel, and an LMS-suffix is a suffix of T which begins with an LMS-character. Our optimal in-place suffix sorting 
algorithm for integer alphabets consists of the following steps.

1. (Section 3.2) Rename T .
2. (Section 3.3) Sort all LMS-characters of T .
3. (Section 3.4) Induced sort all LMS-substrings from the sorted LMS-characters.
4. (Section 3.5) Construct the reduced problem T1 from the sorted LMS-substrings.
5. (Section 3.6) Sort the LMS-suffixes by solving T1 recursively.
6. (Section 3.7) Induced sort all suffixes of T from the sorted LMS-suffixes.

In a high level, the framework is similar to several other previous algorithms based on induced sorting [15,17,21,18,30,
19,20], and in particular to [18]. Our algorithm differs in the detailed implementation of the above steps to obtain the first 
in-place algorithm (i.e., remove the bucket array and type array). We describe the details of the above steps in the following 
sections. We also describe how to restore T (if needed) at the end of the algorithm in Appendix C.

3.2. Rename T

In this section, we rename each L-type character of T to be the index of its bucket head and each S-type character of T
to be the index of its bucket tail (Nong et al. [19] has a similar renaming step). The correctness of the step is shown in the 
following Lemma 3.

Lemma 3. The renaming step does not change the lexicographical order of all suffixes of T .

Proof. For any two suffixes, beginning with the same character, the L-suffix is smaller than the S-suffix (Property 1). Hence, 
the renaming step does not change the relative orders of all suffixes. �
Example: We illustrate the renaming process in our running example.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S
SA (12) (11 1 5 9 2 6) (10 0) (4 8 3 7)

Bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

After renaming, we get T ′ as following:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T ′ 7 6 6 9 9 6 6 9 9 6 7 1 0

For instance, T ′[0] = 7 since T [0] is L-type and the head of bucket T [0] (i.e., bucket 2) is 7, and T ′[1] = 6 since T [1] is S-type and the 
tail of bucket T [1] is 6. Note that the heads of bucket 0, 1, 2, 3 are 0, 1, 7, 9, respectively. �

Now, we describe how to implement this step using linear time and O (1) workspace. This step is very simple and similar 
to the counting sort (see e.g., [37, Ch. 8]). We first rename all characters to be the index of its bucket head, and then rename 
all S-type characters to be the index of its bucket tail.

1. First we scan T once to compute the number of times each character occurs in T and store them in SA. Then we 
perform a prefix sum computation to determine the starting position of each character (i.e., bucket head) in SA. Finally 
we scan T once again to rename each character as the index of its bucket head.
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2. Now we need to let the S-type characters of T to be the index of its bucket tail. We scan T to compute the number of 
times each character occurs in T and store them in SA. Then, we scan T once again from right to left. For each S-type 
T [i], we let it be the index of its bucket tail (i.e., just add the number of characters belonging to this bucket to T [i]
and minus 1). Note that if we scan T from right to left, for each T [i], we can know its type is L-type or S-type in O (1)

time. There are two cases: 1) if T [i] 
= T [i + 1], we can know its type immediately by definition; 2) if T [i] = T [i + 1]
then its type is the same as the type of T [i + 1]. We only need to maintain one boolean variable which represents the 
type of previous scanned character T [i + 1].

3.3. Sort all LMS-characters

Now, we sort all LMS-characters of T , i.e., place the indices of the LMS-characters in the tail of their corresponding 
buckets in SA. Note that we do not have extra space to store the LF/RF-pointers/counters for each bucket to indicate the 
position of the free entries in the process. For this purpose, we develop a simple trick, called interior counter trick, which 
allows us to carefully use the space in SA to store the information of both the indices and the pointers. The implementation 
details are described below. In the steps, we use three special symbols which are Unique, Empty and Multi.4

Step 1. Initializing SA: First we clear SA (i.e., SA[i] = Empty, for all i ∈ [0, n − 1]). Then we scan T from right to left. For 
every T [i] which is an LMS-character (this can be easily decided in constant time), do the following:

(1) If SA[T [i]] = Empty, let SA[T [i]] = Unique (meaning it is the unique LMS-character in this bucket). Note that after the 
renaming step, T [i] is the index of its bucket tail.

(2) If SA[T [i]] = Unique, let SA[T [i]] = Multi (meaning the number of LMS-characters in this bucket is at least 2).
(3) Otherwise, do nothing.

Step 2. Placing all indices of LMS-characters into SA: We scan T from right to left. For every T [i] which is an LMS-character, 
we distinguish the following cases:

(1) SA[T [i]] = Unique: In this case, we let SA[T [i]] = i (i.e., T [i] is the unique LMS-character in its bucket, and we just put 
its index into its bucket).

(2) SA[T [i]] = Multi and SA[T [i] − 1] = Empty: In this case, T [i] is the first (i.e. largest index, since we scan T from right to 
left) LMS-character in its bucket. So if SA[T [i] − 2] = Empty, we let SA[T [i] − 2] = i and SA[T [i] − 1] = 1 (i.e., we use 
SA[T [i] − 1] as the counter for the number of LMS-characters which has been added to this bucket so far). Otherwise, 
SA[T [i] − 2] 
= Empty (i.e., SA[T [i] − 2] is in a different bucket, which implies that this bucket has only two LMS-
characters). Then we let SA[T [i]] = i and SA[T [i] − 1] be Empty (We do not need a counter in this case and the last 
LMS-character belonging to this bucket will be dealt with in the later process).

(3) SA[T [i]] = Multi and SA[T [i] − 1] 
= Empty: In this case, SA[T [i] − 1] is maintained as the counter. Let c = SA[T [i] − 1]. 
We check whether the position (SA[T [i] − c − 2]), i.e. c + 2 positions before its tail, is Empty or not. If SA[T [i] − c −
2] = Empty, let SA[T [i] − c − 2] = i and increase SA[T [i] − 1] by one (i.e., update the counter number). Otherwise 
SA[T [i] − c − 2] 
= Empty (i.e., reaching another bucket), we need to shift these c indices to the right by two positions 
(i.e., move SA[T [i] − c − 1 . . . T [i] − 2] to SA[T [i] − c + 1 . . . T [i]]), and let SA[T [i] − c] = i and SA[T [i] − c − 1] = Empty. 
After this, only one LMS-character needs to be added into this bucket in the later process.

(4) SA[T [i]] is an index: From case (2) and (3), we know the current T [i] must be the last LMS-character in its bucket. So 
we scan SA from right to left, starting with SA[T [i]], to find the first position j such that SA[ j] = Empty. Then we let 
SA[ j] = i. Now, we have filled the entire bucket. However, we note that not every bucket is fully filled as we have only 
processed LMS-characters so far.

After the above Step 1 and 2, there may be still some special symbols Multi and the counters (because the bucket is not fully 
filled, so we have not shifted these indices to the right in the bucket). We need to free these position. We scan SA once 
more from right to left. If SA[i] = Multi, we shift the indices of LMS-characters in this bucket to the right by two positions 
(i.e., SA[i − c − 1 . . . i − 2] to SA[i − c + 1 . . . i]) and let SA[i − c − 1] = SA[i − c] = Empty, where c = SA[i − 1] denotes the 
counter.

Lemma 4. The indices of the LMS-characters can be placed in the tail of their corresponding buckets in SA using linear time and O (1)

workspace.

Proof. We only need to show that the Step 2, i.e., placing all indices of LMS-characters into SA, takes O (n) time. For each 
scanned T [i], it takes O (1) time except when the T [i] is the last two LMS-characters of its bucket. In this case, we need to 

4 We use at most five special symbols in this paper. The special symbol is only used to simplify the argument and we do not have to impose any 
additional assumption to accommodate these symbols (including the read-only cases in Section 4 and 5). These special symbols can be handled using an 
extra O (1) workspace. We defer the details to Appendix B.
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shift the indices in this bucket when dealing with the penultimate LMS-character in its bucket, and scan the bucket when 
dealing with the last one. It takes O (n) time since every bucket only needs to be shifted and scanned once. The space usage 
of this step is obvious. �
Example: Continue our example (U , E and M denote Unique, Empty and Multi, respectively):
Step 1. Initializing SA:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

LMS ∗ ∗ ∗ ∗
SA E E E E E E E E E E E E E

After initialization:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (U) (E) (E E E E M) (E E) (E E E E)

Step 2. Placing all indices of LMS-characters into SA:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (E) (E E E E M) (E E) (E E E E)

SA (12) (E) (E E 9 1 M) (E E) (E E E E)

SA (12) (E) (E 5 9 2 M) (E E) (E E E E)

SA (12) (E) (1 5 9 3 M) (E E) (E E E E)

SA (12) (E) (E E 1 5 9) (E E) (E E E E)

In the last row, we remove all Multi symbols and counters. �

3.4. Induced sort all LMS-substrings from the sorted LMS-characters

In this section, we sort all LMS-substrings from the sorted LMS-characters using induced sorting. Since all LMS-substrings 
are LMS-prefix of S-suffixes (Recall that the LMS-prefix of suf(i) is T [i . . . j], where j > i is the smallest position in suf(i)
such that T [ j] is an LMS character) and sorting the LMS-prefix of all suffixes from the sorted LMS-characters is the same as 
sorting all suffixes from the sorted LMS-suffixes (see the preliminary Section 2).

Now, we describe the details. We divide this step into two parts.

(1) First, we sort the LMS-prefix of all suffixes from the sorted LMS-characters. Since this part is the same as sorting all 
suffixes from the sorted LMS-suffixes, we will describe the details in Section 3.7.

(2) Then, we place the indices of all sorted LMS-substrings in SA[n − n1 . . .n − 1], where n1 denotes the number of LMS-
characters. Note that the number of LMS-characters, LMS-suffixes, and LMS-substrings are the same. Moreover, n1 ≤ n

2
since any two LMS-characters are not adjacent.

The first part is described and proved in Section 3.7. Here, we only need to explain the second part how to place the 
indices of all sorted LMS-substrings in SA[n − n1 . . .n − 1]. Now we give the following Lemma 5 to show that this step can 
be done in linear time using O (1) workspace. For its proof, we need the Observation 1 and Lemma 6.

Lemma 5. The indices of all sorted LMS-substrings can be placed in SA[n − n1 . . .n − 1] using linear time and O (1) workspace.

Proof. In Step (2), we scan SA from right to left to place the indices of all LMS-substrings at the end of SA. We only need 
to explain how to distinguish whether T [SA[i]] is LMS-character or not when we scanning SA[i]. Note that if we can tell if 
T [SA[i]] is S-type or not, we can also tell if T [SA[i]] is an LMS-character or not since T [SA[i]] is an LMS-character if and 
only if T [SA[i]] is S-type and T [SA[i] − 1] > T [SA[i]]. In the scanning process, when we reach a new bucket, we can see 
whether this bucket contains S-type characters or not from Observation 1. Furthermore, if we know the number of S-type 
characters in this bucket (Lemma 6), we are done with this step since all S-type suffixes appear after the L-suffixes in any 
bucket (Property 1). This step costs O (n) time overall since each character is scanned at most twice. �
Example: Continue our example:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
LMS ∗ ∗ ∗ ∗
SA (12) (E) (E E 1 5 9) (E E) (E E E E)

(1) Sorting the LMS-prefixes of all suffixes (see Section 3.7):

8
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (1 5 9 2 6) (10 0) (4 8 3 7)

(2) Placing the indices of all sorted LMS-substrings in SA[n − n1 . . .n − 1]:
Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA E E E E E E E E E 12 1 5 9 �

Observation 1. For any bucket in SA, let t be its bucket tail. Then T [SA[t]] is S-type if and only if T [SA[t]] < T [SA[t] + 1]. 
Similarly, T [SA[h]] is L-type if and only if T [SA[h]] > T [SA[h] + 1], where h is the bucket head.

Lemma 6. If a bucket contains S-type characters, then one can scan this bucket once to compute the number of S-type characters in 
this bucket using O (1) workspace.

Proof. We scan this bucket from its tail to its head. For the current scanning entry SA[i], there are two possibilities: 1). If 
T [SA[i]] ≥ T [SA[i] +1], do nothing; 2). Otherwise, let j be the smallest index such that T [k] = T [SA[i]] for any k ∈ [ j, SA[i]]. 
Then we increase num by SA[i] − j +1. Here variable num counts the number of S-type characters in this bucket and initially 
is 0. �
3.5. Construct the reduced problem T1

In this section, we construct the smaller recursive problem T1. We rename the sorted LMS-substrings (obtained from 
the previous step) using their ranks to obtain T1. Note that this step is not difficult and similar to the previous algorithms 
(e.g., [18,20]). The order of any two LMS-substrings is determined by comparing their corresponding characters from left to 
right; for each pair of characters, compare their lexicographical values first and next their types. If the two characters have 
the same lexicographical value then the S-type is larger than L-type (same as the Definition 2.3 (Substring Order) in [18]).

Now, we spell out the details for this step. Initially, all LMS-substrings are sorted in SA[n − n1 . . .n − 1]. First, we let the 
rank of the smallest LMS-substring corresponding to SA[n −n1] (i.e., the LMS-substring which begins from index SA[n −n1]) 
be 0 (it must be the sentinel). Then, we scan SA[n − n1 + 1 . . .n − 1] from left to right to compute the rank for each LMS-
substring. When scanning SA[i], we compare the LMS-substring corresponding to SA[i] and that corresponding to SA[i − 1]. 
If they are the same, SA[i] gets the same rank as SA[i −1]. Otherwise, the rank of SA[i] is the rank of SA[i −1] plus 1. Since 
we have no extra space, we need to store the ranks in SA as well. In particular, the rank of SA[i] is stored in SA[� SA[i]

2 �]. 
There is no conflict since any two LMS-characters are not adjacent. Finally, we shift nonempty entries in SA[0 . . .n − n1 − 1]
to the head of SA, so that the ranks occupy a consecutive segment of the space. Now, we have obtained the reduced problem 
T1 which is stored in SA[0 . . .n1 − 1]. In other words, SA[i] (i ∈ [0, n1 − 1]) stores the new name of the i-th LMS-substring 
with respect to its appearance in the input string T .

Example: Continue our example:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

LMS ∗ ∗ ∗ ∗
SA E E E E E E E E E 12 1 5 9

After scanning SA[n − n1 . . .n − 1] (which stores the sorted LMS-substrings):

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 E 1 E 2 E 0 E E 12 1 5 9

Finally, we get T1 stored in SA[0 . . .n1 − 1] by shifting nonempty items in SA[0 . . .n − n1 − 1] to the head of SA.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E 12 1 5 9

Note that T1 = “1120” which corresponds to the LMS-substrings {“66996”, “66996”, “6710”, “0”}. �
First, we give an observation which helps us to identify the S-type and L-type characters of T . Then we obtain the 

following lemma which implies that T1 can be obtained in linear time.

Observation 2. For any index i of T , let j ∈ [i + 1, n − 1] be the smallest index such that T [ j] < T [ j + 1] (So T [ j] is S-type). 
Furthermore let k ∈ [i + 1, j] be the smallest index such that T [l] = T [ j] for any k ≤ l ≤ j. Then T [k] is the first S-type 
character after index i. Moreover, all characters between T [i] and T [k] are L-type, and characters between T [k] and T [ j] are 
S-type.

Lemma 7. T1 can be obtained using O (n) time and O (1) workspace.
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Proof. For the workspace part, it is obvious since we do not use any extra space beyond SA in the above step. For the time 
part, we only need to explain the running time of the comparison process. When we compare SA[i] and SA[i − 1], we can 
know the length of these two LMS-substrings (indicated by SA[i] and SA[i − 1]) from the Observation 2. Note that each 
character of T is scanned at most twice since it is only scanned when identifying its length and its adjacent predecessor 
LMS-substring. Thus the comparison process takes O (n) time because the total length of all LMS-substrings is less than 
2n. �
3.6. Sort the LMS-suffixes by solving T1 recursively

In this section, we sort all LMS-suffixes and place their indices in the tail of their corresponding buckets in SA. This can 
be done as follows:

1. We first solve T1 recursively. From Section 3.5, T1 is stored in SA[0 . . .n1 − 1]. We define SA1 to be SA[n − n1 . . .n − 1]
and use SA1 to store the output of the subproblem T1.

2. Now, we put all indices of LMS-suffixes in SA. First we move SA1 to SA[0 . . .n1 − 1] (i.e., move SA[n − n1 . . .n − 1] to 
SA[0 . . .n1 − 1]). Then we scan T from right to left. For every LMS-character T [i], place i (i.e., index of suf(i)) in the tail 
of SA.

3. For notational convenience, we define LMS[0 . . .n1] � SA[n − n1 . . .n − 1]. Now, we obtain the sorted order of all LMS-
suffixes of the original string T by letting SA[i] = LMS[SA[i]] for all i ∈ [0, n1 − 1].

4. Finally, we scan SA[0 . . .n1 − 1] once more from right to left, and move the indices of LMS-suffixes in the same bucket 
to the tail of its bucket and clear other entries. This is easy to do since each S-type T [i] (after the renaming step in 
Section 3.2) has pointed to the tail of its bucket.

Example: Continue our example:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E E E E E

Step 1. Solve T1 recursively:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E 3 0 1 2

Step 2. After move SA1 to SA[0 . . .n1 − 1] and put all LMS-suffixes in SA:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 3 0 1 2 E E E E E 1 5 9 12

Step 3. Get all sorted LMS-suffixes:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 12 1 5 9 E E E E E 1 5 9 12

Step 4. Move the indices of LMS-suffixes in the same bucket to the tail of its bucket and clear other entries:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (E) (E E 1 5 9) (E E) (E E E E) �

Lemma 8. All LMS-suffixes can be sorted by solving the reduced problem T1 recursively and placed in the tail of their corresponding 
buckets in SA using O (n) time and O (1) workspace.

Proof. The time and space used in this step are easy to verify. We only show the correctness of this step. Each character of 
T1 corresponds to an LMS-substring of T and this character is the rank of the corresponding sorted LMS-substring. Hence, 
the lexicographical order of LMS-suffixes of T is the same as the order of suffixes in T1. �
3.7. Induced sort all suffixes of T

Now, we sort all suffixes of T from the sorted LMS-suffixes using induced sorting with our interior counter trick (Note 
that this step is the same as what we did in Section 3.4. Now, we describe the details here). First, we induced-sort the order 
of all L-suffixes from LMS-suffixes. Then we induce the order of S-suffixes from the L-suffixes. Now, we show how to carry 
out these steps with the desired optimal time and space.

Step 1. Induced sort all L-suffixes from the sorted LMS-suffixes: Some details of this step is similar to our previous step in 
Section 3.3 where we introduced our interior counter trick. We divide this step into two parts as follows:

(1) First initialize SA: We scan T from right to left. For every T [i] which is L-type, do the following:

10
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(i) If SA[T [i]] = Empty, let SA[T [i]] = Unique (unique L-type character in this bucket).
(ii) If SA[T [i]] = Unique, let SA[T [i]] = Multi (the number of L-type characters in this bucket is at least 2).

(iii) Otherwise do nothing.
(2) Then we scan SA from left to right to sort all the L-suffixes.

(i) If SA[i] = Empty, do nothing.
(ii) If SA[i] is an index, we let j = SA[i] − 1. Then, if suf( j) is L-suffix (this can be identified in constant time from the 

following Lemma 9), we place suf( j) into the LF-entry (recall that LF-entry denotes the leftmost free entry in its 
bucket) of its bucket and increase the counter by one.

(iii) If SA[i] = Multi, which means SA[i] is the head of its bucket, and this bucket has at least two L-suffixes which 
are not sorted, we use SA[i] and SA[i + 1] as the bucket head (the symbol Multi) and the counter of this bucket, 
respectively. Then we skip these two entries and continue to scan SA[i + 2].

Now, all L-suffixes have been sorted. Note that we still need to scan SA once more to free these positions occupied by Multi
and counters. After this, the indices of all L-suffixes are in their final positions in SA.

Step 2. Remove LMS-suffixes from SA: We can use a trick similar to the previous Step 2 in Section 3.3, i.e., placing the 
indices of LMS-characters into SA. The difference is that instead of placing the actual LMS-characters, we place the Empty
symbol instead. Also note that we do not delete the sentinel since it must be in the final position. Now, SA contains only 
all L-suffixes and the sentinel, and all of them are in their final positions in SA.

Step 3. Induced sort all S-suffixes from the sorted L-suffixes: Now, this step is completely symmetrical to the above Step 1 
(Sort all L-suffixes using induced sorting). We use S-type and RF-entry instead of L-type and LF-entry, and we do not repeat 
the details here.

Example: Continue our example:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

Type L S S L L S S L L S L L S
SA (12) (E) (E E 1 5 9) (E E) (E E E E)

Step 1. Induced-sort all L-suffixes from the sorted LMS-suffixes:
(1) After initialization:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (U) (E E 1 5 9) (M E) (M E E E)

(2) Scan SA from left to right to sort all L-suffixes:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA (
−→
12) (11) (E E 1 5 9) (M E) (M E E E)

SA (12) (
−→
11) (E E 1 5 9) (10 E) (M E E E)

SA (12) (11) (E E
−→
1 5 9) (10 0) (M E E E)

SA (12) (11) (E E 1
−→
5 9) (10 0) (M 1 4 E)

SA (12) (11) (E E 1 5
−→
9 ) (10 0) (M 2 4 8)

SA (12) (11) (E E 1 5 9) (10 0) (M 2
−→
4 8)

SA (12) (11) (E E 1 5 9) (10 0) (
−→
4 8 3 E)

SA (12) (11) (E E 1 5 9) (10 0) (4
−→
8 3 7)

Note that the third to last line is the case (iii). So we skip these two entries (i.e., ‘M ’ and ‘2’).
Step 2. Remove LMS-Suffixes from SA:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (E E E E E) (10 0) (4 8 3 7)

Step 3. Induced-sort all S-suffixes from the sorted L-suffixes:
(1) After initialization:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (E E E E M) (10 0) (4 8 3 7)

(2) Scan SA from right to left to sort all S-suffixes:
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA (12) (11) (E E 6 1 M) (10 0) (4 8 3
←−
7 )

SA (12) (11) (E 2 6 2 M) (10 0) (4 8
←−
3 7)

SA (12) (11) (9 2 6 3 M) (
←−
10 0) (4 8 3 7)

SA (12) (11) (9 2
←−
6 3 M) (10 0) (4 8 3 7)

SA (12) (11) (E 5 9 2
←−
6 ) (10 0) (4 8 3 7)

SA (12) (11) (1 5 9
←−
2 6) (10 0) (4 8 3 7)

SA (12) (11) (1 5 9 2 6) (10 0) (4 8 3 7) �
In order to show the time used in this step, we need the following useful lemma to identify the L/S-type information in 

the induced-sorting step.

Lemma 9. When we scan SA from left to right to induced-sort L-suffixes, for each scanned SA[i], we want to identify the type of 
suf(SA[i] −1). If T [SA[i] −1] 
= T [SA[i]], the type of suf(SA[i] −1) can be obtained immediately. Otherwise T [SA[i] −1] = T [SA[i]]
(this case suf(SA[i] − 1) belongs to the current scanned bucket T [SA[i]]), the type of suf(SA[i] − 1) is indicated by the type of the 
current bucket T [SA[i]].
Proof. The type of suf(SA[i] − 1) in the first case T [SA[i] − 1] 
= T [SA[i]] directly follows from the definition of L/S-suffix in 
Section 2. For the second case T [SA[i] − 1] = T [SA[i]], we know that the suffix suf(SA[i] − 1) we are currently considering 
belongs to the current scanned bucket T [SA[i]]. Moreover, we know that all suffixes belonging to the same bucket have the 
same type after the renaming step in Section 3.2. Thus it is sufficient to identify the type of the current bucket T [SA[i]]. 
According to Observation 1, we can identify the type whenever we reach a new bucket in SA, e.g., check the bucket head h
to see whether T [SA[h]] > T [SA[h] + 1], if yes, then T [SA[h]] is L-type and thus all suffixes belonging to this bucket is also 
L-type. �
Lemma 10. Given all sorted LMS-suffixes of T , all suffixes can be sorted correctly using O (n) time and O (1) workspace according to 
the induced sorting steps.

Proof. For the correctness: we can sort all L-suffixes correctly from the sorted LMS-suffixes using induced sorting step from 
Lemma 2 and we can sort all S-suffixes correctly from the sorted L-suffixes using induced sorting step from Lemma 1. �

Now, we obtain the following theorem for our optimal in-place algorithm.

Theorem 4. Our Algorithm takes O (n) time and O (1) workspace to compute the suffix array of string T over integer alphabets with 
|�| ≤ n.

Proof. The time complexity simply follows from the recursion T (n) = T (n/2) + O (n) = O (n). For the workspace, every step 
in our algorithm uses O (1) workspace and different steps can reuse the O (1) workspace too. In the recursive subproblem, 
we can also reuse the O (1) workspace.5 �
4. Suffix sorting for read-only integer alphabets

4.1. Framework

First, we define some notations. Let nL and nS denote the number of L-suffixes and S-suffixes, respectively. Let n1 denote 
the length of the reduced problem T1, i.e., n1 equals to the number of LMS-suffixes (Case 1) or LML-suffixes (Case 2). Now, 
we describe the framework of our algorithm as follows:

1. If nL ≤ nS (i.e., the number of L-suffixes is not larger than that of S-suffixes), then:
(1) (Section 4.2) Sort all LMS-characters of T .

We use counting sort to sort all LMS-characters of T in SA[n − n1 . . .n − 1]. In the counting sort step, we use 
SA[0 . . .n/2 − 1] as the temporary space (counting array). After this step, all indices of the sorted LMS-characters 
are stored in SA[n − n1 . . .n − 1]. Note that this step is different from our previous algorithm in Section 3 since we 
sort and store the LMS-characters in the end of SA instead of their corresponding buckets, because T is read-only 
now.

(2) (Section 4.4) Induced sort all LMS-substrings from the sorted LMS-characters.
This induced-sorting step is the same as Step (4) below where we induced-sort all suffixes from the sorted LMS-
suffixes. Thus, we only describe the details of this step in Section 4.4. After this step, all indices of the sorted 
LMS-substrings are stored in SA[n − n1 . . .n − 1].

5 If one worries the O (logn) workspace in the recursion, one can use the highest bits in SA (i.e., n bits) to store them since the size of the reduced 
sub-problem is not larger than n/2.
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(3) (Section 4.3) Construct and solve the reduced problem T1 from the sorted LMS-substrings.
We construct the reduced problem T1 using the ranks of all sorted LMS-substrings which are stored in SA[n −
n1 . . .n −1], where the ranks of LMS-substrings correspond to the lexicographical order of the sorted LMS-substrings 
(this construction step is the same as that in Section 3.5). Then we get the reduced problem T1 in SA[0 . . .n1 − 1]
and solve T1 recursively to obtain the sorted LMS-suffixes. In the recursive step, we use SA1 = SA[n − n1 . . .n − 1]
as the output space for T1. After this step, all indices of the sorted LMS-suffixes are stored in SA[n − n1 . . .n − 1].

(4) (Section 4.4) Induced sort all suffixes of T from the sorted LMS-suffixes (T1).
We induced-sort all suffixes of T from the sorted LMS-suffixes which are stored in SA[n − n1 . . .n − 1]. In the 
sorting step, we use the interior counter trick, as in Section 3, which can implicitly represent the dynamic LF/RF-
entry information in SA. Besides, we provide a pointer data structure which can represent the bucket heads/tails in 
SA. Combining these two techniques, we can remove the workspace needed by the bucket array. Due to the space 
required by our pointer data structure is nonconstant, we divide this induced sorting step into two stages to address 
this issue. Note that this step is the main technical part of our optimal in-place algorithm. After this step, all indices 
of the suffixes of T are sorted and stored in SA[0 . . .n − 1].

2. Otherwise, execute the above steps switching the role of LMS with LML.

Without loss of generality, we assume that nL ≤ nS . Note that we compare the number of L-suffixes and S-suffix at the 
beginning since we need half of the space of SA to construct our pointer data structure for induced-sorting the L-suffixes 
(from the sorted LMS-suffixes) and S-suffixes (from the sorted L-suffixes) in Step (4). The in-place implementation of this 
induced sorting step is the main technical part of our optimal in-place algorithm. Note that the unused space is enough 
since the number of LMS-suffixes (i.e., n1) and L-suffixes (i.e., nL ) both are less than or equal to n/2, where n1 ≤ n/2
since any two LMS-characters are not adjacent by the definition of LMS-characters, and nL ≤ n/2 since nL ≤ nS . Note that 
for previous algorithms (e.g., [18,20]), they do not need the comparison at the beginning since they use the bucket array 
(which needs |�| words workspace) in the induced sorting step. Here, we construct the pointer data structure and combine 
our interior counter trick to reduce the workspace.

Now, we describe the details of our in-place algorithm in the following sections.

4.2. Sort all LMS-characters of T

In this section, we sort all LMS-characters of T and place their indices in SA[n − n1 . . .n − 1]. Recall that n1 denotes the 
number of LMS-characters.

Now, we describe the details. Since |�| = O (n), we can assume that |�| ≤ dn for some constant d. We divide the LMS-
characters of T into 2d partitions and sort each partition one by one. The partition i contains the LMS-characters which 
belong to 

[
i|�|
2d ,

(i+1)|�|
2d − 1

]
, for 0 ≤ i < 2d. We use mi to denote the number of LMS-characters in partition i. Then for each 

partition i, we use the standard counting sort (see e.g., [37, Chap. 8]) to sort these mi LMS-characters (the LMS-characters 
can be identified by scanning T once from right to left). Concretely, we use SA[0 . . .n/2 − 1] as the temporary counting 
array, and use SA[n/2 + ∑i−1

j=0 m j + 1 . . .n/2 + ∑i
j=0 m j] as the output array. After this counting sort step, the indices of 

these mi sorted LMS-characters have been placed in SA[n/2 + ∑i−1
j=0 m j + 1 . . .n/2 + ∑i

j=0 m j].
Note that we can use the counting sort step for each partition. Because the gap of each partition is |�|

2d ≤ dn
2d = n

2 , the 
space of SA[0 . . .n/2 − 1] is enough for the temporary counting array (its size equals to the gap) of counting sort step. It is 
not hard to see that the sorting step takes O (n) time and uses O (1) workspace since we only make 2d times of counting 
sort steps (each step takes linear time).

After sorting all 2d partitions, all indices of the sorted LMS-characters are placed in SA[n/2 + 1, n/2 + ∑2d−1
j=0 m j] (i.e., 

SA[n/2 + 1, n/2 + n1]). Then we move them to SA[n − n1 . . .n − 1], which can be easily done in linear time and O (1)

workspace.

4.3. Construct and solve the reduced problem T1 from sorted LMS-substrings

Construct the reduced problem T1: We construct the reduced problem T1 using the ranks of all sorted LMS-substrings 
which are stored in SA[n − n1 . . .n − 1] from the Step (2) (see the framework in Section 4.1), where the ranks of LMS-
substrings are corresponding to the lexicographical order of the sorted LMS-substrings.

Note that this construction step is exactly the same as that in Section 3.5. Thus we omit the details and recall the same 
lemma as follows.

Lemma 11. T1 can be constructed using O (n) time and O (1) workspace.

Solve T1 recursively: Now, we sort all LMS-suffixes by solving T1 recursively and place their indices in the tail of SA (i.e. 
SA[n − n1 . . .n − 1]). This step is carried out as follows (similar to the Section 3.6 except Step 4 below):
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1. We first solve T1 recursively. Recall that T1 is stored in SA[0 . . .n1 − 1]. We define SA1 to be SA[n − n1 . . .n − 1] and 
use SA1 to store the output of the subproblem T1.

2. Now, we put all indices of LMS-suffixes in SA. First we move SA1 to SA[0 . . .n1 − 1] (i.e., move SA[n − n1 . . .n − 1] to 
SA[0 . . .n1 − 1]). Then we scan T from right to left. For every LMS-character T [i], place i (i.e., index of suf(i)) in the tail 
of SA.

3. For notational convenience, we define LMS[0 . . .n1] � SA[n − n1 . . .n − 1]. Now, we obtain the sorted order of all LMS-
suffixes of the original string T by letting SA[i] = LMS[SA[i]] for all i ∈ [0, n1 − 1].

4. Finally, we finish this step by moving SA[0 . . .n1 − 1] to SA[n − n1 . . .n − 1]. Now, all indices of the sorted LMS-suffixes 
are stored in SA[n − n1 . . .n − 1].

Lemma 12. All LMS-suffixes can be sorted by solving the reduced problem T1 recursively and placed in the tail of SA using O (n) time 
and O (1) workspace.

Proof. The time and space used in this step are easy to verify. We only show the correctness of this step. Each character of 
T1 corresponds to an LMS-substring of T and this character is the rank of the corresponding sorted LMS-substring. Hence, 
the lexicographical order of LMS-suffixes of T is the same as the order of suffixes in T1. �
4.4. Induced sort all suffixes of T from the sorted LMS-suffixes

In this section, we show how to induced-sort all suffixes from the sorted LMS-suffixes. All indices of the sorted LMS-
suffixes have been placed in SA[n − n1 . . .n − 1] from the previous step (see Lemma 12). Note that this step is the main 
technical part of our in-place algorithm. We develop two techniques (interior counter trick and pointer data structure) for 
implementing this induced sorting in-place.

Let SAL = SA[0 . . .nL − 1] and SAS = SA[nL . . .n − 1]. Recall that nS and nL denote the number of S-suffixes and L-
suffixes, respectively. Also note that nL + nS = n. First, we sort all nL L-suffixes from the sorted LMS-suffixes which are 
stored in SA[n −n1 . . .n − 1] and store the sorted L-suffixes in SAL . Then, we sort all nS S-suffixes from the sorted L-suffixes 
and store the sorted S-suffixes in SAS . Finally, we merge the sorted L-suffixes (stored in SAL ) and S-suffixes (stored in SAS ) 
to sort all suffixes in SA[0 . . .n − 1].

Note that sorting the nL L-suffixes from the sorted LMS-suffixes is totally symmetrical as sorting the nS S-suffixes from 
the sorted L-suffixes, as stated in Section 2. Thus, we only need to show the details of how to sort all nS S-suffixes from the 
sorted L-suffixes which has already been stored in SAL , and store the sorted S-suffixes in SAS . Before we show the details, 
we briefly recall the original induced sorting step here (we have introduced it in Section 2 and provided a running example 
in Appendix A.1.). Now, we recall the symmetrical case here, i.e., inducing the order of S-suffixes from the sorted L-suffixes.

Inducing the order of S-suffixes from the sorted L-suffixes: We scan SA from right to left (i.e., from SA[n − 1] to SA[0]). 
When we scan SA[i], let j = SA[i] − 1. If T [ j] is S-type, i.e., suf( j) is an S-suffix (indicated by the type array), we place 
the index of suf( j) (i.e. j) into the RF-entry of bucket T [ j], and then let the RF-pointer of this bucket T [ j] point to the 
next free entry. If T [ j] is L-type, we do nothing (since all L-suffixes are sorted in the correct positions). The RF-pointers are 
maintained by the bucket array.

In order to obtain the in-place algorithm, we need to show how to remove the workspace needed by the bucket array and 
type array in the induced sorting step. Briefly speaking, the purpose of the pointer data structure is to indicate the bucket 
tails of S-suffixes, and the purpose of the interior counter trick is to maintain the RF-pointers of the buckets dynamically. 
Thus, for a query of RF-entry for suf( j) in bucket T [ j], we know the tail of the bucket T [ j] from the pointer data structure 
in constant time (Lemma 16), then we use the interior counter trick to indicate the RF-entry in this bucket (Lemma 13). 
Instead of using the type array, we use the Lemma 14 to identify the L/S-suffixes in the induced sorting step.

Now, we describe the details. First, we introduce our interior counter trick, extending the one from Section 3. Here, we 
assume that the tail of the bucket of any S-suffix is known (which is indicated by the Lemma 16).

Interior counter trick: Note that the buckets of the S-suffixes we discussed in this section are in SAS = SA[nL . . .n − 1], 
since we already have placed the sorted L-suffixes in SAL = SA[0 . . .nL − 1]. Thus, we only need to sort all S-suffixes to their 
corresponding buckets in SAS and the buckets only contains S-suffixes now.

Here we only describe the details of interior counter trick for one bucket since other buckets are the same. Note that 
we assume that the tail of the bucket of any S-suffix is known (Lemma 16). To simplify the representation, we assume the 
bucket from index 0 to index m − 1 of SAS , where m is the size of this bucket (i.e. the number of S-suffixes in this bucket 
is m). We only describe the case where m > 3 since other cases with m ≤ 3 are similar and simpler. We define five special 
symbols BH (head of the bucket), BT (tail of the bucket), E (Empty), R1 (one remaining S-suffix) and R2 (two remaining 
S-suffixes).6

First, we use three special symbols to initialize this bucket, i.e., let SAS [0] = BH , SAS [m − 2] = E and SAS [m − 1] = BT . 
Let Si denote the index of the i-th S-suffix which needs to be placed into the RF-entry of this bucket. Now, we describe 

6 Recall that the special symbol is only used to simplify the argument. See Appendix B for the details.
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how to place the indices of these m S-suffixes into the RF-entry of this bucket one by one. We distinguish the following 
four cases:

(1) If SAS [m − 1] = BT , and SAS [m − 2] = E or SAS [m − SAS [m − 2] − 3] 
= BH: In this case, we place the index of the 
current S-suffix (i.e., Si) into the RF-entry of this bucket, where 1 ≤ i ≤ m − 3. Concretely, we know the position of the 
tail of this bucket in SAS , i.e., m − 1 according to the assumption. Then, we use SAS [m − 2] as the counter to denote 
the number of the indices of S-suffixes has been placed so far. Note that the RF-entry of this bucket is pointed by this 
counter (i.e. RF-pointer). Thus, we can place the index of the current S-suffix (Si ) into the RF-entry of this bucket in 
constant time, and then update the counter SAS [m − 2].

(2) If SAS [m − 1] = BT and SAS [m − SAS [m − 2] − 3] = BH: In this case, we place the index of the third to last S-suffix (i.e. 
Sm−2) into the RF-entry of this bucket. Concretely, we shift the previous m −3 S-suffixes which stored in SAS [1 . . .m −3]
to SAS [2 . . .m − 2]. Then, we place Sm−2 into SAS [1] and let SAS [m − 1] = R2 . This step takes O (m) time since we shift 
m − 3 S-suffixes.

(3) If SAS [m − 1] = R2: In this case, we place the index of the second to last S-suffix (i.e. Sm−1) into the RF-entry of this 
bucket. We shift the previous m − 2 S-suffixes which stored in SAS [1 . . .m − 2] to SAS [2 . . .m − 1]. Then, we place Sm−1
into SAS [1] and let SAS [0] = R1 . This step takes O (m) time since we shift m − 2 S-suffixes.

(4) Otherwise: In this case, we place the index of the last S-suffix (i.e. Sm) into the RF-entry of this bucket. First, we know 
the tail of the bucket indicated by our pointer data structure in constant time. Then, we search the entries before the 
tail one by one until that we find the special symbol R1 . We let this entry to be Sm . This step takes O (m) time since 
we search m − 1 S-suffixes.

In order to demonstrate these four cases more clearly, we also provide a demonstration as follows:

Index 0 1 . . . m − 3 m − 2 m − 1
SAS SAS [0] SAS [1] . . . SAS [m − 3] SAS [m − 2] SAS [m − 1]

After initialization :
SAS BH SAS [1] . . . SAS [m − 3] E BT

Case (1) :
SAS BH SAS [1] . . . S1 1 BT

...
...

SAS BH Sm−3 . . . S1 m − 3 BT

Case (2) :
SAS BH Sm−2 . . . S2 S1 R2

Case (3) :
SAS R1 Sm−1 . . . S3 S2 S1

Case (4) :
SAS Sm Sm−1 . . . S3 S2 S1

Note that this step uses O (1) workspace since there is no bucket array and type array, and the space needed by our 
interior counter trick and pointer data structure is in SAS . The purpose of the interior counter trick is to dynamic maintain 
the RF-pointers of the buckets. E.g., for a query of RF-entry for suf( j) in bucket T [ j], first we know the tail of the bucket 
T [ j] by the assumption, then we use the interior counter trick to indicate the RF-entry in this bucket. We have the following 
lemma.

Lemma 13. If the tail of the bucket of any S-suffix is known, one can sort the S-suffixes from the sorted L-suffixes using the induced 
sorting step with the interior counter trick in linear time and O (1) workspace.

Note that in the induced sorting step, one uses the type array to identify whether the suf( j) is S-suffix or not. Instead of 
using the type array, we use the following Lemma 14 to identify the type of the L- or S-suffix in the induced-sorting step.

Lemma 14. If T [ j] 
= T [SA[i]], the type of suf( j) can be obtained immediately, where j = SA[i] − 1. Otherwise T [ j] = T [SA[i]], if all 
S-suffixes of T that belong to bucket T [SA[i]] are not already sorted, then the suf( j) is S-suffix.

Proof. During the induced-sorting step, when we scan SA[i], let j = SA[i] − 1 and we need to identify whether suf( j) is an 
S-suffix or not. First, if T [ j] 
= T [SA[i]], then the type of suf( j) can be obtained immediately. Otherwise T [ j] = T [SA[i]] (this 
case suf( j) belongs to the current scanning bucket T [SA[i]]), clearly if all S-suffixes of T that belong to bucket T [SA[i]] are 
not already sorted, then the suf( j) is S-suffix. It is not hard to decide whether all S-suffixes in the current scanning bucket 
T [SA[i]] are already sorted or not. One can use an extra variable to denote how many S-suffixes remain in the current 
scanning bucket T [SA[i]]. When we begin to scan a new bucket, we scan this bucket once to initialize this variable. Note 
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that we can do this initialization, since there are special symbols in SAS for each bucket after we initialize the buckets in 
our interior counter trick. �

Now, there is only one thing left: how to know the tails of the bucket of S-suffixes in the induced sorting step. The 
purpose of the pointer data structure is to indicate the tails of the bucket of S-suffixes. However, the pointer data structure 
requires cp words, where the value of cp will be specified later. Thus, we need to divide this induced-sorting step into two 
stages. The first stage (Section 4.4.1) is to sort the first nS − cp S-suffixes (i.e. the largest nS − cp S-suffixes), where our 
pointer data structure still exists. The second stage (Section 4.4.2) is to sort the last cp S-suffixes, where there is no space 
for the pointer data structure.

4.4.1. The first stage

Pointer data structure: Now, we construct our pointer data structure which supports to find the tails of the buckets in 
constant time. We store the pointer data structure in the tail of SAS , recall that SAS = SA[nL . . .n − 1]. Now, we describe 
the details. We divide the S-suffixes of T into 4d parts according to their first characters, and construct the pointer data 
structure for each part respectively. The 4d parts are divided by T [ j] ∈

[
i|�|
4d + 1,

(i+1)|�|
4d

]
, for 0 ≤ i < 4d. Let Di denote the 

pointer data structure of the i-th part. We only show the details how we construct the pointer data structure D0 as follows, 
since constructing Di is similar for 0 < i < 4d (one only need to shift T [ j] with i|�|

4d ).

(1) First, we let SAS [i] = 1 for all i ∈ [1, |�|
4d ]. Then we scan T from right to left. For every S-type T [i] ∈ [1, |�|

4d ], we increase 
SAS [T [i]] by one.

(2) Then we scan SAS [1 . . . |�|
4d ] from left to right. We use a variable sum to count the sum, first initialize sum = −1. For 

each SAS [i] which is being scanned, first let sum = sum + SAS [i], then let SAS [i] = sum. Now, for any S-suffix suf(i)
satisfying T [i] ∈ [1, |�|

4d ], SAS [T [i]] − T [i] must indicate the tail of bucket T [i] in SAS . Since we want every entry in 
SAS [1 . . . |�|

4d ] to be distinct, we initialize SAS [i] = 1 for all i ∈ [1, |�|
4d ] in Step (1). Hence the tail of bucket T [i] is 

SAS [T [i]] − T [i].
(3) Finally, we construct D0 for SAS [1 . . . |�|

4d ] according to Lemma 15. D0 uses at most c(n + |�|
4d )/ log n words space. We 

store D0 in the tail of SAS (i.e., SAS [nS − c(n + |�|
4d )/ log n . . .nS − 1]). D0 supports to find the tail of the bucket of any 

S-suffix suf(i) satisfying T [i] ∈ [1, |�|
4d ] in constant time.

Lemma 15. For a strictly increasing sequence of m non-negative integers 0 ≤ a0 < a1 . . . < am−1 ≤ n such that m ≤ n and n > 1024, 
one can construct a data structure using linear time (i.e., O (n) time) and at most cn/ logn words for 1 < c < 2 such that each query 
to the i-th smallest integer ai can be answered in constant time.

Proof. We first construct a bit array B[0 . . .n] such that B[i] = 1 if index i is an element in the increasing sequence; B[i] = 0
otherwise. Using the bitmap B , we convert the query of the i-th smallest integer ai on the increasing sequence into the 
select1(i) query of the index of the i-th 1 on B . Then we can use the methods [38,39] to answer any select1(i) query in 
constant time using an extra data structure of O (n/ log log n) bits space with O (n) construction time. Particularly, the extra 
data structure can be represented in 3n/ log log n +n

1
4 ( 1

4 log n log log n + log log n) bits [39]. Converting bits to words, we can 
see that the data structure uses at most cn/ log n words for 1 < c < 2 when n > 1024. �

After this step, the pointer data structure (i.e. Di for all 0 ≤ i < 4d) is stored in SAS [nS − cp . . .nS − 1], where cp =
�4d · (c(n + |�|

4d )/ log n)� ≤ �5dcn/ log n�. Recall that the sorted nL L-suffixes are stored in SAL and nS ≥ nL . Thus the unused 
space (i.e., SAS = SA[nL . . .n − 1]) is at least half of the space of SA. It is enough to construct and store the pointer data 
structure, i.e., |�|

4d ≤ dn
4d = n

4 for constructing it and n
4 for storing it (which uses cp words). Note that we assume that n > 4cp , 

otherwise it is easy to solve since n is constant. Hence the pointer data structure is constructed in linear time and supports 
to find the tail of the bucket of any S-suffix in constant time.

Lemma 16. We can construct the pointer data structure in linear time, and this pointer data structure uses at most cp words and can 
support to find the bucket tail of any S-suffix in constant time.

Proof. We only need to specify the query time constant. We use 4d values, i.e., m1, . . . , m4d , which denote the number of 
S-suffixes in each interval, respectively (They can be obtained from the variable sum which is computed in the final stage 
of the Step (2)). Now, if we want to find the bucket tail of an S-suffix suf(i), we first compare T [i] with i|�|

4d (for 0 ≤ i < 4d) 
to see which pointer data structure T [i] belongs to. Assume that it belongs to D j . Then we do a select(T [i] − ( j − 1)

|�|
4d )

query on D j , and combine the select result with the corresponding mk (k < j) to identify the tail of bucket T [i]. All the 
above operations can be done in constant time. �
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Now according to Lemma 13, 14 and 16, we can sort the first largest nS − cp S-suffixes from the sorted L-suffixes which 
stored in SAL using the induced sorting step with the interior counter trick and the pointer data structure which stored in 
SA[n − cp . . .n − 1], and we store the indices of the sorted nS − cp S-suffixes in SAS [0 . . .nS − cp − 1].

4.4.2. The second stage
Now, we only need to show how to sort the last cp S-suffixes which is occupied by our pointer data structure. First, 

we specify how to identify whether an S-suffix belongs to the first nS − cp S-suffixes or not. We can scan T once to find 
the character of nS − cp largest S-suffix using the pointer data structure and let ch denote this character. If the tail of the 
bucket ch is exactly cp − 1 in SAS , then we compare the beginning character of the S-suffix with ch to identify which part 
it belongs to. Otherwise, the nS − cp largest S-suffix belongs to bucket ch, and it will be stored in SAS [cp −1]. We only need 
two variables to indicate whether the S-suffix belongs to the first nS − cp S-suffixes or not. One is the number to denote the 
tail of bucket ch, and the other is also an integer number which denotes the gap between the tail of bucket ch and cp − 1.

Now, we describe the details to sort the last cp S-suffixes. First, we move these largest nS − cp S-suffixes to the tail 
of SAS , i.e., SAS [cp, nS − 1]. Then we scan the T from right to left to place the smallest cp S-suffixes into SAS [0, cp − 1]. 
Now, we use merge sort with the in-place linear time merging algorithm [40] to sort these cp S-suffixes, the sorting key for 
each S-suffix is its beginning character. After this sorting step, these cp S-suffixes have been placed in their corresponding 
buckets in SAS [0, cp −1]. Note that we can use the same sorting step (which we used for sorting the first nS − cp S-suffixes) 
to sort the last cp S-suffixes without the pointer data structure. Now, the key point is that we can use the binary search 
(instead of the pointer data structure) to find the tails of the bucket for these cp S-suffixes, since cp ≤ �5dcn/ log n� is small 
enough (i.e. cp log n = O (n)) to maintain that the time complexity of our algorithm is O (n).

Using the binary search to extend interior counter trick is not very difficult, one can see the details in Section 5.5 which 
we induced sort all L-suffixes from the sorted S-suffixes for the general alphabets (Note that the optimal time is O (n log n)

for the general alphabets case. Thus, we directly use the binary search to extend interior counter trick and do not use the 
pointer data structure in that case).

After this step, all nS S-suffixes are sorted in SAS . Now we have all sorted L-suffixes in SAL (i.e., SA[0 . . .nL − 1]) and all 
sorted S-suffixes in SAS (i.e., SA[nL . . .n − 1]). We use the stable, in-place, linear time merging algorithm [40] to merge the 
ordered SAL and SAS (the merging key for SA[i] is T [SA[i]], i.e., the first character of suf(SA[i])). After this merging step, 
all suffixes of T have be sorted in SA[0 . . .n − 1].

Finally, we obtain the following theorem for our optimal in-place algorithm.

Theorem 5 (Main Theorem). Our Algorithm takes O (n) time and O (1) workspace to compute the suffix array of string T over integer 
alphabets �, where T is read-only and |�| = O (n).

5. Suffix sorting for read-only general alphabets

5.1. Framework

The framework of our algorithm for read-only general alphabets (i.e., the only operations allowed on the characters of T
(read-only) are comparisons) is described as follows:

1. If nS ≤ nL (i.e., the number of S-suffixes is not larger than that of L-suffixes), then
(1) (Section 5.2) Sort all S-substrings of T using mergesort directly.

We use mergesort to sort all S-substring of T in SA[n − nS . . .n − 1]. In the merging step of mergesort, we use 
SA[0 . . .nS − 1] as the temporary space. After this step, all S-substrings should be in the lexicographical order stored 
in SA[n − nS . . .n − 1].

(2) (Section 5.3) Construct the reduced problem T1 from the sorted S-substrings.
We construct the reduced problem T1 using the ranks of all sorted S-substrings which are stored in SA[n −nS . . .n −
1]. The ranks of S-substrings are corresponding to the lexicographical order of the sorted S-substrings. After this 
step, we get the reduced problem T1 in SA[0 . . .nS − 1].

(3) (Section 5.4) Sort the S-suffixes by solving T1 recursively.
We sort T1 = SA[0 . . .nS − 1] recursively. In the recursive step, we use SA1 = SA[n − nS . . .n − 1] as the output 
space for T1. Then we use the suffix array of T1 (i.e. SA1) to place all indices of the sorted S-suffixes of T into 
SA[n − nS . . .n − 1].

(4) (Section 5.5) Induced sort all suffixes from the sorted S-suffixes.
First, we place all indices of S-suffixes in their final positions in SA by using mergesort together with a stable, 
in-place, linear time merging algorithm [40]. Then we extend our interior counter trick to sort all L-suffixes from the 
sorted S-suffixes. Finally, all indices of the sorted suffixes of T are stored in SA[0 . . .n − 1].

2. Otherwise, execute the above steps switching the roles of L and S .

Note that our algorithm is very simple since the optimal time complexity in this case is O (n log n) instead of O (n). 
Moreover, our algorithm does not make any bit operations rather than previous algorithms, e.g., [17].
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Without loss of generality, we assume that nS ≤ nL . Now, we describe the details of our in-place algorithm in the 
following sections.

5.2. Sort all S-substrings of T

In this section, we sort all S-substrings of T as follows:

1. First, we scan T from right to left and place all indices of S-type characters into SA[n − nS . . .n − 1]. Note that nS ≤ n/2
since we assume that nS ≤ nL .

2. Then, we sort SA[n − nS . . .n − 1] using mergesort (the sorting key for SA[i] is the S-substring of T which begins at 
T [SA[i]]). We use SA[0 . . .nS − 1] as the temporary space for mergesort. To compare two keys (i.e., two S-substrings) in 
mergesort, we simply do the straightforward character-wise comparisons.

After the above two steps, all the S-substring have been sorted in SA[n − nS . . .n − 1]. We have the following lemma.

Lemma 17. We can sort all S-substrings using O (n logn) time and O (1) workspace.

Proof. Step 1 does not need any extra space and costs linear time, because we can compute the type of each character in 
O (1) time during the right-to-left scan of T . Moreover, we know mergesort needs linear workspace. Hence, it is sufficient 
to use SA[0 . . .nS − 1] as the workspace for mergesort. For Step 2, it suffices to show that the time spent for comparison 
process in any recursive level of mergesort (there are O (logn) recursive levels) can be bounded by O (n). For the comparison 
process in the merging step of two sorted sequences, each comparison of two S-substrings can determine a smaller one and 
add it to the merged sequence, and the comparison time is bounded by the shorter one. The length of the S-substrings 
can be obtained according to Observation 2. Recall that each character of T is scanned at most twice since it only be 
scanned when identifying the length of its adjacent predecessor S-substring and itself. Thus the time complexity for each 
recursive level of mergesort can be bounded by O (n) because the total length of all S-substrings is less than 2n. In sum, all 
S-substrings can be sorted in O (n log n) time via mergesort. �
5.3. Construct the reduced problem T1 from the sorted S-substrings

In this section, we construct the reduced problem T1 by renaming the sorted S-substrings. After Section 5.2, all S-
substrings have been sorted in SA[n − nS . . .n − 1]. The construction of T1 consists of the following two steps:

1. We rename the S-substrings by their ranks. First let the rank of SA[n − nS ] be 0. We scan SA[n − nS + 1 . . .n − 1] from 
left to right. When scanning SA[i], we compare S-substring beginning with T [SA[i]] and S-substring beginning with 
T [SA[i − 1]]. If they are different, let the rank of SA[i] be the rank of SA[i − 1] plus one. Otherwise, the rank of SA[i]
is the same as that of SA[i − 1]. We store the rank of SA[i] in SA[i − n + nS ].

2. Next, we use the heapsort to sort SA[n − nS . . .n − 1] (the sorting key for SA[i] is SA[i] itself). When we exchange 
two entries (say, SA[i] and SA[ j], i, j ∈ [n − nS . . .n − 1]) in SA[n − nS . . .n − 1] during heapsort, we also exchange the 
corresponding two entries (i.e., SA[i − n + nS ] and SA[ j − n + nS ]) in SA[0 . . .nS − 1]. Note that we use heapsort here 
since it is in-place, so we do not need any extra space.

After the above two steps, we get the reduced problem T1 in SA[0 . . .nS − 1].

Lemma 18. T1 can be constructed in O (n logn) time and O (1) workspace.

Proof. In Step 1, each S-substring beginning with T [SA[i]] is compared with S-substring beginning with T [SA[i + 1]]. So 
each S-substring only participates in two comparisons. Now the argument is similar to a comparison process in a recursive 
level of mergesort in Lemma 17, thus it costs linear time. Obviously, Step 2 takes O (n log n) time and O (1) workspace. �
5.4. Sort the S-suffixes by solving T1 recursively

In this section, we solve T1 = SA[0 . . .nS − 1] recursively to obtain the order of all S-suffixes in SA[n − nS . . .n − 1]. For 
the recursive step, we use SA1 = SA[n − nS . . .n − 1] as the output space for T1. After the recursive call, SA1 stores the 
suffix array of T1. We need to restore their names back to the indices of S-suffixes in T they represented. This step can be 
done as follows.

1. First, we scan T from right to left. We maintain a counter sum for the number of S-type characters we have scanned so 
far. Initially sum is 0. If T [i] is S-type, we increase sum by 1 and place suf(i) into SA[nS − sum] (i.e., let SA[nS − sum] ←
i). Now SA[0 . . .nS − 1] stores the indices of all S-suffixes of T .
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2. Then for i ∈ [n − nS , n − 1], let SA[i] ← SA[SA[i]].

Now, we have obtained all S-suffixes in the lexicographical order in SA[n − nS . . .n − 1].

5.5. Induced sort all suffixes of T

From Section 5.4, we have obtained the sorted S-suffixes in SA[n − nS . . .n − 1]. Now, we sort all suffixes from these 
sorted S-suffixes.

Preprocessing: First, we scan T from right to left to place all indices of L-suffixes into SA[0 . . .n − nS − 1]. Then, we sort 
SA[0 . . .n − 1] (the sorting key of SA[i] is T [SA[i]] i.e., the first character of suf(SA[i])) using the mergesort, with the 
merging step implemented by the stable, in-place, linear time merging algorithm developed by Salowe and Steiger [40]. 
After this sorting step, we show some useful observations.

Observation 3. All suffixes of T have been sorted by their first characters in SA, i.e., in their corresponding buckets.

Observation 4. All indices of L-suffixes beginning with the same character in SA are in increasing order, due to the stable-
ness of the above sorting algorithm.

Lemma 19. All S-suffixes are already in their final positions in SA.

Proof. Before the sorting step, all sorted S-suffixes are in SA[n − nS . . .n − 1] and all L-suffixes are in SA[0 . . .n − nS − 1]. 
Because the merging step is stable, the S-suffixes are behind the L-suffixes in the same bucket and hence are already in 
their final positions in SA from Observation 3 and Property 1. �
Induced Sorting: Now, we induce the order of all L-suffixes from the sorted S-suffixes (which are already in their final 
position in SA by Lemma 19) using induced sorting. Now, we extend the interior counter trick in Section 4.4 to handle the 
read-only general alphabets. We use five special symbols BH (Head of L-suffixes), BT (Tail of L-suffixes), E (Empty), R1 (one 
remaining L-suffix) and R2 (two remaining L-suffixes).7 We do the following two steps to sort all L-suffixes:

Step 1. Initializing SA: Firstly, we initialize all buckets in SA by placing some special symbols in each bucket in order to 
inform us the number of L-suffixes in the bucket. Concretely, we scan T from right to left. For each scanning character T [i]
which is L-type, if bucket T [i] has not been initialized, we need to initialize bucket T [i] (we will show how to identify the 
bucket is initialized or not in the end of this step). Before to initialize bucket T [i], we first need to obtain the value NL , 
which is the number of L-suffixes in this bucket. Let l denote the head of bucket T [i] in SA (i.e. l is the smallest index 
in SA such that T [SA[l]] = T [i]) and r denote the tail of bucket T [i] in SA (i.e. r is the largest index in SA such that 
T [SA[r]] = T [i]). Furthermore, we let rL denote the tail of L-suffixes in this bucket (i.e., rL is the largest index in SA such 
that T [SA[rL]] = T [i] and T [SA[rL]] is L-type). Note that NL = rL − l +1. Hence, it suffices to compute l and rL . The following 
steps compute l and rL , respectively.

(i) We can find l by searching T [i] in SA (the search key for SA[i] is T [SA[i]]) using binary search. This uses O (log n) time 
from Observation 3.

(ii) For rL , since the bucket T [i] has not been initialized, suf(i) is the first L-suffix in its bucket being scanned. From 
Observation 4, suf(i) must be stored in SA[rL] (i.e., SA[rL] = i) since we scan T from right to left. Hence, we can scan 
this bucket from l to r to find rL which satisfies SA[rL] = i.

After this, we have obtained the value of NL . Now, we initialize the bucket T [i] as follows:

(1) If NL = 1, we do nothing (there is only one L-suffix in this bucket, and obviously it is in the final position).
(2) If NL = 2, let SA[l + 1] = BT (recall that l is the head of bucket T [i] and r is the bucket tail, i.e., SA[l . . . r] is the bucket 

T [i]. Moreover, rL is the tail of L-suffixes in this bucket)

Index l l + 1(rL) l + 2 . . . r
Type L L S . . . S
SA SA[l] BT SA[l + 2] . . . SA[r]

7 Recall that the special symbol is only used to simplify the argument. See Appendix B for the details. The only difference is that we need to use the 
in-place linear time merging algorithm [40] to place all indices of the suffixes of T in their corresponding buckets in SA (the merging key is the beginning 
character of the suffix), then we scan the SA once to know the bucket heads/tails for the five integers (instead of scanning the string T for the (read-only) 
integer alphabets).
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(3) If NL = 3, let SA[l + 1] = BH and SA[l + 2] = BT .

Index l l + 1 l + 2(rL) l + 3 . . . r
Type L L L S . . . S
SA SA[l] BH BT SA[l + 3] . . . SA[r]

1. If NL > 3, let SA[l + 1] = BH , SA[l + 2] = E and SA[l + NL − 1] = BT .

Index l l + 1 l + 2 l + 3 . . . l + NL − 1(rL) l + NL . . . r
Type L L L L . . . L S . . . S
SA SA[l] BH E SA[l + 3] . . . BT SA[l + NL] . . . SA[r]

Note that we can find out whether the bucket T [i] is already initialized or not in O (logn) time. We do a binary search find 
l, then check SA[l + 1] is BH or BT or others. If the bucket T [i] has been initialized, SA[l + 1] is BH or BT . Otherwise, it has 
not been initialized yet.8 It is not hard to see that this initialization step uses O (n log n) time and O (1) workspace.

Step 2. Sort all L-suffixes using induced sorting: We scan SA from left to right to sort all L-suffixes. The step is similar to 
sorting all suffixes in Section 4.4. The main difference is that we use binary search to find the bucket head. Specifically, 
for every SA[i], let j = SA[i] − 1. If T [ j] is L-type, then place suf( j) into the LF-entry of its bucket, and increase the head 
counter by one. To specify how to place the L-suffix into the LF-entry of its bucket in SA, We only specify the case where 
NL > 3 for the bucket. The other cases with NL ≤ 3 are similar and simpler. Let Li denote the index of i-th L-suffix which 
needs to be placed into the LF-entry of this bucket. We distinguish the following four cases:

Index l l + 1 l + 2 l + 3 . . . l + NL − 1(rL) l + NL . . . r
Type L L L L . . . L S . . . S

Case (1) :
SA SA[l] BH E SA[l + 3] . . . BT SA[l + NL] . . . SA[r]
SA L1 BH 1 SA[l + 3] . . . BT SA[l + NL] . . . SA[r]

Case (2) :
SA L1 BH 1 SA[l + 3] . . . BT SA[l + NL] . . . SA[r]
SA L1 BH 2 L2 . . . BT SA[l + NL] . . . SA[r]
...

...

SA L1 BH NL − 3 L2 . . . BT SA[l + NL] . . . SA[r]
SA L1 R2 L2 L3 . . . BT SA[l + NL] . . . SA[r]

Case (3) :
SA L1 R2 L2 L3 . . . BT SA[l + NL] . . . SA[r]
SA L1 L2 L3 L4 . . . R1 SA[l + NL] . . . SA[r]

Case (4) :
SA L1 L2 L3 L4 . . . R1 SA[l + NL] . . . SA[r]
SA L1 L2 L3 L4 . . . LNL SA[l + NL] . . . SA[r]

(1) If SA[l + 1] = BH and SA[l + 2] = E: The first L-suffix (i.e. L1) needs to be placed into this bucket.
We let SA[l] = j and SA[l + 2] = 1 (use SA[l + 2] as the counter to denote the number of L-suffixes have been placed 
so far). Recall that suf( j) is the current L-suffix we want to place.

(2) If SA[l + 1] = BH and SA[l + 2] 
= E: The L-suffixes (related to the current bucket) except the first L-suffix (L1) and the 
last two L-suffixes (LNL−1 and LNL ) need to be placed.
Let c = SA[l + 2] (counter). If SA[l + c + 2] 
= BT , we let SA[l + c + 2] = j and SA[l + 2] = c + 1. Otherwise (this is the 
third to last L-suffix, i.e. LNL−2), we shift these c − 1 L-suffixes to the left by one position (i.e., move SA[l + 3 . . . rL − 1]
to SA[l + 2 . . . rL − 2]) and let SA[rL − 1] = j and SA[l + 1] = R2 .

(3) If SA[l + 1] = R2: The penultimate L-suffix (i.e. LNL−1) needs to be placed.
We scan this bucket to find rL such that SA[rL] = BT . Then, we move SA[l + 2 . . . rL − 1] to SA[l + 1 . . . rL − 2]. After, we 
let SA[rL − 1] = j and SA[rL] = R1 .

(4) Otherwise, the last L-suffix (i.e. LNL ) needs to be placed.
We scan this bucket to find rL such that SA[rL] = R1 . Then let SA[rL] = j.

We have the following lemmas and theorem.

8 Note that we are able to do the binary search in SA, though there are special symbols (i.e. BH, BT, E) in SA. Since the longest continuous special symbol 
entries in SA is 2, i.e., any three of continuous entries in SA must have at least one suffix entry (this entry represents the index of a suffix of T ).
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Lemma 20. When we scan SA[i] in the induced sorting step, we can identify whether T [SA[i] − 1] is L-type or S-type in O (1) time. 
The only exception is when suf(SA[i] − 1) is the last L-suffix which needs to be inserted into the bucket T [SA[i] − 1]. This special case 
requires O (NL) time to be identified, where NL denotes the number of L-suffixes in its bucket (i.e. NL = rL − l + 1).

Proof. Let j = SA[i] − 1. First if T [ j] 
= T [ j + 1], by definition it is trivial. Otherwise, T [ j] = T [ j + 1]. Similar to Lemma 14, 
we only need to know whether all L-suffixes in the bucket T [ j] (i.e., bucket T [SA[i]]) have already been sorted or not. In 
our algorithm, we use the extended interior counter trick which maintains the counters of the buckets. So we can identify 
whether all L-suffixes in the bucket T [ j] have already been sorted or not immediately except when suf( j) is the last L-
suffixes which needs to be placed into the bucket T [ j] (corresponding to case (4)). However, we can scan this bucket from 
left to right to identify whether the special symbol R1 exists or not. If exists, which means there is one L-suffix remained, 
this must be the suf( j). Otherwise, all L-suffixes in the bucket T [ j] have already been sorted. This scanning operation takes 
O (NL) time. �
Lemma 21. All the suffixes can be sorted correctly from the sorted S-suffixes in O (n logn) time.

Proof. All S-suffixes have been sorted correctly according to Lemma 19. All L-suffixes can be sorted correctly from the 
sorted S-suffixes using induced sorting steps according to Lemma 1. For the time complexity, in the scanning process, we 
use O (log n) time to do binary search to find the head of its bucket for each L-suffix (identified by Lemma 20), and use the 
extended interior counter trick to find the LF-entry in constant time except for the last two L-suffixes of the bucket. We 
need to scan all L-suffixes in this bucket in order to find the final position (corresponding to case (4) in Step 2) and shift 
these L-suffixes by one position (corresponding to case (3) in Step 2). This only takes O (n) time overall since each bucket is 
scanned at most twice. To sum up, this sorting step takes O (n log n) time. �
Theorem 6. Our Algorithm takes O (n logn) time and O (1) workspace to compute the suffix array for string T over general alphabets, 
where T is read-only and only comparisons between characters are allowed.

Proof. All steps in our algorithm take O (n log n) time. Besides, the size of recursive problem T1 is not larger than half of 
|T |. We have T (n) = T (n/2) + O (n log n), thus T (n) = O (n log n + n

2 log n
2 + · · · ) = O (n log n). For workspace, every step uses 

O (1) workspace, and in the recursive subproblem we can also reuse the O (1) workspace. Moreover, at the same recursive 
level, the different steps can reuse the O (1) workspace too. �
6. Conclusion

In this paper, we present optimal in-place algorithms for suffix sorting over (read-only) integer alphabets and read-
only general alphabets. All of them are optimal both in time and space. Concretely, we provide the first optimal linear 
time in-place suffix sorting algorithm for (read-only) integer alphabets. Our algorithms solve the open problem posed by 
Franceschini and Muthukrishnan in ICALP 2007 [17]. For the read-only general alphabets, we provide an optimal in-place 
O (n log n) time suffix sorting algorithm, which recovers the result obtained by Franceschini and Muthukrishnan [17]. Our 
algorithm is arguably simpler.

There is a surge of interests in developing external memory algorithms for suffix sorting in recent years (see e.g., [41,
42]). Many such algorithms are extensions of existing lightweight internal memory algorithms. It would be interesting to 
investigate the external memory setting and see whether our tricks and data structures are applicable in this setting. We 
also plan to consider other string processing problems that are tightly connected with suffix array, such as compressed 
suffix arrays, longest common prefixes, Burrows-Wheeler transform and Lempel-Ziv factorization.
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Appendix A. Running examples

A.1. Induced sorting all L-suffixes from the sorted S-suffixes

In this appendix, we give a running example for the standard induced sorting step which needs the bucket array and 
type array explicitly. Assume that all indices of the sorted S-suffixes are already in their correct positions in SA (i.e., in the 
tail of their corresponding buckets in SA). We scan SA from left to right (i.e., from SA[0] to SA[n −1]). When we scan SA[i], 
let j = SA[i] − 1. If T [ j] is L-type, i.e., suf( j) is an L-suffix (indicated by the type array), we place the index of suf( j) (i.e. j) 
into the LF-entry of bucket T [ j], and then let the LF-pointer of this bucket T [ j] point to the next entry. The LF-pointers are 
maintained by the bucket array. If suf( j) is an S-suffix, we do nothing (since all S-suffixes are already sorted in the correct 
positions).

The idea of induced sorting is that the lexicographical order between suf(i) and suf( j) are decided by the order of 
suf(i + 1) and suf( j + 1) if suf(i) and suf( j) are in the same bucket (i.e., T [i] = T [ j]). Considering two L-suffixes suf(i) and 
suf( j) in the same bucket, we have suf(i + 1) < suf(i) and suf( j + 1) < suf( j) by the definition of L-suffix. Since we scan 
SA from left to right, suf(i + 1) and suf( j + 1) must appear earlier than suf(i) and suf( j). Hence the correctness of induced 
sorting is not hard to prove by induction. Note that the order of suf(i) and suf( j) with T [i] 
= T [ j] is already correct, since 
we always place the L-suffixes in their corresponding buckets.

Example: We use the following running example to demonstrate the induced sorting step. Consider a string T [0 . . . 12] =
“2113311331210” (the integer alphabets).

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S

T [2] is S-type since T [2] < T [3]. The S-substrings are {11, 1331, 11, 1331, 1210, 0}. The S-suffixes are {suf(1), suf(2), suf(5),

suf(6), suf(9), suf(12)}.
Now, we show the induced sorting step in our running example. Suppose all indices of the sorted S-suffixes (i.e., 

1, 2, 5, 6, 9, 12) are already stored in the tail of their corresponding buckets in SA: (E denotes an Empty entry.)

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S
SA (12) (E 1 5 9 2 6) (E E) (E E E E)

Bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

(The entries between a pair of parentheses denote a bucket in SA which are these suffixes that start with the same character. 
The heads of bucket 0, 1, 2, 3 are 0, 1, 7, 9, respectively.)

The scanning process is as follows. An arrow on top of a number indicates that it is the current entry we are scanning.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
Type L S S L L S S L L S L L S

SA (
−→
12) (11 1 5 9 2 6) (E E) (E E E E)

SA (12) (
−→
11 1 5 9 2 6) (10 E) (E E E E)

SA (12) (11
−→
1 5 9 2 6) (10 0) (E E E E)

SA (12) (11 1
−→
5 9 2 6) (10 0) (4 E E E)

SA (12) (11 1 5
−→
9 2 6) (10 0) (4 8 E E)

SA (12) (11 1 5 9 2 6) (10 0) (
−→
4 8 3 E)

SA (12) (11 1 5 9 2 6) (10 0) (4
−→
8 3 7)

We first scan SA[0] = 12. We place 11 (since T [11] is L-type) to the LF-entry of bucket 1 (i.e., SA[1]), note that the LF-
pointer of bucket 1 initially points to SA[1] (head of bucket 1). Next, we scan SA[1] = 11, and we place 10 (T [10] is also 
L-type) to the LF-entry of its bucket (i.e., bucket 2), and so on. �
A.2. Induced sorting all L-suffixes from the sorted LMS-suffixes

In this appendix, we show the induce sorting step which sorting the L-suffixes from LMS-suffixes in our example. Note 
that the empty entries can be ignored, and all L-suffixes can still be sorted correctly.

Example: Suppose all LMS-suffixes (i.e., 1, 5, 9, 12) are already sorted in the tail of their corresponding bucket in SA: (E
denotes an Empty entry.)

22



Z. Li, J. Li and H. Huo Information and Computation 285 (2022) 104818

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

Type L S S L L S S L L S L L S
SA (12) (E E E 1 5 9) (E E) (E E E E)

Bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

The scanning process is as follows. An arrow on top of a number indicates that it is the current entry we are scanning. 
When we are scanning an empty entry in SA, we ignore this entry (i.e., do nothing).

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
Type L S S L L S S L L S L L S

SA (
−→
12) (11 E E 1 5 9) (E E) (E E E E)

SA (12) (
−→
11 E E 1 5 9) (10 E) (E E E E)

SA (12) (11 E E
−→
1 5 9) (10 0) (E E E E)

SA (12) (11 E E 1
−→
5 9) (10 0) (4 E E E)

SA (12) (11 E E 1 5
−→
9 ) (10 0) (4 8 E E)

SA (12) (11 E E 1 5 9) (10 0) (
−→
4 8 3 E)

SA (12) (11 E E 1 5 9) (10 0) (4
−→
8 3 7) �

Appendix B. Handling special symbols

We use at most five special symbols (e.g. U (Unique), E (Empty)) in this paper. The special symbols are only used to 
simplify the argument, and we do not need any additional assumption. Now we describe how to handle these special 
symbols. Note that we introduce these special symbols and use them in our interior counter trick (see Section 3.3, 3.7 and 
4.4). Recall that, if one uses the bucket array (which needs extra max{|�|, n/2} words workspace) without using the interior 
counter trick, then the suffix array SA would only contain the indices of T (i.e., {0, 1, . . . , n − 1}) (see the preliminary 
section). Now the key point is to distinguish whether an entry in SA is one of these five integers (chosen to replace the 
special symbols) or just an index as before.

First, consider the simpler case where n < 2�logn� −5. We can simply use integers {n, n +1, . . . , n +4} as these five special 
symbols since they are different from all indices (identifiable) and each of them can be stored in one entry of SA same as 
an index of T .

Otherwise, we use any five integers (belong to [0, n − 1]) as these five special symbols. Without loss of generality, 
we assume that these five integers are {n − 5, n − 4, . . . , n − 1}. Then we use ten extra variables (as the previous bucket 
array) to indicate the head/tail of the five buckets (which the five suffixes {suf(n − 5), . . . , suf(n − 1)} belong to) in SA
and their LF/RF-entries. Thus we do not need the interior counter trick for these five buckets. Note that we can obtain 
the head/tail of these five buckets by scanning T once to count how many characters are smaller/larger than these five 
characters {T [n − 5], . . . , T [n − 1]}, respectively. To identify an entry of SA, if the entry belongs to one of these five buckets, 
it is just an index. Otherwise, we check its value: if it equals to one of {n − 5, n − 4, . . . , n − 1}, then it is a special symbol 
since none of these five integers belongs to this bucket.

There is one more subtlety. In our interior counter trick, there is a counter for each bucket to count how many suffixes 
have been placed into this bucket. Thus there are three types of entries in SA: 1) indices of T ; 2) these five integers (as 
special symbols); 3) counters for the buckets. We want to point out that the position of each counters is always fixed to 
be adjacent to the special symbol. Besides, the value of any counter is less than its bucket size minus 2 since the counter 
is deleted when we place the last two indices into its bucket (see e.g. the figure in Section 4.4). Moreover, it is not hard 
to verify that the counter can only conflict with the special symbol E (which happens when we first insert an index to a 
bucket). Thus we choose to use n − 1 to denote the special symbol E . There is no conflict since the counter is always less 
than n − 2.

Appendix C. Restoring the original string T

In this appendix, we show that we can restore the string T in our first algorithm (Section 3) for the integer alphabet 
{1, 2, . . . , |�|} with |�| ≤ n. Note that for our second algorithm (Section 4), we do not need to restore T since we consider 
the harder read-only case, i.e., T is read-only. To restore exactly the same string T , we additionally assume that the alphabet 
� is consecutive, i.e., every letter in � should appear in T .

First, we can see that upon the termination of our algorithm, suffix array SA contains the indices of all suffixes of T
which are in lexicographical order. Note that if we do not modify T , we will have the following observation.

Observation 5. For each suffix suf(SA[i]) in SA, let bi denote its bucket character (i.e., the first common character). We have 
that T [SA[i]] = bi .
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The key point to recover T is that we need to maintain the equality relationship of the characters of T . So if we modify 
T to T ′ under this condition such that T ′[i] = T ′[ j] (or T ′[i] 
= T ′[ j], resp.) if and only if T [i] = T [ j] (or T [i] 
= T [ j], resp.). 
Then, we can recover T from SA and T ′ using linear time (scan SA once) and O (1) workspace from above Observation 5. 
Now, we need to modify the first renaming step in our algorithm to rename each character T [i] to be its bucket tail (note 
that this modification maintains the equality relationship). This change only leads to some minor change in the details in 
the later induced sorting step. In the induced sorting step, since we let all T [i] points to its bucket tail, the induced sort 
LMS-suffixes or S-suffixes are the same as before. The only thing we need to explain in the induced sorting step is that we 
induced sort L-suffixes from the sorted LMS-suffixes since there are no pointers which point to the bucket head (see Step 1 
of Section 3.7 which sort all L-suffixes from the sorted LMS-suffixes using induced sorting). However, we can fix this step 
using our interior counter trick we developed. Now, we describe the details. We distinguish the buckets in SA into two 
types: one type does not contain LMS-suffixes, the other contains LMS-suffixes. These two types are easy to identify since 
the LMS-suffixes have already been sorted in the tail of their corresponding buckets in SA.

Type 1. The buckets do not contain LMS-suffixes: In this type, we initialize the bucket in the following steps. Scan T from 
right to left. For every T [i] which is L-type and its bucket is this type, do the following:

(1) If SA[T [i]] = Empty, let SA[T [i]] = Unique1 (unique L-type character in this bucket).
(2) If SA[T [i]] = Unique1, let SA[T [i]] = Multi1 and SA[T [i] − 1] = 2 (number of L-type characters in this bucket is 2).
(3) If SA[T [i]] = Multi1, increase SA[T [i] − 1] by one. (SA[T [i] − 1] denote the number of L-type characters in this bucket).

After this initialization, the head of this type bucket can be indicated by SA[t] and SA[t − 1], where t is its bucket tail.

Type 2. The buckets contain LMS-suffixes: In this type, we initialize the bucket in the following steps. Scan T from right to 
left. For every T [i] which is L-type and its bucket is this type, do the following:

(1) If SA[T [i]] is an index, shift these LMS-suffixes (which are sorted in this bucket tail) to left by one position and let 
SA[T [i]] = Unique2 (unique L-type character in this bucket).

(2) If SA[T [i]] = Unique2, shift these LMS-suffixes (which have been shifted by one position) to left by one position again 
and let SA[T [i] − 1] = 2 (number of L-type characters in this bucket is 2).

(3) If SA[T [i]] = Multi2, increase SA[T [i] − 1] by one. (SA[T [i] − 1] denote the number of L-type characters in this bucket).

After this initialization, the head of this type bucket can be indicated by SA[t] and SA[t − 1] too, where t is its bucket tail.
Now, all L-suffixes can be sorted using induced sort like before, but their indices are not in their final positions in SA. 

We need scan T once more from right to left to compute the number of suffixes in each bucket, then shift these sorted 
L-suffixes to their bucket head (it is not hard to see that this shift step can be done in linear time). Now, all L-suffixes are 
placed in their final positions in SA. Then using induced sort as before we can sort all S-suffixes as well. In conclusion, we 
have the following lemma.

Lemma 22. The original string T can be restored using linear time and O (1) workspace.

Finally, we note that if � is not consecutive, according to the above algorithm, we may get a string equivalent to T . For 
example, if T = “13343226” where ‘5’ does not appear, then we can recover an equivalent text to T , which is “13343225”, 
i.e., ‘6’ is replaced by ‘5’.
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