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A Fast Anderson-Chebyshev Acceleration for
Nonlinear Optimization

Zhize Li Jian Li
King Abdullah University of Science and Technology Tsinghua University

Abstract

Anderson acceleration (or Anderson mixing)
is an efficient acceleration method for fixed
point iterations xt+1 = G(xt), e.g., gra-
dient descent can be viewed as iteratively
applying the operation G(x) , x − α∇f(x).
It is known that Anderson acceleration is
quite efficient in practice and can be viewed
as an extension of Krylov subspace meth-
ods for nonlinear problems. In this paper,
we show that Anderson acceleration with
Chebyshev polynomial can achieve the opti-
mal convergence rate O(

√
κ ln 1

ε ), which im-
proves the previous result O(κ ln 1

ε ) provided
by (Toth and Kelley, 2015) for quadratic
functions. Moreover, we provide a conver-
gence analysis for minimizing general nonlin-
ear problems. Besides, if the hyperparam-
eters (e.g., the Lipschitz smooth parameter
L) are not available, we propose a guessing
algorithm for guessing them dynamically and
also prove a similar convergence rate. Finally,
the experimental results demonstrate that
the proposed Anderson-Chebyshev acceler-
ation method converges significantly faster
than other algorithms, e.g., vanilla gradient
descent (GD), Nesterov’s Accelerated GD.
Also, these algorithms combined with the
proposed guessing algorithm (guessing the
hyperparameters dynamically) achieve much
better performance.

1 Introduction

Machine learning problems are usually modeled as
optimization problems, ranging from convex optimiza-
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tion to highly nonconvex optimization such as deep
neural networks, e.g., (Nesterov, 2004; Bubeck, 2015;
LeCun et al., 2015; Lei et al., 2017; Li and Li, 2018;
Fang et al., 2018; Zhou et al., 2018; Li et al., 2019;
Ge et al., 2019; Li, 2019). To solve an optimization
problem minx f(x), the classical method is gradient
descent, i.e., xt+1 = xt−αt∇f(xt). There exist several
techniques to accelerate the standard gradient descent,
e.g., momentum (Nesterov, 2004; Allen-Zhu, 2017; Lan
and Zhou, 2018; Lan et al., 2019). There are also var-
ious vector sequence acceleration methods developed
in the numerical analysis literature, e.g., (Brezinski,
2000; Sidi et al., 1986; Smith et al., 1987; Brezinski and
Redivo Zaglia, 1991; Brezinski et al., 2018). Roughly
speaking, if a vector sequence converges very slowly
to its limit, then one may apply such methods to
accelerate the convergence of this sequence. Taking
gradient descent as an example, the vector sequence
are generated by xt+1 = G(xt) , xt − αt∇f(xt),
where the limit is the fixed-point G(x∗) = x∗ (i.e.
∇f(x∗) = 0). One notable advantage of such accel-
eration methods is that they usually do not require to
know how the vector sequence is actually generated.
Thus the applicability of those methods is very wide.

Recently, Scieur et al. (2016) used the minimal polyno-
mial extrapolation (MPE) method (Smith et al., 1987)
for convergence acceleration. This is a nice example
of using sequence acceleration methods to optimiza-
tion problems. In this paper, we are interested in
another classical sequence acceleration method called
Anderson acceleration (or Anderson mixing), which
was proposed by Anderson in 1965 (Anderson, 1965).
The method is known to be quite efficient in a variety
of applications (Capehart, 1989; Pratapa et al., 2016;
Higham and Strabić, 2016; Loffeld and Woodward,
2016). The idea of Anderson acceleration is to main-
tain m recent iterations for determining the next
iteration point, where m is a parameter (typically a
very small constant). Thus, it can be viewed as an
extension of the existing momentum methods which
usually use the last and current points to determine
the next iteration point. Anderson acceleration with
slight modifications is described in Algorithm 1.
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Algorithm 1: Anderson Acceleration(m)

1 input: x0, T, λ, βt
2 Define G(x) , x+ F , x− λ∇f(x);
3 x1 = G(x0), F0 = G(x0)− x0;
4 for t = 1, 2, . . . T do
5 mt = min{m, t};
6 Ft , G(xt)− xt;
7 Solve minαt=(αt

0,...,α
t
mt

)T ‖
∑mt

i=0 α
t
iFt−i‖2

subject to
∑mt

i=0 α
t
i = 1;

8 xt+1 =
(1− βt)

∑mt

i=0 α
t
ixt−i + βt

∑mt

i=0 α
t
iG(xt−i);

9 return xT

Note that the step in Line 7 of Algorithm 1 can
be transformed to an equivalent unconstrained least-
squares problem:

min
(αt

1,...,α
t
mt

)T

∥∥∥Ft − mt∑
i=1

αti(Ft − Ft−i)
∥∥∥
2
, (1)

then let αt0 = 1−
∑mt

i=1 α
t
i. Using QR decomposition,

(1) can be solved in time 2m2
td, where d is the

dimension. Moreover, the QR decomposition of (1)
at iteration t can be efficiently obtained from that
of at iteration t − 1 in O(mtd) (see, e.g. (Golub
and Van Loan, 1996)). The constant mt ≤ m is
usually very small. We use m = 3 and 5 for the
numerical experiments in Section 5. Hence, each
iteration of Anderson acceleration can be implemented
quite efficiently.

Many studies showed the relations between Anderson
acceleration and other optimization methods. In
particular, for the quadratic case (linear problems),
Walker and Ni (2011) showed that it is related to the
well-known Krylov subspace method GMRES (gener-
alized minimal residual algorithm) (Saad and Schultz,
1986). Furthermore, Potra and Engler (2013) showed
that GMRES is equivalent to Anderson acceleration
with any mixing parameters under m =∞ (see Line 5
of Algorithm 1) for linear problems. Concretely, Toth
and Kelley (2015) proved the first linear convergence
rate O(κ ln 1

ε ) for linear problems with fixed parameter
β, where κ is the condition number. Besides, Eyert
(1996), and Fang and Saad (2009) showed that An-
derson acceleration is related to the multisecant quasi-
Newton methods (more concretely, the generalized
Broyden’s second method). Despite the above results,
the convergence results for this efficient method are
still limited (especially for general nonlinear problems
and the case where m is small). In this paper, we
analyze the convergence for small m which is the typ-
ical case in practice and also provide the convergence
analysis for general nonlinear problems.

1.1 Our Contributions

There has been a growing number of applications of
Anderson acceleration method (Pratapa et al., 2016;
Higham and Strabić, 2016; Loffeld and Woodward,
2016; Scieur et al., 2018). Towards a better un-
derstanding of this efficient method, we make the
following technical contributions:

1. We prove the optimal O(
√
κ ln 1

ε ) convergence
rate of the proposed Anderson-Chebyshev acceler-
ation (i.e., Anderson acceleration with Chebyshev
polynomial) for minimizing quadratic functions
(see Theorem 1). Our result improves the pre-
vious result O(κ ln 1

ε ) given by (Toth and Kelley,
2015) and matches the lower bound Ω(

√
κ ln 1

ε )
provided by (Nesterov, 2004). Note that for ill-
conditioned problems, the condition number κ can
be very large.

2. Then, we prove the linear-quadratic convergence
of Anderson acceleration for minimizing general
nonlinear problems under some standard assump-
tions (see Theorem 2). Compared with Newton-
like methods, it is more attractive since it does not
require to compute (or approximate) Hessians, or
Hessian-vector products.

3. Besides, we propose a guessing algorithm (Algo-
rithm 2) for the case when the hyperparameters
(e.g., µ,L) are not available. We prove that it
achieves a similar convergence rate O(

√
κ ln 1

ε +√
κ(lnκ lnB)2) (see Theorem 3). This guessing

algorithm can also be combined with other algo-
rithms, e.g., Gradient Descent (GD), Nesterov’s
Accelerated GD (NAGD). The experimental re-
sults (see Section 5.1) show that these algorithms
combined with the proposed guessing algorithm
achieve much better performance.

4. Finally, the experimental results on the real-world
UCI datasets and synthetic datasets demonstrate
that Anderson acceleration methods converge sig-
nificantly faster than other algorithms (see Sec-
tion 5). Combined with our theoretical results,
the experiments validate that Anderson accel-
eration methods (especially Anderson-Chebyshev
acceleration) are efficient both in theory and prac-
tice.

1.2 Related Work

As aforementioned, Anderson acceleration can be
viewed as the extension of the momentum methods
(e.g., NAGD) and the potential extension of Krylov
subspace methods (e.g., GMRES) for nonlinear prob-
lems. In particular, GD is the special case of Anderson
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acceleration with m = 0, and to some extent NAGD
can be viewed as m = 1. We also review the equiv-
alence of GMRES and Anderson acceleration without
truncation (i.e., m = ∞) in Appendix A1. Besides,
Eyert (1996), and Fang and Saad (2009) showed that
Anderson acceleration is related to the multisecant
quasi-Newton methods. Note that Anderson accelera-
tion has the advantage over the Newton-like methods
since it does not require the computation of Hessians or
approximation of Hessians or Hessian-vector products.

There are many sequence acceleration methods in the
numerical analysis literatures. In particular, the well-
known Aitken’s ∆2 process (Aitken, 1926) accelerated
the convergence of a sequence that is converging lin-
early. Shanks generalized the Aitken extrapolation
which was known as Shanks transformation (Shanks,
1955). Recently, Brezinski et al. (2018) proposed a
general framework for Shanks sequence transforma-
tions which includes many vector sequence accelera-
tion methods. One fundamental difference between
Anderson acceleration and other sequence accelera-
tion methods (such as MPE, RRE (reduced rank
extrapolation) (Sidi et al., 1986; Smith et al., 1987),
etc.) is that Anderson acceleration is a fully dynamic
method (Capehart, 1989). Here dynamic means all
iterations are in the same sequence, and it does not
require to restart the procedure. It can be seen from
Algorithm 1 that all iterations are applied to the same
sequence {xt}. In fact, in Capehart’s PhD thesis
(Capehart, 1989), several experiments were conducted
to demonstrate the superior performance of Anderson
acceleration over other semi-dynamic methods such as
MPE, RRE (semi-dynamic means that the algorithm
maintains more than one sequences or needs to restart
several times). More recently, Anderson acceleration
with different variants and/or under different assump-
tions are widely studied (see e.g., (Zhang et al., 2018;
Evans et al., 2018; Scieur et al., 2019)).

2 The Quadratic Case

In this section, we consider the problem of minimizing
a quadratic function (also called least squares, or ridge
regression (Boyd and Vandenberghe, 2004; Hoerl and
Kennard, 1970)). The formulation of the problem is

min
x∈Rd

f(x) =
1

2
xTAx− bTx, (2)

where µId � ∇2f = A � LId. Note that µ and L
are usually called the strongly convex parameter and
Lipschitz continuous gradient parameter, respectively
(e.g. (Nesterov, 2004; Allen-Zhu, 2017; Lan et al.,

1All appendices are provided in the Supplementary
Material.

2019)). There are many algorithms for optimizing this
type of functions. See e.g. (Bubeck, 2015) for more
details. We analyze the problem of minimizing a more
general function f(x) in the next Section 3.

We prove that Anderson acceleration with Chebyshev
polynomial parameters {βt} achieves the optimal con-
vergence rate, i.e., it obtains an ε-approximate solution
using O(

√
κ ln 1

ε ) iterations. The convergence result is
stated in the following Theorem 1.

Theorem 1 The Anderson-Chebyshev acceleration
method achieves the optimal convergence rate
O(
√
κ ln 1

ε ) for obtaining an ε-approximate solution of
problem (2) for any 0 ≤ m ≤ k, where κ = L/µ is the
condition number, k is defined in Definition 1 and this
method combines Anderson acceleration (Algorithm
1) with the Chebyshev polynomial parameters

βt = 1/
(
L+µ
2 + L−µ

2 cos( (2t−1)π
2T )

)
, for t = 1, 2, . . . , T .

Remark: In this quadratic case, we mention that
Toth and Kelley (2015) proved the first convergence
rate O(κ ln 1

ε ) for fixed parameter β. Here we use the
Chebyshev polynomials to improve the result to the
optimal O(

√
κ ln 1

ε ) which matches the lower bound
Ω(
√
κ ln 1

ε ). Note that for ill-conditioned problems,
the condition number κ can be very large. Also
note that in practice the constant m is usually very
small. Particularly, m = 3 has already achieved a
remarkable performance from our experimental results
(see Figures 2–5 in Section 5).

Before proving Theorem 1, we first define k and
then briefly review some properties of the Chebyshev
polynomials. We refer to (Rivlin, 1974; Olshanskii and
Tyrtyshnikov, 2014; Hageman and Young, 2012) for
more details of Chebyshev polynomials.

Definition 1 Let vi’s be the unit eigenvectors of A,
where A is defined in (2). Consider a unit vector

c ,
∑d
i=1 civi and let c′ , ProjB⊥k c =

∑d
i=1 c

′
ivi,

where ProjB⊥k denotes the projection to the orthogonal

complement of the column space of Bk , A[xt−k −
xt, . . . , xt−1−xt] ∈ Rd×k. Define k to be the maximum
integer such that c′i ≤ (1 + 1√

κ+1
)ci for any i ∈ [d].

Obviously, k ≥ 0 since c′ = c due to B0 = 0 and
ProjB⊥0 = I.

Now we review the Chebyshev polynomials. The
Chebyshev polynomials are polynomials Pk(x), where
k ≥ 0, deg(Pk) = k, which is defined by the recursive
relation:

P0(x) = 1,

P1(x) = x,

Pk+1(x) = 2xPk(x)− Pk−1(x).

(3)
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The key property is that Pk(x) has minimal deviation
from 0 on [−1, 1] among all polynomials Qk with
deg(Qk) = k and coefficient αk = 2k−1 for the largest
degree term xk, i.e.,

max
x∈[−1,1]

|Pk(x)| ≤ max
x∈[−1,1]

|Qk(x)| for all Qk. (4)

In particular, for |x| ≤ 1, Chebyshev polynomials can
be written in an equivalent way:

Pk(x) = cos(k arccosx). (5)

In our proof, we use this equivalent form (5) instead
of (3). The equivalence can be verified as follows:

Pk(x) = 2x cos((k − 1) arccosx)− cos((k − 2) arccosx)

= 2 cos θ cos((k − 1)θ)− cos((k − 2)θ) (6)

= cos(kθ) + cos((k − 2)θ)− cos((k − 2)θ)

= cos(k arccosx), (7)

where (6) and (7) use the transformation x = cos θ due
to |x| ≤ 1. According to (5), maxx∈[−1,1] |Pk(x)| = 1
and the k roots of Pk are as follows:

xi = cos
( (2i− 1)π

2k

)
, i = 1, 2, . . . , k. (8)

To demonstrate it more clearly, we provide an ex-
ample for P4(x) (W-shape curve) in Figure 1. Since
k = 4 in this polynomial P4(x), the first root x1 =

cos
(

(2i−1)π
2k

)
= cos

(
π
8

)
≈ 0.92. The remaining three

roots for P4(x) can be easily computed too.

Figure 1: The Chebyshev polynomial P4(x)

Proof of Theorem 1. For iteration t + 1, the residual
Ft+1 , −λ∇f(xt+1) = −(Axt+1 − b) (let λ = 1) can

be deduced as follows:

Ft+1 = b−Axt+1

= b−A
[
(1− βt)

mt∑
i=0

αtixt−i + βt

mt∑
i=0

αtiG(xt−i)

]

= b−A
[mt∑
i=0

αtixt−i + βt

mt∑
i=0

αti (b−Axt−i))
]

(9)

= b− βtAb−A
[mt∑
i=0

αti ((I − βtA)xt−i))

]

= (I − βtA)

mt∑
i=0

αti (b−Axt−i))

= (I − βtA)

mt∑
i=0

αtiFt−i, (10)

where (9) uses G(xt) = xt + Ft.

To bound ‖Ft+1‖2 (i.e., ‖∇f(xt+1)‖2), we first obtain
the following lemma by using Singular Value Decom-
position (SVD) to solve the least squares problem (1)
and then using several transformations. We defer the
proof of Lemma 1 to Appendix B.2.

Lemma 1 Let F1 = b − Ax1 and Ft+1 = b − Axt+1,
then

‖Ft+1‖2/‖F1‖2 ≤
√

2 min
β

max
λ∈[µ,L]

|Ht(λ)| (11)

where Ht(λ) = (1 − βtλ) · · · (1 − β1λ) is a degree t
polynomial.

According to Lemma 1, to bound ‖Ft+1‖2, it is suf-
ficient to bound the right-hand-side (RHS) of (11)
(i.e., minβ maxλ∈[µ,L] |Ht(λ)|). So we want to choose
parameter β in order to make maxλ∈[µ,L] |Ht(λ)| as
small as possible. According to (4) (the minimal
deviation property of standard Chebyshev polynomi-
als), hence a natural idea is to choose β such that
Ht(λ) = (1 − βtλ) · · · (1 − β1λ) is a kind of modified
Chebyshev polynomials. In order to do this, we first
transform [µ,L] into [−1, 1], i.e., let λ = L+µ

2 + L−µ
2 x,

where x ∈ [−1, 1]. Also note that polynomial Ht(λ) =
(1 − βtλ) · · · (1 − β1λ) has (only) one constraint, i.e.,
Ht(0) = 1. Thus we choose β such that

Ht(λ) = Pt

(2λ− (L+ µ)

L− µ

)/
Pt

(
− L+ µ

L− µ

)
= Pt(x)

/
Pt

(
− L+ µ

L− µ

)
, (12)

where Pt(·) is the standard Chebyshev polynomials.
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Now, the RHS of (11) can be bounded as follows:

min
β

max
λ∈[µ,L]

|Ht(λ)|

≤ max
x∈[−1,1]

∣∣∣Pt(x)
/
Pt

(
− L+ µ

L− µ

)∣∣∣ (13)

≤ 1
/∣∣∣Pt(− L+ µ

L− µ

)∣∣∣, (14)

where (13) uses (12), and (14) uses
maxx∈[−1,1] |Pt(x)| = 1 (see (5)). According to
(8), it is not hard to see that Ht(λ) is defined by the

mixing parameters βi = 1
/(

L+µ
2 + L−µ

2 cos
( (2i−1)π

2t

))
according to λ = L+µ

2 + L−µ
2 x, where i = 1, 2, . . . , t.

Note that the roots of standard Chebyshev
polynomials (i.e., (8)) can be found from many
textbooks, e.g., Section 1.2 of (Rivlin, 1974). Now,
we only need to bound

∣∣Pt( − L+µ
L−µ

)∣∣. First, we need

to transform the form (5) of Chebyshev polynomials
Pt(x) as follows:

Pt(x) = cos(t arccosx)

= cos(tθ) Define x , cos θ

=
(
eiθt + e−iθt

)
/2

=
(
(cos θ + i sin θ)t + (cos θ − i sin θ)t

)
/2

=
((
x+

√
x2 − 1

)t
+
(
x−

√
x2 − 1

)t)
/2.

Let x = −L+µL−µ , we get
√
x2 − 1 =

√
(L+µ)2−(L−µ)2

(L−µ)2 =√
4Lµ

(L−µ)2 = 2
√
Lµ

L−µ . So we have∣∣∣Pt(− L+ µ

L− µ

)∣∣∣ ≥ 1

2

(L+ µ

L− µ
+

2
√
Lµ

L− µ

)t
≥ 1

2

(√L+
√
µ

√
L−√µ

)t
. (15)

Now, the RHS of (11) can be bounded as√
2 min

β
max
λ∈[µ,L]

|Ht(λ)| ≤

√
2
/∣∣∣Pt(− L+ µ

L− µ

)∣∣∣ (16)

≤ 2
(√L−√µ
√
L+
√
µ

)t/2
, (17)

where (16) follows from (14), and (17) follows
from (15). Then, according to (11), the gradient
norm is bounded as ‖∇f(xt+1)‖2 = ‖Ft+1‖2 ≤
2
(√L−√µ√

L+
√
µ

)t/2‖F1‖2 = 2
(√κ−1√

κ+1

)t/2‖∇f(x1)‖2, where

κ = L/µ. Note that if the number of iterations
t = (

√
κ+ 1) ln 1

ε , then(√κ− 1√
κ+ 1

)t/2
=
(
1− 2√

κ+ 1

)t/2 ≤ ε.
Thus the Anderson-Chebyshev acceleration method
achieves the optimal convergence rate O(

√
κ ln 1

ε ) for
obtaining an ε-approximate solution. �

3 The General Case

In this section, we analyze the Anderson Acceleration
(Algorithm 1) in the general nonlinear case:

min
x∈Rd

f(x). (18)

We prove that Anderson acceleration method achieves
the linear-quadratic convergence rate under the follow-
ing standard Assumptions 1 and 2, where ‖ · ‖ denotes
the Euclidean norm. Let Bt denote the small matrix
of the least-square problem in Line 7 of Algorithm 1,
i.e., Bt , [Ft − Ft−1, . . . , Ft − Ft−m] ∈ Rd×m (see
problem (1)). Then, we define its condition number
κt , ‖∇f(xt)‖/µ̃t and κ̃ , maxt{κt}, where µ̃t
denotes the least non-zero singular value of Bt.

Assumption 1 The Hessian ∇2f satisfies µ ≤
‖∇2f‖ ≤ L, where 0 ≤ µ ≤ L.

Assumption 2 The Hessian ∇2f is γ-Lipschitz con-
tinuous, i.e.,

‖∇2f(x)−∇2f(y)‖ ≤ γ‖x− y‖. (19)

Theorem 2 Suppose Assumption 1 and 2 hold. Let
step-size λ = 2

L+µ . The convergence rate of Anderson

Acceleration(m) (Algorithm 1) is linear-quadratic for
problem (18), i.e.,

‖∇f(xt+1)‖ ≤ c1∆2
t+c2∆t‖∇f(xt)‖+(1−c3)‖∇f(xt)‖,

(20)

where c1 = 3κ̃2γm
(L+µ)2 , c2 = 2κ̃βtγ

√
m

(L+µ)2 , c3 = βt
2µ
L+µ and

∆t , maxi∈[m] ‖xt − xt−i‖.

Remark:

1. The constant m ≥ 0 is usually very small. Par-
ticularly, we use m = 3 and 5 for the numerical
experiments in Section 5. Hence ∆t is very small
and also decreases as the algorithm converges.

2. Besides, one can also use ‖∇f(xt)‖ instead of ∆t

in (20) according to the property of f (Assump-
tion 1), i.e., µ‖xt − x∗‖ ≤ ‖∇f(xt) −∇f(x∗)‖ =
‖∇f(xt)‖, and ‖xt − xt−i‖ = ‖xt − x∗ + x∗ −
xt−i‖ ≤ ‖xt − x∗‖+ ‖xt−i − x∗‖.

3. Note that the first two terms in RHS of (20) con-
verge quadratically and the last term converges
linearly. Due to the fully dynamic property of
Anderson acceleration as we discussed in Section
1.2, it turns out the exact convergence rate of
Anderson acceleration in the general case is not
easy to obtain. But we note that the convergence
rate is roughly linear, i.e., O( 1

c3
log 1

ε ) since the
first two quadratic terms converge much faster
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than the last linear term in some neighborhood
of optimum. In particular, if f is a quadratic
function, then γ = 0 (Assumption 2) and thus
c1 = c2 = 0 in (20). Only the last linear
term remained, thus it converges linearly (see the
following corollary).

Corollary 1 If f is a quadratic function, let step-size
λ = 2

L+µ and βt = 1. Then the convergence rate of

Anderson Acceleration is linear, i.e., O(κ ln 1
ε ), where

κ = L/µ is the condition number.

Note that this corollary recovers the previous result
(i.e., O(κ ln 1

ε )) obtained by (Toth and Kelley, 2015),
and we use Chebyshev polyniomial to improve this
result to the optimal convergence rate O(

√
κ ln 1

ε ) in
our previous Section 2 (see Theorem 1). Concretely,
we transfer the weight of step-size λ to the parameters
βt’s and use Chebyshev polynomial parameters βt’s in
our Theorem 1 instead of using fixed parameter β ≡ 1.

Now, we provide a proof sketch for Theorem 2. The
detailed proof can be found in Appendix B.1.

Proof Sketch of Theorem 2. Consider the iteration t+
1, we have Ft = − 2

L+µ∇f(xt) according to λ = 2
L+µ .

First, we need to demonstrate several useful forms of
xt+1 as follows:

xt+1 = (1− βt)
mt∑
i=0

αtixt−i + βt

mt∑
i=0

αtiG(xt−i)

=

mt∑
i=0

αtixt−i + βt

mt∑
i=0

αti

(
G(xt−i)− xt−i

)
=

mt∑
i=0

αtixt−i + βt

mt∑
i=0

αtiFt−i (21)

= xt −
mt∑
i=1

αti(xt − xt−i)

+ βt

(
Ft −

mt∑
i=1

αti(Ft − Ft−i)
)
, (22)

where (21) holds due to the definition Gt = G(xt) =
xt + Ft, and (22) holds since

∑mt

i=0 α
t
i = 1.

Then, to bound ‖Ft+1‖2 (i.e., ‖∇f(xt+1)‖2), we de-
duce Ft+1 as follows:

Ft+1 = Gt+1 − xt+1

= Gt+1 −
mt∑
i=0

αtixt−i − βt
mt∑
i=0

αtiFt−i

= Gt+1 −
mt∑
i=0

αti(Gt−i − Ft−i)− βt
mt∑
i=0

αtiFt−i

= Gt+1 −
mt∑
i=0

αtiGt−i + (1− βt)F , (23)

where (23) uses the definition F ,
∑mt

i=0 α
t
iFt−i. Now,

we bound the first two terms of (23) as follows:

Gt+1 −
mt∑
i=0

αtiGt−i

= Gt+1 −
(
Gt −

mt∑
i=1

αti(Gt −Gt−i)
)

=

∫ 1

0

G′
(
xt + u(xt+1 − xt)

)
(xt+1 − xt) du

−
mt∑
i=1

αti

∫ 1

0

G′
(
xt + u(xt−i − xt)

)
(xt−i − xt) du

=

mt∑
i=1

αti

∫ 1

0

G′
(
xt + u(xt+1 − xt)

)
(xt−i − xt) du

+

∫ 1

0

G′
(
xt + u(xt+1 − xt)

)
βtF du

−
mt∑
i=1

αti

∫ 1

0

G′
(
xt + u(xt−i − xt)

)
(xt−i − xt) du,

(24)

where (24) is obtained by using (22) to replace xt+1.
To bound (24), we use Assumptions 1, 2, and the
equation

G′t = I + F ′t = I − 2

L+ µ
∇2f(xt).

After some non-trivial calculations (details can be
found in Appendix B.1), we obtain

‖Ft+1‖ ≤
γ(m‖α‖2 +

√
m‖α‖)∆2

t

L+ µ
+
γ
√
m‖α‖βt∆t‖F‖
L+ µ

+
(

1− 2µ

L+ µ
βt

)
‖F‖,

where ‖α‖ denotes the Euclidean norm of α =
(αt1, . . . , α

t
mt

)T . Then, according to the problem (1)

and the definition of F ,
∑mt

i=0 α
t
iFt−i, we have

‖F‖ ≤ ‖Ft‖. Finally, we bound ‖α‖ ≤ 2κ̃
L+µ using

QR decomposition of problem (1) and recall Ft =
− 2
L+µ∇f(xt) to finish the proof of Theorem 2. �

4 Guessing Algorithm

In this section, we provide a Guessing Algorithm (de-
scribed in Algorithm 2) which guesses the parameters
(e.g., µ,L) dynamically. Intuitively, we guess the
parameter µ and the condition number κ in a doubling
way. Note that in general these parameters are not
available, since the time for computing these parame-
ters is almost the same as (or even longer than) solving
the original problem. Also note that the condition in
Line 14 of Algorithm 2 depends on the algorithm used
in Line 12.
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Algorithm 2: Guessing Algorithm

1 input: x0, T, δ, B
2 Let t = 0;
3 for i = 1, 2, . . . do
4 κi = ei+2;
5 for j = 1, 2, . . . , lnB do
6 µi = ejδ, Li = µiκi, ti = 1;
7 do
8 ti = betic;
9 if t+ ti > T then

10 break;

11 xt−1 = xt;
12 x =Anderson Acceleration(xt, ti, µi, Li)

//can be replaced by other algorithms;
13 t = t+ ti, xt = x;

14 while ‖∇f(xt)‖
‖∇f(xt−1)‖ ≤ 2

(√
κi−1√
κi+1

)ti
;

15 if ‖∇f(xt)‖ > ‖∇f(xt−1)‖ then
16 xt = xt−1;

17 return xt

The convergence result of our Algorithm 2 is stated
in the following Theorem 3. The detailed proof is
deferred to Appendix B.3. Note that we only prove
the quadratic case for Theorem 3, but it is possible to
extend it to the general case.

Theorem 3 Without knowing the parameters µ and
L, Algorithm 2 achieves O(

√
κ ln 1

ε +
√
κ(lnκ lnB)2)

convergence rate for obtaining an ε-approximate solu-
tion of problem (2), where κ = L/µ, and B can be any
number as long as the eigenvalue spectrum belongs to
[δ,Bδ].

Remark: We provide a simple example to show why
this guessing algorithm is useful. Note that algorithms
usually need the (exact) parameters µ and L to set the
step size. Without knowing the exact values µ and L,
one needs to approximate these parameters once at the
beginning. Let µ′ = 1

c1
µ and L′ = c2L denote the ap-

proximated values, where c1, c2 ≥ 1. Without guessing
them dynamically, one fixes µ′ and L′ all the time in its
algorithm. According to the lower bound Ω(

√
κ ln 1

ε ),
we know that its convergence rate cannot be better
than O(

√
κ′ ln 1

ε ) = O(
√
c1c2κ ln 1

ε ), where κ′ = L′/µ′.
However, if one combines with our Algorithm 2 (guess-
ing the parameters dynamically), the convergence rate
can be improved to O(

√
κ ln 1

ε +
√
κ(lnκ ln(c1c2κ))2)

according to our Theorem 3 by letting δ = µ′ and
Bδ = L′ (hence B = c1c2κ). Note that there is no
ε (accuracy) in the second term

√
κ(lnκ ln(c1c2κ))2.

Thus the rate turns to the optimal O(
√
κ ln 1

ε ) when
ε → 0. To achieve an ε-approximate solution, our

guessing algorithm can improve the convergence a lot
especially for an imprecise estimate at the beginning
(i.e., c1 and c2 are very large). The corresponding
experimental results in Section 5.1 (see Figure 6)
indeed validate our theoretical results.

5 Experiments

In this section, we conduct the numerical exper-
iments on the real-world UCI datasets2 and syn-
thetic datasets. We compare the performance
among these five algorithms: Anderson Acceleration
(AA), Anderson-Chebyshev acceleration (AA-Cheby),
vanilla Gradient Descent (GD), Nesterov’s Accelerated
Gradient Descent (NAGD) (Nesterov, 2004) and Reg-
ularized Minimal Polynomial Extrapolation (RMPE)
with k = 5 (same as (Scieur et al., 2016)).

Regarding the hyperparameters, we directly set them
from their corresponding theoretical results. See
Proposition 1 of (Lessard et al., 2016) for GD and
NAGD. For RMPE5, we follow the same setting as
in (Scieur et al., 2016). For our AA/AA-Cheby, we set
them according to our Theorem 1 and 2.

Figure 2 demonstrates the convergence performance
of these algorithms in general nonlinear case and
Figures 3–5 demonstrate the convergence performance
in quadratic case. The last Figure 6 demonstrates
the convergence performance of these algorithms com-
bined with our guessing algorithm (Algorithm 2). The
values of m in the caption of figures denote the mixing
parameter of Anderson acceleration algorithms (see
Line 5 of Algorithm 1).
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Figure 2: Logistic regression, m = 3

In Figure 2, we use the negative log-likelihood as
the loss function f (logistic regression), i.e., f(θ) =
−
∑n
i=1(yi log φ(θTxi) + (1 − yi) log(1 − φ(θTxi))),

where φ(z) = 1/(1 + exp(−z)). We run these five
algorithms on real-world diabetes and cancer datasets
which are standard UCI datasets. The x-axis and y-
axis represent the number of iterations and the norm
of the gradient of loss function respectively.

2The UCI datasets can be downloaded from https://
archive.ics.uci.edu/ml

https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
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Figure 3: κ ∈ [0, 500]; m = 3 (left), m = 5 (right)
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Figure 4: κ ∈ [500, 2000]; m = 3 (left), m = 5 (right)
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Figure 5: κ ∈ [2000, 5000]; m = 3 (left), m = 5 (right)

Figures 3–5 demonstrate the convergence performance
for the quadratic case, where f(x) = 1

2x
TAx − bTx.

Concretely, we compared the convergence performance
among these algorithms when the condition number
κ(A) and the mixing parameter m are varied, e.g., the
left figure in Figure 3 is the case κ ∈ [0, 500] andm = 3.
Recall that m is the mixing parameter for Anderson
acceleration algorithms (see Line 5 of Algorithm 1).
We run these five algorithms on the synthetic datasets
in which we randomly generate the A and b for the
loss function f . Note that for randomly generated
A satisfying the property of A ∈ Sd++, we randomly

generate B instead and let A , BTB.

In conclusion, Anderson acceleration methods con-
verge the fastest no matter it is a quadratic function or
general function in all of our experiments. The efficient
Anderson acceleration methods can be viewed as the
extension of momentum methods (e.g., NAGD) since
GD is the special case of Anderson Acceleration with
m = 0, and to some extent NAGD can be viewed
as m = 1. Combined with our theoretical results
(i.e., optimal convergence rate in quadratic case and
linear-quadratic convergence in general case), the ex-
perimental results validate that Anderson acceleration
methods are efficient both in theory and practice.

5.1 Experiments for Guessing Algorithm

In this section, we conduct the experiments for guess-
ing the hyperparameters (i.e., µ,L) dynamically using
our Algorithm 2.
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Figure 6: Algorithms with/without guessing algorithm

In Figure 6, we separately consider these algorithms.
For each of them, we compare its convergence per-
formance between its original version and the one
combined with our guessing algorithm (Algorithm 2).
The experimental results show that all these four algo-
rithms combined with our guessing algorithm achieve
much better performance than their original versions.
Thus it validates our theoretical results (see Theorem
3 and its following Remark).

6 Conclusion

In this paper, we prove that Anderson acceleration
with Chebyshev polynomial can achieve the optimal
convergence rate O(

√
κ ln 1

ε ), which improves the pre-
vious result O(κ ln 1

ε ) provided by (Toth and Kelley,
2015). Thus it can deal with ill-conditioned problems
(condition number κ is large) more efficiently. Further-
more, we also prove the linear-quadratic convergence
of Anderson acceleration for minimizing general non-
linear problems. Besides, if the hyperparameters (e.g.,
the Lipschitz smooth parameter L) are not available,
we propose a guessing algorithm for guessing them
dynamically and also prove a similar convergence rate.
Finally, the experimental results demonstrate that the
efficient Anderson acceleration methods converge sig-
nificantly faster than other algorithms. This validates
that Anderson-Chebyshev acceleration is efficient both
in theory and practice.
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A GMRES vs. Anderson Acceleration(m =∞)

In this appendix, in order to better understand the efficient Anderson acceleration method, we review the
equivalence between the well-known Krylov subspace method GMRES (Saad and Schultz, 1986) and Anderson
acceleration without truncation (i.e., m = ∞ or large enough in Line 5 of Algorithm 1) in linear case. We
emphasize that in this paper we focus on the more general hard cases where m is small (since m usually is finite
and not very large in practice) and also general nonlinear case.

Consider the problem of solving the linear system Ax = b, with a nonsingular matrix A. This is equivalent to
solving the fixed point x = G(x) = x−∇f(x), where ∇f(x) = Ax− b. Let ri denote the residual in the point xi,
i.e., ri = b−Axi. The GMRES method is an effective iterative method for linear system which has the property
of minimizing the norm of the residual vector over a Krylov subspace at every step.

xGMRES
t = arg min{‖b−Ax‖2 : x = x0 + y, y ∈ Kt} (25)

Note that the Krylov space Kt is the linear span of the first t gradients and Kn can span the whole space Rn.
Hence the method arrives the exact solution after n iteration. It is also theoretically equivalent to the Generalized
Conjugate Residual method (GCR).

Now we show that xAAt+1 = G(xGMRES
t ) to indicate the equivalence, under the assumption 0 < ‖ri‖2 < ‖ri−1‖2 for

1 ≤ i ≤ t. xGMRES
t and xAAt+1 denote the t-th GMRES iterative point and t+ 1-th Anderson Acceleration iterative

point, respectively. Let mixing parameters βt = 1 for all t. Then, we deduce the xAAt+1 as follows:

xAAt+1 =

t∑
i=0

αtiG(xi) ∵ mt = t (26)

=

t∑
i=0

αtixi +

t∑
i=0

αti(G(xi)− xi) (27)

=

t∑
i=0

αtixi +

t∑
i=0

αtiFi (28)

Note that the second term in (28) is the same as we minimized in Line 7 of Algorithm 1. This step also can be
transformed to an unconstrained version as follows:

min
(αt

1,...,α
t
t)

T
‖F0 −

t∑
i=1

αti(F0 − Fi)‖2 (29)

The αt0 equals to 1−
∑t
i=1 α

t
i. Note that F0 − Fi = b− Ax0 − (b− Axi) = A(xi − x0) and F0 = r0 = b− Ax0.

Replacing these equations into (29), we have

min
(αt

1,...,α
t
t)

T
‖F0 −

t∑
i=1

αti(F0 − Fi)‖2 (30)

= min
(αt

1,...,α
t
t)

T
‖b−Ax0 −

t∑
i=1

αtiA(xi − x0)‖2 (31)

= min
(αt

1,...,α
t
t)

T
‖b−A

(
x0 +

t∑
i=1

αti(xi − x0)
)
‖2 (32)

Comparing (32) with (25), if {yi = (xi − x0) : 1 ≤ i ≤ t} form a basis of Krylov subspace Kt, then we have
the following equations (easily from (30)-(25)). Note that the Krylov subspaces K are defined by (r0, A), i.e.,
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Ki = span{r0, Ar0, . . . , Ai−1r0}.

xGMRES
t = x0 +

t∑
i=1

αti(xi − x0) (33)

rGMRES
t = b−AxGMRES

t = F0 −
t∑
i=1

αti(F0 − Fi) (34)

Now we continue to deduce the xAAt+1 from (28) to finish the proof of equivalence.

xAAt+1 =

t∑
i=0

αtixi +

t∑
i=0

αtiFi (35)

= x0 +

t∑
i=1

αti(xi − x0) + F0 −
t∑
i=1

αti(F0 − Fi) (36)

= xGMRES
t + b−AxGMRES

t (37)

= xGMRES
t −∇f(xGMRES

t ) (38)

= G(xGMRES
t ) (39)

Now the only remaining thing is to show that {yi = (xi − x0) : 1 ≤ i ≤ t} form the basis of Krylov subspace
Kt. This can be proved by induction. For t = 1, y1 = x1 − x0 = G(x0)− x0 = x0 − (Ax0 − b)− x0 = r0. Now,
assuming that {yi = (xi − x0) : 1 ≤ i ≤ t} form the basis of Kt, we show that

yt+1 = xt+1 − x0

=

t∑
i=1

αti(xi − x0) + F0 −
t∑
i=1

αti(F0 − Fi) (40)

=

t∑
i=1

αtiyi + rGMRES
t , (41)

where (40) follows from (36), and (41) follows from (34). The first term in (41) belongs to Kt by induction.
The second term rGMRES

t ∈ Kt+1 (From (25)) and rGMRES
t 6∈ Kt since the assumption 0 < ‖ri‖2 < ‖ri−1‖2 for

1 ≤ i ≤ t. Hence yt+1 ∈ Kt+1.

B Missing Proofs

In this appendix, we provide the proof details for Theorem 2 (Appendix B.1), Lemma 1 (Appendix B.2) and
Theorem 3 (Appendix B.3).

B.1 Proof of Theorem 2

For the iteration t + 1, we have Ft = F (xt) = − 2
L+µ∇f(xt) according to λ = 2

L+µ , where µ and L are defined

in Assumption 1. First, we recall the form of Ft+1 (i.e. (23)) as

Ft+1 = Gt+1 −
mt∑
i=0

αtiGt−i + (1− βt)F , (42)

and the definition of F as

F ,
mt∑
i=0

αtiFt−i. (43)
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Now we bound the first two terms in RHS of (42) by combining the first and third term of (24) as follows:

Gt+1 −
mt∑
i=0

αtiGt−i

=

mt∑
i=1

αti

∫ 1

0

(
G′
(
xt + u(xt+1 − xt)

)
−G′

(
xt + u(xt−i − xt)

))
(xt−i − xt) du

+

∫ 1

0

G′
(
xt + u(xt+1 − xt)

)
βtF du. (44)

To bound the Equation (44), we recall that Gt = G(xt) = xt + Ft and Ft = − 2
L+µ∇f(xt). Hence

G′t = I + F ′t = I − 2

L+ µ
∇2f(xt). (45)

Due to the Lipschitz continuity of Hessian ∇2f (see (19)), we have

‖G′(x)−G′(y)‖ =
2

L+ µ
‖∇2f(x)−∇2f(y)‖

≤ 2γ

L+ µ
‖x− y‖. (46)

Now the first term in (44) can be bounded as follows:

mt∑
i=1

αti

∫ 1

0

(
G′
(
xt + u(xt+1 − xt)

)
−G′

(
xt + u(xt−i − xt)

))
(xt−i − xt) du

≤
mt∑
i=1

αti
γ‖xt+1 − xt − (xt−i − xt)‖‖xt−i − xt‖

L+ µ
. (47)

Using (22) to replace xt+1 and combining with (43), we have

‖xt+1 − xt − (xt−i − xt)‖

= ‖
mt∑
i=1

αti(xt−i − xt) + βtF − (xt−i − xt)‖

≤ (
√
m‖α‖+ 1) max

i∈[1,m]
‖xt − xt−i‖+ βt‖F‖ (48)

= (
√
m‖α‖+ 1)∆t + βt‖F‖, (49)

where (48) uses triangle inequality and Cauchy–Schwarz inequality. Now, pluging (49) into (47), we get

(47) ≤
√
m‖α‖γ((

√
m‖α‖+ 1)∆t + βt‖F‖)∆t

L+ µ
, (50)

where (50) uses Cauchy–Schwarz inequality. Then, we bound the second term in (44) as follows:∫ 1

0

G′
(
xt + u(xt+1 − xt)

)
βtF du

=

∫ 1

0

(
I − 2

L+ µ
∇2f

(
xt + u(xt+1 − xt)

))
βtF du

≤
(

1− 2µ

L+ µ

)
βt‖F‖. (51)

Now, we recall Ft+1 here:

Ft+1 = Gt+1 −
mt∑
i=0

αtiGt−i + (1− βt)F same as (42)
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Then, according to (44), (47), (50) and (51), we have

‖Ft+1‖ ≤
√
m‖α‖γ((

√
m‖α‖+ 1)∆t + βt‖F‖)∆t

L+ µ
+
(

1− 2µ

L+ µ

)
βt‖F‖+ (1− βt)‖F‖

=
γ(m‖α‖2 +

√
m‖α‖)∆2

t

L+ µ
+
γ
√
m‖α‖βt∆t‖F‖
L+ µ

+
(

1− 2µ

L+ µ
βt

)
‖F‖.

Recall that Ft = − 2
L+µ∇f(xt). According to (43) and (1), we have ‖F‖ ≤ ‖Ft‖. Thus, we have

‖∇f(xt+1)‖ ≤ γ(m‖α‖2 +
√
m‖α‖)∆2

t

2
+
γ
√
m‖α‖βt∆t‖∇f(xt)‖

L+ µ

+
(

1− 2µ

L+ µ
βt

)
‖∇f(xt)‖. (52)

Now, we bound ‖α‖ ≤ 2κ̃
L+µ to finish the proof for Theorem 2. First we recall that the α satisfies problem (1),

i.e., α = arg minα ‖Ft − Bα‖2. We use the QR decomposition for B and let B = QR, where QTQ = I and R
is an upper triangular matrix. Then we let R̃ denote the upper nonzeros of R, and Q̃ is the matrix with the
corresponding columns of Q. Then R̃α = Q̃TFt and α = R̃−1Q̃TFt. Hence, we have

‖α‖ = ‖R̃−1Q̃TFt‖ ≤ ‖R̃−1‖‖Q̃TFt‖ ≤ ‖R̃−1‖‖QTFt‖ ≤ 2κ/(L+ µ), (53)

where (53) uses Ft = − 2
L+µ∇f(xt) and κ̃ = ‖∇f(xt)‖/µ̃ (where µ̃ denotes the least non-zero singular value of

R̃). The proof for Theorem 2 is finished by plugging (53) into (52). �

B.2 Proof of Lemma 1

First, we obtain the relation between Ft+1 and F1 by using the Singular Value Decomposition (SVD) for the
small matrix Bt for all t.

Concretely, Let αt0 = 1−
∑mt

i=1 α
t
i. Recall that Bt denotes [Ft−Ft−1, . . . , Ft−Ft−mt ], i.e. a matrix with column

vectors are Ft − Ft−i for 1 ≤ i ≤ mt. Then we adopt the SVD of Bt as ŨtΣtṼ
T
t , where ŨTt Ũt = I, Ṽ Tt Ṽt = I

and Σt = diag(σ1, . . . , σr), r = rank(Bt). Then B†t = ṼtΣ
−1
t ŨTt . Although Bt may have dependent columns,

one solution for (1) is that α∗ = B†tFt, where α∗ = (αt1, . . . , α
t
mt

)T is the vector of coefficients in (1). Therefore,∑mt

i=0 α
t
iFt−i can be represented as Ft −BtB†tFt = Ft − ŨtŨTt Ft.

Let Pt = I − ŨtŨTt . The matrix Pt is a projection matrix since PtPt = (I − ŨtŨTt )(I − ŨtŨTt ) = I − ŨtŨTt .
Also Pt is symmetric. So we finally have Ft+1 = (I − βtA)PtFt. Expanding Ft recursively, we get the following
relation

Ft+1 = (I − βtA)Pt · · · (I − β1A)P1F1. (54)

We can further have ‖Pj‖2 ≤ 1, for 1 ≤ j ≤ t. This is due to the following fact

‖Pjx‖22 = (Pjx)T (Pjx) = xTPTj Pjx = xTPjx ≤ ‖x‖2‖Pjx‖2.

As A ∈ Sd++, A = QΛQT , where QTQ = I, and Λ = diag(λ1, . . . , λn) (λj ’s are the real eigenvalues of A).

Now, we need to bound ‖Ft+1‖2. According to (54), we have

‖Ft+1‖2 = ‖(I − βtA)Pt · · · (I − β1A)P1F1‖2
≤ ‖(I − βtA)Pt · · · (I − β1A)P1‖2‖F1‖2.

(55)

It is sufficient to bound ‖(I − βtA)Pt · · · (I − β1A)P1‖2, which is

sup
‖x‖2=1

‖(I − βtA)Pt · · · (I − β1A)P1x‖2. (56)

Denote the column vectors of Q as v1, . . . , vd (they are the eigenvectors of A). The vector x can be represented

as
∑d
j=1 c0,jvj , for some c0,j ’s with

∑d
j=1 c

2
0,j = 1. Hence P1x can be represented as P1x =

∑n
j=1 c1,jvj . As
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‖P1‖2 ≤ 1, the c1,j ’s satisfy
∑d
j=1 c

2
1,j ≤ 1. With P1x, we know (I − β1A)P1x =

∑d
j=1 c1,j(1 − β1λj)vj , where∑

j c
2
1,j ≤ 1. Iteratively expanding, we get (I − βtA)Pt · · · (I − β1A)P1x =

∑d
j=1 ct,j(1 − βtλj) · · · (1 − β1λj)vj ,

where
∑
j c

2
t,j ≤ (1 + 1√

κ+1
)t. Hence we have

(56) ≤
(

1 +
1√
κ+ 1

)t
min
β

max
λ∈sp(A)

|Ht(λ)|, (57)

where Ht(λ) = (1−βtλ) · · · (1−β1λ) is a degree t polynomial and the sp(A) is the eigenvalue spectrum of A. As
in general, the eigenvalues of A is unknown. We look for the bound of the following form (58) instead of (57),

(57) ≤
(

1 +
1√
κ+ 1

)t
min
β

max
λ∈[µ,L]

|Ht(λ)|. (58)

Finally, combining (55), (56), (57), (58), (14), (15) and the fact(
1 +

1√
κ+ 1

)t(
1− 2√

κ+ 1

)t/2
≤ 1,

we finish the proof, i.e.,

‖Ft+1‖2/‖F1‖2 ≤
√

2 min
β

max
λ∈[µ,L]

|Ht(λ)|.

�

B.3 Proof of Theorem 3

Before to prove Theorem 3, we need the following three lemmas.

Lemma 2 If
∑k
j=1 e

ij = ei1 + ei2 + . . .+ eik = T , then
∑k
j=1 ij ≤ k ln T

k .

Proof. Let g(x) = ex. Note that g(x) is a convex function. According to Jensen’s inequality, the following holds.

g(E[x]) = exp
(1

k

k∑
j=1

ij

)
≤ E[g(x)] =

1

k

k∑
j=1

exp(ij)

We obtain
∑k
j=1 ij ≤ k ln T

k by taking log for both sides. �

Lemma 3 Let T = c
(√
κ ln 1

ε +
√
κ(lnκ lnB)2

)
, where c > 2, then

√
κ ln 1

ε +
√
κ(lnκ lnB) ln T

lnκ lnB ≤ T is
satisfied.

Proof. We divide this proof into three cases.

1. ln 1
ε ≤ lnκ lnB.

The left-hand side (LHS) of the constraint inequality in this lemma is deduced as follows:

√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

T

lnκ lnB

≤
√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

2c
√
κ(lnκ lnB)2

lnκ lnB

=
√
κ ln

1

ε
+
√
κ(lnκ lnB)

(
ln
√
κ+ ln(lnκ lnB) + ln 2c

)
Hence c ≥ 2 is enough for satisfying LHS ≤ T .

2. ln 1
ε > lnκ lnB > ln ln 1

ε .
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We also deduce the LHS of the constraint inequality as follows:

√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

T

lnκ lnB

≤
√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

c(
√
κ ln 1

ε ) (1 + lnκ lnB)

lnκ lnB

≤
√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

(
2c
√
κ ln

1

ε

)
=
√
κ ln

1

ε
+
√
κ(lnκ lnB)

(1

2
lnκ+ ln ln

1

ε
+ ln 2c

)
≤
√
κ ln

1

ε
+
√
κ(lnκ lnB)

(1

2
lnκ+ lnκ lnB + ln 2c

)
Hence c ≥ 2 is also enough for satisfying LHS ≤ T = c

(√
κ ln 1

ε +
√
κ(lnκ lnB)2

)
.

3. lnκ lnB ≤ ln ln 1
ε .

We deduce the LHS of the constraint inequality as follows:

√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

T

lnκ lnB

≤
√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

c
√
κ
(
ln 1

ε + (ln ln 1
ε )2
)

lnκ lnB

≤
√
κ ln

1

ε
+
√
κ(lnκ lnB) ln c

√
κ
(

ln
1

ε
+
(
ln ln

1

ε

)2)
≤
√
κ ln

1

ε
+
√
κ(lnκ lnB)

(
1

2
lnκ

)
+
√
κ ln ln

1

ε

(
ln ln

1

ε
+ ln c+ 2 ln

(
ln ln

1

ε

))
Since ln(1/ε) > (ln ln 1

ε )2 if (1/ε) > e2. Hence it shows that c ≥ 2 is enough for satisfying LHS ≤ T =
c
(√
κ ln 1

ε +
√
κ(lnκ lnB)2

)
.

�

Lemma 4 The condition number κi (in Line 4 of Algorithm 2) is always less than e2κ, where κ is the true
condition number. Equivalently, i (in Line 3 of Algorithm 2) is always less than lnκ.

Proof. Without loss of generality, let ec ≤ µ ≤ ec+1 and ed ≤ L ≤ ed+1. When κi = e2κ and j = ec,

then [µ,L] ⊂ [µi, Li]. According to inequality ‖∇f(xt+1)‖2 ≤ 2
(√κ−1√

κ+1

)t‖∇f(x1)‖2 (see the end of the proof of

Theorem 1), the condition of do-while loop in Line 7–14 of Algorithm 2 always hold. The only way to break the
loop is that the iteration t > T , i.e., the end of the algorithm. �

Proof of Theorem 3. According to Lemma 4, i (in Line 3 of Algorithm 2) is less than lnκ and κi is less than e2κ.
The inner loop j (in Line 5) is obviously less than lnB. Let k = lnκ lnB and ij denote the times of the execution of
do-while loop (Line 7–14) in each loop iteration (Line 5–16). Thus, the total number of iterations (corresponding

to t) is eij in each loop iteration. These ij iterations satisfy the do-while condition, i.e., ‖∇f(xt)‖
‖∇f(xt−1)‖ ≤ 2

(√
κi−1√
κi+1

)ti
.

We combine the condition together to obtain ‖∇f(xt)‖ ≤ 2ij
(√

κi−1√
κi+1

)eij
‖∇f(xt−eij )‖. Finally, this guessing

algorithm satisfied the following Inequality (59).

Note that the Line 15 and 16 of Algorithm 2 ignore the failed iterations. Also this ignored step can be executed
at most once in each loop iteration (Line 5–16). Let T denote the total number of iterations of Algorithm 2.

Then
∑k
j=1 e

ij ≤ T ≤ 2
∑k
j=1 e

ij + e lnκ lnB.

‖∇f(xt)‖ ≤ 2
∑k

j=1 ij

(√
e2κ− 1√
e2κ+ 1

)∑k
j=1 e

ij

‖∇f(x0)‖ (59)

As κi is less than e2κ and k = lnκ lnB. In order to prove the convergence rate, we need the RHS of (59) ≤ ε, it
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is sufficient to satisfy the following inequality

k∑
j=1

ij ≤
2√

e2κ+ 1

( k∑
j=1

eij − e
√
κ+ 1

2
ln

1

ε

)
,

i.e.,

e
√
κ+ 1

2
ln

1

ε
+
e
√
κ+ 1

2

k∑
j=1

ij ≤
k∑
j=1

eij . (60)

By applying Lemma 2 and ignoring the constant, we can transform (60) to (61). Recall that
∑k
j=1 e

ij ≤ T ≤
2
∑k
j=1 e

ij + e lnκ lnB and k = lnκ lnB.

√
κ ln

1

ε
+
√
κ(lnκ lnB) ln

T

lnκ lnB
≤ T. (61)

This is exactly the same as Lemma 3. Thus the proof is finished by using Lemma 3, i.e., T is bounded by
O
(√
κ ln 1

ε +
√
κ(lnκ lnB)2

)
. �
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