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Abstract

We propose a novel randomized incremental gradient algorithm, namely, VAriance-
Reduced Accelerated Gradient (Varag ), for finite-sum optimization. Equipped
with a unified step-size policy that adjusts itself to the value of the condition
number, Varag exhibits the unified optimal rates of convergence for solving smooth
convex finite-sum problems directly regardless of their strong convexity. Moreover,
Varag is the first accelerated randomized incremental gradient method that benefits
from the strong convexity of the data-fidelity term to achieve the optimal linear
convergence. It also establishes an optimal linear rate of convergence for solving
a wide class of problems only satisfying a certain error bound condition rather
than strong convexity. Varag can also be extended to solve stochastic finite-sum
problems.

1 Introduction

The problem of interest in this paper is the convex programming (CP) problem given in the form of

ψ∗ := min
x∈X

{
ψ(x) := 1

m

∑m
i=1fi(x) + h(x)

}
. (1.1)

Here, X ⊆ Rn is a closed convex set, the component function fi : X → R, i = 1, . . . ,m, are
smooth and convex function with Li-Lipschitz continuous gradients over X , i.e., ∃Li ≥ 0 such that

‖∇fi(x1)−∇fi(x2)‖∗ ≤ Li‖x1 − x2‖, ∀x1, x2 ∈ X, (1.2)

and h : X → R is a relatively simple but possibly nonsmooth convex function. For notational
convenience, we denote f(x) := 1

m

∑m
i=1fi(x) and L := 1

m

∑m
i=1Li. It is easy to see that f has

L-Lipschitz continuous gradients, i.e., for some Lf ≥ 0, ‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖ ≤
L‖x1 − x2‖, ∀x1, x2 ∈ X. It should be pointed out that it is not necessary to assume h being
strongly convex. Instead, we assume that f is possibly strongly convex with modulus µ ≥ 0.

We also consider a class of stochastic finite-sum optimization problems given by

ψ∗ := min
x∈X

{
ψ(x) := 1

m

∑m
i=1Eξi [Fi(x, ξi)] + h(x)

}
, (1.3)
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where ξi’s are random variables with support Ξi ⊆ Rd. It can be easily seen that (1.3) is a special
case of (1.1) with fi = Eξi [Fi(x, ξi)], i = 1, . . . ,m. However, different from deterministic finite-
sum optimization problems, only noisy gradient information of each component function fi can be
accessed for the stochastic finite-sum optimization problem in (1.3). Particularly, (1.3) models the
generalization risk minimization in distributed machine learning problems.

Finite-sum optimization given in the form of (1.1) or (1.3) has recently found a wide range of
applications in machine learning (ML), statistical inference, and image processing, and hence
becomes the subject of intensive studies during the past few years. In centralized ML, fi usually
denotes the loss generated by a single data point, while in distributed ML, it may correspond to the
loss function for an agent i , which is connected to other agents in a distributed network.

Recently, randomized incremental gradient (RIG) methods have emerged as an important class of
first-order methods for finite-sum optimization (e.g.,[5, 14, 27, 9, 24, 18, 1, 2, 13, 20, 19]). In an
important work, [24] (see [5] for a precursor) showed that by incorporating new gradient estimators
into stochastic gradient descent (SGD) one can possibly achieve a linear rate of convergence for
smooth and strongly convex finite-sum optimization. Inspired by this work, [14] proposed a stochastic
variance reduced gradient (SVRG) which incorporates a novel stochastic estimator of ∇f(xt−1).
More specifically, each epoch of SVRG starts with the computation of the exact gradient g̃ = ∇f(x̃)
for a given x̃ ∈ Rn and then runs SGD for a fixed number of steps using the gradient estimator

Gt = (∇fit(xt−1)−∇fit(x̃)) + g̃,

where it is a random variable with support on {1, . . . ,m}. They show that the variance ofGt vanishes
as the algorithm proceeds, and hence SVRG exhibits an improved linear rate of convergence, i.e.,
O{(m+ L/µ) log(1/ε)}, for smooth and strongly convex finite-sum problems. See [27, 9] for the
same complexity result. Moreover, [2] show that by doubling the epoch length SVRG obtains an
O{m log(1/ε) + L/ε} complexity bound for smooth convex finite-sum optimization.

Observe that the aforementioned variance reduction methods are not accelerated and hence they are
not optimal even when the number of components m = 1. Therefore, much recent research effort
has been devoted to the design of optimal RIG methods. In fact, [18] established a lower complexity
bound for RIG methods by showing that whenever the dimension is large enough, the number of
gradient evaluations required by any RIG methods to find an ε-solution of a smooth and strongly
convex finite-sum problem i.e., a point x̄ ∈ X s.t. E[‖x̄− x∗‖22] ≤ ε, cannot be smaller than

Ω
((
m+

√
mL
µ

)
log 1

ε

)
. (1.4)

As can be seen from Table 1, existing accelerated RIG methods are optimal for solving smooth and
strongly convex finite-sum problems, since their complexity matches the lower bound in (1.4).

Notwithstanding these recent progresses, there still remain a few significant issues on the development
of accelerated RIG methods. Firstly, as pointed out by [25], existing RIG methods can only establish
accelerated linear convergence based on the assumption that the regularizer h is strongly convex, and
fails to benefit from the strong convexity from the data-fidelity term [26]. This restrictive assumption
does not apply to many important applications (e.g., Lasso models) where the loss function, rather
than the regularization term, may be strongly convex. Specifically, when dealing with the case that
only f is strongly convex but not h, one may not be able to shift the strong convexity of f , by
subtracting and adding a strongly convex term, to construct a simple strongly convex term h in the
objective function. In fact, even if f is strongly convex, some of the component functions fi may
only be convex, and hence these fis may become nonconvex after subtracting a strongly convex
term. Secondly, if the strongly convex modulus µ becomes very small, the complexity bounds of all
existing RIG methods will go to +∞ (see column 2 of Table 1), indicating that they are not robust
against problem ill-conditioning. Thirdly, for solving smooth problems without strong convexity,
one has to add a strongly convex perturbation into the objective function in order to gain up to a
factor of

√
m over Nesterov’s accelerated gradient method for gradient computation (see column 3 of

Table 1). One significant difficulty for this indirect approach is that we do not know how to choose
the perturbation parameter properly, especially for problems with unbounded feasible region (see
[2] for a discussion about a similar issue related to SVRG applied to non-strongly convex problems).
However, if one chose not to add the strongly convex perturbation term, the best-known complexity
would be given by Katyushans[1], which are not more advantageous over Nesterov’s orginal method.
In other words, it does not gain much from randomization in terms of computational complexity.
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Finally, it should be pointed out that only a few existing RIG methods, e.g., RGEM[19] and [16],
can be applied to solve stochastic finite-sum optimization problems, where one can only access the
stochastic gradient of fi via a stochastic first-order oracle (SFO).

Table 1: Summary of the recent results on accelerated RIG methods

Algorithms Deterministic smooth strongly convex Deterministic smooth convex

RPDG[18] O
{
(m+

√
mL
µ

) log 1
ε

}
O
{
(m+

√
mL
ε
) log 1

ε

}
1

Catalyst[20] O
{
(m+

√
mL
µ

) log 1
ε

}
1 O

{
(m+

√
mL
ε
) log2 1

ε

}
1

Katyusha[1] O
{
(m+

√
mL
µ

) log 1
ε

}
O
{
(m log 1

ε
+
√

mL
ε
)

}
1

Katyushans[1] NA O
{
m√
ε
+
√

mL
ε

}
RGEM[19] O

{
(m+

√
mL
µ

) log 1
ε

}
NA

Our contributions. In this paper, we propose a novel accelerated variance reduction type method,
namely the variance-reduced accelerated gradient (Varag ) method, to solve smooth finite-sum
optimization problems given in the form of (1.1). Table 2 summarizes the main convergence results
achieved by our Varag algorithm.

Table 2: Summary of the main convergence results for Varag

Problem Relations of m, 1/ε and L/µ Unified results

smooth optimization problems (1.1)
with or without strong convexity

m ≥ D0
ε

2 or m ≥ 3L
4µ

O
{
m log 1

ε

}
m < D0

ε
≤ 3L

4µ
O
{
m logm+

√
mL
ε

}
m < 3L

4µ
≤ D0

ε
O
{
m logm+

√
mL
µ

log D0/ε
3L/4µ

}
3

Firstly, for smooth convex finite-sum optimization, our proposed method exploits a direct acceleration
scheme instead of employing any perturbation or restarting techniques to obtain desired optimal
convergence results. As shown in the first two rows of Table 2, Varag achieves the optimal rate of
convergence if the number of component functions m is relatively small and/or the required accuracy
is high, while it exhibits a fast linear rate of convergence when the number of component functions
m is relatively large and/or the required accuracy is low, without requiring any strong convexity
assumptions. To the best of our knowledge, this is the first time that these complexity bounds have
been obtained through a direct acceleration scheme for smooth convex finite-sum optimization in the
literature. In comparison with existing methods using perturbation techniques, Varag does not need
to know the target accuracy or the diameter of the feasible region a priori, and thus can be used to
solve a much wider class of smooth convex problems, e.g., those with unbounded feasible sets.

Secondly, we equip Varag with a unified step-size policy for smooth convex optimization no matter
(1.1) is strongly convex or not, i.e., the strongly convex modulus µ ≥ 0. With this step-size policy,
Varag can adjust to different classes of problems to achieve the best convergence results, without
knowing the target accuracy and/or fixing the number of epochs. In particular, as shown in the last
column of Table 2, when µ is relatively large, Varag achieves the well-known optimal linear rate
of convergence. If µ is relatively small, e.g., µ < ε, it obtains the accelerated convergence rate that
is independent of the condition number L/µ. Therefore, Varag is robust against ill-conditioning
of problem (1.1). Moreover, our assumptions on the objective function is more general comparing
to those used by other RIG methods, such as RPDG and Katyusha. Specifically, Varag does not
require to keep a strongly convex regularization term in the projection, and so we can assume that the
strong convexity is associated with the smooth function f instead of the simple proximal function
h(·). Some other advantages of Varag over existing accelerated SVRG methods, e.g., Katyusha,

1These complexity bounds are obtained via indirect approaches, i.e., by adding strongly convex perturbation.
2D0 = 2[ψ(x0)− ψ(x∗)] + 3LV (x0, x∗) where x0 is the initial point, x∗ is the optimal solution of (1.1)

and V is defined in (1.5).
3Note that this term is less than O{

√
mL
µ

log 1
ε
}.
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include that it only requires the solution of one, rather than two, subproblems, and that it can allow
the application of non-Euclidean Bregman distance for solving all different classes of problems.

Finally, we extend Varag to solve two more general classes of finite-sum optimization problems.
We demonstrate that Varag is the first randomized method that achieves the accelerated linear rate
of convergence when solving the class of problems that satisfies a certain error-bound condition
rather than strong convexity. We then show that Varag can also be applied to solve stochastic smooth
finite-sum optimization problems resulting in a sublinear rate of convergence.

This paper is organized as follows. In Section 2, we present our proposed algorithm Varag and
its convergence results for solving (1.1) under different problem settings. In Section 3 we provide
extensive experimental results to demonstrate the advantages of Varag over several state-of-the-art
methods for solving some well-known ML models, e.g., logistic regression, Lasso, etc. We defer the
proofs of the main results in Appendix A.

Notation and terminology. We use ‖ · ‖ to denote a general norm in Rn without specific mention,
and ‖ · ‖∗ to denote the conjugate norm of ‖ · ‖. For any p ≥ 1, ‖ · ‖p denotes the standard p-norm
in Rn, i.e., ‖x‖pp =

∑n
i=1|xi|p, for any x ∈ Rn. For a given strongly convex function w : X → R

with modulus 1 w.r.t. an arbitrary norm ‖ · ‖, we define a prox-function associated with w as

V (x0, x) ≡ Vw(x0, x) := w(x)−
[
w(x0) + 〈w′(x0), x− x0〉

]
, (1.5)

where w′(x0) ∈ ∂w(x0) is any subgradient of w at x0. By the strong convexity of w, we have

V (x0, x) ≥ 1
2‖x− x

0‖2, ∀x, x0 ∈ X. (1.6)

Notice that V (·, ·) described above is different from the standard definition for Bregman distance [6,
3, 4, 15, 7] in the sense that w is not necessarily differentiable. Throughout this paper, we assume
that the prox-mapping associated with X and h, given by

argminx∈X {γ[〈g, x〉+ h(x) + µV (x0, x)] + V (x0, x)} , (1.7)

can be easily computed for any x0, x0 ∈ X, g ∈ Rn, µ ≥ 0, γ > 0. We denote logarithm with base 2
as log. For any real number r, dre and brc denote the ceiling and floor of r.

2 Algorithms and main results

This section contains two subsections. We first present in Subsection 2.1 a unified optimal Varag for
solving the finite-sum problem given in (1.1) as well as its optimal convergence results. Subsection 2.2
is devoted to the discussion of several extensions of Varag . Throughout this section, we assume
that each component function fi is smooth with Li-Lipschitz continuous gradients over X , i.e., (1.2)
holds for all component functions. Moreover, we assume that the objective function ψ(x) is possibly
strongly convex, in particular, for f(x) = 1

m

∑m
i=1fi(x), ∃µ ≥ 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µV (x, y),∀x, y ∈ X. (2.1)

Note that we assume the strong convexity of ψ comes from f , and the simple function h is not
necessarily strongly convex. Clearly the strong convexity of h, if any, can be shifted to f since h is
assumed to be simple and its structural information is transparent to us. Also observe that (2.1) is
defined based on a generalized Bregman distance, and together with (1.6) they imply the standard
definition of strong convexity w.r.t. Euclidean norm.

2.1 Varag for convex finite-sum optimization

The basic scheme of Varag is formally described in Algorithm 1. In each epoch (or outer loop),
it first computes the full gradient ∇f(x̃) at the point x̃ (cf. Line 3), which will then be repeatedly
used to define a gradient estimator Gt at each iteration of the inner loop (cf. Line 8). This is the
well-known variance reduction technique employed by many algorithms (e.g., [14, 27, 1, 13]). The
inner loop has a similar algorithmic scheme to the accelerated stochastic approximation algorithm
[17, 11, 12] with a constant step-size policy. Indeed, the parameters used in the inner loop, i.e.,
{γs}, {αs}, and {ps}, only depend on the index of epoch s. Each iteration of the inner loop requires
the gradient information of only one randomly selected component function fit , and maintains three
primal sequences, {xt}, {xt} and {x̄t}, which play important role in the acceleration scheme.
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Algorithm 1 The variance-reduced accelerated gradient (Varag ) method
Input: x0 ∈ X, {Ts}, {γs}, {αs}, {ps}, {θt}, and a probability distribution Q = {q1, . . . , qm} on
{1, . . . ,m}.

1: Set x̃0 = x0.
2: for s = 1, 2, . . . do
3: Set x̃ = x̃s−1 and g̃ = ∇f(x̃).
4: Set x0 = xs−1, x̄0 = x̃ and T = Ts.
5: for t = 1, 2, . . . , T do
6: Pick it ∈ {1, . . . ,m} randomly according to Q.
7: xt = [(1 + µγs)(1− αs − ps)x̄t−1 + αsxt−1 + (1 + µγs)psx̃] /[1 + µγs(1− αs)].
8: Gt = (∇fit(xt)−∇fit(x̃))/(qitm) + g̃.
9: xt = arg minx∈X {γs [〈Gt, x〉+ h(x) + µV (xt, x)] + V (xt−1, x)}.

10: x̄t = (1− αs − ps)x̄t−1 + αsxt + psx̃.
11: end for
12: Set xs = xT and x̃s =

∑T
t=1(θtx̄t)/

∑T
t=1θt.

13: end for

Note that Varag is closely related to stochastic mirror descent method [22, 23] and SVRG[14, 27].
By setting αs = 1 and ps = 0, Algorithm 1 simply combines the variance reduction technique
with stochastic mirror descent. In this case, the algorithm only maintains one primal sequence {xt}
and possesses the non-accelerated rate of convergence O{(m + L/µ) log(1/ε)} for solving (1.1).
Interestingly, if we use Euclidean distance instead of prox-function V (·, ·) to update xt and set
X = Rn, Algorithm 1 will further reduce to prox-SVRG proposed in [27].

It is also interesting to observe the difference between Varag and Katyusha [1] because both are
accelerated variance reduction methods. Firstly, while Katyusha needs to assume that the strongly
convex term is specified as in the form of a simple proximal function, e.g., `1/`2-regularizer, Varag
assumes that f is possibly strongly convex, which solves an open issue of the existing accelerated RIG
methods pointed out by [25]. Therefore, the momentum steps in Lines 7 and 10 are different from
Katyusha. Secondly, Varag has a less computationally expensive algorithmic scheme. Particularly,
Varag only needs to solve one proximal mapping (cf. Line 9) per iteration even if f is strongly
convex, while Katyusha requires to solve two proximal mappings per iteration. Thirdly, Varag
incorporates a prox-function V defined in (1.5) rather than the Euclidean distance in the proximal
mapping to update xt. This allows the algorithm to take advantage of the geometry of the constraint
set X when performing projections. However, Katyusha cannot be fully adapted to the non-Euclidean
setting because its second proximal mapping must be defined using the Euclidean distance regardless
the strong convexity of ψ. Finally, we will show in this section that Varag can achieve a much
better rate of convergence than Katyusha for smooth convex finite-sum optimization by using a novel
approach to specify step-size and to schedule epoch length.

We first discuss the case when f is not necessarily strongly convex, i.e., µ = 0 in (2.1). In Theorem 1,
we suggest one way to specify the algorithmic parameters, including {qi}, {θt}, {αs}, {γs}, {ps}
and {Ts}, for Varag to solve smooth convex problems given in the form of (1.1), and discuss its
convergence properties of the resulting algorithm. We defer the proof of this result in Appendix A.1.

Theorem 1 (Smooth finite-sum optimization) Suppose that the probabilities qi’s are set to
Li/
∑m
i=1Li for i = 1, . . . ,m, and weights {θt} are set as

θt =

{
γs
αs

(αs + ps) 1 ≤ t ≤ Ts − 1
γs
αs

t = Ts.
(2.2)

Moreover, let us denote s0 := blogmc+ 1 and set parameters {Ts}, {γs} and {ps} as

Ts =

{
2s−1, s ≤ s0

Ts0 , s > s0
, γs = 1

3Lαs
, and ps = 1

2 , with (2.3)

αs =

{
1
2 , s ≤ s0

2
s−s0+4 , s > s0

. (2.4)
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Then the total number of gradient evaluations of fi performed by Algorithm 1 to find a stochastic
ε-solution of (1.1), i.e., a point x̄ ∈ X s.t. E[ψ(x̄)− ψ∗] ≤ ε, can be bounded by

N̄ :=

O
{
m log D0

ε

}
, m ≥ D0/ε,

O
{
m logm+

√
mD0

ε

}
, m < D0/ε,

(2.5)

where D0 is defined as
D0 := 2[ψ(x0)− ψ(x∗)] + 3LV (x0, x∗). (2.6)

We now make a few observations regarding the results obtained in Theorem 1. Firstly, as mentioned
earlier, whenever the required accuracy ε is low and/or the number of components m is large, Varag
can achieve a fast linear rate of convergence even under the assumption that the objective function
is not strongly convex. Otherwise, Varag achieves an optimal sublinear rate of convergence with
complexity bounded by O{

√
mD0/ε+m logm}. Secondly, whenever

√
mD0/ε is dominating in

the second case of (2.5), Varag can save up to O(
√
m) gradient evaluations of fi than the optimal

deterministic first-order methods for solving (1.1). To the best our knowledge, Varag is the first
accelerated RIG in the literature to obtain such convergence results by directly solving (1.1). Other
existing accelerated RIG methods, such as RPDG[18] and Katyusha[1], require the application
of perturbation and restarting techniques to obtain such convergence results. Thirdly, Varag also
supports mini-batch approach where the component function fi is associated with a mini-batch of
data samples instead of a single data sample. In a more general case, for a given mini-batch size
b, we assume that the component functions can be split into subsets where each subset contains
exactly b number of component functions. Therefore, one can replace Line 8 in Algorithm 1 by
Gt = 1

b

∑
it∈Sb

(∇fit(xt) − ∇fit(x̃))/(qitm) + g̃ with Sb being the selected subset and |Sb| = b
and adjust the appropriate parameters to obtain the mini-batch version of Varag . The mini-batch
Varag can obtain parallel linear speedup of factor b whenever the mini-batch size b ≤

√
m.

Next we consider the case when f is possibly strongly convex, including the situation when the
problem is almost not strongly convex, i.e., µ ≈ 0. In the latter case, the term

√
mL/µ log(1/ε)

will be dominating in the complexity of existing accelerated RIG methods (e.g., [18, 19, 1, 20]) and
will tend to∞ as µ decreases. Therefore, these complexity bounds are significantly worse than (2.5)
obtained by simply treating (1.1) as smooth convex problems. Moreover, µ ≈ 0 is very common in
ML applications. In Theorem 2, we provide a unified step-size policy which allows Varag to achieve
optimal rate of convergence for finite-sum optimization in (1.1) regardless of its strong convexity,
and hence it can achieve stronger rate of convergence than existing accelerated RIG methods if the
condition number L/µ is very large. The proof of this result can be found in Appendix A.2.

Theorem 2 (A unified result for convex finite-sum optimization) Suppose that the probabilities
qi’s are set to Li/

∑m
i=1Li for i = 1, . . . ,m. Moreover, let us denote s0 := blogmc+ 1 and assume

that the weights {θt} are set to (2.2) if 1 ≤ s ≤ s0 or s0 < s ≤ s0 +
√

12L
mµ −4, m < 3L

4µ . Otherwise,
they are set to

θt =

{
Γt−1 − (1− αs − ps)Γt, 1 ≤ t ≤ Ts − 1,

Γt−1, t = Ts,
(2.7)

where Γt = (1 + µγs)
t. If the parameters {Ts}, {γs} and {ps} set to (2.3) with

αs =

{
1
2 , s ≤ s0,

max
{

2
s−s0+4 ,min{

√
mµ
3L ,

1
2}
}
, s > s0,

(2.8)

then the total number of gradient evaluations of fi performed by Algorithm 1 to find a stochastic
ε-solution of (1.1) can be bounded by

N̄ :=


O
{
m log D0

ε

}
, m ≥ D0

ε or m ≥ 3L
4µ ,

O
{
m logm+

√
mD0

ε

}
, m < D0

ε ≤
3L
4µ ,

O
{
m logm+

√
mL
µ log D0/ε

3L/4µ

}
, m < 3L

4µ ≤
D0

ε .

(2.9)

where D0 is defined as in (2.6).
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Observe that the complexity bound (2.9) is a unified convergence result for Varag to solve deter-
ministic smooth convex finite-sum optimization problems (1.1). When the strong convex modulus µ
of the objective function is large enough, i.e., 3L/µ < D0/ε, Varag exhibits an optimal linear rate
of convergence since the third case of (2.9) matches the lower bound (1.4) for RIG methods. If µ
is relatively small, Varag treats the finite-sum problem (1.1) as a smooth problem without strong
convexity, which leads to the same complexity bounds as in Theorem 1. It should be pointed out that
the parameter setting proposed in Theorem 2 does not require the values of ε and D0 given a priori.

2.2 Generalization of Varag

In this subsection, we extend Varag to solve two general classes of finite-sum optimization problems
as well as establishing its convergence properties for these problems.

Finite-sum problems under error bound condition. We investigate a class of weakly strongly
convex problems, i.e., ψ(x) is smooth convex and satisfies the error bound condition given by

V (x,X∗) ≤ 1
µ̄ (ψ(x)− ψ∗), ∀x ∈ X, (2.10)

where X∗ denotes the set of optimal solutions of (1.1). Many optimization problems satisfy (2.10),
for instance, linear systems, quadratic programs, linear matrix inequalities and composite problems
(outer: strongly convex, inner: polyhedron functions), see [8] and Section 6 of [21] for more examples.
Although these problems are not strongly convex, by properly restarting Varag we can solve them
with an accelerated linear rate of convergence, the best-known complexity result to solve this class of
problems so far. We formally present the result in Theorem 3, whose proof is given in Appendix A.3.

Theorem 3 (Convex finite-sum optimization under error bound) Assume that the probabilities
qi’s are set to Li/

∑m
i=1Li for i = 1, . . . ,m, and θt are defined as (2.2). Moreover, let us set

parameters {γs}, {ps} and {αs} as in (2.3) and (2.4) with {Ts} being set as

Ts =

{
T12s−1, s ≤ 4

8T1, s > 4
, (2.11)

where T1 = min{m, Lµ̄ }. Then under condition (2.10), for any x∗ ∈ X∗, s = 4 + 4
√

L
µ̄m ,

E[ψ(x̃s)− ψ(x∗)] ≤ 5
16 [ψ(x0)− ψ(x∗)]. (2.12)

Moreover, if we restart Varag every time it runs s iterations for k = log ψ(x0)−ψ(x∗)
ε times, the total

number of gradient evaluations of fi to find a stochastic ε-solution of (1.1) can be bounded by

N̄ := k(
∑
s(m+ Ts)) = O

{(
m+

√
mL
µ̄

)
log ψ(x0)−ψ(x∗)

ε

}
. (2.13)

Remark 1 Note that Varag can also be extended to obtain an unified result as shown in Theorem 2
for solving finite-sum problems under error bound condition. In particular, if the condition number is
very large, i.e., s = O{L/(µ̄m)} ≈ ∞, Varag will never be restarted, and the resulting complexity
bounds will reduce to the case for solving smooth convex problems provided in Theorem 1.

Stochastic finite-sum optimization. We now consider stochastic smooth convex finite-sum opti-
mization and online learning problems defined as in (1.3), where only noisy gradient information of
fi can be accessed via a SFO oracle. In particular, for any x ∈ X , the SFO oracle outputs a vector
Gi(x, ξj) such that

Eξj [Gi(x, ξj)] = ∇fi(x), i = 1, . . . ,m, (2.14)

Eξj [‖Gi(x, ξj)−∇fi(x)‖2∗] ≤ σ2, i = 1, . . . ,m. (2.15)

We present the variant of Varag for stochastic finite-sum optimization in Algorithm 2 as well as its
convergence results in Theorem 4, whose proof can be found in Appendix B.

Theorem 4 (Stochastic smooth finite-sum optimization) Assume that θt are defined as in (2.2),
C :=

∑m
i=1

1
qim2 and the probabilities qi’s are set to Li/

∑m
i=1Li for i = 1, . . . ,m. Moreover, let us

7



Algorithm 2 Stochastic accelerated variance-reduced stochastic gradient descent (Stochastic Varag )
This algorithm is the same as Algorithm 1 except that for given batch-size parameters Bs and bs,
Line 3 is replaced by x̃ = x̃s−1 and

g̃ = 1
m

∑m
i=1

{
Gi(x̃) := 1

Bs

∑Bs

j=1Gi(x̃, ξ
s
j )
}
, (2.16)

and Line 8 is replaced by

Gt = 1
qitmbs

∑bs
k=1

(
Git(xt, ξ

s
k)−Git(x̃)

)
+ g̃. (2.17)

denote s0 := blogmc+ 1 and set Ts, αs, γs and ps as in (2.3) and (2.4). Then the number of calls
to the SFO oracle required by Algorithm 2 to find a stochastic ε-solution of (1.1) can be bounded by

NSFO =
∑
s(mBs + Tsbs) =

O
{
mCσ2

Lε

}
, m ≥ D0/ε,

O
{
Cσ2D0

Lε2

}
, m < D0/ε,

(2.18)

where D0 is given in (2.6).

Remark 2 Note that the constant C in (2.18) can be easily upper bounded by L
min{Li} , and C = 1 if

Li = L,∀i. To the best of our knowledge, among a few existing RIG methods that can be applied to
solve the class of stochastic finite-sum problems, Varag is the first to achieve such complexity results
as in (2.18) for smooth convex problems. RGEM[19] obtains nearly-optimal rate of convergence
for strongly convex case, but cannot solve stochastic smooth problems directly, and [16] required a
specific initial point, i.e., an exact solution to a proximal mapping depending on the variance σ2, to
achieve O

{
m logm+ σ2/ε2

}
rate of convergence for smooth convex problems.

3 Numerical experiments

In this section, we demonstrate the advantages of our proposed algorithm, Varag over several state-
of-the-art algorithms, e.g., SVRG++ [2] and Katyusha [1], etc., via solving several well-known
machine learning models. For all experiments, we use public real datasets downloaded from UCI
Machine Learning Repository [10] and uniform sampling strategy to select fi. Indeed, the theoretical
suggesting sampling distribution should be non-uniform, i.e., qi = Li/

∑m
i=1Li, which results in the

optimal constant L appearing in the convergence results. However, a uniform sampling strategy will
only lead to a constant factor slightly larger than L = 1

m

∑m
i=1Li. Moreover, it is computationally

efficient to estimate Li by performing maximum singular value decomposition of the Hessian since
only a rough estimation suffices.

Unconstrained smooth convex problems. We first investigate unconstrained logistic models which
cannot be solved via the perturbation approach due to the unboundedness of the feasible set. More
specifically, we applied Varag , SVRG++ and Katyushans to solve a logistic regression problem,

min
x∈Rn
{ψ(x) := 1

m

∑m
i=1fi(x)} where fi(x) := log(1 + exp(−biaTi x))}. (3.1)

Here (ai, bi) ∈ Rn × {−1, 1} is a training data point and m is the sample size, and hence fi now
corresponds to the loss generated by a single training data. As we can see from Figure 1, Varag
converges much faster than SVRG++ and Katyusha in terms of training loss.
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Diabetes (m = 1151),
unconstrained logistic

Breast Cancer Wisconsin (m = 683),
unconstrained logistic

Figure 1: The algorithmic parameters for SVRG++ and Katyushans are set according to [2] and [1], respectively,
and those for Varag are set as in Theorem 1.

Strongly convex loss with simple convex regularizer. We now study the class of Lasso regression
problems with λ as the regularizer coefficient, given in the following form

min
x∈Rn
{ψ(x) := 1

m

∑m
i=1fi(x) + h(x)} where fi(x) := 1

2 (aTi x− bi)2, h(x) := λ‖x‖1. (3.2)

Due to the assumption SVRG++ and Katyusha enforced on the objective function that the strong
convexity can only be associated with the regularizer, these methods always view Lasso as smooth
problems [25], while Varag can treat Lasso as strongly convex problems. As can be seen from
Figure 2, Varag outperforms SVRG++ and Katyushans in terms of training loss.

Diabetes (m = 1151),
Lasso λ = 0.001

Breast Cancer Wisconsin (m = 683),
Lasso λ = 0.001

Figure 2: The algorithmic parameters for SVRG++ and Katyushans are set according to [2] and [1], respectively,
and those for Varag are set as in Theorem 2.

Weakly strongly convex problems satisfying error bound condition. Let us consider a special
class of finite-sum convex quadratic problems given in the following form

min
x∈Rn
{ψ(x) := 1

m

∑m
i=1fi(x)} where fi(x) := 1

2x
TQix+ qTi x. (3.3)

Here qi = −Qixs and xs is a solution to the symmetric linear system Qix + qi = 0 with Qi � 0.
[8][Section 6] and [21][Section 6.1] proved that (3.3) belongs to the class of weakly strongly convex
problems satisfying error bound condition (2.10). For a given solution xs, we use the following real
datasets to generate Qi and qi. We then compare the performance of Varag with fast gradient method
(FGM) proposed in [21]. As shown in Figure 3, Varag outperforms FGM for all cases. And as the
number of component functions m increases, Varag demonstrates more advantages over FGM. These
numerical results are consistent with the theoretical complexity bound (2.13) suggesting that Varag
can save up to O{

√
m} number of gradient computations than deterministic algorithms, e.g., FGM.

Diabetes (m = 1151) Parkinsons Telemonitoring (m = 5875)

Figure 3: The algorithmic parameters for FGM and Varag are set according to [21] and Theorem 3, respectively.

More numerical experiment results on another problem case, strongly convex problems with small
strongly convex modulus, can be found in Appendix C.
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