
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

SSRGD: Simple Stochastic Recursive Gradient Descent for SSRGD: Simple Stochastic Recursive Gradient Descent for

escaping saddle points escaping saddle points

Zhize LI
Singapore Management University, zhizeli@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
LI, Zhize. SSRGD: Simple Stochastic Recursive Gradient Descent for escaping saddle points. (2019).
Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada, December 8-14. 1-11.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8679

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

SSRGD: Simple Stochastic Recursive Gradient
Descent for Escaping Saddle Points

Zhize Li
Tsinghua University, China and KAUST, Saudi Arabia

zhizeli.thu@gmail.com

Abstract

We analyze stochastic gradient algorithms for optimizing nonconvex problems. In
particular, our goal is to find local minima (second-order stationary points) instead
of just finding first-order stationary points which may be some bad unstable saddle
points. We show that a simple perturbed version of stochastic recursive gradient
descent algorithm (called SSRGD) can find an (ε, δ)-second-order stationary point
with Õ(

√
n/ε2 +

√
n/δ4 + n/δ3) stochastic gradient complexity for nonconvex

finite-sum problems. As a by-product, SSRGD finds an ε-first-order stationary
point with O(n+

√
n/ε2) stochastic gradients. These results are almost optimal

since Fang et al. [11] provided a lower bound Ω(
√
n/ε2) for finding even just an

ε-first-order stationary point. We emphasize that SSRGD algorithm for finding
second-order stationary points is as simple as for finding first-order stationary
points just by adding a uniform perturbation sometimes, while all other algorithms
for finding second-order stationary points with similar gradient complexity need to
combine with a negative-curvature search subroutine (e.g., Neon2 [4]). Moreover,
the simple SSRGD algorithm gets a simpler analysis. Besides, we also extend our
results from nonconvex finite-sum problems to nonconvex online (expectation)
problems, and prove the corresponding convergence results.

1 Introduction

Nonconvex optimization is ubiquitous in machine learning applications especially for deep neural
networks. For convex optimization, every local minimum is a global minimum and it can be achieved
by any first-order stationary point, i.e., ∇f(x) = 0. However, for nonconvex problems, the point
with zero gradient can be a local minimum, a local maximum or a saddle point. To avoid converging
to bad saddle points (including local maxima), we want to find a second-order stationary point,
i.e., ∇f(x) = 0 and ∇2f(x) � 0 (this is a necessary condition for x to be a local minimum). All
second-order stationary points indeed are local minima if function f satisfies strict saddle property
[12]. Note that finding the global minimum in nonconvex problems is NP-hard in general. Also
note that it was shown that all local minima are also global minima for some nonconvex problems,
e.g., matrix sensing [5], matrix completion [13], and some neural networks [14]. Thus, our goal
in this paper is to find an approximate second-order stationary point (local minimum) with proved
convergence.

There has been extensive research for finding ε-first-order stationary point (i.e., ‖∇f(x)‖ ≤ ε), e.g.,
GD, SGD and SVRG. See Table 1 for an overview. Although Xu et al. [33] and Allen-Zhu and Li
[4] independently proposed reduction algorithms Neon/Neon2 that can be combined with previous
ε-first-order stationary points finding algorithms to find an (ε, δ)-second-order stationary point (i.e.,
‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −δ). However, algorithms obtained by this reduction are very
complicated in practice, and they need to extract negative curvature directions from the Hessian
to escape saddle points by using a negative curvature search subroutine: given a point x, find an

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

approximate smallest eigenvector of∇2f(x). This also involves a more complicated analysis. Note
that in practice, standard first-order stationary point finding algorithms can often work (escape bad
saddle points) in nonconvex setting without a negative curvature search subroutine. The reason may
be that the saddle points are usually not very stable. So there is a natural question:

“Is there any simple modification to allow first-order stationary point finding algorithms to get a
theoretical second-order guarantee?".

Table 1: Gradient complexity of optimization algorithms for nonconvex finite-sum problem (1)

Algorithm Stochastic gradient
complexity Guarantee Negative-curvature

search subroutine
GD [24] O(nε2) 1st-order No

SVRG [28, 3],
SCSG [22],
SVRG+ [23]

O(n+ n2/3

ε2) 1st-order No

SNVRG [35],
SPIDER [11],

SpiderBoost [32],
SARAH [27]

O(n+ n1/2

ε2) 1st-order No

SSRGD (this paper) O(n+ n1/2

ε2) 1st-order No
PGD [18] Õ(nε2 + n

δ4) 2nd-order No
Neon2+FastCubic/CDHS [1, 6] Õ(n

ε1.5 + n
δ3 + n3/4

ε1.75 + n3/4

δ3.5) 2nd-order Needed
Neon2+SVRG [4] Õ(n

2/3

ε2 + n
δ3 + n3/4

δ3.5) 2nd-order Needed
Stabilized SVRG [15] Õ(n

2/3

ε2 + n
δ3 + n2/3

δ4) 2nd-order No
SNVRG++Neon2 [34] Õ(n

1/2

ε2 + n
δ3 + n3/4

δ3.5) 2nd-order Needed
SPIDER-SFO+(+Neon2) [11] Õ(n

1/2

ε2 + n1/2

εδ2 + 1
εδ3 + 1

δ5) 2nd-order Needed
SSRGD (this paper) Õ(n

1/2

ε2 + n1/2

δ4 + n
δ3) 2nd-order No

Table 2: Gradient complexity of optimization algorithms for nonconvex online problem (2)

Algorithm Stochastic gradient
complexity Guarantee Negative-curvature

search subroutine
SGD [16] O(1

ε4) 1st-order No
SCSG [22];
SVRG+ [23] O(1

ε3.5) 1st-order No

SNVRG [35];
SPIDER [11];

SpiderBoost [32];
SARAH [27]

O(1
ε3) 1st-order No

SSRGD (this paper) O(1
ε3) 1st-order No

Perturbed SGD [12] poly(d, 1
ε ,

1
δ) 2nd-order No

CNC-SGD [8] Õ(1
ε4 + 1

δ10) 2nd-order No
Neon2+SCSG [4] Õ(1

ε10/3
+ 1

ε2δ3 + 1
δ5) 2nd-order Needed

Neon2+Natasha2 [2] Õ(1
ε3.25 + 1

ε3δ + 1
δ5) 2nd-order Needed

SNVRG++Neon2 [34] Õ(1
ε3 + 1

ε2δ3 + 1
δ5) 2nd-order Needed

SPIDER-SFO+(+Neon2) [11] Õ(1
ε3 + 1

ε2δ2 + 1
δ5) 2nd-order Needed

SSRGD (this paper) Õ(1
ε3 + 1

ε2δ3 + 1
εδ4) 2nd-order No

Note: 1. Guarantee (see Definition 1): ε-first-order stationary point ‖∇f(x)‖ ≤ ε; (ε, δ)-second-
order stationary point ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −δ.

2. In the classical setting where δ = O(
√
ε) [25, 18], our simple SSRGD is always (no matter what n

and ε are) not worse than all other algorithms (in both Table 1 and 2) except FastCubic/CDHS (which
need to compute Hessian-vector product) and SPIDER-SFO+. Moreover, our simple SSRGD is not
worse than FastCubic/CDHS if n ≥ 1/ε and is better than SPIDER-SFO+ if δ is very small (e.g.,
δ ≤ 1/

√
n) in Table 1.

2

Algorithm 1 Simple Stochastic Recursive Gradient Descent (SSRGD)
Input: initial point x0, epoch lengthm, minibatch size b, step size η, perturbation radius r, threshold

gradient gthres

1: for s = 0, 1, 2, . . . do
2: if not currently in a super epoch and ‖∇f(xsm)‖ ≤ gthres then
3: xsm ← xsm + ξ, where ξ uniformly ∼ B0(r), start a super epoch

// we use super epoch since we do not want to add the perturbation too often near a saddle
point

4: end if
5: vsm ← ∇f(xsm)
6: for k = 1, 2, . . . ,m do
7: t← sm+ k
8: xt ← xt−1 − ηvt−1

9: vt ← 1
b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1

// Ib are i.i.d. uniform samples with |Ib| = b
10: if meet stop condition then stop super epoch
11: end for
12: end for

For gradient descent (GD), Jin et al. [18] showed that a simple perturbation step is enough to escape
saddle points for finding a second-order stationary point, and this is necessary [10]. Very recently, Ge
et al. [15] showed that a simple perturbation step is also enough to find a second-order stationary
point for SVRG algorithm [23]. Moreover, Ge et al. [15] also developed a stabilized trick to further
improve the dependency of Hessian Lipschitz parameter.

1.1 Our Contributions

In this paper, we propose a simple SSRGD algorithm (described in Algorithm 1) showed that a simple
perturbation step is enough to find a second-order stationary point for stochastic recursive gradient
descent algorithm. Our results and previous results are summarized in Table 1 and 2. We would like
to highlight the following points:

• We improve the result in [15] to the almost optimal one (i.e., from n2/3/ε2 to n1/2/ε2) since
Fang et al. [11] provided a lower bound Ω(

√
n/ε2) for finding even just an ε-first-order

stationary point. Note that for the other two n1/2 algorithms (i.e., SNVRG+ and SPIDER-
SFO+), they both need the negative curvature search subroutine (e.g. Neon2) thus are more
complicated in practice and in analysis compared with their first-order guarantee algorithms
(SNVRG and SPIDER), while our SSRGD is as simple as its first-order guarantee algorithm
just by adding a uniform perturbation sometimes.

• For more general nonconvex online (expectation) problems (2), we obtain the first algorithm
which is as simple as finding first-order stationary points for finding a second-order stationary
point with similar state-of-the-art convergence result. See the last column of Table 2.

• Our simple SSRGD algorithm gets simpler analysis. Also, the result for finding a first-order
stationary point is a by-product from our analysis. We also give a clear interpretation to show
why our analysis for SSRGD algorithm can improve the original SVRG from n2/3 to n1/2

in Section 5.1. We believe it is very useful for better understanding these two algorithms.

2 Preliminaries

Notation: Let [n] denote the set {1, 2, · · · , n} and ‖ · ‖ denote the Eculidean norm for a vector
and the spectral norm for a matrix. Let 〈u, v〉 denote the inner product of two vectors u and v. Let
λmin(A) denote the smallest eigenvalue of a symmetric matrix A. Let Bx(r) denote a Euclidean ball
with center x and radius r. We use O(·) to hide the constant and Õ(·) to hide the polylogarithmic
factor.

3

In this paper, we consider two types of nonconvex problems. The finite-sum problem has the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f(x) and all individual fi(x) are possibly nonconvex. This form usually models the empirical
risk minimization in machine learning problems.

The online (expectation) problem has the form

min
x∈Rd

f(x) := Eζ∼D[F (x, ζ)], (2)

where f(x) and F (x, ζ) are possibly nonconvex. This form usually models the population risk
minimization in machine learning problems.

Now, we make standard smoothness assumptions for these two problems.

Assumption 1 (Gradient Lipschitz) 1. For finite-sum problem (1), each fi(x) is differen-
tiable and has L-Lipschitz continuous gradient, i.e.,

‖∇fi(x1)−∇fi(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ Rd. (3)

2. For online problem (2), F (x, ζ) is differentiable and has L-Lipschitz continuous gradient,
i.e.,

‖∇F (x1, ζ)−∇F (x2, ζ)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ Rd. (4)

Assumption 2 (Hessian Lipschitz) 1. For finite-sum problem (1), each fi(x) is twice-
differentiable and has ρ-Lipschitz continuous Hessian, i.e.,

‖∇2fi(x1)−∇2fi(x2)‖ ≤ ρ‖x1 − x2‖, ∀x1, x2 ∈ Rd. (5)

2. For online problem (2), F (x, ζ) is twice-differentiable and has ρ-Lipschitz continuous
Hessian, i.e.,

‖∇2F (x1, ζ)−∇2F (x2, ζ)‖ ≤ ρ‖x1 − x2‖, ∀x1, x2 ∈ Rd. (6)

These two assumptions are standard for finding first-order stationary points (Assumption 1) and
second-order stationary points (Assumption 1 and 2) for all algorithms in both Table 1 and 2.

Now we define the approximate first-order stationary points and approximate second-order stationary
points.

Definition 1 x is an ε-first-order stationary point for a differentiable function f if

‖∇f(x)‖ ≤ ε. (7)

x is an (ε, δ)-second-order stationary point for a twice-differentiable function f if

‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −δ. (8)

The definition of (ε, δ)-second-order stationary point is the same as [4, 8, 34, 11] and it generalizes
the classical version where δ =

√
ρε used in [25, 18, 15].

3 Simple Stochastic Recursive Gradient Descent

In this section, we propose the simple stochastic recursive gradient descent algorithm called SSRGD.
The high-level description (which omits the stop condition details in Line 10) of this algorithm is
in Algorithm 1 and the full algorithm (containing the stop condition) is described in Algorithm 2.
Compared with the high-level Algorithm 1, the only difference is that Algorithm 2 contains the stop
condition of super epoch (Line 13–14 of Algorithm 2) and the random stop of epoch (Line 15–16 of
Algorithm 2). Note that we call each outer loop an epoch, i.e., iterations t from sm to (s+ 1)m for
an epoch s. We call the iterations between the beginning of perturbation and end of perturbation a
super epoch.

4

Algorithm 2 Simple Stochastic Recursive Gradient Descent (SSRGD)
Input: initial point x0, epoch lengthm, minibatch size b, step size η, perturbation radius r, threshold

gradient gthres, threshold function value fthres, super epoch length tthres

1: super_epoch← 0
2: for s = 0, 1, 2, . . . do
3: if super_epoch = 0 and ‖∇f(xsm)‖ ≤ gthres then
4: super_epoch← 1 // start a super epoch near a saddle point
5: x̃← xsm, tinit ← sm
6: xsm ← x̃+ ξ, where ξ uniformly ∼ B0(r)
7: end if
8: vsm ← ∇f(xsm)
9: for k = 1, 2, . . . ,m do

10: t← sm+ k
11: xt ← xt−1 − ηvt−1

12: vt ← 1
b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1

// Ib are i.i.d. uniform samples with |Ib| = b
13: if super_epoch = 1 and (f(x̃)− f(xt) ≥ fthres or t− tinit ≥ tthres) then
14: super_epoch← 0; break
15: else if super_epoch = 0 then
16: break with probability 1

m−k+1
// we use random stop since we want to randomly choose a point as the starting point of
the next epoch

17: end if
18: end for
19: x(s+1)m ← xt
20: end for

The SSRGD algorithm is based on the stochastic recursive gradient descent which is introduced
in [26] for convex optimization. In particular, Nguyen et al. [26] want to save the storage of past
gradients in SAGA [9] by using the recursive gradient. However, this stochastic recursive gradient
descent is widely used in recent work for nonconvex optimization such as SPIDER [11], SpiderBoost
[32] and some variants of SARAH (e.g., ProxSARAH [27]).

Recall that in the well-known SVRG algorithm, Johnson and Zhang [19] reused a fixed snapshot full
gradient∇f(x̃) (which is computed at the beginning of each epoch) in the gradient estimator:

vt ←
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x̃)

)
+∇f(x̃), (9)

while the stochastic recursive gradient descent uses a recursive update form (more timely update):

vt ←
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1. (10)

4 Convergence Results

Similar to the perturbed GD [18] and perturbed SVRG [15], we add simple perturbations to the
stochastic recursive gradient descent algorithm to escape saddle points efficiently. Besides, we also
consider the more general online case. In the following theorems, we provide the convergence results
of SSRGD for finding an ε-first-order stationary point and an (ε, δ)-second-order stationary point for
both nonconvex finite-sum problem (1) and online problem (2). The detailed proofs are provided in
Appendix C. We give an overview of the proofs in next Section 5.

4.1 Nonconvex Finite-sum Problem

Theorem 1 Under Assumption 1 (i.e. (3)), let ∆f := f(x0)− f∗, where x0 is the initial point and
f∗ is the optimal value of f . By letting step size η ≤

√
5−1
2L , epoch length m =

√
n and minibatch

5

size b =
√
n, SSRGD will find an ε-first-order stationary point in expectation using

O
(
n+

L∆f
√
n

ε2

)
stochastic gradients for nonconvex finite-sum problem (1).

Theorem 2 Under Assumption 1 and 2 (i.e. (3) and (5)), let ∆f := f(x0) − f∗, where x0 is the
initial point and f∗ is the optimal value of f . By letting step size η = Õ(1

L), epoch length m =
√
n,

minibatch size b =
√
n, perturbation radius r = Õ

(
min(δ

3

ρ2ε ,
δ3/2

ρ
√
L

)
)
, threshold gradient gthres = ε,

threshold function value fthres = Õ(δ
3

ρ2) and super epoch length tthres = Õ(1
ηδ), SSRGD will at

least once get to an (ε, δ)-second-order stationary point with high probability using

Õ
(L∆f

√
n

ε2
+
Lρ2∆f

√
n

δ4
+
ρ2∆fn

δ3

)
stochastic gradients for nonconvex finite-sum problem (1).

4.2 Nonconvex Online (Expectation) Problem

For nonconvex online problem (2), one usually needs the following bounded variance assumption.
For notational convenience, we also consider this online case as the finite-sum form by letting
∇fi(x) := ∇F (x, ζi) and thinking of n as infinity (infinite data samples). Although we try to write
it as finite-sum form, the convergence analysis of optimization methods in this online case is a little
different from the finite-sum case.

Assumption 3 (Bounded Variance) For ∀x ∈ Rd, Ei[‖∇fi(x)−∇f(x)‖2] := Eζi [‖∇F (x, ζi)−
∇f(x)‖2] ≤ σ2, where σ > 0 is a constant.

Note that this assumption is standard and necessary for this online case since the full gradients are not
available (see e.g., [16, 22, 23, 21, 20, 35, 11, 32, 27]). Moreover, we need to modify the full gradient
computation step at the beginning of each epoch to a large batch stochastic gradient computation step
(similar to [22, 23]), i.e., change vsm ← ∇f(xsm) (Line 8 of Algorithm 2) to

vsm ←
1

B

∑
j∈IB

∇fj(xsm), (11)

where IB are i.i.d. samples with |IB | = B. We call B the batch size and b the minibatch size. Also,
we need to change ‖∇f(xsm)‖ ≤ gthres (Line 3 of Algorithm 2) to ‖vsm‖ ≤ gthres.

Theorem 3 Under Assumption 1 (i.e. (4)) and Assumption 3, let ∆f := f(x0) − f∗, where x0 is
the initial point and f∗ is the optimal value of f . By letting step size η ≤

√
5−1
2L , batch size B = 4σ2

ε2 ,
minibatch size b =

√
B = σ

ε and epoch length m = b, SSRGD will find an ε-first-order stationary
point in expectation using

O
(σ2

ε2
+
L∆fσ

ε3

)
stochastic gradients for nonconvex online problem (2).

For achieving a high probability result of finding second-order stationary points in this online case
(i.e., Theorem 4), we need a stronger version of Assumption 3 as in the following Assumption 4.

Assumption 4 (Bounded Variance) For ∀i, x, ‖∇fi(x)−∇f(x)‖2 := ‖∇F (x, ζi)−∇f(x)‖2 ≤
σ2, where σ > 0 is a constant.

We want to point out that Assumption 4 can be relaxed such that ‖∇fi(x)−∇f(x)‖ has sub-Gaussian
tail, i.e., E[exp(λ‖∇fi(x)−∇f(x)‖)] ≤ exp(λ2σ2/2), for ∀λ ∈ R. Then it is sufficient for us to
get a high probability bound by using Hoeffding bound on these sub-Gaussian variables. Note that
Assumption 4 (or the relaxed sub-Gaussian version) is also standard in online case for second-order
stationary point finding algorithms (see e.g., [4, 34, 11]).

6

Theorem 4 Under Assumption 1, 2 (i.e. (4) and (6)) and Assumption 4, let ∆f := f(x0) − f∗,
where x0 is the initial point and f∗ is the optimal value of f . By letting step size η = Õ(1

L), batch
size B = Õ(σ2

g2thres
) = Õ(σ

2

ε2), minibatch size b =
√
B = Õ(σε), epoch length m = b, perturbation

radius r = Õ
(

min(δ
3

ρ2ε ,
δ3/2

ρ
√
L

)
)
, threshold gradient gthres = ε ≤ δ2/ρ, threshold function value

fthres = Õ(δ
3

ρ2) and super epoch length tthres = Õ(1
ηδ), SSRGD will at least once get to an

(ε, δ)-second-order stationary point with high probability using

Õ
(L∆fσ

ε3
+
ρ2∆fσ2

ε2δ3
+
Lρ2∆fσ

εδ4

)
stochastic gradients for nonconvex online problem (2).

5 Overview of the Proofs

5.1 Finding First-order Stationary Points

In this section, we first show that why SSRGD algorithm can improve previous SVRG type algorithm
(see e.g., [23, 15]) from n2/3/ε2 to n1/2/ε2. Then we give a simple high-level proof for achieving
the n1/2/ε2 convergence result (i.e., Theorem 1).

Why it can be improved from n2/3/ε2 to n1/2/ε2: First, we need a key relation between f(xt) and
f(xt−1), where xt := xt−1 − ηvt−1,

f(xt) ≤ f(xt−1)− η

2
‖∇f(xt−1)‖2 −

(1

2η
− L

2

)
‖xt − xt−1‖2 +

η

2
‖∇f(xt−1)− vt−1‖2, (12)

where (12) holds since f has L-Lipschitz continuous gradient (Assumption 1). The details for
obtaining (12) can be found in Appendix C.1 (see (27)).

Note that (12) is very meaningful and also very important for the proofs. The first term
−η2‖∇f(xt−1)‖2 indicates that the function value will decrease a lot if the gradient ∇f(xt−1)

is large. The second term−
(

1
2η −

L
2

)
‖xt−xt−1‖2 indicates that the function value will also decrease

a lot if the moving distance xt − xt−1 is large (note that here we require the step size η ≤ 1
L). The

additional third term +η
2‖∇f(xt−1)− vt−1‖2 exists since we use vt−1 as an estimator of the actual

gradient∇f(xt−1) (i.e., xt := xt−1 − ηvt−1). So it may increase the function value if vt−1 is a bad
direction in this step.

To get an ε-first-order stationary point, we want to cancel the last two terms in (12). Firstly, we want
to bound the last variance term. Recall the variance bound (see Equation (29) in [23]) for SVRG
algorithm, i.e., estimator (9):

E
[
‖∇f(xt−1)− vt−1‖2

]
≤ L2

b
E[‖xt−1 − x̃‖2]. (13)

In order to connect the last two terms in (12), we use Young’s inequality for the second term
‖xt−xt−1‖2, i.e., −‖xt−xt−1‖2 ≤ 1

α‖xt−1− x̃‖2− 1
1+α‖xt− x̃‖

2 (for any α > 0). By plugging
this Young’s inequality and (13) into (12), we can cancel the last two terms in (12) by summing up
(12) for each epoch, i.e., for each epoch s (i.e., iterations sm + 1 ≤ t ≤ sm + m), we have (see
Equation (35) in [23])

E[f(x(s+1)m)] ≤ E[f(xsm)]− η

2

sm+m∑
j=sm+1

E[‖∇f(xj−1)‖2]. (14)

However, due to the Young’s inequality, we need to let b ≥ m2 to cancel the last two terms in (12) for
obtaining (14), where b denotes minibatch size and m denotes the epoch length. According to (14), it
is not hard to see that x̂ is an ε-first-order stationary point in expectation (i.e., E[‖∇f(x̂)‖] ≤ ε) if x̂ is
chosen uniformly randomly from {xt−1}t∈[T] and the number of iterations T = Sm = 2(f(x0)−f∗)

ηε2 .
Note that for each iteration we need to compute b+ n

m stochastic gradients, where we amortize the full
gradient computation of the beginning point of each epoch (n stochastic gradients) into each iteration

7

in its epoch (i.e., n/m) for simple presentation. Thus, the convergence result is T (b+ n
m) ≥ n2/3

ε2

since b ≥ m2, where equality holds if b = m2 = n2/3. Note that here we ignore the factors of
f(x0)− f∗ and η = O(1/L).

However, for stochastic recursive gradient descent estimator (10), we can bound the last variance
term in (12) as (see Equation (33) in Appendix C.1):

E
[
‖∇f(xt−1)− vt−1‖2

]
≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2]. (15)

Now, the advantage of (15) compared with (13) is that it is already connected to the second term in
(12), i.e., moving distances {‖xt−xt−1‖2}t. Thus we do not need an additional Young’s inequality to
transform the second term as before. This makes the function value decrease bound tighter. Similarly,
we plug (15) into (12) and sum it up for each epoch to cancel the last two terms in (12), i.e., for each
epoch s, we have (see Equation (35) in Appendix C.1)

E[f(x(s+1)m)] ≤ E[f(xsm)]− η

2

sm+m∑
j=sm+1

E[‖∇f(xj−1)‖2]. (16)

Compared with (14) (which requires b ≥ m2), here (16) only requires b ≥ m due to the tighter
function value decrease bound since it does not involve the additional Young’s inequality.

High-level proof for achieving n1/2/ε2 result: Now, according to (16), we can use the same
above SVRG arguments to show the n1/2/ε2 convergence result of SSRGD, i.e., x̂ is an ε-first-
order stationary point in expectation (i.e., E[‖∇f(x̂)‖] ≤ ε) if x̂ is chosen uniformly randomly
from {xt−1}t∈[T] and the number of iterations T = Sm = 2(f(x0)−f∗)

ηε2 . Also, for each iteration,
we compute b + n

m stochastic gradients. The only difference is that now the convergence result
is T (b + n

m) = O(L∆f
√
n

ε2) since b ≥ m (rather than b ≥ m2), where we let b = m = n1/2,
η = O(1/L) and ∆f := f(x0) − f∗. Moreover, it is optimal since it matches the lower bound
Ω(L∆f

√
n

ε2) provided by [11].

5.2 Finding Second-order Stationary Points

In this section, we only discuss some high-level proof ideas for finding a second-order stationary point
with high probability due to the space limit. We provide a more detailed proof sketch in Appendix
A. We have discussed the difference of the first-order guarantee analysis between estimator (9) and
estimator (10) in previous Section 5.1. For the second-order analysis, since the estimator (10) in our
SSRGD is more correlated than (9), thus we will use martingales to handle it. Besides, different
estimators will incur more differences in the detailed proofs of second-order guarantee analysis than
that of first-order guarantee analysis.

We divide the proof into two situations, i.e., large gradients and around saddle points. According
to (16), a natural way to prove the convergence result is that the function value will decrease at a
desired rate with high probability. Note that the total amount for function value decrease is at most
∆f := f(x0)− f∗.

Large gradients: ‖∇f(x)‖ ≥ gthres.
In this situation, due to the large gradients, it is sufficient to adjust the first-order analysis to show that
the function value will decrease a lot in an epoch with high probability. Concretely, we want to show
that the function value decrease bound (16) holds with high probability by using Azuma-Hoeffding
inequality to bound the variance term (15) with high probability. Then, according to (16), it is not
hard to see that the desired rate of function value decrease is O(ηg2

thres) = Õ(ε
2

L) per iteration in
this situation (recall the parameters gthres = ε and η = Õ(1/L) in our Theorem 2). Also note
that we compute b + n

m = 2
√
n stochastic gradients at each iteration (recall m = b =

√
n in our

Theorem 2). Here we amortize the full gradient computation of the beginning point of each epoch
(n stochastic gradients) into each iteration in its epoch (i.e., n/m) for simple presentation (we will
analyze this more rigorously in the detailed proofs in appendices). Thus the number of stochastic
gradient computation is at most Õ(

√
n ∆f
ε2/L) = Õ(L∆f

√
n

ε2) for this large gradients situation.

8

Note that (16) only guarantees function value decrease when the summation of gradients in this epoch
is large. However, in order to connect the guarantees between first situation (large gradients) and
second situation (around saddle points), we need to show guarantees that are related to the gradient
of the starting point of each epoch (see Line 3 of Algorithm 2). Similar to [15], we achieve this by
stopping the epoch at a uniformly random point (see Line 16 of Algorithm 2). Then, we will know
that either the function value already decreases a lot in this epoch s or the starting point of the next
epoch x(s+1)m is around a saddle point (or x(s+1)m is already a second-order stationary point).

Around saddle points: ‖∇f(x̃)‖ ≤ gthres and λmin(∇2f(x̃)) ≤ −δ at the initial point x̃ of a super
epoch.
In this situation, we want to show that the function value will decrease a lot in a super epoch (instead
of an epoch as in the first situation) with high probability by adding a random perturbation at the
initial point x̃. To simplify the presentation, we use x0 := x̃+ ξ to denote the starting point of the
super epoch after the perturbation, where ξ uniformly ∼ B0(r) (see Line 6 in Algorithm 2).

Firstly, we show that if function value does not decrease a lot, then all iteration points are not far from
the starting point with high probability (localization). Concretely, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)−f(xt))
C′L , (17)

where C ′ = Õ(1). Then we show that the stuck region is relatively small in the random perturbation
ball, i.e., xt will go far away from the perturbed starting point x0 with high probability (small stuck
region). Concretely, we have

∃t ≤ tthres, ‖xt − x0‖ ≥ δ
C1ρ

, (18)

where C1 = Õ(1). Based on (17) and (18), we can prove that

∃t ≤ tthres, f(x̃)− f(xt) ≥ fthres

holds with high probability.

Now, we can obtain that the desired rate of function value decrease in this situation is fthres/tthres =

Õ(δ
3/ρ2

1/(ηδ)) = Õ(δ4

Lρ2) per iteration (recall the parameters fthres = Õ(δ3/ρ2), tthres = Õ(1/(ηδ))

and η = Õ(1/L) in our Theorem 2). Same as before, we compute b+ n
m = 2

√
n stochastic gradients

at each iteration (recall m = b =
√
n in our Theorem 2). Thus the number of stochastic gradient

computation is at most Õ(
√
n ∆f
δ4/(Lρ2)) = Õ(Lρ

2∆f
√
n

δ4) for this around saddle points situation.

In sum, the number of stochastic gradient computation is at most Õ(L∆f
√
n

ε2) for the large gradients

situation and is at most Õ(Lρ
2∆f
√
n

δ4) for the around saddle points situation. Moreover, for the

classical version where δ =
√
ρε [25, 18], then Õ(Lρ

2∆f
√
n

δ4) = Õ(L∆f
√
n

ε2), i.e., both situations get
the same stochastic gradient complexity. This also matches the convergence result for finding first-
order stationary points (see our Theorem 1) if we ignore the logarithmic factor. More importantly, it
also almost matches the lower bound Ω(L∆f

√
n

ε2) provided by [11] for finding even just an ε-first-order
stationary point.

Finally, we point out that there is an extra term ρ2∆fn
δ3 in Theorem 2 beyond these two terms obtained

from the above two situations. The reason is that we amortize the full gradient computation of the
beginning point of each epoch (n stochastic gradients) into each iteration in its epoch (i.e., n/m)
for simple presentation. We will analyze this more rigorously in the appendices, which incurs the
term ρ2∆fn

δ3 . For the more general online problem (2), the high-level proofs are almost the same as
the finite-sum problem (1). The difference is that we need to use more concentration bounds in the
detailed proofs since the full gradients are not available in online case.

Acknowledgments

This work was supported by Office of Sponsored Research of KAUST, through the Baseline Research
Fund of Prof. Peter Richtárik. The author would like to thank Rong Ge (Duke), Jian Li (Tsinghua)
and the anonymous reviewers for their useful discussions/suggestions.

9

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Find-

ing approximate local minima for nonconvex optimization in linear time. arXiv preprint
arXiv:1611.01146, 2016.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in Neural
Information Processing Systems, pages 2680–2691, 2018.

[3] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning, pages 699–707, 2016.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In
Advances in Neural Information Processing Systems, pages 3720–3730, 2018.

[5] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search
for low rank matrix recovery. In Advances in Neural Information Processing Systems, pages
3873–3881, 2016.

[6] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
non-convex optimization. arXiv preprint arXiv:1611.00756, 2016.

[7] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey.
Internet Mathematics, 3(1):79–127, 2006.

[8] Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles
with stochastic gradients. arXiv preprint arXiv:1803.05999, 2018.

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[10] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos.
Gradient descent can take exponential time to escape saddle points. In Advances in Neural
Information Processing Systems, pages 1067–1077, 2017.

[11] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances in Neural
Information Processing Systems, pages 687–697, 2018.

[12] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points — online
stochastic gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842,
2015.

[13] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

[14] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017.

[15] Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance reduction
for nonconvex optimization. In Conference on Learning Theory, 2019.

[16] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-
2):267–305, 2016.

[17] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[18] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1724–1732. JMLR. org, 2017.

10

[19] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[20] Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method
for convex optimization. In Advances in Neural Information Processing Systems, 2019.

[21] Guanghui Lan and Yi Zhou. Random gradient extrapolation for distributed and stochastic
optimization. SIAM Journal on Optimization, 28(4):2753–2782, 2018.

[22] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via scsg methods. In Advances in Neural Information Processing Systems, pages 2345–2355,
2017.

[23] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 5569–5579, 2018.

[24] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.

[25] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[26] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2613–2621. JMLR. org, 2017.

[27] Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. Proxsarah: An effi-
cient algorithmic framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1902.05679, 2019.

[28] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine learning,
pages 314–323, 2016.

[29] Terence Tao and Van Vu. Random matrices: Universality of local spectral statistics of non-
hermitian matrices. The Annals of Probability, 43(2):782–874, 2015.

[30] Joel A Tropp. User-friendly tail bounds for matrix martingales. Technical report, CALIFORNIA
INST OF TECH PASADENA, 2011.

[31] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12(4):389–434, 2012.

[32] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost: A class of faster
variance-reduced algorithms for nonconvex optimization. arXiv preprint arXiv:1810.10690,
2018.

[33] Yi Xu, Jing Rong, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In Advances in Neural Information Processing Systems, pages
5535–5545, 2018.

[34] Dongruo Zhou, Pan Xu, and Quanquan Gu. Finding local minima via stochastic nested variance
reduction. arXiv preprint arXiv:1806.08782, 2018.

[35] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. arXiv preprint arXiv:1806.07811, 2018.

11

	SSRGD: Simple Stochastic Recursive Gradient Descent for escaping saddle points
	Citation

	SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points

