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Abstract
Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamilto-
nian Monte Carlo, are important methods for Bayesian inference. In large-scale settings,
full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are
used as a replacement. In order to reduce the high variance of noisy stochastic gradients,
Dubey et al. (in: Advances in neural information processing systems, pp 1154–1162, 2016)
applied the standard variance reduction technique on stochastic gradient Langevin dynam-
ics and obtained both theoretical and experimental improvements. In this paper, we apply
the variance reduction tricks on Hamiltonian Monte Carlo and achieve better theoretical
convergence results compared with the variance-reduced Langevin dynamics. Moreover, we
apply the symmetric splitting scheme in our variance-reduced Hamiltonian Monte Carlo
algorithms to further improve the theoretical results. The experimental results are also con-
sistent with the theoretical results. As our experiment shows, variance-reduced Hamiltonian
Monte Carlo demonstrates better performance than variance-reduced Langevin dynamics in
Bayesian regression and classification tasks on real-world datasets.
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1 Introduction

Gradient-based Monte Carlo algorithms are useful tools for sampling posterior distributions.
Similar to gradient descent algorithms, gradient-basedMonte Carlo generates posterior sam-
ples iteratively using the gradient of log-likelihood.

Langevin dynamics (LD) and Hamiltonian Monte Carlo (HMC) (Duane et al. 1987; Neal
et al. 2011) are two important examples of gradient-based Monte Carlo sampling algorithms
that are widely used in Bayesian inference. Since calculating the likelihood on large datasets
is expensive, people use stochastic gradients (Robbins and Monro 1951) in place of full gra-
dient, and have, for both Langevin dynamics and Hamiltonian Monte Carlo, developed their
stochastic gradient counterparts (Welling and Teh 2011; Chen et al. 2014). Stochastic gra-
dient Hamiltonian Monte Carlo (SGHMC) usually converges faster than stochastic gradient
Langevin dynamics (SGLD) in practical machine learning tasks like covariance estimation
of bivariate Gaussian and Bayesian neural networks for classification on MNIST dataset, as
demonstrated in Welling and Teh (2011). Similar phenomenon was also observed in Chen
et al. (2015) where SGHMC and SGLD were compared on both synthetic and real-world
datasets. Intuitively speaking, comparing against SGLD, SGHMChas amomentum term that
may enable it to explore the parameter space of posterior distribution much faster when the
gradient of log-likelihood becomes smaller.

Very recently, Dubey et al. (2016) borrowed the standard variance reduction techniques
from the stochastic optimization literature (Johnson and Zhang 2013; Defazio et al. 2014) and
applied them on SGLD to obtain two variance-reduced SGLD algorithms (called SAGA-LD
and SVRG-LD) with improved theoretical results and practical performance. Because of the
superiority of SGHMC over SGLD in terms of convergence rate in a wide range of machine
learning tasks, it would be a natural question whether such variance reduction techniques can
be applied on SGHMC to achieve better results than variance-reduced SGLD. The challenge
is that SGHMC ismore complicated than SGLD, i.e., the extramomentum term (try to explore
faster) and friction term (control the noise caused by SGHMC from HMC) in SGHMC. Note
that the friction term in SGHMC is inherently different than SGLD since LD itself already
has noise so it can be directly extended to SGLD, while HMC itself is deterministic. To the
best of our knowledge, there is even no existing work to prove that SGHMC is better than
SGLD. So in this paper we need to give some new approaches and insights in our analysis
to prove that variance-reduced SGHMC is better than variance-reduced SGLD due to the
existence of momentum term and friction term.

Actually, it seems that the variance reduction in this stochastic Bayesian inference is more
effective compared with stochastic optimization settings. Intuitively, the full gradient case
(no variance) may converge to a saddle point or a local minimum (not a global minimum)
in nonconvex optimization, and the variance of the stochastic gradient estimator may be
useful for escaping saddle points or bad local minima. Thus, we may not want to reduce the
variance. However, the full gradient case (no variance) will always converge to the stationary
posterior distribution for Bayesian inference. Thus, it is useful to reduce the variance of the
stochastic gradient estimator for obtaining more approximate posterior distribution. Note
that in large-scale settings, full-gradients (no variance) are not affordable and thus stochastic
gradients evaluated on mini-batches are used as a replacement.
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1.1 Our contribution

1. We propose two variance-reduced versions of Hamiltonian Monte Carlo algorithms
(called SVRG-HMC and SAGA-HMC) using the standard approaches from Johnson
and Zhang (2013), and Defazio et al. (2014). Compared with SVRG/SAGA-LD (Dubey
et al. 2016), our algorithms guarantee improved theoretical convergence results due to
the extra momentum term in HMC (see Corollary 3).

2. Moreover, we combine the proposed SVRG/SAGA-HMC algorithmswith the symmetric
splitting scheme (Chen et al. 2015; Leimkuhler and Shang 2016) to extend them to 2nd-
order integrators, which further improve the dependency on step size (see the difference
between Theorem 2 and 5). We denote these two algorithms as SVRG2nd-HMC and
SAGA2nd-HMC.

3. Finally, we evaluate the proposed algorithms on real-world datasets and compare them
with SVRG/SAGA-LD (Dubey et al. 2016); as it turns out, our algorithms converge
markedly faster than the benchmarks (vanilla SGHMC and SVRG/SAGA-LD).

1.2 Related work

Langevin dynamics andHamiltonianMonteCarlo are two important sampling algorithms that
are widely used in Bayesian inference. Many literatures have studied how to develop variants
of them to achieve improved performance, especially for scalability for large datasets.Welling
and Teh (2011) started this direction with the notable work stochastic gradient Langevin
dynamics (SGLD). Ahn et al. (2012) proposed a modification to SGLD reminiscent of Fisher
scoring to better estimate the gradient noise variance, with lower classification error rates
on HHP dataset and MNIST dataset. Chen et al. (2014) developed the stochastic gradient
version of HMC (SGHMC), with a quite nontrivial approach different from SGLD. Ding
et al. (2014) further improved SGHMC by a new dynamics to better control the gradient
noise, and the proposed stochastic gradient Nosé-Hoover thermostats (SGNHT) outperforms
SGHMC on MNIST dataset.

Various settings of Markov Chain Monte Carlo (MCMC) are also considered. Girolami
and Calderhead (2011) enhanced LD and HMC by exploring the Riemannian structure of
the target distribution, with Riemannian manifold LD and HMC (RMLD and RMHMC,
respectively). Byrne and Girolami (2013) developed geodesic Monte Carlo (GMC) that is
applicable to Riemannian manifolds with no global coordinate systems. Large-scale variants
of RMLD, RMHMC and GMC with stochastic gradient were developed by Patterson and
Teh (2013), Ma et al. (2015) and Liu et al. (2016), respectively. Ahn et al. (2014) studied the
behaviour of stochastic gradient MCMC algorithms for distributed posterior inference. Very
recently, Zou et al. (2018) used a stochastic variance-reducedHMC for sampling from smooth
and strongly log-concave distributions which requires f is smooth and strongly convex. In
this paper, we do not assume f is strongly convex or convex and we also use an efficient
discretization scheme to further imporve the convergence results. Besides, their results were
measured with 2-Wasserstein distance, while ours are measured with mean square error. Note
that the variance reduction techniques have already been used in nonconvex optimization
literature [see e.g., Allen-Zhu and Hazan 2016; Reddi et al. 2016; Li and Li 2018; Ge et al.
2019; Li 2019], and they achieved improved convergence results.
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2 Preliminary

Let X = {xi }ni=1 be a d-dimensional dataset that follows the distribution Pr(X |θ) =∏n
i=1 Pr(xi |θ). Then, we are interested in sampling the posterior distribution Pr(θ |X) ∝

Pr(θ)
∏n

i=1 Pr(xi |θ) based on Hamiltonian Monte Carlo algorithms. Let [n] denote the set
{1, 2, . . . , n}. Define f (θ) = ∑n

i=1 fi (θ) − log Pr(θ), where fi (θ) = − log Pr(xi |θ) and
i ∈ [n]. Similar to Dubey et al. (2016), we assume that each fi is L-smooth and G-Lipschitz,
for all i ∈ [n].

The general algorithmic framework maintains two sequences for t = 0, 1, . . . , T − 1 by
the following discrete time procedure:

pt+1 = (1 − Dh)pt − h∇̃t + √
2Dh · ξt (1)

θt+1 = θt + hpt+1 (2)

and then returns the samples {θ1, θ2, . . . , θT } as an approximation to the stationary dis-
tribution Pr(θ |X). θt is the parameter we wish to sample and pt is an auxiliary variable
conventionally called the “momentum”. Here h is step size, D is a constant independent of
θ and p, ξt ∼ N(0, Id) and ∇̃t is a mini-batch approximation of the full gradient ∇ f (θt ).
If we set ∇̃t = n

b

∑
i∈I ∇ fi (θt ), I being a b-element index set uniformly randomly drawn

(with replacement) from {1, 2, . . . , n} as introduced in Robbins and Monro (1951), then the
algorithm becomes SGHMC.

The above discrete time procedure provides an approximation to the continuous Hamil-
tonian Monte Carlo diffusion process (θ, p):

dθ = pdt (3)

dp = −∇θ f (θ)dt − Dpdt + √
2DdW (4)

HereW is a Wiener process. According to Chen et al. (2015), the stationary joint distribution

of (θ, p) is π(θ, p) ∝ e− f (θ)− pᵀ p
2 .

How do we evaluate the quality of the samples {θ1, θ2, . . . , θT }? Assuming φ : Rd → R

is a smooth test function, we wish to upper bound theMean-Squared Error (MSE)E(φ̂− φ̄)2,
where φ̂ = 1

T

∑T
t=1 φ(θt ) is the empirical average, and φ̄ = Eθ∼Pr(θ |X)φ(θ) is the population

average. So, the objective of our algorithm is to carefully design ∇̃t to minimize E(φ̂ − φ̄)2

in a faster way, where ∇̃t is a stochastic approximation of ∇ f (θt ).
To study how the choice of ∇̃t influences the value of E(φ̂ − φ̄)2, define ψ(θ, p) to be

the solution to the Poisson equation Lψ = φ(θ) − φ̄, L being the generator of Hamiltonian
Monte Carlo diffusion process. In order to analyze the theoretical convergence results related
to the MSE E(φ̂ − φ̄)2, we inherit the following assumption from Chen et al. (2015).

Assumption 1 (Chen et al. 2015) Functionψ is bounded up to 3rd-order derivatives by some
real-valued function Γ (θ, p), i.e. ‖Dkψ‖ ≤ CkΓ

qk where Dk is the kth order derivative for
k = 0, 1, 2, 3, and Ck, qk > 0. Furthermore, the expectation of Γ on {(θt , pt )} is bounded,
i.e. supt E[Γ q(θt , pt )] < ∞ and thatΓ is smooth such that sups∈(0,1) Γ q(sθ+(1−s)θ ′, sp+
(1−s)p′) ≤ C(Γ q(θ, p)+Γ q(θ ′, p′)),∀θ, p, θ ′, p′, q ≤ max 2qk for some constantC > 0.

Define operator ΔVt = (∇̃t −∇ f (θt )) · ∇ for all t = 0, 1, 2, . . . , T − 1. When the above
assumption holds, we have the following theorem by Chen et al. (2015).

For the rest of this paper, for any two values A, B > 0, we say A � B if A = O(B),
where the notationO(·)only hides a constant factor independent of the algorithm’s parameters
T , n, D, h,G, b.
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Theorem 1 (Chen et al. 2015) Let ∇̃t be an unbiased estimate of∇ f (θt ) for all t . Then under
Assumption 1, for a smooth test function φ, the MSE of SGHMC is bounded in the following
way:

E(φ̂ − φ̄)2 �
1
T

∑T−1
t=0 E(ΔVtψ(θt , pt ))2

T
+ 1

Th
+ h2 (5)

Similar to the [A2] assumption in Dubey et al. (2016), we also need to make the following
assumption which relates ΔVtφ(θ, p) to the difference ‖∇̃t − ∇ f (θ)‖2.
Assumption 2 (ΔVtψ(θt , pt ))2 � ‖∇̃t − ∇ f (θt )‖2 for all 0 ≤ t < T .

Combined with Theorem 1, Assumption 2 immediately yields the following corollary.

Corollary 1 Under Assumptions 1 and 2, we have:

E(φ̂ − φ̄)2 �
1
T

∑T−1
t=0 E‖∇̃t − ∇ f (θt )‖2

T
+ 1

Th
+ h2

As we mentioned before, if we take ∇̃t to be the Robbins & Monro approximation of
∇ f (θt ) (Robbins and Monro 1951), then it becomes SGHMC and the following corollary
holds since all fi ’s are G-Lipschitz and E(X − EX)2 ≤ EX2 for any random variable X .

Corollary 2 Under Assumptions 1 and 2, the MSE of SGHMC is bounded as:

E(φ̂ − φ̄)2 �
1
T

∑T−1
t=0 E‖∇̃t − ∇ f (θt )‖2

T
+ 1

Th
+ h2

≤ n2G2

bT
+ 1

Th
+ h2 (6)

3 Variance reduction for HamiltonianMonte Carlo

In this section, we introduce two versions of variance-reduced Hamiltonian Monte Carlo
based on SVRG (Johnson and Zhang 2013) and SAGA (Defazio et al. 2014) respectively.

3.1 SVRG-HMC

In this subsection, we propose the SVRG-HMC algorithm (see Algorithm 1) which is based
on the SVRG algorithm. As can be seen from Line 8 of Algorithm 1, we use ∇̃t K+k =
−∇ log Pr(θt K+k) + n

b

∑
i∈I

(∇ fi (θt K+k) − ∇ fi (w)
) + g, where g is

∑n
i=1 ∇ fi (θt K ), as

the stochastic estimation for the full gradient ∇ f (θt K+k).
Note that we initialize θ0, p0 to be zero vectors in the algorithm only to simplify the

theoretical analysis. It would still work with an arbitrary initialization.
The following theorem shows the convergence result forMSE of SVRG-HMC (Algorithm

1). We defer all the proofs to Appendix B.

Theorem 2 Under Assumptions 1 and 2, the MSE of SVRG-HMC is bounded as:

E[(φ̂ − φ̄)2] � min

⎧
⎨

⎩

n2G2

bT
,
L2n2K 2h2

bT

( √
n2G2 + D2d

D − L2n2K 2h3b−1

)2
⎫
⎬

⎭
+ 1

Th
+ h2 (7)
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Algorithm 1: SVRG-HMC
1 parameters T , K , b, h > 0, Dh < 1, D ≥ 1;
2 initialize θ0 = p0 = 0;
3 for t = 0, 1, . . . , T /K − 1 do
4 compute g = ∑n

i=1 ∇ fi (θt K );
5 w = θt K ;
6 for k = 0, 1, . . . , K − 1 do
7 uniformly sample an index subset I ⊆ [n], |I | = b;

8 ∇̃t K+k = −∇ log Pr(θt K+k ) + n
b
∑

i∈I
(
∇ fi (θt K+k ) − ∇ fi (w)

)
+ g;

9 ptK+k+1 = (1 − Dh)ptK+k − h∇̃t K+k + √
2Dhξt K+k ;

10 θt K+k+1 = θt K+k + hptK+k+1;

11 return {θt }1≤t≤T ;

To see how the SVRG-HMC (Algorithm 1) is compared with SVRG-LD (Dubey et al.
2016), we restate their results as following.

Theorem 3 (Dubey et al. 2016)Under Assumptions 1 and 2, theMSEof SVRG-LD is bounded
as:

E[(φ̂ − φ̄)2] � min{n2G2, n2K 2(n2L2h2G2 + hd)}
bT

+ 1

Th
+ h2 (8)

We assume n2G2 > n2K 2(n2L2h2G2+hd). Otherwise theMSE upper bound of SVRG-
LD would be equal to SGHMC [see (6]) and (8)]. We then omit the same terms (i.e., second
and third terms) in the RHS of (7) and (8). Then we have the following lemma.

Lemma 1 Let RHMC = L2n2K 2h2
bT

( √
n2G2+D2d

D−L2n2K 2h3b−1

)2
[i.e., the first term in the RHS of (7)] and

RLD = n2K 2(n2L2h2G2+hd)
bT [i.e., the first term in the RHS of (8)]. Then the following inequality

holds.

RHMC ≤ max

{
1

D2 ,
L

nK

}

RLD (9)

In particular, if D ≥ 1/L
√
h, then (9) becomes:

RHMC ≤ L

nK
RLD (10)

Note that K is suggested to be 2n by Johnson and Zhang (2013) or n/b by Dubey et al.
(2016). we obtain the following corollary from Lemma 1.

Corollary 3 If K is n/b as suggested by Dubey et al. (2016), then (10) becomes:

RHMC ≤ bL

n2
RLD (11)

In other words, the SVRG-HMC is O( n2
bL ) times faster than SVRG-LD, in terms of the con-

vergence bound related to the variance reduction [i.e., the first terms in RHS of (7) and (8)].
Note that n is the size of dataset which can be very large, b is the mini-batch size which is
usually a small constant and L is the Lipschitz smooth parameter for fi (θ).

We also want to mention that the convergence proof for SVRG-HMC (i.e., Theorem 2)
is a bit more difficult than that for SVRG-LD (Dubey et al. 2016) due to the momentum
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variable p (see Line 9 of Algorithm 1). Concretely, the main part of the proof in both SVRG-
LD and SVRG-HMC is to bound the variance. Moreover, the variance can be bounded by
the adjacent distance {‖θt − θt−1‖2} in both SVRG-LD and SVRG-HMC. In SVRG-LD
(Dubey et al. 2016), they can directly bound each of ‖θt − θt−1‖2 for t ∈ [T ]. However,
due to the momentum variable p in our SVRG-HMC (see Line 9 of Algorithm 1), the
distances {‖θt − θt−1‖2}t∈[T ] are more correlated. Thus, we cannot directly bound each
of the ‖θt − θt−1‖2 independently like in SVRG-LD. We bound the variance as a whole,
i.e., we bound the summation of the variance which is equivalent to bound the summa-
tion

∑
t∈[T ] ‖θt − θt−1‖2. Then we get a quadratic inequality due to the correlation among

{‖θt − θt−1‖2}t∈[T ]. Finally, we solve this quadratic inequality to bound the variance.

3.2 SAGA-HMC

In this subsection, we propose the SAGA-HMC algorithm by applying the SAGA framework
(Defazio et al. 2014) to the HamiltonianMonte Carlo. The details are described in Algorithm
2. Similar to the SVRG-HMC, we initialize θ0, p0 to be zero vectors in the algorithm only
to simplify the analysis; it would still work with an arbitrary initialization.

Algorithm 2: SAGA-HMC
1 parameters T , b, h > 0, Dh < 1, D ≥ 1;
2 initialize θ0 = 0, p0 = 0;

3 initialize an array αi0 = θ0, ∀i ∈ [n];
4 compute g = ∑n

i=1 ∇ fi (α
i
0);

5 for t = 0, 1, . . . , T − 1 do
6 uniformly randomly pick a set I ⊆ [n] such that |I | = b;

7 ∇̃t = −∇ log Pr(θt ) + n
b
∑

i∈I (∇ fi (θt ) − ∇ fi (α
i
t )) + g;

8 pt+1 = (1 − Dh)pt − h∇̃t + √
2Dhξt ;

9 θt+1 = θt + hpt+1;

10 update αit+1 = θt , ∀i ∈ I ;

11 g ← g +∑
i∈I (∇ fi (α

i
t+1) − ∇ fi (α

i
t ));

12 return {θt }Tt=1;

The following theorem shows the convergence result for MSE of SAGA-HMC. The proof
is deferred to Appendix B.

Theorem 4 Under Assumptions 1 and 2, the MSE of SAGA-HMC is bounded as:

E[(φ̂ − φ̄)2] � min

⎧
⎨

⎩

n2G2

bT
,
L2n4h2

Tb3

( √
n2G2 + D2d

D − L2n4h3b−3

)2
⎫
⎬

⎭
+ 1

Th
+ h2

Note that SAGA-HMC can be compared with SAGA-LD (Dubey et al. 2016) in a very
similar manner to SVRG-HMC (i.e., Lemma 1 and Corollary 3). Thus we omit such a
repetition.
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4 Variance-reduced SGHMCwith symmetric splitting

Symmetric splitting is a numerically efficient method introduced in Leimkuhler and Shang
(2016) to accelerate gradient-based algorithms. We note that one additional advantage of
SGHMC over SGLD is that SGHMC can be combined with symmetric splitting while SGLD
cannot (Chen et al. 2015). So it is quite natural to combine symmetric splitting with the
proposed SVRG-HMC and SAGA-HMC respectively to see if any further improvements can
be obtained.

The symmetric splitting scheme breaks the original recursion into 5 steps:

θ
(1)
t = θt + h

2
pt (12)

p(1)
t = e−Dh/2 pt (13)

p(2)
t = p(1)

t − h∇̃t + √
2Dhξt (14)

pt+1 = e−Dh/2 p(2)
t (15)

θt+1 = θ
(1)
t + h

2
pt+1 (16)

If we eliminate the intermediate variables, then

pt+1 = e−Dh/2
(
e−Dh/2 pt − h∇̃t + √

2Dhξt

)
(17)

θt+1 = θt + h

2
pt+1 + h

2
pt (18)

Same as before ξt ∼ N(0, Id). Note that the stochastic gradient ∇̃t is computed at θ
(1)
t

(which is θt + h
2 pt ) instead of θt [see (1), (12) and (14)]. As shown in Chen et al. (2015), this

symmetric splitting scheme is a 2nd-order local integrator. Then it improves the dependency
of the MSE on step size h, i.e., the third term in the RHS of (5) changes to be h4, which is
a higher order term than the original h2. It means that we can allow a larger step size h by
using this symmetric splitting scheme (note that h < 1).

Similarly, we can further improve the convergence results for SVRG/SAGA-HMC by
combining the symmetric splitting scheme. We give the details of the algorithms and theo-
retical results for SVRG2nd-HMC and SAGA2nd-HMC in the following subsections.

4.1 SVRG2nd-HMC

In this subsection,wepropose theSVRG2nd-HMCalgorithm (seeAlgorithm3)by combining
our SVRG-HMC (Algorithm 1) with the symmetric splitting scheme.

The convergence result for SVRG2nd-HMC is provided in Theorem 5. It shows that the
dependency of MSE on step size h can be improved from h2 to h4 [see (7) and (19)].

Theorem 5 Under Assumptions 1 and 2, the MSE of SVRG2nd-HMC is bounded as:

E(φ̂ − φ̄)2 � min

⎧
⎨

⎩

n2G2

bT
,
L2n2K 2h2

bT

( √
n2G2 + D2d

D − L2n2K 2h3b−1

)2
⎫
⎬

⎭
+ 1

Th
+ h4 (19)
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Algorithm 3: SVRG2nd-HMC
1 parameters T , K , b, h > 0, Dh < 1, D ≥ 1;
2 initialize θ0 = p0 = 0;
3 for t = 0, 1, . . . , T /K − 1 do
4 compute g = ∑n

i=1 ∇ fi (θt K + h
2 ptK );

5 w = θt K + h
2 ptK ;

6 for k = 0, 1, . . . , K − 1 do
7 uniformly sample an index subset I ⊆ [n], |I | = b;

8 ∇̃t K+k = −∇ log Pr(θt K+k + h
2 ptK+k ) + n

b
∑

i∈I (∇ fi (θt K+k + h
2 ptK+k ) − ∇ fi (w)) + g;

9 ptK+k+1 = e−Dh/2(e−Dh/2 pt − h∇̃t K+k + √
2Dhξt K+k );

10 θt K+k+1 = θt K+k + h
2 ptK+k+1 + h

2 ptK+k ;

11 return {θt }Tt=1;

4.2 SAGA2nd-HMC

In this subsection, we propose the SAGA2nd-HMC algorithm (see Algorithm 4) by combin-
ing our SAGA-HMC (Algorithm 2) with the symmetric splitting scheme. The convergence
result and algorithm details are described below.

Theorem 6 Under Assumptions 1 and 2, the MSE of SAGA2nd-HMC is bounded as:

E(φ̂ − φ̄)2 � min

⎧
⎨

⎩

n2G2

bT
,
L2n4h2

Tb3

( √
n2G2 + D2d

D − L2n4h3b−3

)2
⎫
⎬

⎭
+ 1

Th
+ h4

Algorithm 4: SAGA2nd-HMC
1 parameters T , b, h > 0, Dh < 1, D ≥ 1;
2 initialize θ0 = 0, p0 = 0;

3 initialize an array αi0 = 0, ∀i ∈ [n];
4 compute g = ∑n

i=1 ∇ fi (α
i
0);

5 for t = 0, 1, . . . , T − 1 do
6 uniformly randomly pick a set I ⊆ [n] such that |I | = b;

7 ∇̃t = −∇ log Pr(θt + h
2 pt ) + n

b
∑

i∈I (∇ fi (θt + h
2 pt ) − ∇ fi (α

i
t )) + g;

8 pt+1 = e−Dh/2(e−Dh/2 pt − h∇̃t + √
2Dhξt );

9 θt+1 = θt + h
2 pt+1 + h

2 pt ;

10 update αit+1 = θt + h
2 pt , ∀i ∈ I ;

11 g ← g +∑
i∈I (∇ fi (α

i
t+1) − ∇ fi (α

i
t ));

12 return {θt }Tt=1;

5 Experiment

We present experimental results in this section. We compare the proposed SVRG-HMC
(Algorithm 1), as well as its symmetric splitting variant SVRG2nd-HMC (Algorithm 3),
against SVRG-LD (Dubey et al. 2016) on Bayesian regression, Bayesian classification and
Bayesian Neural Networks. The experimental results of the SAGA variants (Algorithm 2 and
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Table 1 Summary of standard UCI datasets for Bayesian regression and classification

Datasets Concrete Noise Parkinson Bike Pima Diabetic eeg

Size 1030 1503 5875 17379 768 1151 14980

Features 8 5 21 12 8 20 15

The Bayesian regression experiments were conducted on the first four UCI regression datasets, the Bayesian
classification experiments were conducted on the last three UCI classification datasets, and the more compli-
cated Bayesian Neural Networks experiments were conducted on larger UCI datasets in Table 2

Table 2 Summary of larger UCI
datasets for Bayesian neural
networks experiments

Datasets Protein Music Letter Susy

Size 45730 515345 20000 5000000

Features 9 90 16 18

The Bayesian neural network regression experiments were conducted on
the first two UCI regression datasets and the classification experiments
were conducted on the last two UCI classification datasets. The ‘letter’
dataset is 26-class and the ‘susy’ dataset is binary class

4) are almost same as the SVRG variants. We report the corresponding SAGA experiments
in Appendix A. In accordance with the theoretical analysis, all algorithms have a fixed step
size h, and all HMC-based algorithms have a fixed friction parameter D; a grid search is
performed to select the best step size and friction parameter for each algorithm. Theminibatch
size b is chosen to be 10 (same as SVRG/SAGA-LD Dubey et al. 2016) for all algorithms,
and K is set to be n/b.

The experiments are tested on the real-world UCI datasets.1 The information of the stan-
dard datasets used in our experiments are described in the following Tables 1 and 2 (Sect. 5.3).
For each dataset (regression or classification), we partition the dataset into training (70%),
validation (10%) and test (20%) sets. The validation set is used to select step size as well as
friction for HMC-based algorithms in an eightfold manner.

5.1 Bayesian regression

In this subsection we study the performance of those aforementioned algorithms on Bayesian
linear regression. Say we are provided with inputs Z = {(xi , yi )}ni=1 where xi ∈ R

d and
yi ∈ R. The distribution of yi given xi is modelled as Pr(yi |xi ) = N (βᵀxi , σ 2), where the
unknown parameter β follows a prior distribution of N(0, Id). The gradients of log-likelihood
can thus be calculated as ∇β log Pr(yi |xi , β) = (yi − βᵀxi )xi and ∇β log Pr(β) = −β. The
average test Mean-Squared Error (MSE) is reported in Fig. 1.

As can be observed from Fig. 1, SVRG-HMC as well its symmetric splitting counterpart
SVRG2nd-HMC, convergemarkedly faster thanSVRG-LD in the first pass through thewhole
dataset. The performance SVRG2nd-HMC is usually similar (no worse) to SVRG-HMC, and
it turns out that a slightly larger step size can be chosen for SVRG2nd-HMC, which is also
consistent with our theoretical results (i.e., allow larger step size).

1 The UCI datasets can be downloaded from https://archive.ics.uci.edu/ml/datasets.html.
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concrete noise

parkinson bike

Fig. 1 Performance comparison of SVRG variants on Bayesian regression tasks. The x-axis and y-axis rep-
resent number of passes through the entire training dataset and average test MSE respectively. For the bike
dataset, we have omitted the first 10 MSE values from the diagram because otherwise the diagram would scale
badly as MSE values are very large in the first several iterations

5.2 Bayesian classification

In this subsectionwe study classification tasks usingBayesian logistic classification. Suppose
input data Z = {(xi , yi )} where xi ∈ R

d , yi ∈ {0, 1}. The distribution of the output yi is
modelled as Pr(yi = 1) = 1/(1+ exp(−βᵀxi )), where the model parameter follows a prior
distribution of N(0, Id). Then the gradient of log-likelihood and log-prior can be written as
∇β log Pr(yi |xi , β) = (

yi − 1/(1 + exp(−βᵀxi ))
)
xi and ∇β log Pr(β) = −β. The average

test log-likelihood is reported in Fig. 2.
Similar to theBayesian regression, SVRG-HMCaswell its symmetric splitting counterpart

SVRG2nd-HMC, converge markedly faster than SVRG-LD for the Bayesian classification
tasks. Also, the experimental results suggest that SVRG2nd-HMC converges more quickly
than SVRG-HMC, which is consistent with Theorem 2 and 5.

In sum, for our four algorithms, we recommend SVRG2nd/SAGA2nd-HMC due to
the better theoretical results (Theorems 2, 4, 5 and 6) and practical results (Figs. 1, 2,
4, 5) compared with SVRG/SAGA-HMC. Further, we recommend SVRG2nd-HMC since
SAGA2nd-HMC needs high memory cost and its implementation is a little bit more compli-
cated than SVRG2nd-HMC.
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pima diabetic eeg

Fig. 2 Performance comparison of SVRG variants on Bayesian classification tasks. The x-axis and y-axis
represent number of passes through the entire training dataset and average test log-likelihood respectively

Fig. 3 Performance comparison of vanilla SGHMC, SVRG-LD, SVRG-HMC, SVRG2nd-HMCon regression
tasks using Bayesian neural networks. The x-axis and y-axis represent number of passes through the entire
training dataset and average test RMSE respectively

Fig. 4 Performance comparison of vanilla SGHMC, SVRG-LD, SVRG-HMC, SVRG2nd-HMC on classifi-
cation tasks using Bayesian neural networks. The x-axis and y-axis represent number of passes through the
entire training dataset and average test log-likelihood respectively

5.3 Bayesian neural networks

To show the scalability of variance reduced HMC to larger datasets and its application to non-
convex problems and more complicated models, we study Bayesian neural networks tasks.
In our experiments, the model is a neural network with one hidden layer which has 50 hidden
units (100 hidden units for ’susy’ dataset) with ReLU activation, which is denoted by fN N . Its
unknown parameterβ follows a prior distribution ofN(0, σ 2

p Id). Let ti = fN N (xi , β) denotes
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output of the neural network with parameter value β and input xi . The experiments are tested
on larger UCI regression and classification datasets described in Table 2. Suppose we are
provided with inputs Z = {(xi , yi )}ni=1 where xi ∈ R

d . In regression tasks, yi ∈ R, ti ∈ R,
and the distribution of yi given xi is modelled as Pr(yi |xi ) = N (ti , σ 2

l ). In binary classifica-
tion tasks, yi ∈ {0, 1}, ti ∈ R, and Pr(yi = 1) = 1/(1+ exp(−ti )). In K -class classification
tasks (K ≥ 3), yi ∈ {1, 2, . . . , K }, ti ∈ R

K , and Pr(yi = n) = exp(tin)/
∑K

m=1 exp(tim).
The code for experiments is implemented in TensorFlow.We conduct experiments for vanilla
SGHMC and SVRG variants of LD and HMC algorithms. The test Root-Mean-Square Error
(RMSE) for regression tasks is reported in Fig. 3, and the average test log-likelihood for
classification tasks is reported in Fig. 4.

Experimental results show that SVRG/SVRG2nd-HMC outperforms vanilla SGHMC and
SVRG-LD, often by a significant gap. In particularly, this means that the variance reduc-
tion technique indeed helps the convergence of SGHMC, i.e., the performance gap between
SVRG/SVRG2nd-HMC and SVRG-LD in Figs. 1, 2, 3 and 4 is not only coming from the
superiority of HMC compared with LD. Similar to previous Sects. 5.1 and 5.2, the perfor-
mance SVRG2nd-HMC is usually similar (no worse) to SVRG-HMC, and our experiments
found that sometimes a slightly larger step size can be chosen for SVRG2nd-HMC (while
the same step size brings SVRG-HMC to NaN), which is also consistent with our theoretical
results in Theorem 5.

6 Conclusion

In this paper, we propose four variance-reduced Hamiltonian Monte Carlo algorithms, i.e.,
SVRG-HMC, SAGA-HMC, SVRG2nd-HMC and SAGA2nd-HMC for Bayesian Inference.
These proposed algorithms guarantee improved theoretical convergence results and converge
markedly faster than the benchmarks (vanilla SGHMC and SVRG/SAGA-LD) in practice. In
conclusion, the SVRG2nd/SAGA2nd-HMC are more preferable than SVRG/SAGA-HMC
according to our theoretical and experimental results.Wewould like to note that, our variance-
reduced Hamiltonian Monte Carlo samplers are not Markovian procedures, but fortunately
our theoretical analysis does not rely on any properties of Markov processes, and so it does
not affect the correctness of Theorem 2, 4, 5 and 6.

For futurework, itwould be interesting to studywhether our analysis can be apply to vanilla
SGHMCwithout variance reduction. To the best of our knowledge, there is no existingwork to
prove that SGHMC is better than SGLD.On the other hand, we note that stochastic thermostat
(Ding et al. 2014) could outperform both SGLD and SGHMC. It might be interesting to
study if a variance-reduced variant of stochastic thermostat could also beat SVRG-LD and
SVRG/SVRG2nd-HMC both theoretically and experimentally.

Acknowledgements Funding was provided by National Basic Research Program of China (Grant No.
2015CB358700), National Natural Science Foundation of China (Grant Nos. 61772297, 61632016,
61761146003) and Microsoft Research Asia. We would like to thank Chang Liu for useful discussions.

A SAGA experiments

In this appendix, we report the corresponding experimental results of SAGA variants (i.e.,
SAGA-LD, SAGA-HMC and SAGA2nd-HMC) for Bayesian regression and Bayesian clas-
sification tasks (Figs. 5, 6). The settings are the same as those in Sects. 5.1 and 5.2.
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Fig. 5 Performance comparison of SAGA variants on Bayesian regression tasks

Fig. 6 Performance comparison of SAGA variants on Bayesian classification tasks

B proofs

In this appendix, we provide the detailed proofs for Corollary 2, Theorem 2, Lemma 1, and
Theorem 4, 5 and 6.

B.1 Proof of Corollary 2

To prove this corollary, it is sufficient to show E‖∇̃t − ∇ f (θt )‖2 ≤ n2G2/b. Recall that
∇̃t = n

b

∑
i∈I ∇ fi (θt ), I being a b-element index set uniformly randomly drawn (with

replacement) from {1, 2, . . . , n} and∇ f (θt ) = ∑n
j=1 ∇ f j (θt ). Now,weprove this inequality

as follows:
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EI ‖∇̃t − ∇ f (θt )‖2 = EI

∥
∥
∥
∥
∥
∥

n

b

∑

i∈I
∇ fi (θt ) −

n∑

j=1

∇ f j (θt )

∥
∥
∥
∥
∥
∥

2

= n2EI

∥
∥
∥
∥
∥
∥

1

b

∑

i∈I
∇ fi (θt ) − 1

n

n∑

j=1

∇ f j (θt )

∥
∥
∥
∥
∥
∥

2

= n2EI

∥
∥
∥
∥
∥
∥

1

b

∑

i∈I

⎛

⎝∇ fi (θt ) − 1

n

n∑

j=1

∇ f j (θt )

⎞

⎠

∥
∥
∥
∥
∥
∥

2

= n2

b2
EI

∥
∥
∥
∥
∥
∥

∑

i∈I

⎛

⎝∇ fi (θt ) − 1

n

n∑

j=1

∇ f j (θt )

⎞

⎠

∥
∥
∥
∥
∥
∥

2

= n2

b2
EI

∥
∥
∥
∥
∥
∥

∑

i∈I

⎛

⎝∇ fi (θt ) − 1

n

n∑

j=1

∇ f j (θt )

⎞

⎠

∥
∥
∥
∥
∥
∥

2

= n2

b
Ei

∥
∥
∥
∥
∥
∥
∇ fi (θt ) − 1

n

n∑

j=1

∇ f j (θt )

∥
∥
∥
∥
∥
∥

2

≤ n2

b
Ei ‖∇ fi (θt )‖2

≤ n2G2

b

where the last two inequalities hold since E(X − EX)2 ≤ EX2 for any random variable X
and fi is G-Lipschitz. ��

B.2 Proof of Theorem 2

According to Corollary 1, we have:

E[(φ̂ − φ̄)2] � 1

T 2

T−1∑

t=0

E[‖Δt‖2] + 1

Th
+ h2 (20)

whereΔt = ∇̃t−∇ f (θt ) is the additive error in estimating the full gradient∇ f (θt ). By apply-
ing the variance reduction technique,we need to upper bound the summation

∑T
t=1 E[‖Δt‖2].

Unpacking the definition of Δt and ∇̃t , we have:

T−1∑

t=0

E[‖Δt‖2]

=
T−1∑

t=0

E

⎡

⎣

∥
∥
∥
∥
∥
−∇ log Pr(θt ) + n

b

∑

i∈I

(
∇ fi (θt ) − ∇ fi

(
θ� t

K �K
))

+ g − ∇ f (θt )

∥
∥
∥
∥
∥

2
⎤

⎦

=
T−1∑

t=0

n2E

[∥
∥
∥
∥
∥

1

b

∑

i∈I

(
∇ fi (θt ) − ∇ fi

(
θ� t

K �K
))
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−1

n

n∑

j=1

(
∇ f j (θt ) − ∇ f j

(
θ� t

K �K
))
∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

≤ n2

b

T−1∑

t=0

Ei∈[n]
∥
∥
∥∇ fi (θt ) − ∇ fi

(
θ� t

K �K
)∥
∥
∥
2

(21)

The Inequality (21) is due toE(X−EX)2 ≤ EX2 for any random variable X . In the rightmost
summation, index i is picked uniformly random from [n] = {1, 2, . . . , n}.

Then, we bound the RHS of (21) as follows:

n2

b

T−1∑

t=0

Ei∈[n]
∥
∥
∥∇ fi (θt ) − ∇ fi

(
θ� t

K �K
)∥
∥
∥
2 ≤ n2

b

T−1∑

t=0

L2
E‖θt − θ� t

K �K ‖2

≤ L2n2

b

T−1∑

t=0

K
t−1∑

j=� t
K �K

E‖θ j+1 − θ j‖2

≤ L2n2K 2

b

T−1∑

t=0

E‖θt+1 − θt‖2 (22)

The first inequality is by L-smoothness of all fi ’s, and the second one is by Cauchy’s
inequality.

By our algorithm, ‖θt+1 − θt‖2 = h2‖pt+1‖2, so we need to upper bound E‖pt+1‖2 for
each 0 ≤ t < T .

By the recursion of pt+1,

E‖pt+1‖2
= E‖(1 − Dh)pt − h∇̃t + √

2Dhξt‖2
= E‖(1 − Dh)pt − h∇ f (θt ) − hΔt + √

2Dhξt‖2
= E‖(1 − Dh)pt − h∇ f (θt )‖2 + h2E[‖Δt‖2] + 2Dhd

≤ (1 − Dh)2E‖pt‖2 + 2Gnh(1 − Dh)

√

E‖pt‖2 + h2n2G2

+h2E[‖Δt‖2] + 2Dhd

The third equality holds because E[Δt ] = E[ξt ] = 0 and Δt and ξt are independent. The
first inequality takes advantage of ‖∇ f ‖ ≤ nG and E‖pt‖ ≤ √

E‖pt‖2.
Define S = ∑T

t=1 E[‖pt‖2]. Then, taking a grand summation over t = 0, 1, . . . , T − 1,

S ≤ (1 − Dh)2S + 2nGh(1 − Dh)

T−1∑

t=0

√

E‖pt‖2

+ T (h2n2G2 + 2Dhd) + h2
T−1∑

t=0

E[‖Δt‖2]

≤ (1 − Dh)2S + 2nGh(1 − Dh)
√
T

√
S

+ T (h2n2G2 + 2Dhd) + L2n2K 2h4

b
S

The second inequality again contains an implicit Cauchy’s inequality.
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Rearranging the terms we have:
(

1 − (1 − Dh)2 − L2n2K 2h4

b

)
S

T
− 2nGh(1 − Dh)

√
S

T
− (h2n2G2 + 2Dhd) ≤ 0

Solving a quadratic equation with respect to
√
S/T and ignoring constant factors, we

have: √
S

T
� nG + √

n2G2 + D2d

D − L2n2K 2h3b−1 �
√
n2G2 + D2d

D − L2n2K 2h3b−1 (23)

From (21) and (22), we have:

T−1∑

t=0

E[‖Δt‖2] ≤ L2n2K 2

b

T−1∑

t=0

E‖θt+1 − θt‖2

Recall that ‖θt+1 − θt‖2 = h2‖pt+1‖2 and S = ∑T
t=1 E[‖pt‖2], we have:

1

T

T∑

t=1

E[‖Δt‖2] � L2n2K 2h2

b

( √
n2G2 + D2d

D − L2n2K 2h3b−1

)2

(24)

On the other hand, we can bound (21) as follows:

T−1∑

t=0

E[‖Δt‖2] ≤ n2

b

T−1∑

t=0

Ei∈[n]
∥
∥
∥∇ fi (θt ) − ∇ fi

(
θ� t

K �K
)∥
∥
∥
2

≤ 4Tn2G2

b
(25)

where (25) holds due to all fi ’s areG-Lipschitz andCauchy’s inequality ‖a+b‖2 ≤ 2(‖a‖2+
‖b‖2).

Now, the proof of Theorem 2 is finished by combining (20), (24) and (25). ��

B.3 Proof of Lemma 1

Since G2 > K 2(n2L2h2G2 + hd) > K 2n2L2h2G2, we have h < 1
nK L . Therefore, we have

D − h3L2n2K 2

b

> D − 1

n3K 3L3

L2n2K 2

b

= D − 1

nKbL
� D − 0.1 ≥ 0.9D

where the last line holds since nKbL � 10 and D > 1 (see Line 1 of Algorithm 1). Thus,

the proof is reduced to comparing h2L2n2G2 + hd and h2L2n2G2

D2 + h2L2d asymptotically.
Clearly,

h2L2n2G2

D2 + h2L2d

≤ h2L2n2G2

D2 + 1

nK L
hL2d
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= h2L2n2G2

D2 + hd
L

nK

≤ max{ 1

D2 ,
L

nK
}(h2L2n2G2 + hd)

Note that if D ≥ 1/L
√
h, then max{ 1

D2 ,
L
nK } turns to be L

nK which is very small. The reason
is that:

D2 ≥ 1

L2h

≥ 1

L2 1
nK L

= nK

L

where the second inequality holds due to h < 1
nK L which is mentioned above. ��

B.4 Proof of Theorem 4

Defining Δt = ∇̃t − ∇ f (θt ), it suffices to upper bound
∑T−1

t=0 E[‖Δt‖2] according to (20).
Unpacking the definition of Δt and ∇̃t , we have:

T−1∑

t=0

E[‖Δt‖2] =
T−1∑

t=0

E[‖∇̃t − ∇ f (θt )‖2]

=
T−1∑

t=0

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

n

b

∑

i∈I
(∇ fi (θt ) − ∇ fi (α

i
t )) −

n∑

j=1

(∇ f j (θt ) − ∇ f j (α
j
t ))

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

=
T−1∑

t=0

n2E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

1

b

∑

i∈I
(∇ fi (θt ) − ∇ fi (α

i
t )) − 1

n

n∑

j=1

(∇ f j (θt ) − ∇ f j (α
j
t ))

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

≤ n2

b

T−1∑

t=0

Ei∈[n][‖∇ fi (θt ) − ∇ fi (α
i
t )‖2]

≤ L2n2

b

T−1∑

t=0

Ei∈[n][‖θt − αi
t ‖2] (26)

The first inequality is because E(X − EX)2 ≤ EX2 for any random variable X ; the second
inequality holds due to L-smoothness of fi ’s.

Let γ = 1−(1−1/n)b. Next we upper bound eachE[‖θt −αi
t ‖2] in the followingmanner.

E[‖θt − αi
t ‖2] =

t−1∑

j=0

E[‖θt − θ j‖2]Pr(αi
t = θ j )

=
t−1∑

j=0

E[‖θt − θ j‖2](1 − γ )t− j−1γ
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= h2
t−1∑

j=0

E[‖pt + pt−1 + · · · + p j+1‖2](1 − γ )t− j−1γ

≤ h2
t−1∑

j=0

(t− j)(1 − γ )t− j−1γ (E[‖pt‖2] + E[‖pt−1‖2] + · · · + E[‖p j+1‖2])

= h2
t∑

j=1

E[‖p j‖2]
j−1∑

k=0

(t − k)(1 − γ )t−k−1γ

≤ h2
t∑

j=1

E[‖p j‖2]
∞∑

k=0

(t − j + k + 1)(1 − γ )t− j+kγ

< h2
t∑

j=1

E[‖p j‖2]
(
1

γ
+ t − j

)

(1 − γ )t− j

The second equality is by direct calculation Pr(αi
t = θ j ) = (1−γ )t− j−1γ ; the first inequality

is a direct application of Cauchy’s inequality; the last inequality is a weighted summation of
geometric series (1 − γ )t− j+k, k ≥ 0.

Summing over all t and i , we then have:

T−1∑

t=0

Ei∈[n][‖θt − αi
t ‖2] ≤ h2

T−1∑

t=0

t∑

j=1

E[‖p j‖2]
(
1

γ
+ t − j

)

(1 − γ )t− j

≤ h2
T−1∑

t=1

E[‖pt‖2]
T−1∑

j=t

(
1

γ
+ j − t

)

(1 − γ ) j−t

≤ h2
T−1∑

t=1

E[‖pt‖2]
∞∑

j=t

(
1

γ
+ j − t

)

(1 − γ ) j−t

≤ h2
T−1∑

t=1

E[‖pt‖2] 2

γ 2

= 2

γ 2 h
2
T−1∑

t=1

E[‖pt‖2]

≤ 8h2n2

b2

T∑

t=1

E[‖pt‖2]

The last inequality is because (1−1/n)b ≤ 1
1+ b

n−1
, and thus γ = 1− (1−1/n)b ≥

b
n−1

1+ b
n−1

>

b
2n ; the last inequality holds as mini-batch size b is smaller than dataset size n.

Similar to the previous subsection, we derive upper an upper bound on
∑T

t=1 E[‖pt‖2].
By recursion of pt+1’s, we have:

E‖pt+1‖2 = E‖(1 − Dh)pt − h∇̃t + √
2Dhξt‖2

= E‖(1 − Dh)pt − h∇ f (θt ) − hΔt + √
2Dhξt‖2

= E‖(1 − Dh)pt − h∇ f (θt )‖2 + h2E[‖Δt‖2] + 2Dhd
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≤ (1 − Dh)2E‖pt‖2 + 2Gnh(1 − Dh)

√

E‖pt‖2 + h2n2G2

+ h2E[‖Δt‖2] + 2Dhd

The third equality holds because E[Δt ] = E[ξt ] = 0 and Δt and ξt are independent. The
first inequality takes advantage of ‖∇ f ‖ ≤ nG and E‖pt‖ ≤ √

E‖pt‖2.
Define S = ∑T

t=1 E[‖pt‖2]. Then, taking a grand summation over t = 0, 1, . . . , T − 1,

S ≤ (1 − Dh)2S + 2nGh(1 − Dh)

T−1∑

t=0

√

E‖pt‖2

+ T (h2n2G2 + 2Dhd) + h2
T−1∑

t=0

E[‖Δt‖2]

≤ (1 − Dh)2S + 2nGh(1 − Dh)
√
T

√
S

+ T (h2n2G2 + 2Dhd) + 8h4L2n4

b3
S

Rearranging the terms we have:
(

1 − (1 − Dh)2 − 8h4L2n4

b3

)
S

T
+ 2nGh(1 − Dh)

√
S

T
+ (h2n2G2 + 2Dhd) ≤ 0

Solving a quadratic equation with respect to
√
S/T and ignoring constant factors, we

have:
√

S

T
� nG

D − h3L2n4b−3 +
√
n2G2 + D2d

D − h3L2n4b−3 �
√
n2G2 + D2d

D − h3L2n4b−3

Plugging it in

T−1∑

t=0

E[‖Δt‖2] ≤ 8h2L2n4

b3

T−1∑

t=0

E‖pt‖2

we have:
1

T

T∑

t=1

E[‖Δt‖2] � h2L2n4

b3

( √
n2G2 + D2d

D − h3L2n4b−3

)2

(27)

Similar to (25), we can bound (26) as follows:

T−1∑

t=0

E[‖Δt‖2]

≤ n2

b

T−1∑

t=0

Ei∈[n][‖∇ fi (θt ) − ∇ fi (α
i
t )‖2]

≤ 4Tn2G2

b
(28)

where (28) holds due to all fi ’s areG-Lipschitz andCauchy’s inequality ‖a+b‖2 ≤ 2(‖a‖2+
‖b‖2).

Now, the proof of Theorem 4 is finished by combining (20), (27) and (28). ��
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B.5 Proof of Theorem 5

To prove this theorem, we need the following theorem from Chen et al. (2015). The theorem
shows that SGHMC with symmetric splitting can improve the dependency of MSE on step
size h, thus allowing larger step size and faster MSE convergence.

Theorem 7 (Chen et al. 2015) Let ∇̃t be an unbiased estimate of∇ f (θt ) for all t . Then under
Assumption 1, for a smooth test function φ, the MSE of SGHMC with symmetric splitting is
bounded in the following way:

E(φ̂ − φ̄)2 �
1
T

∑T−1
t=0 E(ΔVtψ(θt , pt ))2

T
+ 1

Th
+ h4 (29)

Now, we define Δt = ∇̃t − ∇ f (θt + h
2 pt ). According to Assumption 2, we have:

E(φ̂ − φ̄)2 ≤ 1

T 2

T−1∑

t=0

E‖Δt‖2 + 1

Th
+ h4 (30)

According to (30), we mainly need to bound the term
∑T−1

t=0 E‖Δt‖2 for our SVRG2nd-
HMC algorithm. First, we unfold the definition of ∇̃t ,

∇̃t = −∇ log Pr

(

θt + h

2
pt

)

+ n

b

∑

i∈I

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
))

+
n∑

i=1

∇ fi

(

θ� t
K �K + h

2
p� t

K �K
)

Then,

E‖Δt‖2 = E

∥
∥
∥
∥
∥

n

b

∑

i∈I

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
))

−
n∑

i=1

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
))∥∥

∥
∥
∥

2

≤ E

∥
∥
∥
∥
∥

n

b

∑

i∈I

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
))∥∥

∥
∥
∥

2

≤ n2

b
Ei∈[n]

∥
∥
∥
∥∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
)∥
∥
∥
∥

2

≤ n2L2

b
E

∥
∥
∥
∥θt + h

2
pt − θ� t

K �K − h

2
p� t

K �K
∥
∥
∥
∥

2

≤ n2L2K

b

t−1∑

j=� t
K �K

E

∥
∥
∥
∥θ j+1 + h

2
p j+1 − θ j − h

2
p j

∥
∥
∥
∥

2

(31)

Taking a summation we have:

T−1∑

t=0

E‖Δt‖2 ≤ n2L2K

b

T−1∑

t=0

t−1∑

j=� t
K �K

E

∥
∥
∥
∥θ j+1 + h

2
p j+1 − θ j − h

2
p j

∥
∥
∥
∥

2
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≤ n2L2K 2

b

T−1∑

t=0

E

∥
∥
∥
∥θt+1 + h

2
pt+1 − θt − h

2
pt

∥
∥
∥
∥

2

= n2L2K 2h2

b

T−1∑

t=0

E‖pt+1‖2

The last equality follows by the recursion θt+1 = θt + h
2 pt+1 + h

2 pt .
By definition of pt+1 we have:

E‖pt+1‖2

= E‖e−Dh/2
(
e−Dh/2 pt − h∇̃t + √

2Dhξt

)
‖2

= e−Dh
E‖e−Dh/2 pt − hΔt − h∇ f

(

θt + h

2
pt

)

+ √
2Dhξt‖2

= e−Dh
(

E‖e−Dh/2 pt − h∇ f

(

θt + h

2
pt

)

‖2 + E‖√2Dhξt‖2 + E‖hΔt‖2
)

= e−Dh
(
e−Dh

E‖pt‖2 + 2e−Dh/2nGE‖pt‖ + n2G2h2 + 2Dhd + h2E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

E‖pt‖2 + 2

(

1 − Dh

4

)

nG
√

E‖pt‖2

+n2G2h2 + 2Dhd + h2E‖Δt‖2
)

Define S = ∑T
t=1 E‖pt‖2 and M = n2G2h2 + 2Dhd . Taking a grand summation of the

above inequality for t = 0, 1, 2, . . . , T − 1, we have:

S ≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
T−1∑

t=0

√

E‖pt‖2 + T M

+h2
T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + h2

T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + h2

T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + n2L2K 2h4

b
S

)

Rewriting it as a quadratic inequality with respect to
√

S
T , we have:

(

1 −
(

1 − Dh

4

)4

−
(

1 − Dh

4

)2 n2L2K 2h4

b

)
S

T
− 2

(

1 − Dh

4

)3

nG

√
S

T

−
(

1 − Dh

4

)2

M ≤ 0
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Solve the inequality and ignore constant factors:
√

S

T
� nG + √

n2G2 + D2d

D − L2n2K 2h3b−1

�
√
n2G2 + D2d

D − L2n2K 2h3b−1

Similar to the proof of Theorem 2, it easily follows that:

1

T

T−1∑

t=0

E‖Δt‖2 � L2n2K 2h2

b

( √
n2G2 + D2d

D − L2n2K 2h3b−1

)2

(32)

Similar to (25), we can bound (31) as follows:

E[‖Δt‖2] ≤ n2

b
Ei∈[n]

∥
∥
∥
∥∇ fi

(

θt + h

2
pt

)

− ∇ fi

(

θ� t
K �K + h

2
p� t

K �K
)∥
∥
∥
∥

2

≤ 4n2G2

b
(33)

where (33) holds due to all fi ’s areG-Lipschitz andCauchy’s inequality ‖a+b‖2 ≤ 2(‖a‖2+
‖b‖2).

Now, the proof of Theorem 5 is finished by combining (30), (32) and (33). ��

B.6 Proof of Theorem 6

Similar to the proof of Theorem 5, we define Δt = ∇̃t − ∇ f (θt + h
2 pt ). By Assumption 2

and Inequality (29), we have:

E(φ̂ − φ̄)2 �
1
T

∑T−1
t=0 E(ΔVtψ(θt , pt ))2

T
+ 1

Th
+ h4

≤ 1

T 2

T−1∑

t=0

E‖Δt‖2 + 1

Th
+ h4

Unpacking the definition of Δt and ∇̃t , we have:

T−1∑

t=0

E[‖Δt‖2]

=
T−1∑

t=0

E[‖∇̃t − ∇ f (θt )‖2]

=
T−1∑

t=0

E

[∥
∥
∥
∥
∥

n

b

∑

i∈I

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi (α
i
t )

)

−
n∑

j=1

(

∇ f j

(

θt + h

2
pt

)

− ∇ f j (α
j
t )

)
∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

=
T−1∑

t=0

n2E

[∥
∥
∥
∥
∥

1

b

∑

i∈I

(

∇ fi

(

θt + h

2
pt

)

− ∇ fi (α
i
t )

)
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−1

n

n∑

j=1

(

∇ f j

(

θt + h

2
pt

)

− ∇ f j (α
j
t )

)
∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

≤ n2

b

T−1∑

t=0

Ei∈[n]

[∥
∥
∥
∥∇ fi

(

θt + h

2
pt

)

− ∇ fi (α
i
t )

∥
∥
∥
∥

2
]

(34)

≤ L2n2

b

T−1∑

t=0

Ei∈[n]

[∥
∥
∥
∥θt + h

2
pt − αi

t

∥
∥
∥
∥

2
]

(35)

Let γ = 1 − (1 − 1/n)b. Then,

E

[∥
∥
∥
∥θt + h

2
pt − αi

t

∥
∥
∥
∥

2
]

=
t−1∑

j=0

E

[∥
∥
∥
∥θt + h

2
pt − θ j − h

2
p j

∥
∥
∥
∥

2
]

Pr

(

αi
t = θ j + h

2
p j

)

=
t−1∑

j=0

E

[∥
∥
∥
∥θt + h

2
pt − θ j − h

2
p j

∥
∥
∥
∥

2
]

(1 − γ )t− j−1γ

= h2
t−1∑

j=0

E[‖pt + pt−1 + · · · + p j+1‖2](1 − γ )t− j−1γ

≤ h2
t−1∑

j=0

(t − j)(1 − γ )t− j−1γ (E[‖pt‖2] + E[‖pt−1‖2] + · · · + E[‖p j+1‖2])

= h2
t∑

j=1

E[‖p j‖2]
j−1∑

k=0

(t − k)(1 − γ )t−k−1γ

≤ h2
t∑

j=1

E[‖p j‖2]
∞∑

k=0

(t − j + k + 1)(1 − γ )t− j+kγ

< h2
t∑

j=1

E[‖p j‖2]
(
1

γ
+ t − j

)

(1 − γ )t− j

Summing over all t and i , we then have:

T−1∑

t=0

Ei∈[n][‖θt + h

2
pt − αi

t ‖2] ≤ h2
T−1∑

t=0

t∑

j=1

E[‖p j‖2]
(
1

γ
+ t − j

)

(1 − γ )t− j

= h2
T−1∑

t=0

t∑

j=1

E[‖p j‖2]
(
1

γ
+ t − j

)

(1 − γ )t− j

≤ h2
T−1∑

t=1

E[‖pt‖2]
T−1∑

j=t

(
1

γ
+ j − t

)

(1 − γ ) j−t

123



Machine Learning (2019) 108:1701–1727 1725

≤ h2
T−1∑

t=1

E[‖pt‖2]
∞∑

j=t

(
1

γ
+ j − t

)

(1 − γ ) j−t

≤ h2
T−1∑

t=1

E[‖pt‖2] 2

γ 2 = 2

γ 2 h
2
T−1∑

t=1

E[‖pt‖2]

≤ 8h2n2

b2

T∑

t=1

E[‖pt‖2] (36)

The last inequality is because (1 − 1/n)b ≤ 1
1+ b

n−1
, and thus γ = 1 − (1 − 1/n)n ≥

b
n−1

1+ b
n−1

> b
2n ; the last inequality holds as mini-batch size b is smaller than dataset size n.

Now, we derive an upper bound on
∑T

t=1 E[‖pt‖2]. By recursion of pt+1’s, we have:

E‖pt+1‖2
= E‖e−Dh/2(e−Dh/2 pt − h∇̃t + √

2Dhξt )‖2

= e−Dh
E

∥
∥
∥
∥e

−Dh/2 pt − hΔt − h∇ f

(

θt + h

2
pt

)

+ √
2Dhξt

∥
∥
∥
∥

2

= e−Dh
(

E‖e−Dh/2 pt − h∇ f

(

θt + h

2
pt

)

‖2 + E‖√2Dhξt‖2 + E‖hΔt‖2
)

= e−Dh
(
e−Dh

E‖pt‖2 + 2e−Dh/2nGE‖pt‖ + n2G2h2 + 2Dhd + h2E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

E‖pt‖2 + 2

(

1 − Dh

4

)

nG
√

E‖pt‖2 + n2G2h2

+2Dhd + h2E‖Δt‖2
)

Define S = ∑T
t=1 E‖pt‖2 and M = n2G2h2 + 2Dhd . Taking a grand summation of the

above inequality for t = 0, 1, 2, . . . , T − 1, we have:

S ≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
T−1∑

t=0

√

E‖pt‖2 + T M

+h2
T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + h2

T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + h2

T−1∑

t=0

E‖Δt‖2
)

≤
(

1 − Dh

4

)2
((

1 − Dh

4

)2

S + 2

(

1 − Dh

4

)

nG
√
T S + T M + 8n4L2h4

b3
S

)
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Similar to the proof of theorem 5, we solve a quadratic inequality with respect to
√

S
T ,

and then, √
S

T
�

√
n2G2 + D2d

D − h3L2n4b−3 (37)

From (35), (36), (37) and the definition of S, we have:

T−1∑

t=0

E[‖Δt‖2]

≤ 8h2L2n4

b3

T−1∑

t=0

E‖pt‖2

≤ 8h2L2n4T

b3

( √
n2G2 + D2d

D − h3L2n4b−3

)2

(38)

Similar to (25), we can bound (34) as follows:

T−1∑

t=0

E[‖Δt‖2]

≤ n2

b

T−1∑

t=0

Ei∈[n]

[∥
∥
∥
∥∇ fi

(

θt + h

2
pt

)

− ∇ fi (α
i
t )

∥
∥
∥
∥

2
]

≤ 4Tn2G2

b
(39)

where (39) holds due to all fi ’s areG-Lipschitz andCauchy’s inequality ‖a+b‖2 ≤ 2(‖a‖2+
‖b‖2).

Now, the proof of Theorem 6 is finished by combining (30), (38) and (39). ��
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