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Abstract. Peer assessment is a major method for evaluating the per-
formance of employee, accessing the contributions of individuals within
a group, making social decisions and many other scenarios. The idea
is to ask the individuals of the same group to assess the performance
of the others. Scores or rankings are then determined based on these
evaluations. However, peer assessment can be biased and manipulated,
especially when there is a conflict of interests. In this paper, we consider
the problem of eliciting the underlying ordering (i.e. ground truth) of
n strategic agents with respect to their performances, e.g., quality of
work, contributions, scores, etc. We first prove that there is no deter-
ministic mechanism which obtains the underlying ordering in dominant-
strategy implementation. Then, we propose a Two-Stage Mechanism in
which truth-telling is the unique strict Nash equilibrium yielding the
underlying ordering. Moreover, we prove that our two-stage mechanism
is asymptotically optimal, since it only needs n+1 queries and we prove
an Ω(n) lower bound on query complexity for any mechanism. Finally,
we conduct experiments on several scenarios to demonstrate that the
proposed two-stage mechanism is robust.

Keywords: Mechanism design · Peer assessment · Nash equilibrium

1 Introduction

Peer assessment is a commonly adopted solution for group evaluation without
an independent arbiter, e.g., MOOC student assignments scoring [16], research
proposal evaluation etc. Despite the pervasive success of peer assessment, there
remain issues and controversies, especially on validity and reliability of peer
review [21]. As the score of a participant is decided by the assessments given
by others, one may manipulate the outcome by providing dishonest feedback.
For example, students in a MOOC course usually conduct peer assessments by
grading others’ homeworks (e.g., percentile scores), and their scores are based
on the average of all submitted assessments on their homeworks. In such cases,
a student may be able to obtain a better ranking by giving worse evaluations of
other students.
c© Springer Nature Switzerland AG 2018
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Not surprisingly, professionals also suffer from unreliable, or “lottery-
like” peer review results [30], e.g., irresponsible or derogatory comments appear
in academic proposals, and even double-blind review cannot guarantee fairness
[18]. In business or academic fields, it is almost inevitable that the reviews have
an undisclosed conflict of interests. Under these circumstances, the fairness of
peer assessments, even from experts, should be questioned [22,28].

The focus of this paper is to reveal the underlying ordering (ground truth) of
the strategic agents. This work is mainly motivated by the applications in which
the agents have a strong incentive to manipulate the system by not telling the
truth. For example, a direct application is to rank the contributions in a relatively
small team, where team members work collaboratively on a project and have a
common opinion of the ranking of each member’s contribution. Note that the
bonus of each employee is indeed assessed by his/her team members in some
companies. Thus the leader needs to know the ranking of all members. In this
paper, we propose a two-stage mechanism to reveal the ground truth.

Previous work on the problem related to peer assessment, in particular to
peer review, studied different setting in which their goal is to select a ‘reasonable’
aggregated ordering (or a subset) by partition-selection steps (see e.g., [2,10]).
For example, although the mechanism given in [2,3] is strategyproof, it is not
guaranteed to reveal the true underlying ordering even if all the agents share the
same opinion of the ordering. Basically their algorithm divides the agents into
disjoint clusters. Then the agents in one cluster give evaluations for the agents in
other clusters. With these evaluations, the algorithm gets a kind of value for each
cluster. Finally the top k agents are drawn from the clusters with proportion to
their values. Consider a simple example, where n = 4, k = 1 and all agents hold
the same ordering 〈1, 2, 3, 4〉. Their algorithm divides the agents into two clusters
(e.g., C1 = {1, 2} and C2 = {3, 4}), and then both clusters get the same value 0.5
according to the Borda score adopted in their algorithm. Finally, their allocation
algorithm selects an agent with the highest score in C1 with probability 0.5 and
selects an agent with the highest score in C2 with probability 0.5, i.e., there is a
0.5 probability to return the wrong agent 3.

1.1 Our Contributions

In this paper, we make the following technical contributions:

1. We prove that there is no deterministic mechanism which obtains the under-
lying ordering in a dominant-strategy implementation.

2. Although mechanisms can be designed in which Nash equilibria exist, they do
not guarantee to obtain the underlying ordering. Under a reasonable assump-
tion, we show that there is a mechanism in which truth-telling is the unique
strict Nash equilibrium and it leads to the underlying ordering, except that
there is an arbitrarily small probability of disorder between the last two
agents. Such a disorder is proved to be inevitable if a mechanism has a strict
Nash equilibrium leading to the underlying ordering.

3. We prove a lower bound of query complexity for any mechanism, which indi-
cates that our two-stage mechanism is asymptotically optimal.
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4. The experimental results on several scenarios demonstrate that our two-stage
mechanism is very robust.

1.2 Related Work

Extracting accurate grading results from non-strategic participants has been
studied in previous work, where grading errors are treated as noise or system-
atic bias. Wilson [31] eliminated rater bias and error by regression. Ross et
al. [27] calibrated rating bias by solving quadratic programming, while Piech
et al. [24] used Gibbs sampling and expectation-maximization to infer parame-
ters of assumed probabilistic grading models. In addition, ordinal methods have
also been considered to obtain more robust ranking results instead of cardinal
evaluations [19]. Raman and Joachims [25,26] used a maximum likelihood esti-
mator based on the classic Mallows model [20] and Bradley-Terry model [6].
Mi and Yeung [23] used the probabilistic graphical models to boost the grading
performance.

Although many mechanisms have been proposed to improve ranking accuracy
in peer assessment, there still remains a critical challenge when the agents are
strategic. Similar strategic cases have been studied in a variety of forms. Alon et
al. [1], Kurokawa et al. [17] and Aziz et al. [2] considered it as a social choice or
voting and designed strategyproof mechanisms. Jurca and Faltings [13,14] used
monetary incentives to guarantee that truthful reporting is a Nash equilibrium.
Gao et al. [11] also used rewards to incentivize truth-telling at equilibrium in
peer-prediction mechanisms. Carbonara et al. [8] used a Stackelberg audit game
[4,5], associating security games with punishment to incentivize honest report-
ing. Kahng et al. [15] designed an impartial rank aggregation rule which has a
small relative error with some other (nonimpartial) rank aggregation rules. Note
that this peer assessment problem is also related to crowdsourcing [7,9,32].

2 Model and Results

2.1 Model

The problem of ordinal peer assessment is formally defined as follows. Let
A = {1, 2, . . . , n} denote the set of strategic agents. Let ri denote the rank-
ing of agent i with respect to its performance (e.g. contribution, score, etc.).
W.l.o.g. assume that ri = i for all i ∈ A, i.e., the underlying ordering is
〈1, 2, . . . , n〉. The underlying ordering (ground truth) is a private common infor-
mation shared among these n agents. The problem is that a third party, who
is not aware of the underlying ordering, wants to obtain it via a mechanism by
adopting peer assessment. A mechanism will output an ordering (i.e., a permu-
tation) of A by asking some queries to the agents. We emphasize that our goal is
to reveal the exact underlying ordering, not a ‘reasonable’ aggregated ordering
(or a subset) as the previous work studied. Thus the strategic agents should
share the same underlying ordering, but they may report untruthful answers.
Now, we formally define the query operation and the mechanism as follows.
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Definition 1 (Query q). q(i, A′) : Ask agent i to report the best agent in A′,
where A′ ⊆ A.

Note that this defined query is sufficient to obtain the necessary information,
e.g., the pairwise comparison query is such a query when |A′| = 2.

Definition 2 (Mechanism M). M : (A,Q) �→ P, where A denotes the set
of all strategic agents, Q is the set of any sequence of queries asked by M and
P denotes the outcome of M which is the set of all permutations of A. M
outputs an ordering O ∈ P according to the sequence of queries Q ∈ Q and the
corresponding reported answers to Q.

Definition 3 (Deterministic/Randomized Mechanism). M is a deter-
ministic mechanism if it always outputs a deterministic ordering for a given
Q and its corresponding reported answers. M is a randomized mechanism if it
may output a randomized ordering according to a distribution over P.

Naturally, mechanisms using fewer queries are more efficient. Now, we
describe the actions of the agents. Every agent is self-interested, only caring
about its own ranking in the output ordering of M. We define the payoff of an
agent to be its (expected) ranking in the outcome of M (if M is randomized).
Their strategies are to report the answers for the queries asked by M. Note that
they may report untruthful answers.

Definition 4 (Strict NE). A strategy profile is a strict Nash equilibrium if
no agent can unilaterally switch to another strategy without reducing its payoff.

2.2 Main Results

Our goal is to reveal the ground truth, i.e., obtain the underlying ordering.
The first thing coming to mind is to design deterministic mechanisms in which
all agents have dominant strategies. A dominant strategy means that it always
achieves the best payoff no matter what the other agents do. Unfortunately, this
is impossible, as shown in the following theorem.

Theorem 1 (Impossibility Theorem). There is no deterministic mechanism
which obtains the underlying ordering in a dominant-strategy implementation.

Note that the Gibbard–Satterthwaite theorem [12,29] does not apply here
since the condition is not satisfied, e.g., the preference relation induced by the
utility function is not antisymmetric since two outcomes having ranked an agent
at the same position have no difference for the agent. Also note that our theorem
is different from [3] since they need randomization to guarantee the number of
selected agents is exact k. The proof of our impossibility theorem can be found
in the full version of this paper.

According to Theorem1, the deterministic dominant-strategy implementa-
tion is too stringent to be achievable. Nonetheless, one can still obtain that
the agents reporting the truth (truth-telling) is a Nash equilibrium, as in the
following lemma.
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Lemma 1. There is a mechanism in which truth-telling is a Nash equilibrium.

Proof. One such mechanism is the naive dictatorship, i.e., the mechanism returns
a predefined ordering whatever the agents answer to the queries. Truth-telling
obviously is a Nash equilibrium since no agent can affect its payoff by changing
its strategy (answer). Note that this mechanism only outputs the true underlying
ordering with a very small probability 1/n!. �	

According to the above lemma, although truth-telling and Nash equilibrium
are easy to achieve, we still do not get the underlying order yet. Then, we provide
a simple mechanism (randomly choose three agents from A, then let them report
the best agent and take the majority answer (if it does not exist, we uniformly
pick one from A) as the best agent a∗, finally let a∗ report the remaining ordering
of A − {a∗} to obtain a complete ordering (output)) and it is not hard to verify
that truth-telling is a Nash equilibrium and this Nash equilibrium leads to the
underlying ordering (the details can be found in our full version). However, there
are many Nash equilibria in this simple mechanism, e.g., three random agents all
report the second-best agent or other agents. Thus this mechanism will output
wrong orderings with high probability since most Nash equilibria are bad as they
lead to wrong orderings.

Hence, we want to consider the strict Nash equilibrium (more extremely,
unique) that yields the underlying ordering since the strict Nash equilibrium
(see Definition 4) implies stability. However, the following lemma indicates a
negative result.

Lemma 2. The underlying ordering cannot be obtained with probability 1 by
any strict Nash equilibrium of any mechanism.

Proof. Assume that there is a strict Nash equilibrium which leads to the underly-
ing ordering with probability 1. Consider the last agent n, the expected ranking
of agent n is n in this strict Nash equilibrium. However, if it changes its strategy,
it does not get a strictly worse ranking than n as the lowest ranking is n anyway.
This contradicts the definition of strict Nash equilibrium. �	

Fortunately, if a tiny disorder between agents n and n− 1 is allowed, a strict
Nash equilibrium is still possible. The point is that in the proof above, agent n
always ranks the last. As agent n has no lower place to go down, the intuition
is to let agent n have a tiny probability to go upward. Besides, we need the
following reasonable assumption to get a simple enough mechanism.

Assumption 1. If the ranking of an agent is fixed in the outcome, then the
agent will report truthfully thereafter.

We propose a two-stage mechanism (Algorithm 1) in Sect. 3, satisfying the
following main theorem. We analyze this mechanism and provide the proof sketch
in Sect. 3. The detailed proof can be found in our full version.



A Two-Stage Mechanism for Ordinal Peer Assessment 181

Theorem 2 (Main Theorem). Under Assumption 1, there is a mechanism in
which truth-telling is the unique strict Nash equilibrium and it leads to the under-
lying ordering, except for an arbitrarily small probability of disorder between the
last two agents. Further, the number of queries asked by the mechanism is n+1.

Moreover, the proposed two-stage mechanism is asymptotically optimal as
indicated by the following lower bound theorem (the proof can be found in our
full version).

Theorem 3 (Lower Bound). Any mechanism capable of retrieving the under-
lying ordering requires Ω(n) queries in the worst case.

3 The Two-Stage Mechanism

Note that the problem is trivial if n = 1. When n = 2, it is impossible to
distinguish the two agents. For n > 3, we propose the Two-Stage Mechanism
which is described in Algorithm 1. We defer n = 3 to the end of this section.
In Stage 1 of the two-stage mechanism, we use self-loop to denote the reported
answer when an agent reports itself, and let irrational answer denote the answer
when an agent i reports another agent j while agent j does not report itself.
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Intuition: When an agent i is asked to report the best agent (a∗) in Stage 1,
the agent only has three possible answers described below, where the last two
are wrong answers:

1. report a∗ (true answer);
2. report itself (self-loop answer);
3. or, report someone else (mostly irrational answers).

To enforce truth-telling strategy of all agents, we will ignore the wrong answers
(Case 2 and 3) and punish the misreporting agents in our mechanism. Concretely,
for the irrational answers, we ignore the answers in Line 8 of Algorithm 1 and
punish the agents in Line 14. For the self-loops, we ignore the answers in Line 9
and indirectly punish the agents in Line 5. Note that there is an exception for
agent a∗, i.e., a∗ reporting a∗ (itself) also belongs to Case 2. But this answer
should only be considered as the Case 1 true answer.

Analysis: Now we analyze the two-stage mechanism in more details before mov-
ing to the proofs. The best agent a∗ is selected in Stage 1. This process can be
distinguished as two modes:

1. Mode A: Uniformly pick
(a) At least two self-loops (i.e. reporting themselves):

Uniformly pick one from A − {i, j, k}. We denote this case as Case 1a ,
i.e., sub-item (a) in item 1. Similar denotations are used for other cases.

(b) Candidate set C = ∅:
Uniformly pick one from A − {i, j, k}. This case happens exactly when
i′, j′, k′ ∈ {i, j, k}, and no self-loop exists, i.e. all three answers are irra-
tional.

2. Mode B: Pick candidates (Randomly select from C.)
(a) i′, j′, k′ ∈ {i, j, k} and exactly one self-loop exists:

W.l.o.g., let i′ = i. C must only contain i. Because agents j and k do not
report themselves, those answers reporting j or k are irrational. Conse-
quently an agent not reporting itself will not be contained in C.

(b) There exists o in C. Recall that o denotes an agent except {i, j, k}:
C contains these o-type answers, and if it happens that a self-loop exists
with another agent also reporting the “self-loop” agent, C will contain
the self-loop, e.g. i′ = o, j′ = j, k′ = j, C = {o, j}.

The intuition is that Mode B usually allows us to select the correct agent a∗,
while Mode A usually is a bad case but rarely happens. Besides, note that Line
14 and 15 of Algorithm 1 do not affect the ranking of a∗, i.e., a∗ (selected in
Stage 1) always ranks the first in the outcome ˜O. This ensures that true answers
to the queries of Stage 2 can be obtained according to Assumption 1.

Now, we move to the proof sketch part. The proof details can be found in
our full version. To show truth-telling is the unique strict Nash equilibrium, it
should at least be a strict Nash equilibrium as stated by the following lemma.

Lemma 3. When n > 3, in Stage 1, the strategy profile consisting of the chosen
agents reporting 1 (truth-telling) is a strict Nash equilibrium.
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Then, to show the uniqueness in the following theorem, we only need to show
there are no other strict Nash equilibria. We prove this by contradiction, i.e.,
we show that any agent reporting 1 (true answer) is not strictly worse than
others, and thus there is no other strict Nash equilibrium except truth-telling,
otherwise the agent can change its answer to 1 without reducing its payoff which
contradicts the definition of strict Nash equilibrium (Definition 4). Note that the
number of queries is (n+ 1) since Stage 1 uses 3 queries and Stage 2 using n− 2
queries is sufficient since only one agent is remained.

Theorem 4. When n > 3, the two-stage mechanism uses n + 1 queries and
yields that truth-telling is the unique strict Nash equilibrium and it leads to
the underlying ordering, except that there is an arbitrarily small probability of
disorder between the last two agents.

The following corollary easily follows from the proof of Theorem4 which is
provided in our full version.

Corollary 1. The only remaining strategy in Stage 1 for each agent is truth-
telling using the iterated elimination of dominated strategies (IEDS) process from
agent 1 to agent n.

3.1 Two-Stage Mechanism for n = 3

For the n = 3 case, this situation follows the same paradigm as Algorithm 1. But
note that formerly Mode A uniformly pick works perfectly when n > 3, but for
n = 3, there is no agent for A−{i, j, k}. Thus, a slight difference is that we might
need to identify the second-best agent, rather than the best agent, i.e. select the
second-best agent, and fix its ranking as 2 in the outcome. This update obeys
the “spirit” of Assumption 1.

We describe the selection process in Stage 1 by cases. Let s denote the number
of “self-loop” agents, i.e. the agents reporting themselves.

1. s = 3. Uniformly pick a∗ from {1, 2, 3}. We denote this case as Case 1 .
2. s = 2. Select the only non-self-loop as the second-best agent.
3. s = 1. Select the only self-loop as a∗. Only two special sub-cases need extra

processing.
(a) The same as Line 14 of Algorithm 1, i.e. swap k and k + 1 if k < 3.
(b) It is similar to Line 15 of Algorithm 1, while here x /∈ {i, j, k} is not

required. The slight perturbation has be done if three agents report the
same one.

4. s = 0. The same as Case 1 .

The only slight modifications (differ from n > 3 case) are that the algorithm
now uniformly picks from {i, j, k} instead of from A − {i, j, k}, and the circum-
stance for two self-loops is tackled differently (i.e., identify the second-best agent
now).

We have a similar result for this n = 3 case, as stated in the following lemma.
The proof is not very hard and we provide it in our full version.



184 Z. Li et al.

Lemma 4. When n = 3, the two-stage mechanism with a slight difference uses
n + 1 queries and yields that truth-telling is the unique strict Nash equilibrium
and it leads to the underlying ordering, except that there is an arbitrarily small
probability of disorder between the last two agents.

Now, the main theorem, i.e. Theorem 2, easily follows from Theorem 4 and
Lemma 4.

4 Experiments

In this section, we conduct experiments on several scenarios to show our two-
stage mechanism is very robust. Recall truth-telling is the unique strict Nash
equilibrium in our mechanism, and the strict Nash equilibrium implies stability.
Intuitively, agents who adopt non-truth-telling strategy will eventually find it
more beneficial to report the truth. The reason is that at least agent a∗ (the
best agent) would like to adopt truth-telling. Consequently, other agents are
more or less forced to be honest according to the mechanism. Hence the strategy
of non-truth-telling naturally converges to the unique truth-telling equilibrium.

Concretely, we simulate the situation where there are many rounds for the
agents to switch their strategies. Initially, a portion of agents is set to hold
untruthful answers (randomly chosen). Let the noise factor denote the initial
fraction of misreporting agents, hence equivalently, the initial truthful ratio is
1−noise. Experiments are conducted on the number of agents n = 10, 40, 70, 100
and noise = 0.1, 0.5, 1. In each round, all agents sequentially switch their answers
to their best responses with respect to the two-stage mechanism, under the condi-
tion of other agents keeping their answers unchanged. Thus the switching process
in each round consists of n iterations, i.e., in each iteration, exactly one agent
switches to its best response. To compute the best response for an agent, as
the two-stage mechanism is randomized, this is approximated by enumerating
all answers of that agent and computing the average payoff for every enumer-
ated answer (by running the algorithm 10000 times) and then chose the highest
average payoff one.

Fig. 1. n = 10 Fig. 2. n = 40
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Fig. 3. n = 70 Fig. 4. n = 100

Figures 1, 2, 3 and 4 demonstrate the process of the strategies converging to
the unique truth-telling equilibrium under different noise factors. Note that a
truthful ratio equal to 1 means that all agents report true answers. The conver-
gence processes in all figures are very similar, which means the number of agents
does not affect the process much. Moreover, the total number of rounds in all
figures are 4, which shows that this process converges very fast.

We use the following Figs. 5 and 6 to compare the convergence performance
(speed) with respect to the number of agents. Particularly, if the initial fraction of
misreporting agents (i.e., noise) is very large (see Fig. 6), the speed with which the
strategies converge to the unique truth-telling equilibrium is almost independent
of the number of agents (i.e., n). If the noise is not that large (see Fig. 5), the
speed is inversely proportional to the number of agents. Nevertheless, they all
converge quickly to the unique truth-telling equilibrium within four rounds.

Fig. 5. noise = 0.5 Fig. 6. noise = 1

In conclusion, the number of agents (i.e., n) and the initial fraction of mis-
reporting agents (i.e., noise) both do not affect the performance much, and the
strategies of all agents converge quickly to the unique truth-telling equilibrium.
The experimental results validate that our two-stage mechanism is very robust.
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5 Conclusions

In this paper, we consider the problem of obtaining the underlying ordering
(ground truth) among n strategic agents with respect to their performance by
peer assessment. We first prove that there is no deterministic mechanism which
obtains the underlying ordering in a dominant-strategy implementation. Then,
we propose a two-stage mechanism in which truth-telling is the unique strict
Nash equilibrium and it leads to the underlying ordering, except that there is
an arbitrarily small probability of disorder between the last two agents. Note
that such a disorder is proved to be inevitable if a mechanism has a strict Nash
equilibrium leading to the underlying ordering. Moreover, our two-stage mech-
anism only needs n + 1 queries. We then prove an Ω(n) lower bound of query
complexity for any mechanism, which indicates that our mechanism is asymptot-
ically optimal. Finally, the experimental results demonstrate that the proposed
query-optimal two-stage mechanism is also very robust.

Discussions: We discuss the applicability of our results in other query models.
Theorem 1 (Impossibility Theorem) always holds for any query model since our
proof is independent of the query model. For Lemma2, it also always holds since
the fact (the last-ranked agent can always cheat as we demonstrated in the proof)
is irrelevant to the query model. As long as the number of possible answers to
a single query is O(n), Theorem 3 (Lower Bound) also holds. However, it might
be violated if one allows a very powerful query model, e.g. requiring an agent to
answer all the information it knows in just one query (the possible answers to a
single query can be n! in the worst case). For the extension, it is interesting to
consider the situation of collusion.
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