
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2019 

Gradient boosting with piece-wise linear regression trees Gradient boosting with piece-wise linear regression trees 

Yu SHI 

Jian LI 

Zhize LI 
Singapore Management University, zhizeli@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
SHI, Yu; LI, Jian; and LI, Zhize. Gradient boosting with piece-wise linear regression trees. (2019). 
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, 
August 10-16. 1-9. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8675 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Gradient Boosting with Piece-Wise Linear Regression Trees

Yu Shi , Jian Li and Zhize Li
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

shiyu17@mails.tsinghua.edu.cn, lijian83@mail.tsinghua.edu.cn, zz-li14@mails.tsinghua.edu.cn

Abstract

Gradient Boosted Decision Trees (GBDT) is a very
successful ensemble learning algorithm widely
used across a variety of applications. Recently, sev-
eral variants of GBDT training algorithms and im-
plementations have been designed and heavily op-
timized in some very popular open sourced toolk-
its including XGBoost, LightGBM and CatBoost.
In this paper, we show that both the accuracy and
efficiency of GBDT can be further enhanced by
using more complex base learners. Specifically,
we extend gradient boosting to use piecewise lin-
ear regression trees (PL Trees), instead of piece-
wise constant regression trees, as base learners. We
show that PL Trees can accelerate convergence of
GBDT and improve the accuracy. We also propose
some optimization tricks to substantially reduce the
training time of PL Trees, with little sacrifice of
accuracy. Moreover, we propose several imple-
mentation techniques to speedup our algorithm on
modern computer architectures with powerful Sin-
gle Instruction Multiple Data (SIMD) parallelism.
The experimental results show that GBDT with PL
Trees can provide very competitive testing accu-
racy with comparable or less training time.

1 Introduction
Gradient Boosted Decision Trees (GBDT) [Friedman, 2001]
has shown its excellent performance in many real world ap-
plications and data science competitions [Tyree et al., 2011;
Chen et al., 2012]. Decision trees widely used as base learn-
ers by GBDT assign a single predicted value for data on the
same leaf. We call these decision trees piecewise constant
regression trees, since each tree defines a piecewise constant
function in the input space. ID3 [Quinlan, 1986], C4.5 [Quin-
lan, 2014] and CART [Breiman, 2017] are famous algorithms
for training standalone piecewise constant decision trees.
[Tyree et al., 2011; Chen and Guestrin, 2016] propose effi-
cient algorithms for training them as base learners of GBDT.
It is very likely that with more complex decision tree model,
we can enhance the power of gradient boosting algorithms.
The most natural extension to piecewise constant trees is

replacing the constant values at the leaves by linear func-
tions, so called piecewise linear regression trees (PL Trees).
This idea has been explored in [Wang and Hastie, 2014;
Hall et al., 2009; Kuhn et al., 2012]. However, due to its
heavy computation cost, so far there’s no fast and scalable
implementation of gradient boosting with PL Trees.

In this paper, we provide a fast and scalable implementa-
tion of gradient boosting with PL Trees. Our algorithm has
training cost comparable to carefully optimized GBDT toolk-
its including XGBoost [Chen and Guestrin, 2016], Light-
GBM [Ke et al., 2017] and CatBoost [Prokhorenkova et al.,
2018], all of which use piecewise constant trees as base learn-
ers. We reduce the cost of training PL Trees from both
algorithmic and system aspects. From algorithmic level,
we adopt an incremental feature selection strategy during
the growth of a tree to constrain the size of linear mod-
els. The histogram technique (see e.g., [Tyree et al., 2011;
Chen and Guestrin, 2016]) used by piecewise constant trees
is also adapted to PL Trees. We then propose half-additive fit-
ting to further reduce the cost of fitting linear models. From
system level, SIMD parallelism is very suitable for speeding
up the training of PL Trees. However, cache must be effi-
ciently utilized to provide operands fast enough for SIMD
instructions. We arrange data structures carefully to reduce
cache misses. All these techniques together make our algo-
rithm more efficient than existing GBDT algorithms.

The main contributions of our work are summarized as fol-
lows:
• We extend GBDT with second-order approximation to

ones that use PL Trees as base learners. Our experiments
demonstrate that PL Trees can improve the convergence
rate of GBDT.
• We design an efficient strategy to fit the linear models in

tree nodes, with incremental feature selection and half-
additive fitting. This strategy avoids the prohibitive com-
putational cost for fitting large linear models repeatedly
when training a PL Tree.
• We propose several implementation techniques to ex-

ploit the power of SIMD parallelism by reducing cache
misses in PL Tree training.
• We evaluate our algorithm on 10 public datasets, and

compare it with state-of-the-art toolkits including XG-
Boost, LightGBM and CatBoost. The experimental re-

ar
X

iv
:1

80
2.

05
64

0v
3 

 [
cs

.L
G

] 
 2

5 
Ju

n 
20

19



sults show that our algorithm can improve accuracy with
comparable training time on numerical dense data.

2 Review of Gradient Boosted Decision Trees
In this section, we provide a brief review of GBDT. Specif-
ically, we review one of the most popular variant XGBoost
[Chen and Guestrin, 2016], which uses second-order approxi-
mation of loss function [Friedman et al., 2000]. Second-order
approximation is important for fast convergence of GBDT
[Sun et al., 2014]. Given a dataset D = {(xi, yi)}n1 with
m features, and xi ∈ Rm, GBDT trains a sequence of deci-
sion trees {tk}T1 . The final output is the summation of these
trees ŷi =

∑T
k=1 tk(xi). The loss function is usually aug-

mented by regularization terms Ω(tk) to prevent overfitting.
Ω(tk) reflects the complexity of tree tk. Let l : R2 → R
be the loss function for a single data point. The total loss
L =

∑n
i=1 l(ŷi, yi)+

∑T
k=1 Ω(tk). Let ŷi(k) be the predicted

value of xi after iteration k. At iteration k+1, a new tree tk+1

is trained to minimize the following loss.

L(k+1) =

n∑
i=1

l(ŷi
(k+1), yi) +

k+1∑
k′=1

Ω(tk′)

=

n∑
i=1

l(ŷi
(k) + tk+1(xi), yi) +

k+1∑
k′=1

Ω(tk′)

We can approximate the loss above.

L(k+1) ≈ C + Ω(tk+1) +

n∑
i=1

[
1

2
hitk+1(xi)

2 + gitk+1(xi)

]
Here C is a constant value independent of tk+1, gi =
∂l(ŷi,yi)

∂ŷi
|ŷi=ŷi

(k) and hi = ∂2l(ŷi,yi)
∂ŷi

2 |ŷi=ŷi
(k) . Leaving out

the constant, we get the objective of iteration k + 1.

L̃(k+1) = Ω(tk+1) +

n∑
i=1

[
1

2
hitk+1(xi)

2 + gitk+1(xi)

]
(1)

The specific form of regularizer Ω varies with the type of base
learner.

3 Gradient Boosting with PL Trees
In this section, we derive GBDT with second-order approxi-
mation using PL Trees. Formally, there are two basic compo-
nents of our PL Trees,

• Splits: A split associated with an internal node is a con-
dition used to partition the data in the node to its two
child nodes. Our PL Trees use univariate splits in the
form xi,j ≤ c, where xi,j is the jth feature value of data
point xi ∈ Rm. The feature j is called the split feature.

• Linear Models: On each leaf s, there is a linear model
fs(xi) = bs +

∑ms

j=1 αs,jxi,ks,j
, where {xi,ks,j

}ms
j=1 is

a subset of {xi,j}mj=1. We call features {ks,j}ms
j=1 the

regressors for leaf s. The selection of the regressors is
described in Section 4.

Algorithm 1 Training Process of PL Tree

1: initialize the tree with a single root node
2: put all the sample points in root node
3: while number of leaves fewer than a preset value do
4: for each leaf s do
5: j∗s , c

∗
s ← argmaxj,cSplitEval(s,j,c)

6: ŝ← argmaxsSplitEval(s, j∗s , c
∗
s)

7: split ŝ with condition xi,j∗ŝ
≤ c∗ŝ into s1 and s2

8: FitNode(s1), FitNode(s2)

Starting from a single root node, a PL Tree is trained by
greedily splitting nodes into children until the number of
leaves in the tree reaches a preset maximum value. To give a
clear framework for the training of PL Trees, we first define
two operations:

1. FitNode(s) fits a linear function on data in leaf s. The
parameters of the function are calculated analytically to
minimize (1).

2. SplitEval(s, j, c). For a leaf s in tree tk+1 of (1), a vari-
able j and a real value c, it returns the reduction of
L̃(k+1), when splitting leaf s with xi,j ≤ c and fitting
data in both child nodes using FitNode.

Now the framework for training a PL Tree is summarized in
Algorithm 1. We will spell out the details for FitNode and
SplitEval later in this section. Let Is be the set of data in leaf
s of tree tk+1 in (1). We can rewrite (1) as follows.

L̃(k+1) = Ω(tk+1) +
∑
s

∑
i∈Is

[
1

2
hitk+1(xi)

2 + gitk+1(xi)

]
Let fs be the linear model fitted in leaf s. We use regular-
ization term Ω(tk) = λ

∑
s∈tk+1

ω(fs). Here ω(fs) is the L2

norm of parameters of linear model in leaf s. This prevents
the linear models in the leaves from being too steep. Leaving
out the k notation and focusing on the loss of a single leaf s.

L̃s = ω(fs) +
∑
i∈Is

[
1

2
hifs(xi)

2 + gifs(xi)

]
(2)

We first focus on fitting an optimal linear model for leaf
s given regressors {ks,j}ms

j=1. The choice of regressors
{ks,j}ms

j=1 is left to Section 4. Let αs = [bs, αs,1, ..., αs,ms
]T .

Substituting fs(xi) into (2), we get the loss in terms of αs.

L̃s =
∑
i∈Is

[1

2
hi(bs +

ms∑
j=1

αs,jxi,ks,j )2

+ gi(bs +

ms∑
j=1

αs,jxi,ks,j )
]

+
λ

2
‖αs‖22

Let H = diag(h1, ..., hn), g = [g1, ..., gn]T , and Hs and gs

be the submatrix and subvector of H and g respectively by
selecting hi and gi for i ∈ Is. Let Xs be the matrix of data
in Is with features {ks,j}ms

j=1, augmented by a column of 1’s.
We can write the loss L̃s in a concise form:

L̃s =
1

2
αs

T (XT
s HsXs + λI)αs + gT

s Xsαs.



Thus the optimal value of α can be calculated analytically.

α∗s = −(XT
s HsXs + λI)−1XT

s gs (3)

Calculation of Equation (3) is exactly FitNode(s). Then we
get the minimum loss of leaf s.

L̃∗s = −1

2
gT
s Xs(X

T
s HsXs + λI)−1XT

s gs (4)

When splitting a leaf s into child s1 and s2 with condition
xi,j ≤ c, we split the matrix Xs into sub-matrices Xs1 and
Xs2 accordingly. Similarly we define Hs1 , Hs2 , gs1 and gs2 .
With these notations and the definition in (3), the results of
FitNode(s1) and FitNode(s2) are α∗s1 and α∗s2 . Similarly we
define L̃∗s1 and L̃∗s2 as in (4). Then the reduction of loss in-
curred by splitting s into s1 and s2 is as follows.

SplitEval(s, j, c) = L̃∗s1 + L̃∗s2 − L̃
∗
s (5)

4 Algorithmic Optimization
In Algorithm 1, SplitEval and FitNode are executed repeat-
edly. For each candidate split, we need to calculate Equation
(4) twice for both child nodes. We use Intel MKL [Wang et
al., 2014] to speedup the calculation, but it is still very expen-
sive when the number of regressors is large. In this section,
we introduce algorithmic optimizations to reduce the cost.

4.1 Histograms for GBDT with PL Trees
Histogram is an important technique to speedup GBDT
[Tyree et al., 2011] by reducing the number of candidate
splits. However, the construction of histograms becomes the
most expensive part of tree training. We extend the histogram
technique for PL Tree in GBDT. With piecewise constant
trees, each bin in a histogram only needs to record the sum of
gradients and hessians of data in that bin [Chen and Guestrin,
2016]. For PL Trees, the statistics in the histogram is more
complex [Vogel et al., 2007]. Two components in (4) require
summation over leaf data.

XT
s HsXs =

∑
i∈s

hixix
T
i , XT

s gs =
∑
i∈s

gixi (6)

For simplicity, here we use xi for the column vector of se-
lected regressors of data i. Thus each bin B needs to record
both

∑
i∈B hixix

T
i and

∑
i∈B gixi. And histogram con-

struction becomes much more expensive. In Section 5, we
introduce methods to speedup histogram construction.

4.2 Incremental Feature Selection and
Half-Additive Fitting

It is unaffordable to use all features as regressors when fitting
the linear models. For each node, we need to select a small
subset of the features as regressors.

In fact, the regressor selection can be done automatically
as the tree grows [Friedman, 1979; Vens and Blockeel, 2006].
Considering splitting s into s1 and s2 with condition xi,q ≤ c,
it is very natural to add split feature q into the regressor sets
of s1 and s2. The intuition is that, if this split should re-
sult in a significant reduction in the loss function, then fea-
ture q contains relatively important information for the fit-
ting of linear models in s1 and s2. Thus, for each leaf

s, we choose the split features of its ancestor nodes as re-
gressors. Formally, suppose the linear model of leaf s is
fs(xi) = bs +

∑ms

j=1 αs,jxi,ks,j . Then the linear model of
s1 is fs1(xi) = bs1 +

∑ms

j=1 αs1,jxi,ks,j + αs1,ms+1xi,q .
Similarly we have the linear model for s2. When the num-
ber of regressors reach a preset threshold d, we stop adding
new regressors to subsequent nodes. We call this incremental
feature selection. To decide the parameters in fs1 , we have 3
approaches.

1. additive fitting: Only bs1 and αs1,ms+1 are calculated.
Coefficients of other regressors directly follow those of
node s. This is the approach taken by [Friedman, 1979].

2. fully-corrective fitting: All parameters of node s1 are re-
calculated optimally according to (3).

3. half-additive fitting: We have the following model of s1.

fs1(xi) = bs1 + β

ms∑
j=1

αs,jxi,ks,j

+ αs1,ms+1xi,q

Node s1 takes the value
∑ms

j=1 αs,jxi,ks,j
as a combined

regressor, and learns 3 parameters bs1 , αs1,ms+1 and a
scaling parameter β.

Fully-corrective fitting provides the optimal parameters,
while additive fitting has the lowest cost. Half-additive fit-
ting combines the two and make a good trade-off between ac-
curacy and efficiency, which is shown in Section 6.2. When
adding the new regressor q to node s1, β rescales the coef-
ficients of regressors shared by parent node s. When the re-
gressors are orthogonal and zero-mean in s and s1, and with
square loss, it is easy to check that the 3 approaches produce
the same result.

5 System Optimization
In this section, we show how to speedup our algorithm,
specifically the histogram construction, on modern CPUs.
With slight abuse of notation, we use n to denote the num-
ber of data points in the leaf, and N to denote the size of
training set. Each data point has a unique ID, ranging from 1
to N . For each leaf s, an array indexs of length n is main-
tained to record these ID’s for all data points in the leaf. For
each feature j, we maintain an array binj of length N . For a
data point with unique ID id, binj [id] records which bin the
data point falls in the histogram of feature j. With these no-
tations, we summarize the histogram construction process for
leaf s and feature j in Algorithm 2. As mentioned in Section
4.1, the multiple terms [hixix

T
i , gixi] making the histogram

construction expensive. Next, we introduce two important
techniques to speedup the construction.

Algorithm 2 Histogram Construction for Feature j on Leaf s

1: Input: x1, ...,xn, g1, ..., gn, h1, ..., hn, binj , indexs
2: Output: histogram histj,s
3: for i = 1 to n do
4: id = indexs[i]
5: bin = binj[id]
6: histj,s[bin] += [hixix

T
i , gixi]



Algorithm 3 SIMD with Reduced Cache Misses

1: Input: x1, ...,xn, g1, ..., gn, h1, ..., hn, leafBins,j

2: Output: histogram histj,s
3: for i = 1 to n do
4: bin = leafBins,j[i]
5: histj,s[bin] += [hixix

T
i , gixi] //SIMD add

	 ��� � �� � � 
 �� �� �

� � � 	 �� �� �
 �

� � � � � � � � 	 �!"#$!%	'(
)#"*

#"+%,-

Figure 1: Accessing binj Causes Frequent Cache Misses

��� �� �� ��� ��� � �� ��

�	�� �	�� �	�� �	�� �	�� �	�� �	�� �	��

�� ��� � ����� �� ��� ��

!"#$%&#'(

)%*+,"-.

)%*+,"-./ )%*+,"-.0

Figure 2: Parallel Bits Extract to Split leafBins,j

5.1 SIMD Parallelism with Reduced Cache Misses
Single Instruction Multiple Data (SIMD) parallelism of mod-
ern CPUs supports operations on multiple data items with
single instruction. It is obvious that SIMD can be used to
speedup line 6 of Algorithm 2, which is a simultaneous ad-
dition of multiple items. With SIMD, however, each clock
cycle more operands are needed, thus the speedup of SIMD
is often bounded by memory bandwidth [Espasa et al., 1998].
In Algorithm 2, when accessing binj , we have to skip the data
points not in leaf s (purple blocks in Figure 1). Thus the ac-
cess to array binj is discontinuous, causing frequent cache
misses. To address this problem, we reduce cache misses by
rearranging the data structures (a very similar idea is used
in LightGBM [Ke et al., 2017] for histogram construction of
sparse features).

Suppose leaf s has n data points. For each feature j, we
maintain an array leafBins,j of length n to record bin in-
dices of feature j for data points in leaf s. In other words, with
the notations in Algorithm 2, for i = 1, ..., n, leafBins,j[i] =
binj[indexs[i]]. Since each bin index is stored in a byte, and
the access to leafBins,j is continuous, we keep the mem-
ory footprint very small and reduces cache misses. Also,
with leafBins,j , we can avoid accessing the unique ID ar-
ray indexs. Histogram construction with leafBins,j using
SIMD is summarized in Algorithm 3.

For root node s0, leafBins0,j is exactly binj . When leaf
s is split into s1 and s2, leafBins,j is split into leafBins1,j
and leafBins2,j accordingly. The split operation has to be
done for every feature j. In Section 5.2, we show how to re-
duce the cost of splitting leafBins,j using Bit Manipulation
Instruction Set.

5.2 Using Bit Manipulation Instructions
Splitting leafBins,j requires extracting bin indices from
leafBins,j and store into leafBins1,j and leafBins2,j . To

Figure 3: Speedup Effects of Optimization Techniques

do this, we need to know for each data point in s, whether it
goes to s1 or s2. This information is recorded in a bit vec-
tor. Specifically, if s is split with condition xi,k ≤ c, then
bitV ector[i]= xi,k ≤ c. Creating bitV ector only requires a
single sweep of [x1,k, ...,xn,k]. Then for each feature j, bin
indices in leafBins,j are extracted according to bitV ector.
BMI is an extension of x86 instructions to speedup bit oper-
ations. We use Parallel Bits Extract (PEXT) of BMI to ex-
tract the bin indices. PEXT takes two 64-bit registers a and
b as operands. For each bit in a whose value is 1, the corre-
sponding bit in b is extracted and stored in the output register.
Each bin index is stored in a single byte. Each PEXT instruc-
tion can handle 64 bits simultaneously, so we can process 8
bin indices in leafBins,j simultaneously. The workflow of
using PEXT is shown in Figure 2. We first broadcast each
bit in bitV ector into a byte, thus 1 becomes 0xff and 0 be-
comes 0x00. Then, with a PEXT instruction, we can extract
leafBins1 . Then we negate the bits in bitV ector and extract
leafBins2 using another PEXT operation.

6 Experiments
Our experiments aim to answer the following questions 1.
How the optimization techniques influence the accuracy and
efficiency of boosted PL Trees. 2. How is our algorithm com-
pared with state-of-the-art GBDT packages including Light-
GBM, XGBoost and CatBoost. We evaluate our algorithm on
10 public datasets. We name our algorithm GBDT-PL. Our
code, details of experiment setting and datasets is available at
the github page. 1

6.1 Speedup Effects of Optimization Techniques
To evaluate the speedup effects of various techniques in Sec-
tion 4 and 5, we start from a baseline version, and add the op-
timization techniques incrementally. We record the training
time, for 500 iterations using 63 histogram bins, of HIGGS
and Epsilon datasets. Figure 3 shows the training time when
adding each optimization technique, from top to bottom. The
first bar in the top is the baseline version (Algorithm 2 for
histogram construction, using fully-corrective fitting). The
second bar adds SIMD for histogram construction in Algo-
rithm 2. The third bar uses the leafBin (Algorithm 3). The
fourth bar adds Bit Manipulation Instructions (BMI) (Section
5.2). The bottom bar adds the half-additive technique (Sec-
tion 4.2). Compared with the second bar, the fourth bar with
leafBin data structure and BMI gets a speedup of about 1.5
to 2 times. With leafBin we reduce the cache misses when

1 https://github.com/GBDT-PL/GBDT-PL.git



setting time (s) AUC speedup
a. no feat. sel. and half-additive 8443.75 0.859 ×1.0

b. feat. sel., no half-additive 574.88 0.856 ×14.7
c. feat. sel., half-additive 405.07 0.854 ×20.8

Table 1: Accuracy vs. Speedup

constructing the histograms. With fewer cache misses when
getting the bin indices, we can provide operands to the SIMD
units in CPU more efficiently, thus further exploit the compu-
tation power. And with BMI, we speedup the split operations
of leafBin thus reduces the overhead of maintaining leafBin.

6.2 Effects of Optimization Techniques on
Accuracy

Incremental feature selection restricts the size of linear mod-
els, and half-additive fitting results in suboptimal linear
model parameters. We evaluate the effects of these two tech-
niques on the accuracy. We test the following 3 settings. a.
Disable the half-additive fitting and incremental feature se-
lection. This means all features will be used in linear models
of all nodes. b. Enable the incremental feature selection. Set
the maximum constraint of regressors to 5. c. Based on b, en-
able the half-additive fitting. Table 1 shows the results. Here
we use 255 histogram bins and 256 leaves. Incremental fea-
ture selection and half-additive fitting brings great speedup,
with small sacrifice of accuracy. It is expensive to use all fea-
tures in the linear models for leaves. With incremental feature
selection, we restrict the size of linear models to reduce the
computational cost. With half-additive fitting, we fits linear
models of any size with the cost of 3 regressors. These two
techniques are important for the scalability of GBDT-PL.

6.3 Overall Performance
In this section, we compare GBDT-PL with XGBoost, Light-
GBM and CatBoost, which are state-of-the-art GBDT pack-
ages. We compare testing accuracy, convergence rate, and
training speed on CPUs.

Accuracy
We evaluate all 10 datasets with the 4 algorithms. For re-
gression datasets Casp, CT, Sgemm, Year, SuperConduc-
tor and Energy, we use RMSE as evaluation metric. And
for binary classification datasets Higgs, Hepmass, Epsilon
and Susy, we use AUC. Different settings of hyperparame-
ters are tried. Key hyperparameters we tuned include: 1.
num leaves ∈ {16, 64, 256, 1024}, which controls the size
of each tree. For CatBoost with SymmetricTree mode, the
tree is grown by level, so max depth ∈ {4, 6, 8, 10} is used
instead of num leaves. 2. max bin ∈ {63, 255}, the maxi-
mum number of bins in histograms. 3. min sum hessians ∈
{1.0, 100.0}, the sum of hessians of data in each leaf. 4.
learning rate ∈ {0.01, 0.05, 0.1}, the weight of each tree. 5.
l2 reg ∈ {0.01, 10.0}, l2 regularization for leaf predicted val-
ues. We fix the number of regressors used in GBDT-PL to
5 in all runs. Different combinations of these parameters are
tried. The maximum number of trees are chosen according
to the rule learning rate × num trees = 50 (For CatBoost in
SymmetricTree mode we use learning rate×num trees = 200

since it converges slower). For large datasets, only learning
rate 0.1 is tried. More details of parameter settings are listed
in our github. For XGBoost, LightGBM and CatBoost, result
of the best iteration over all settings on test set is recorded.
For GBDT-PL, we seperate 20% of training data for valida-
tion, and pick the best setting on validation set, then record
the corresponding accuracy on test set. Table 2 shows the re-
sults. With linear models on leaves, GBDT-PL achieves better
accuracy in these dense numerical datasets. It shows greater
advantage in regression tasks. The results shows that 5 re-
gressors is enough for most datasets. Adjusting the number
of regressors can further improve the results.

Convergence Rate
To show that PL Trees speedup the convergence rate of
GBDT, we set the maximum number of leaves to 256, and
the maximum depth of CatBoost in SymmetricTree mode to
8. We use 63 histogram bins, 500 iterations with learning rate
0.1. We set min sum hessians to 100 and l2 reg to 0.01. Fig-
ure 4 plots testing accuracy per iteration. In most datasets,
GBDT-PL uses fewer trees to reach a comparable accuracy.

Training Time on CPU
To test the efficiency on CPU, we use the same hyperpa-
rameters as previous subsection. (So far only SymmetricTree
mode is supported by CatBoost on CPU, so only this mode
is tested.) Figure 5 shows testing accuracy by training time.
With the same tree size, GBDT-PL achieves better accuarcy
with less or comparable training time in most datasets.

7 Related Work and Discussions
Boosted PL Trees have several existing implementations.
Weka [Hall et al., 2009] and Cubist [Kuhn et al., 2012] use
M5/M5’ [Quinlan and others, 1992; Wang and Witten, 1997]
as base learners. M5/M5’ grows the tree in a way similar
to piece-wise constant ones, then fits linear models on the
nodes after the tree structure has been fixed. By contrast,
PL Tree used in our work is designed to greedily reduce the
loss at each step of its growing. Whenever a node is split
in our PL Tree, we choose the optimal split that will result
in the largest reduction in loss, considering the linear mod-
els in both child nodes. [Wang and Hastie, 2014] proposes
a gradient boosting algorithm using PL Trees as base learn-
ers and then apply it to a product demand prediction task.
However, the algorithm only uses the first-order gradients.
By contrast, GBDT-PL uses second-order gradients, which
is important for faster convergence rate of GBDT [Sun et
al., 2014]. None of the aforementioned algorithms can han-
dle large scale datasets as SOTA GBDT toolkits. Training
scalable single PL Tree has been investigated in [Dobra and
Gehrke, 2002]. To the best of our knowledge, GBDT-PL is
the first to make boosted PL Trees scalable, by various op-
timization methods in Section 4 and 5. Currently GBDT-PL
only handles numerical features. Both LightGBM and Cat-
Boost handles categorical features. However, GBDT-PL is
still feasible for categorical features by first converting them
into numerical ones, as is done in CatBoost, which encodes
the categorical values with label values. Efficient training
of GBDT on GPUs is also a hot topic [Zhang et al., 2018;
Wen et al., 2018]. We will add support for GPU in the future.



Algorithm Higgs Hepmass Casp Epsilon Susy CT Sgemm Year SuperConductor Energy
LightGBM 0.854025 0.95563 3.4961 0.951422 0.878112 1.30902 4.61431 8.38817 8.80776 64.256
XGBoost 0.854147 0.95567 3.4939 0.948292 0.877825 1.34131 4.37929 8.37935 8.91063 64.780
CatBoost 0.851590 0.95554 3.5183 0.957327 0.878206 1.36937 4.41177 8.42593 8.78452 65.761
GBDT-PL 0.860198 0.95652 3.4574 0.957894 0.878287 1.23753 4.16871 8.37233 8.79527 65.462

Table 2: Testing Accuracy

(a) Higgs (b) Hepmass (c) Casp (d) Epsilon (e) Susy

(f) CT (g) Energy (h) SuperConductor (i) Sgemm (j) Year

Figure 4: Convergence Rate: AUC/RMSE per iteration (We use ST for SymmetricTree mode of CatBoost, and LG for Lossguide mode.)

(a) Higgs (b) Hepmass (c) Casp (d) Epsilon (e) Susy

(f) CT (g) Energy (h) SuperConductor (i) Sgemm (j) Year

Figure 5: Training Time Comparison on CPU: AUC/RMSE by training time

8 Conclusions

In this paper, we propose efficient GBDT with PL Trees. We
first extend GBDT with second-order approximation for PL
Trees. Then incremental feature selection and half-additive
fitting are proposed to efficiently fit the linear models in tree
nodes. Finally, we show how to exploit SIMD parallelism
and reduce cache misses by rearranging the data structures
with Bit Manipulation Instructions. The proposed optimiza-
tion techniques are tested to show their effects on efficiency

and accuracy. Comparisons with SOTA baselines show the
value of our methods.

Acknowledgements
The research is supported in part by the National Basic Re-
search Program of China Grant 2015CB358700, the Na-
tional Natural Science Foundation of China Grant 61822203,
61772297, 61632016, 61761146003, and a grant from Mi-
crosoft Research Asia.



References
[Breiman, 2017] Leo Breiman. Classification and Regres-

sion Trees. Routledge, 2017.

[Chen and Guestrin, 2016] Tianqi Chen and Carlos Guestrin.
XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794.
ACM, 2016.

[Chen et al., 2012] Tianqi Chen, Linpeng Tang, Qin Liu,
Diyi Yang, Saining Xie, Xuezhi Cao, Chunyang Wu, En-
peng Yao, Zhengyang Liu, Zhansheng Jiang, et al. Com-
bining factorization model and additive forest for collabo-
rative followee recommendation. KDD CUP, 2012.

[Dobra and Gehrke, 2002] Alin Dobra and Johannes Gehrke.
Secret: a scalable linear regression tree algorithm. In Pro-
ceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages
481–487. ACM, 2002.

[Espasa et al., 1998] Roger Espasa, Mateo Valero, and
James E Smith. Vector architectures: past, present and fu-
ture. In Proceedings of the 12th International Conference
on Supercomputing, pages 425–432. ACM, 1998.

[Friedman et al., 2000] Jerome Friedman, Trevor Hastie,
Robert Tibshirani, et al. Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder
by the authors). The Annals of Statistics, 28(2):337–407,
2000.

[Friedman, 1979] Jerome H Friedman. A tree-structured ap-
proach to nonparametric multiple regression. Smoothing
Techniques for Curve Estimation, 757:5–22, 1979.

[Friedman, 2001] Jerome H Friedman. Greedy function ap-
proximation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes,
Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[Ke et al., 2017] Guolin Ke, Qi Meng, Thomas Finley,
Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Information Pro-
cessing Systems, pages 3149–3157, 2017.

[Kuhn et al., 2012] Max Kuhn, Steve Weston, Chris Keefer,
and Nathan Coulter. Cubist models for regression. R pack-
age Vignette R package version 0.0, 18, 2012.

[Kuhn et al., 2018] Max Kuhn, Steve Weston, Chris Keefer,
and Maintainer Max Kuhn. Package ‘cubist’. 2018.

[Prokhorenkova et al., 2018] Liudmila Prokhorenkova, Gleb
Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categor-
ical features. In Advances in Neural Information Process-
ing Systems, pages 6639–6649, 2018.

[Quinlan and others, 1992] John R Quinlan et al. Learning
with continuous classes. In 5th Australian Joint Confer-
ence on Artificial Intelligence, volume 92, pages 343–348.
World Scientific, 1992.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees.
Machine Learning, 1(1):81–106, 1986.

[Quinlan, 2014] J Ross Quinlan. C4. 5: programs for ma-
chine learning. Elsevier, 2014.

[Sun et al., 2014] Peng Sun, Tong Zhang, and Jie Zhou. A
convergence rate analysis for logitboost, mart and their
variant. In ICML, pages 1251–1259, 2014.

[Tyree et al., 2011] Stephen Tyree, Kilian Q Weinberger,
Kunal Agrawal, and Jennifer Paykin. Parallel boosted
regression trees for web search ranking. In Proceedings
of the 20th International Conference on World Wide Web,
pages 387–396. ACM, 2011.

[Vens and Blockeel, 2006] Celine Vens and Hendrik Block-
eel. A simple regression based heuristic for learning model
trees. Intelligent Data Analysis, 10(3):215–236, 2006.

[Vogel et al., 2007] David S Vogel, Ognian Asparouhov, and
Tobias Scheffer. Scalable look-ahead linear regression
trees. In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 757–764. ACM, 2007.

[Wang and Hastie, 2014] Jianqiang C Wang and Trevor
Hastie. Boosted varying-coefficient regression models for
product demand prediction. Journal of Computational and
Graphical Statistics, 23(2):361–382, 2014.

[Wang and Witten, 1997] Y. Wang and I. H. Witten. Induc-
tion of model trees for predicting continuous classes. In
Poster papers of the 9th European Conference on Machine
Learning. Springer, 1997.

[Wang et al., 2014] Endong Wang, Qing Zhang, Bo Shen,
Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan
Wang. Intel math kernel library. In High-Performance
Computing on the Intel R© Xeon PhiTM, pages 167–188.
Springer, 2014.

[Wen et al., 2018] Zeyi Wen, Bingsheng He, Ramamoha-
narao Kotagiri, Shengliang Lu, and Jiashuai Shi. Efficient
gradient boosted decision tree training on GPUs. In 2018
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 234–243. IEEE, 2018.

[Zhang et al., 2018] Huan Zhang, Si Si, and Cho-Jui Hsieh.
GPU-acceleration for large-scale tree boosting. In SysML
Conference, 2018.



Appendix
A. More on Histograms for GBDT With PL
Tree
Histogram is used in several GBDT implementations [Tyree
et al., 2011; Chen and Guestrin, 2016; Ke et al., 2017] to re-
duce the number of potential split points. For each feature,
a histogram of all its values in all data points is constructed.
The boundaries of bins in the histogram are chosen to dis-
tribute the training data evenly over all bins. Each bin accu-
mulates the statistics needed to calculate the loss reduction.
When finding the optimal split point, we only consider the
bin boundaries, instead of all unique feature values. After the
histogram is constructed, we only need to record the bin num-
ber of each feature for each data point. Fewer than 256 bins in
a histogram is enough to achieve good accuracy [Zhang et al.,
2018], thus a bin number can be stored in a single byte. We
can discard the original feature values and only store the bin
numbers during the boosting process. Thus using histograms
produces small memory footprint.

It seems nature to directly use the histogram technique in
our algorithm. For LightGBM and XGBoost, each bin in a
histogram only needs to record the sum of gradients and hes-
sians of data in that bin. For our algorithm, the statistics in
the histogram is more complex. The statistics are used to
compute the least squares. Each bin B needs to record both∑

i∈B hixix
T
i and

∑
i∈B gixi, where xi is the column vec-

tor of selected regressors of data i. However, the feature val-
ues xi are needed when fitting linear models in leaves. We
still need to access the feature values constantly, which incurs
long memory footprint. To overcome this problem, for each
feature j and each bin i of j, we record the average feature
values in bin j, denoted as xi,j . When fitting linear models,
we use xi,j to replace the original feature value xk,i. Here
xk,i is the value of feature i of data point xk, and xk,i falls
in bin j. In this way, we can still discard the original fea-
ture values after preprocessing. Thus we adapt the histogram
technique to PL Trees and preserve the small memory foot-
print.

The histogram technique used in several existing methods
(such as XGBoost and LightGBM) only record 2 elements in
each bin (sum of gradients and hessians). Our histograms re-
quire more than 2 elements (including qudratic terms of fea-
ture values). So the detailed implementation is in fact quite
different from existing ones. To better utilized the SIMD units
when constructing histograms, we use intel intrinsics (which
directly indicate the assemble instructions to use) to carefully
arrange the calculation.

B. Experiment Platform for Training Time
Recording
The experiment environment for training time comparison are
listed in Table 1.

Table 3: Experiment Platform

OS CPU Memory
CentOS Linux 7 2× Xeon E5-2690 v3 DDR4 2400Mhz, 128GB

C. Datasets
The datasets we used in this paper are all from UCI datasets.
The number of instances and features can be found in the fol-
lowing table. We will provide details about how we split the
datasets into train and testing sets on our github page. 2 For

Table 4: Datasets Description

name # training # testing # features task
HIGGS 10000000 500000 28 classification

HEPMASS 7000000 3500000 28 classification
CASP 30000 15731 9 regression

Epsilon 400000 100000 2000 classification
SUSY 4000000 1000000 18 classification

SGEMM 193280 48320 14 regression
SUPERCONDUCTOR 17008 4255 81 regression

CT 42941 10559 384 regression
Energy 15788 3947 27 regression

Year 412206 103139 90 regression

datasets with features of large values, including Year, SU-
PERCONDUCTOR, Energy and CASP, we first find the min-
imum and maximum values of each feature in the training set,
and rescale the features into range [0, 1] before feeding it into
GBDT-PL. This is for numerical stability when computing
matrix inversions.

D. Comparison With Existing Boosted PL Trees
We compare our results with boosted PL Trees in Weka [Hall
et al., 2009] and Cubist [Kuhn et al., 2018] packages. The
base learner of Weka and Cubist is M5/M5P, a PL Tree pro-
posed by [Quinlan and others, 1992; Wang and Witten, 1997].
The main differences between M5/M5P and our algorithm
are: 1. M5/M5P does not use half-additive fitting, histogram
and our system optimization techniques. 2. M5/M5P grows
the tree in a way similar to piecewise constant regression trees
(e.g. CART), then fits the linear models at the nodes. Each
split in our algorithm considers how much the resultant linear
models in the child nodes will reduce the boosting objective.
In other words, the split finding in GBDT-PL is greedy and
more expensive. Figure 6 shows the results on a small sub-

(a) HIGGS-100k AUC (b) CASP RMSE

Figure 6: Comparison With Weka and Cubist

set of HIGGS dataset with only 100k samples and CASP. All

2 https://github.com/GBDT-PL/GBDT-PL.git



algorithms train 100 trees. GBDT-PL has a significant advan-
tage in efficiency. For example, GBDT-PL finished training
100 32-leaf trees for CASP within 2 seconds, while Cubist
takes about 150 seconds.

E. Parameter Settings
The parameters we tried are listed in following tables. For
big datastes (HIGGS, Epsilon, SUSY and HEPMASS), we
only test the learning rate 0.1. We evaluate all different com-
binations of these values. On small datasets, 96 combina-
tions of parameters are tested for GBDT-PL, and 144 com-
binations of parameters are tested for XGBoost, LightGBM
and CatBoost. The total number of trees (iterations) are cho-
sen according to the learning rate. For XGBoost, LightGBM
and GBDT-PL, 500 trees for learning rate 0.1, 1000 trees for
learning rate 0.05 and 5000 trees for learning rate 0.01. For
CatBoost in SymmetricTree mode, instead of controlling max-
imum leaf number, we tried maximum tree depth of 4, 6, 8,
10 and use 4 times number of trees in other 3 packages. Since
CatBoost in SymmetricTree mode uses simpler tree structure,
it convergences slower. Thus for CatBoost in SymmetricTree
mode, we use 2000 trees for learning rate 0.1, 4000 trees
for learning rate 0.05 and 20000 trees for learning rate 0.01.
Subsampling of training data and features are disabled in all
experiments. For the accuracy and convergence rate experi-
ments, we use the Ordered mode of CatBoost for better ac-
curacy. And for the training time experiments, we use Plain
mode since it is much faster. Other parameters are left as
default.

For XGBoost, LightGBM and CatBoost, we directly pick
up the best result on test set in the best iteration of the best
hyperparameter setting. For GBDT-PL, we sample 20% from
training data for validation, and pick the iteration and hyper-
parameter setting performs best in the validation set, then re-
port the corresponding accuracy on test data.

The versions of python packages we used are LightGBM
2.1.0, XGBoost 0.81 and CatBoost 0.14.2.

Table 5: Parameter Settings for LightGBM

num leaves 16, 64, 256, 1024
max bin 63, 255, 1024

min sum hessian in leaf 1.0, 100.0
learning rate 0.01, 0.05, 0.1
reg lambda 0.01, 10.0

min data in leaf 0, 20

Table 6: Parameter Settings for XGBoost

max leaves 16, 64, 256, 1024
max bin 63, 255, 1024

min child weight 1.0, 100.0
eta 0.01, 0.05, 0.1

lambda 0.01, 10.0
grow policy loss guided
tree method hist

Table 7: Parameter Settings for CatBoost (SymmetricTree mode)

depth 4, 6, 8, 10
border count 63, 128, 255

min data in leaf 1, 100
learning rate 0.01, 0.05, 0.1
l2 leaf reg 0.01, 10.0

grow policy SymmetricTree
leaf estimation method Newton

random strength 0.0
bootstrap type No

Table 8: Parameter Settings for CatBoost (Lossguide mode)

max leaves 16, 64, 256, 1024
border count 63, 128, 255

min data in leaf 1, 100
learning rate 0.01, 0.05, 0.1
l2 leaf reg 0.01, 10.0

grow policy Lossguide
leaf estimation method Newton

random strength 0.0
bootstrap type No

Table 9: Parameter Settings for GBDT-PL

max leaf 16, 64, 256, 1024
max bin 63, 255

min sum hessian in leaf 1.0, 100.0
learning rate 0.01, 0.05, 0.1

l2 reg 0.01, 10.0
grow by leaf
leaf type half additive
max vars 5


	Gradient boosting with piece-wise linear regression trees
	Citation

	1 Introduction
	2 Review of Gradient Boosted Decision Trees
	3 Gradient Boosting with PL Trees
	4 Algorithmic Optimization
	4.1 Histograms for GBDT with PL Trees
	4.2 Incremental Feature Selection and Half-Additive Fitting

	5 System Optimization
	5.1 SIMD Parallelism with Reduced Cache Misses
	5.2 Using Bit Manipulation Instructions

	6 Experiments
	6.1 Speedup Effects of Optimization Techniques
	6.2 Effects of Optimization Techniques on Accuracy
	6.3 Overall Performance
	Accuracy
	Convergence Rate
	Training Time on CPU


	7 Related Work and Discussions
	8 Conclusions

