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Abstract. The suffix array is a fundamental data structure for
many applications that involve string searching and data compression.
Designing time/space-efficient suffix array construction algorithms has
attracted significant attentions and considerable advances have been
made for the past 20 years. We obtain the first in-place linear time suffix
array construction algorithms that are optimal both in time and space
for (read-only) integer alphabets. Our algorithm settles the open prob-
lem posed by Franceschini and Muthukrishnan in ICALP 2007. The open
problem asked to design in-place algorithms in o(n log n) time and ulti-
mately, in O(n) time for (read-only) integer alphabets with |Σ| ≤ n. Our
result is in fact slightly stronger since we allow |Σ| = O(n). Besides, we
provide an optimal in-place O(n log n) time suffix sorting algorithm for
read-only general alphabets (i.e., only comparisons are allowed), recov-
ering the result obtained by Franceschini and Muthukrishnan which was
an open problem posed by Manzini and Ferragina in ESA 2002.

Keywords: Suffix sorting · Suffix array · In-place

1 Introduction

In SODA 1990, suffix arrays were introduced by Manber and Myers [25] as
a space-saving alternative to suffix trees [9,29]. Since then, it has been used
as a fundamental data structure for many applications in string processing,
data compression, text indexing, information retrieval and computational biol-
ogy [1,10,12,14,15]. Particularly, the suffix arrays are often used to compute
the Burrows-Wheeler transform [5] and Lempel-Ziv factorization [39]. Compar-
ing with suffix trees, suffix arrays use much less space in practice. Abouelhoda
et al. [2] showed that any problem which can be computed using suffix trees
can also be solved using suffix arrays with the same asymptotic time complex-
ity, which makes suffix arrays very attractive both in theory and in practice.
Hence, suffix arrays have been studied extensively over the last 20 years (see
e.g., [11,18,19,22,31,33,34]). We refer the readers to the surveys [8,35] for many
suffix sorting algorithms.
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In 1990, Manber and Myers [25] obtained the first O(n log n) time suffix
sorting algorithm over general alphabets. In 2003, Ko and Aluru [22], Kärkkäinen
and Sanders [18] and Kim et al. [21] independently obtained the first linear time
algorithm for suffix sorting over integer alphabets. Clearly, these algorithms are
optimal in terms of asymptotic time complexity. However, in many applications,
the computational bottleneck is the space as we need the space-saving suffix
arrays instead of suffix trees, and significant efforts have been made in developing
lightweight (in terms of space usage) suffix sorting algorithms for the last decade
(see e.g., [4,11,13,22,26,28,31–34]). In particular, the ultimate goal in this line
of work is to obtain in-place algorithms (i.e., O(1) additional space), which are
also asymptotically optimal in time.

1.1 Problem Setting

Problem: Given a string T = T [0 . . . n − 1] with n characters, we need to
construct the suffix array (SA) which contains the indices of all sorted suffixes
of T (see Definition 1 for the formal definition of SA).

Here, we consider the following two popular settings. We measure the space
usage of an algorithm in the unit of words same as [11,31]. A word contains
�log n� bits. One standard arithmetic or bitwise boolean operation on word-sized
operands costs O(1) time.

1. Read-only integer alphabets: The input string T is read-only. Each T [i] ∈
[1, |Σ|], where |Σ| = O(n). Note that the constant alphabets (e.g., ASCII
code) is a special case of integer alphabets, and the read-only integer alpha-
bets is commonly used in practice.

2. Read-only general alphabets: The input string T is read-only and the only
operations allowed on the characters of T are comparisons. Each comparison
takes O(1) time. We cannot write the input space, make bit operations, even
copy an input character T [i] to the work space. Clearly, Ω(n log n) time is a
lower bound for suffix sorting in this case, as it generalizes comparison-based
sorting.

The workspace used by an algorithm is the total space needed by the algo-
rithm, excluding the space required by the input string T and the output suffix
array SA. An algorithm which uses O(1) words workspace to construct SA is
called an in-place algorithm. See Tables 11 and 2 for existing and new results.

1.2 Related Work and Our Contributions

Read-Only Integer Alphabets. In ICALP 2007, Franceschini and Muthukr-
ishnan [11] posed an open problem for designing an in-place algorithm that takes
o(n log n) time or ultimately O(n) time for (read-only) integer alphabets with

1 Some previous algorithms state the space usages in terms of bits. We convert them
into words.
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Table 1. Time and workspace of suffix sorting algorithms for read-only integer alpha-
bets Σ

Time Workspace (words) Algorithms

O(n2 log n) cn + O(1) c < 1 [26–28]

O(n2 log n) |Σ| + O(1) [16]

O(n2) O(n) [38]

O(n log2 n) O(n) [36]

O(n log n) O(n) [23,25]

O(vn) O(n/
√

v) v ∈ [1,
√

n] [19]

O(n
√|Σ| log(n/|Σ|)) O(n) [3]

O(n log log n) O(n) [20]

O(n log log |Σ|) O(n log |Σ|/ log n) [13]

O(n log |Σ|) |Σ| + O(1) [32]

O(n) O(n) [18,19,21,22]

O(n) n + n/ log n + O(1) [33,34]

O(n) |Σ| + O(1) [31]

O(n) O(1) This paper

|Σ| ≤ n (in fact, they did not specify whether the input string T is read-only or
not). The current best result along this line is provided by Nong [31], which used
|Σ| words workspace (Nong’s algorithm is in-place if |Σ| = O(1), i.e., constant
alphabets). Note that in the worst case |Σ| can be as large as O(n). We list
several previous results and our new result in Table 1.

In this paper, we settle down this open problem by providing the first optimal
linear time in-place algorithm, as in the following theorem. Note that our result is
in fact slightly stronger since we allow |Σ| = O(n) instead of |Σ| ≤ n mentioned
in the open problem [11].

Theorem 1 (Main Theorem). There is an in-place linear time algorithm for
suffix sorting over integer alphabets, even if the input string T is read-only and
the size of the alphabet |Σ| is O(n).

Read-Only General Alphabets. Now, we consider the case where the only
operations allowed on the characters of string T (read-only) are comparisons.
See Table 2 for an overview of the results. In 2002, Manzini and Ferragina [28]
posed an open problem, which asked whether there exists an O(n log n) time
algorithm using o(n) workspace. In 2007, Franceschini and Muthukrishnan [11]
obtained the first in-place algorithm that runs in optimal O(n log n) time. Their
conference paper is somewhat complicated and densely-argued.

We also give an optimal in-place algorithm which achieves the same result,
as in the following theorem. In addition, our algorithm does not make any bit
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Table 2. Time and workspace of suffix sorting algorithms for read-only general alpha-
bets

Time Workspace (words) Algorithms

O(n log n) O(n) [23,25]

O(vn + n log n) O(v + n/
√

v) v ∈ [2, n] [4]

O(vn + n log n) O(n/
√

v) v ∈ [1,
√

n] [19]

O(n log n) O(1) [11]

O(n log n) O(1) This paper

operations while theirs uses bit operations heavily. Our algorithm is also arguably
simpler.

Theorem 2. There is an in-place O(n log n) time algorithm for suffix sorting
over general alphabets, even if the input string T is read-only and only compar-
isons between characters are allowed.

1.3 Difficulties and Our Approach

Difficulties: Typically, the suffix sorting algorithms are recursive algorithms.
The size of the recursive (reduced) sub-problem is usually less than half of the
current problem. See e.g., [11,19,22,31,33–35]. However, all previous algorithms
require extra arrays, e.g., bucket array (which needs |Σ| words at the top recur-
sive level and n/2 words at the deep recursive levels), type array (which needs
n/ log n words) and/or other auxiliary arrays (which need up to O(n) words), to
construct the reduced problems and use the results of the reduced problems to
sort the original suffixes.2

In particular, Nong et al. [33] made a breakthrough by providing the SA-
IS algorithm which only required one bucket array (which needs max{|Σ|, n/2}
words) and one type array (n/ log n words). Note that the bucket array and type
array are reused for each recursive level.

Currently, the best result was provided by Nong [31]. However, Nong’s algo-
rithm still requires the bucket array for the top recursive level, but not for the
deeper levels. Hence, it needs |Σ| words instead of max{|Σ|, n/2} words. Note
that |Σ| can be O(n) in the worst case for integer alphabets. For the type array,
Nong used this bucket array to indicate the type information at the top recursive
level. For the deeper levels, Nong removed the type array.

Thus, the main technical difficulty is to remove the workspace for the bucket
array at the top recursive level since there is no extra space to use. Note that
it is non-trivial since T is read-only and SA needs to store the final order of all
suffixes. Besides, the previous sorting steps or tricks may not work if one removes
the bucket array. For example, Nong [31] used the bucket array to indicate the

2 The definitions of bucket array and type array can be found in Sect. 2.
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type information. If the bucket array was removed, one would need the type
array.

Our Approach: We briefly describe our optimal in-place linear time suffix sort-
ing algorithms that overcome these difficulties. We provide an interior counter
trick which can implicitly represent the dynamic LF/RF-entry information (see
Sect. 2 for the definition) in SA. Besides, we provide a pointer data structure
which can represent the bucket heads/tails in SA. Combining these two tech-
niques, we can remove the workspace needed by the bucket array entirely. Note
that it is non-trivial for the top recursive level which is the most difficult part,
since the pointer data structure needs nonconstant workspace and we only have
O(1) extra workspace. As a result, we divide the sorting step into two stages
to address this issue. In order to remove the type array, we provide some use-
ful properties and observations which allows us to retrieve the type information
efficiently. For the general alphabets case, we provide simple sorting steps and
extend the interior counter trick to obtain an optimal in-place O(n log n) time
suffix sorting algorithm.

Organization: The remaining of the paper is organized as follows. Section 2
covers the preliminary knowledge. In Sect. 3, we describe the framework and the
details of our optimal in-place suffix sorting algorithm for the read-only integer
alphabets. Finally, we conclude in Sect. 4. For the read-only general alphabets,
we defer the details of our optimal in-place algorithm to the full version of this
paper [24].

2 Preliminaries

Given a string T = T [0 . . . n−1] with n characters, the suffixes of T are T [i . . . n−
1] for all i ∈ [0, n − 1], where T [i . . . j] denotes the substring T [i]T [i + 1] . . . T [j]
in T . To simplify the argument, we assume that the final character T [n − 1]
is a sentinel which is lexicographically smaller than any other characters in Σ.
Without loss of generality, we assume that T [n − 1] = 0.3 Any two suffixes in
T must be different since their lengths are different, and their lexicographical
order can be determined by comparing their characters one by one until we see
a difference due to the existence of the sentinel.

Definition 1. The suffix array SA contains the indices of all suffixes of T which
are sorted in lexicographical order, i.e., suf(SA[i]) < suf(SA[j]) for all i < j,
where suf(i) denotes the suffix T [i . . . n − 1].

For example, if T = “1220”, then all suffixes are {1220, 220, 20, 0} and SA =
[3, 0, 2, 1]. Note that SA always uses n words no matter what the alphabets Σ
are, since it contains the permutation of {0, . . . , n − 1}, where n is the length of
T .

A suffix suf(i) is said to be S-suffix (S-type suffix) if suf(i) < suf(i + 1).
Otherwise, it is L-suffix (L-type suffix) [22]. The last suffix suf(n−1) containing
3 Some previous papers use $ to denote the sentinel.
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only the single character 0 (the sentinel) is defined to be an S-suffix. Equivalently,
the suf(i) is S-suffix if and only if (1) i = n − 1; or (2) T [i] < T [i + 1]; or (3)
T [i] = T [i + 1] and suf(i + 1) is S-suffix. Obviously, the types can be computed
by a linear scan of T (from T [n − 1] to T [0]). We further define the type of a
character T [i] to S-type (or L-type resp.) if suf(i) is S-suffix (or L-suffix resp.).
For the same example, the types are “SLLS”.

A suffix suf(i) is called an LMS-suffix (Leftmost S-type) if T [i] is S-type
and T [i − 1] is L-type, for i ≥ 1 [33]. Similarly, a character T [i] is called LMS-
character if suf(i) is LMS-suffix. A substring T [i . . . j] is called an LMS-substring
if both T [i] and T [j] are LMS-characters, and there is no other LMS-characters
between them, or i = j = n − 1 (the single sentinel). We also define the LML-
suffix (Leftmost L-type), LML-character and LML-substring similarly.

Obviously, the indices of all suffixes, which begin with the same character,
must appear consecutively in SA. We denote a subarray in SA for these suffixes
with the same beginning character as a bucket, where the head and the tail of
a bucket refer to the first and the last index of the bucket in SA respectively.
Moreover, we define the first common character as its bucket character. For the
same example SA = [3, 0, 2, 1], the buckets are {SA[0],SA[1],SA[2, 3]} and the
bucket characters are 0, 1, 2, respectively. If the bucket character is T [i], we refer
to the bucket as bucket T [i]. The bucket head and tail of bucket 2 is 2 and
3, respectively. Note that S-suffixes always appear after the L-suffixes in any
bucket, i.e., if an S-suffix and an L-suffix begin with the same character, the
L-suffix is always smaller than the S-suffix.

Induced Sorting: The induced sorting technique, developed by Ko and Aluru
[22], is responsible for many recent advances of suffix sorting algorithms [11,31,
33–35], and is also crucial to us. It can be used to induce the lexicographical order
of L-suffixes from the sorted S-suffixes. Now, we briefly introduce the standard
induced sorting technique which needs the bucket array and type array explicitly.
The bucket array contains |Σ| integers and each denotes the position of a bucket
head/tail (depending on induced sorting the L-suffixes or S-suffixes) in SA. The
type array contains n bits and each entry denotes an L/S-type information for
T (i.e., 0 for L-type and 1 for S-type).

Inducing the Order of L-suffixes from the Sorted S-suffixes: Assume
that all indices of the sorted S-suffixes are already in their correct positions in
SA (i.e., in the tail of their corresponding buckets in SA). Now, we define some
new notations (e.g., LF/RF-entry) to simplify the representation. We scan SA
from left to right (i.e., from SA[0] to SA[n − 1]). We maintain an LF-pointer
(leftmost free pointer) for each bucket which points to the leftmost free entry
(called the LF-entry) of the bucket. The LF-pointers initially point to the head
of their corresponding buckets. When we scan SA[i], let j = SA[i] − 1. If suf(j)
is an L-suffix (indicated by the type array), we place the index of suf(j) (i.e., j)
into the LF-entry of bucket T [j], and then let the LF-pointer of this bucket T [j]
point to the next free entry. The LF-pointers are maintained in the bucket array.
If suf(j) is an S-suffix, we do nothing (since all S-suffixes are already sorted in
the correct positions). We give a running example in our full version [24].
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Sorting all S-suffixes from the sorted L-suffixes is completely symmetrical: we
scan SA from right to left, maintaining an RF-pointer (rightmost free pointer) for
each bucket which points to the RF-entry (rightmost free entry) of the bucket.

The idea of induced sorting is that the lexicographical order between suf(i)
and suf(j) is decided by the order of suf(i+1) and suf(j +1) if suf(i) and suf(j)
are in the same bucket (i.e., T [i] = T [j]). We only need to specify the correct
order of these L-suffixes in the same buckets since we always place the L-suffixes
in their corresponding buckets. Consider two L-suffixes suf(i) and suf(j) in the
same bucket. We have suf(i+1) < suf(i) and suf(j+1) < suf(j) by the definition
of L-suffix. Since we scan SA from left to right, suf(i + 1) and suf(j + 1) must
appear earlier than suf(i) and suf(j). Hence the correctness of induced sorting
is not hard to prove by induction.

Actually, Nong et al. [33] observed that one can sort all L-suffixes from the
sorted LMS-suffixes (instead of S-suffixes). Roughly speaking, the idea is that
in the induced sorting, only LMS-suffixes are useful for sorting L-suffixes. We
also provide a running example in the full version [24]. They also showed that
one can use the same induced sorting step to sort all LMS-substrings from the
sorted LMS-characters of T .

Note that in this preliminary section, the induced sorting steps are not in-
place since they require explicit storage for the bucket and type arrays.

3 Suffix Sorting for Read-Only Integer Alphabets

In this section, we provide an interior counter trick which can implicitly repre-
sent the dynamic LF/RF-entry information in SA. Besides, we provide a pointer
data structure which can represent the bucket heads/tails in SA. Combining
these two techniques, we can remove the workspace needed by the bucket array
entirely. To address the issue of the hardest part (i.e. the top recursive level),
we divide the sorting step into two stages. For removing the type array, we give
some useful properties and observations between string T and SA to obtain the
L/S-type information.

3.1 Framework

First, we define some notations. Let nL and nS denote the number of L-suffixes
and S-suffixes, respectively. Let n1 denote the length of the reduced problem T1,
i.e., n1 equals to the number of LMS-suffixes (Case 1) or LML-suffixes (Case 2).
Note that the number of LMS-characters, LMS-suffixes, and LMS-substrings are
the same. Now, we describe the framework of our algorithm as follows:

1. If nL ≤ nS (i.e., the number of L-suffixes is no larger than that of S-suffixes),
then:
(1) (Sect. 3.2) Sort all LMS-characters of T .

We use counting sort to sort all LMS-characters of T in SA[n−n1 . . . n−1].
In the counting sort step, we use SA[0 . . . n/2] as the temporary space
(counting array). After this step, all indices of the sorted LMS-characters
are stored in SA[n − n1 . . . n − 1].
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(2) (Sect. 3.4) Induced sort all LMS-substrings from the sorted LMS-
characters.
This induced-sorting step is the same as Step (4) below where we induced-
sort all suffixes from the sorted LMS-suffixes. Thus, we only describe the
details of this step in Sect. 3.4. After this step, all indices of the sorted
LMS-substrings are stored in SA[n − n1 . . . n − 1].

(3) (Sect. 3.3) Construct and solve the reduced problem T1 from the sorted
LMS-substrings.
We construct the reduced problem T1 using the ranks of all sorted LMS-
substrings which are stored in SA[n−n1 . . . n−1], where the ranks of LMS-
substrings correspond to the lexicographical order of the sorted LMS-
substrings. Then we get the reduced problem T1 in SA[0 . . . n1 − 1] and
solve T1 recursively to obtain the sorted LMS-suffixes. In the recursive
step, we use SA1 = SA[n−n1 . . . n−1] as the output space for T1. After this
step, all indices of the sorted LMS-suffixes are stored in SA[n−n1 . . . n−1].

(4) (Sect. 3.4) Induced sort all suffixes of T from the sorted LMS-suffixes (T1).
We induced-sort all suffixes of T from the sorted LMS-suffixes which are
stored in SA[n − n1 . . . n − 1]. Note that the in-place implementation of
this induced sorting step is the main technical part of our optimal in-place
algorithm. As we discussed before, we develop the interior counter trick
and the pointer data structure, and then divide this sorting step into two
stages to remove the workspace. After this step, all indices of the suffixes
of T are sorted and stored in SA[0 . . . n − 1].

2. Otherwise, execute the above steps switching the role of LMS with LML.

Without loss of generality, we assume that nL ≤ nS . Note that we compare
the number of L-suffixes and S-suffix at the beginning since we need half of the
space of SA to construct our pointer data structure for induced-sorting the L-
suffixes (from the sorted LMS-suffixes) and S-suffixes (from the sorted L-suffixes)
in Step (4). Note that the empty space is enough since the number of LMS-
suffixes (i.e., n1) and L-suffixes (i.e., nL) both are less than or equal to n/2, where
n1 ≤ n/2 since any two LMS-characters are not adjacent by the definition of
LMS-characters, and nL ≤ n/2 since nL ≤ nS . Note that for previous algorithms
(e.g., [31,33]), they do not need the comparison at the beginning since they use
the bucket array (which needs |Σ| words workspace) in the induced sorting step
(i.e. Step (4)). Here, we construct the pointer data structure and combine our
interior counter trick to remove the bucket array.

Now, we describe the details of our in-place algorithm in the following sec-
tions.

3.2 Sort All LMS-Characters of T

In this section, we sort all LMS-characters of T and place their indices in SA[n−
n1 . . . n − 1]. Recall that n1 denotes the number of LMS-characters.

Now, we describe the details. Since |Σ| = O(n), we can assume that |Σ| ≤ dn
for some constant d. We divide the LMS-characters of T into 2d partitions and
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sort each partition one by one. The partition i contains the LMS-characters which
belong to

[
i|Σ|
2d + 1, (i+1)|Σ|

2d

]
, for 0 ≤ i < 2d. We use mi to denote the number

of LMS-characters in partition i. Then for each partition i, we use the standard
counting sort (see e.g., [7, Chap. 8]) to sort these mi LMS-characters (the LMS-
characters can be identified by scanning T once from right to left). Concretely, we
use SA[0 . . . n/2] as the temporary counting array, and use SA[n/2 +

∑i−1
j=0 mj +

1 . . . n/2+
∑i

j=0 mj ] as the output array. After this counting sort step, the indices
of these mi sorted LMS-characters have been placed in SA[n/2 +

∑i−1
j=0 mj +

1 . . . n/2 +
∑i

j=0 mj ].
Note that we can use the counting sort step for each partition. Because the

gap of each partition is |Σ|
2d ≤ dn

2d = n
2 , the space of SA[0 . . . n/2] is enough for the

temporary counting array (its size equals to the gap) of counting sort step. It is
not hard to see that the sorting step takes O(n) time and uses O(1) workspace
since we only make 2d times of counting sort steps (each step takes linear time).

After sorting all 2d partitions, all indices of the sorted LMS-characters are
placed in SA[n/2 + 1, n/2 +

∑2d−1
j=0 mj ] (i.e., SA[n/2 + 1, n/2 + n1]). Then we

move them to SA[n − n1 . . . n − 1], which can be easily done in linear time and
O(1) workspace.

3.3 Sort All LMS-Suffixes of T by Solving the Reduced Problem T1

Construct the Reduced Problem T1: We construct the reduced problem
T1 using the ranks of all sorted LMS-substrings which are stored in SA[n −
n1 . . . n − 1] from the Step (2) (see the framework in Sect. 3.1), where the ranks
of LMS-substrings are corresponding to the lexicographical order of the sorted
LMS-substrings. Note that this construction step is not difficult and similar to
the previous algorithms (e.g., [31,33]).

Now, we spell out the details for this step. Initially, all LMS-substrings are
sorted in SA[n−n1 . . . n−1]. First, we let the rank of the smallest LMS-substring
(i.e., the LMS-substring which begins from index SA[n − n1]) be 0 (it must be
the sentinel). Then, we scan SA[n−n1 +1 . . . n−1] from left to right to compute
the rank for each LMS-substring. When scanning SA[i], we compare the LMS-
substring corresponding to SA[i] and that corresponding to SA[i−1]. If they are
the same, SA[i] gets the same rank as SA[i − 1]. Otherwise, the rank of SA[i]
is the rank of SA[i − 1] plus 1. Since we have no extra space, we need to store
the ranks in SA as well. In particular, the rank of SA[i] is stored in SA[�SA[i]

2 �].
There is no conflict since any two LMS-characters are not adjacent. Finally, we
shift nonempty entries in SA[0 . . . n − n1 − 1] to the head of SA, so that the
ranks occupy a consecutive segment of the space. Now, we have obtained the
reduced problem T1 which is stored in SA[0 . . . n1 − 1]. In other words, SA[i]
(i ∈ [0, n1 − 1]) stores the new name of the i-th LMS-substring with respect to
its appearance in the input string T . An example of this step can be found in
our full version [24].

Now, we have the following lemma.
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Lemma 1. T1 can be constructed and stored in SA[0 . . . n1 −1] using O(n) time
and O(1) workspace.

The proof easily follows from the following observation, i.e., the whole compari-
son process takes O(n) time because the total length of all LMS-substrings (each
of them is identified by this observation) is less than 2n.

Observation 1. For any index i of T , let j ∈ [i+1, n−1] be the smallest index
such that T [j] < T [j + 1] (So T [j] is S-type). Furthermore let k ∈ [i + 1, j] be
the smallest index such that T [l] = T [j] for any k ≤ l ≤ j. Then T [k] is the first
S-type character after index i. Moreover, all characters between T [i] and T [k]
are L-type, and characters between T [k] and T [j] are S-type.

Solve T1 Recursively: Now, we sort all LMS-suffixes by solving T1 recursively
and place their indices in the tail of SA (i.e. SA[n − n1 . . . n − 1]). This step is
carried out as follows:

1. We first solve T1 recursively. Recall that T1 is stored in SA[0 . . . n1 − 1]. We
define SA1 to be SA[n − n1 . . . n − 1] and use SA1 to store the output of the
subproblem T1.

2. Now, we put all indices of LMS-suffixes in SA. First we move SA1 to
SA[0 . . . n1 − 1] (i.e., move SA[n − n1 . . . n − 1] to SA[0 . . . n1 − 1]). Then
we scan T from right to left. For every LMS-character T [i], place i (i.e., index
of suf(i)) in the tail of SA.

3. For notational convenience, we define LMS[0 . . . n1] � SA[n − n1 . . . n − 1].
Now, we obtain the sorted order of all LMS-suffixes of the original string T
by letting SA[i] = LMS[SA[i]] for all i ∈ [0, n1 − 1].

4. Finally, we finish this step by moving SA[0 . . . n1 − 1] to SA[n − n1 . . . n − 1].
Now, all indices of the sorted LMS-suffixes are stored in SA[n − n1 . . . n − 1].

Lemma 2. All LMS-suffixes can be sorted by solving the reduced problem T1

recursively and placed in the tail of SA using O(n) time and O(1) workspace.

Proof. The time and space used in this step are easy to verify.4 We only show the
correctness of this step. Each character of T1 corresponds to an LMS-substring
of T and this character is the rank of the corresponding sorted LMS-substring.
Hence, the lexicographical order of LMS-suffixes of T is the same as the order
of suffixes in T1.

3.4 Induced-Sort All Suffixes of T from the Sorted LMS-Suffixes

In this section, we show how to in-place induced-sort all suffixes from the sorted
LMS-suffixes which have been placed in SA[n−n1 . . . n−1] from the previous step
(see Lemma 2). Let SAL = SA[0 . . . nL − 1] and SAS = SA[nL . . . n − 1]. Recall
4 If one worries the O(log n) workspace in the recursion, one can use the highest bits

in SA (i.e., n bits) to store them since the size of the reduced sub-problem is no
larger than n/2.
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that nS and nL denote the number of S-suffixes and L-suffixes, respectively. Also
note that nL + nS = n. First, we sort all nL L-suffixes from the sorted LMS-
suffixes which are stored in SA[n − n1 . . . n − 1] and store the sorted L-suffixes
in SAL. Then, we sort all nS S-suffixes from the sorted L-suffixes and store the
sorted S-suffixes in SAS . Note that sorting the L-suffixes from the sorted LMS-
suffixes is totally symmetrical as sorting the S-suffixes from the sorted L-suffixes,
as stated in Sect. 2. Thus, we only need to show the details of how to sort all nS

S-suffixes from the sorted L-suffixes which has already been stored in SAL, and
then store the sorted S-suffixes in SAS .

We briefly recall the original (not in-place) induced sorting step here. We
scan SA from right to left (i.e., from SA[n − 1] to SA[0]). When we scan SA[i],
let j = SA[i] − 1. If suf(j) is an S-suffix (indicated by the type array), we place
the index of suf(j) (i.e. j) into the RF-entry of bucket T [j], and then let the RF-
pointer of this bucket T [j] point to the next free entry. If T [j] is L-type, we do
nothing (since all L-suffixes are already sorted). The RF-pointers are maintained
by the bucket array.

Inducing the Order of S-suffixes from the Sorted L-suffixes: In order
to obtain the in-place algorithm, we develop the interior counter trick and the
pointer data structure to remove the workspace needed by the bucket array
and type array in the induced sorting step. Briefly speaking, the purpose of
the pointer data structure is to indicate the bucket tails of S-suffixes, and the
purpose of the interior counter trick is to maintain the RF-pointers of the buckets
dynamically. Thus, for a query of RF-entry for suf(j) in bucket T [j], we know
the tail of the bucket T [j] from the pointer data structure in constant time
(Lemma 6), then we use the interior counter trick to indicate the RF-entry in
this bucket (Lemma 3). For removing the type array, we use the Lemma 4 to
identify the L/S-suffixes in the induced sorting step.

Now, we describe the details step by step. First, we introduce our interior
counter trick assuming that the tail of the bucket of any S-suffix is known (which
is indicated by the Lemma 6).

Interior Counter Trick: Note that the buckets of the S-suffixes we discussed
in this section are in SAS = SA[nL . . . n − 1], since we already have placed the
sorted L-suffixes in SAL = SA[0 . . . nL − 1]. Thus, we only need to sort all S-
suffixes to their corresponding buckets in SAS and the buckets only contains
S-suffixes now.

Here we only describe the details of interior counter trick for one bucket since
other buckets are the same. Recall that we assume that the tail of the bucket
of any S-suffix is known (Lemma 6). Thus, to simplify the representation, we
assume the bucket from index 0 to index m − 1 of SAS , where m is the size of
this bucket (i.e. the number of S-suffixes in this bucket is m). We only describe
the case where m > 3 since other cases with m ≤ 3 are similar and simpler. We
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define five special symbols BH (head of the bucket), BT (tail of the bucket), E
(Empty), R1 (one remaining S-suffix) and R2 (two remaining S-suffixes)5.

First, we use three special symbols to initialize this bucket, i.e., let SAS [0] =
BH, SAS [m − 2] = E and SAS [m − 1] = BT. Let Si denote the index of the
i-th S-suffix which needs to be placed into the RF-entry of this bucket. Now,
we describe how to place the indices of these m S-suffixes into the RF-entry of
this bucket one by one. We distinguish the following four cases (To demonstrate
these four cases more clearly, we also provide a demonstration in our full version
[24].):

(1) If SAS [m − 1] = BT, and SAS [m − 2] = E or SAS [m − SAS [m − 2] − 3] 	= BH:
In this case, we place the index of the current S-suffix (i.e., Si) into the RF-
entry of this bucket, where 1 ≤ i ≤ m − 3. Concretely, we know the position
of the tail of this bucket in SAS , i.e., m − 1 according to the assumption.
Then, we use SAS [m− 2] as the counter to denote the number of the indices
of S-suffixes has been placed so far. Note that the RF-entry of this bucket
is pointed by this counter (i.e. RF-pointer). Thus, we can place the index of
the current S-suffix (Si) into the RF-entry of this bucket in constant time,
and then update the counter SAS [m − 2].

(2) If SAS [m − 1] = BT and SAS [m − SAS [m − 2] − 3] = BH: In this case, we
place the index of the third to last S-suffix (i.e. Sm−2) into the RF-entry of
this bucket. Concretely, we shift the previous m − 3 S-suffixes which stored
in SAS [1, . . . , m − 3] to SAS [2, . . . , m − 2]. Then, we place Sm−2 into SAS [1]
and let SAS [m − 1] = R2. This step takes O(m) time since we shift m − 3
S-suffixes.

(3) If SAS [m − 1] = R2: In this case, we place the index of the second to last
S-suffix (i.e. Sm−1) into the RF-entry of this bucket. We shift the previous
m−2 S-suffixes which stored in SAS [1, . . . , m−2] to SAS [2, . . . , m−1]. Then,
we place Sm−1 into SAS [1] and let SAS [0] = R1. This step takes O(m) time
since we shift m − 2 S-suffixes.

(4) Otherwise: In this case, we place the index of the last S-suffix (i.e. Sm) into
the RF-entry of this bucket. First, we know the tail of the bucket indicated
by our pointer data structure in constant time. Then, we search the entries
before the tail one by one until that we find the special symbol R1. We let this
entry to be Sm. This step takes O(m) time since we search m − 1 S-suffixes.

Note that this step uses O(1) workspace since there is no bucket array and
type array, and the space needed by our interior counter trick and pointer data
structure is in SAS . The purpose of the interior counter trick is to dynamic
maintain the RF-pointers of the buckets. E.g., for a query of RF-entry for suf(j)
in bucket T [j], first we know the tail of the bucket T [j] by the assumption, then

5 We use at most five special symbols in this paper. The special symbol is only used to
simplify the argument and we do not have to impose any additional assumption to
accommodate these symbols (including the read-only general alphabets case). These
special symbols can be handled using an extra O(1) workspace. The details can be
found in our full version [24].
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we use the interior counter trick to indicate the RF-entry in this bucket. We
have the following lemma.

Lemma 3. If the tail of the bucket of any S-suffix is known, one can sort the S-
suffixes from the sorted L-suffixes using the induced sorting step with the interior
counter trick in linear time and O(1) workspace.

Note that in the induced sorting step, one uses the type array to identify
whether the suf(j) is S-suffix or not. For removing the type array, we use the
following Lemma 4 to identify the type of the L- or S-suffix in the induced-
sorting step. Note that it is not hard to decide whether all S-suffixes in the
current scanning bucket T [SA[i]] are already sorted or not by using an extra
variable (reused for all buckets).

Lemma 4. If T [j] 	= T [SA[i]], the type of suf(j) can be obtained immediately,
where j = SA[i] − 1. Otherwise T [j] = T [SA[i]] (this case suf(j) belongs to the
current scanning bucket T [SA[i]]), if all S-suffixes of T that belong to bucket
T [SA[i]] are not already sorted, then the suf(j) is S-suffix.

Get the Tails of the Buckets: Now, there is only one thing left: how to know
the tails of the bucket of S-suffixes in the induced sorting step (this is the only
assumption we used above). The purpose of the pointer data structure is to
indicate the tails of the bucket of S-suffixes. However, the pointer data structure
requires cp words, where the value of cp will be specified later. Thus, we need
to divide this induced-sorting step into two stages. The first stage is to sort the
first nS −cp S-suffixes (i.e. the largest nS −cp S-suffixes), where our pointer data
structure exists. The second stage is to sort the last cp S-suffixes, where there is
no space for the pointer data structure.

The First Stage: Now, we construct our pointer data structure which supports
to find the tails of the buckets in constant time. We store the pointer data
structure in the tail of SAS , recall that SAS = SA[nL, . . . , n−1]. Now, we describe
the details. We divide the S-suffixes of T into 4d parts according to their first
characters, and construct the pointer data structure for each part respectively.
The 4d parts are divided by T [j] ∈

[
i|Σ|
4d + 1, (i+1)|Σ|

4d

]
, for 0 ≤ i < 4d. Let Di

denote the pointer data structure of the i-th part. We only show the details how
we construct the pointer data structure D0 as follows, since constructing Di is
similar for 0 < i < 4d (i.e., shift T [j] with i|Σ|

4d ).

(1) First, we let SAS [i] = 1 for all i ∈ [1, |Σ|
4d ]. Then we scan T from right to left.

For every S-type T [i] ∈ [1, |Σ|
4d ], we increase SAS [T [i]] by one.

(2) Then we scan SAS [1 . . . |Σ|
4d ] from left to right. We use a variable sum to

count the sum, first initialize sum = −1. For each SAS [i] which is being
scanned, first let sum = sum + SAS [i], then let SAS [i] = sum. Now, for any
S-suffix suf(i) satisfying T [i] ∈ [1, |Σ|

4d ], SAS [T [i]] − T [i] must indicate the
tail of bucket T [i] in SAS . Since we want every entry in SAS [1 . . . |Σ|

4d ] to be
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distinct, we initialize SAS [i] = 1 for all i ∈ [1, |Σ|
4d ] in Step (1). Hence the tail

of bucket T [i] is SAS [T [i]] − T [i].
(3) Finally, we construct D0 for SAS [1 . . . |Σ|

4d ] according to Lemma 5. D0 uses
at most c(n + |Σ|

4d )/ log n words space. We store D0 in the tail of SAS (i.e.,
SAS [nS − c(n + |Σ|

4d )/ log n . . . nS − 1]). D0 supports to find the tail of the
bucket of any S-suffix suf(i) satisfying T [i] ∈ [1, |Σ|

4d ] in constant time.

Lemma 5. For any m distinct integers 0 ≤ a0 < a1 . . . < am−1 ≤ n, where
m ≤ n and n > 1024, one can construct a data structure using linear time (i.e.,
O(n) time) and at most cn/ log n words, where 1 < c < 2, such that each query
to the i-th smallest integer ai (select(i)) can be answered in constant time.

The Lemma 5 is proved by using the classical select query in a bitmap (see
e.g., [6,17,30]). The proof can be found in our full version [24]. After this step,
the pointer data structure (i.e. Di for all 0 ≤ i < 4d) is stored in SAS [nS −
cp . . . nS −1], where cp = �4d · (c(n+ |Σ|

4d )/ log n)� ≤ �5dcn/ log n�. Now, we have
the following lemma.

Lemma 6. We can construct the pointer data structure in linear time, and this
pointer data structure uses at most cp words and can support to find the bucket
tail of any S-suffix in constant time.

Now according to Lemmas 3, 4 and 6, we can sort the first largest nS − cp S-
suffixes from the sorted L-suffixes which stored in SAL using the induced sorting
step.

The Second Stage: Now, we describe the details to sort the last cp S-suffixes
which is occupied by our pointer data structure. First, we move the sorted largest
nS −cp S-suffixes to the tail of SAS , i.e., SAS [cp, nS −1]. Then we scan the T from
right to left to place the smallest cp S-suffixes into SAS [0, cp − 1]. Now, we use
merge sort with the in-place linear time merging algorithm [37] to sort these cp

S-suffixes, the sorting key for each S-suffix is its beginning character. After this
sorting step, these cp S-suffixes have been placed in their corresponding buckets
in SAS [0, cp − 1]. Note that we can use the same sorting step (which we used
for sorting the first nS − cp S-suffixes) to sort the last cp S-suffixes without the
pointer data structure.

The key point is that we can use the binary search (instead of the pointer
data structure) to find the tails of the bucket for these cp S-suffixes, since cp ≤
�5dcn/ log n� is small enough (i.e. cp log n = O(n)) to maintain that the time
complexity of our algorithm is O(n). Using the binary search to extend interior
counter trick is not very difficult, one can find the details in our full version [24]
where we induced sort all L-suffixes from the sorted S-suffixes for the read-only
general alphabets.

After the second stage, all nS S-suffixes are sorted in SAS . Now we have all
sorted L-suffixes in SAL (i.e., SA[0 . . . nL − 1]) and all sorted S-suffixes in SAS

(i.e., SA[nL . . . n − 1]). Then, we use the stable, in-place, linear time merging
algorithm [37] to merge the ordered SAL and SAS (the merging key for SA[i] is
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T [SA[i]], i.e., the first character of suf(SA[i])). After this merging step, all suffixes
of T have be sorted in SA[0 . . . n − 1].

Theorem 3 (Main Theorem). Our Algorithm takes O(n) time and O(1)
workspace to compute the suffix array of string T over integer alphabets Σ, where
T is read-only and |Σ| = O(n).

4 Conclusion

In this paper, we present the optimal in-place algorithms for suffix sorting over
(read-only) integer alphabets and read-only general alphabets. All of them are
optimal both in time and space. Concretely, we provide the first optimal lin-
ear time in-place suffix sorting algorithm for (read-only) integer alphabets. Our
algorithms solve the open problem posed by Franceschini and Muthukrishnan
in ICALP 2007 [11]. For the read-only general alphabets (the details of this
part can be found in our full version [24]), we provide simple sorting steps to
obtain an optimal in-place O(n log n) time suffix sorting algorithm, which recov-
ers the result obtained by Franceschini and Muthukrishnan [11] which was an
open problem posed by Manzini and Ferragina [28].
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In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol.
2676, pp. 186–199. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44888-8 14

22. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
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