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Abstract—Due to the powerful representation ability and su-
perior performance of Deep Neural Networks (DNN), Federated
Learning (FL) based on DNN has attracted much attention from
both academic and industrial fields. However, its transmitted plain-
text data causes privacy disclosure. FL based on Local Differential
Privacy (LDP) solutions can provide privacy protection to a certain
extent, but these solutions still cannot achieve adaptive perturba-
tion in DNN model. In addition, this kind of schemes cause high
communication overheads due to the curse of dimensionality of
DNN, and are naturally vulnerable to backdoor attacks due to the
inherent distributed characteristic. To solve these issues, we pro-
pose an Efficient and Secure Federated Learning scheme (ESFL)
against backdoor attacks by using adaptive LDP and compressive
sensing. Formal security analysis proves that ESFL satisfies ε-LDP
security. Extensive experiments using three datasets demonstrate
that ESFL can solve the problems of traditional LDP-based FL
schemes without a loss of model accuracy and efficiently resist the
backdoor attacks.

Index Terms—Adaptive local differential privacy, backdoor
attacks, compressive sensing, federated learning.

I. INTRODUCTION

A S A distributed learning paradigm, Federated Learning
(FL) [1] originally intends to prevent the direct disclosure

of clients’ raw data and solve the problem of data island. Dif-
ferent from the conventional centralized learning, FL delegates
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model training to clients who later upload local models or
updates to the server. But the transmitted plaintext data still
causes privacy leakage [2], [3]. In addition, due to the distributed
nature, we cannot pledge that all clients are honest and their
data is harmless. For example, a client may collect contaminated
pictures from Internet as its local dataset for the training of image
classifiers. Owing to less computation and communication over-
heads of Differential Privacy (DP), the DP-based FL solutions
have been extensively explored [4], [5], [6], [7], [8], [9]. Among
the above FL solutions, the Deep Neural Networks (DNN)
is a commonly used machine learning model as it possesses
powerful representation ability for complex nonlinear problems
and superior performance. However, there are still some issues to
be solved in previous DP-based FL schemes using DNN model
structure.

Non-Adaptability of DP: The traditional DP mechanisms
have a thorny problem that the sampled noise obeys a random
distribution of noise source such as Gaussian noise, and we
cannot control the noise level imposed on a single model pa-
rameter. There is a common situation that the excessive noise
is added to the model parameter which is critical to the main
task, resulting in serious damage to the model accuracy and
making many schemes face a tradeoff between model accuracy
and privacy protection. To solve the problem of excessive noise,
an improved DP mechanism [9] achieves the so-called adaptive
perturbation by exploring hierarchical characteristics of DNN
to perturb the parameters of different layers to different degrees.
Specifically, [9] perturbs the parameters layer by layer according
to the range interval of parameters in each layer. However,
the perturbation function used in the scheme just perturbs all
parameters of the same layer to two fixed values, which does
not achieve the real adaptability.

Dimension Disaster of DNN: Since the DNN model has the
dilemma of high dimensions, the resource-limited clients such as
mobile phones or wearable devices cannot afford huge commu-
nication overheads. A straightforward idea is to compress model,
such as model pruning [10], tensor decomposition [11], weight
quantization [12] and knowledge distillation [13]. Although
those methods can be applied to reduce communication costs to
some extent, they still either incur high burden on clients or cause
loss of model accuracy. For example, model pruning consumes
extra space to mark the location of pruned parameters, tensor
decomposition involves decomposing a high-dimensional tensor
into the sum of multiple low-rank tensors, which incur high
storage and computation overheads respectively. The weight

https://orcid.org/0000-0003-3260-4530
https://orcid.org/0000-0001-5506-0367
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0002-3934-2177
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0003-3491-8146
mailto:ybmiao@xidian.edu.cn
mailto:xierongpeng@stu.xidian.edu.cn
mailto:xhli1@mail.xidian.penalty -@M edu.cn
mailto:xhli1@mail.xidian.penalty -@M edu.cn
mailto:zqliu@vip.qq.com
mailto:raymond.choo@fulbrightmail.org
mailto:robertdeng@smu.edu.sg


quantization reduces the number of bits representing parame-
ters, which leads to loss of model accuracy. And knowledge
distillation trains a complicated teacher model with high time
cost.

Backdoor Attacks Against FL: Due to the inherently dis-
tributed nature, FL faces various attacks caused by malicious
clients or their adversarial manipulations, such as poisoning
attacks where the adversary can arbitrarily manipulate the local
models of malicious clients to corrupt the final global model.
Among these attacks, we only focus on backdoor attacks, a
subclass of poisoning attacks. The backdoor attacks inject al-
most negligible triggers into training data and alter correspond-
ing labels to adversary-chosen ones, which make the model
abnormal when it encounters data with the triggers. Most of
existing defenses use the anomaly detection mechanisms to filter
outliers [4], [14], [15], or design a variety of robust aggregation
algorithms to alleviate the effect of the backdoor [16], [17], [18].

However, anomaly detection-based defenses require prior
knowledge of adversary’s attack strategy and distributions of
clients’ local datasets, which are strong assumptions and violate
the fundamental premise of FL. For example, those solutions
assume that the parameters of poisonous models are significantly
greater than those of benign ones, which makes the poisonous
ones to be easily detected and filtered. But the backdoored
model outputs similar results with other benign models in most
inputs, causing these methods invalid. Moreover, aggregation
algorithms requiring trusted server have been proven ineffective
in FL, in which the filtering steps fail to clean the backdoor [19].
Using the traditional DP can get a great defense effect, but it will
lead to a sharp decline in the model utility.

Our Approach: To solve the above issues, we propose an
Efficient and Secure Federated Learning scheme (ESFL) against
backdoor attacks. In ESFL, we utilize the hierarchical charac-
teristics of DNN [9], but more finely consider the value of each
parameter and design the perturbation function to realize the real
adaptability. Specifically, we first add Gaussian noise locally,
and then use the adaptive perturbation function to regulate the
added Gaussian noise, thereby alleviating the serious decline
in model accuracy. In addition, ESFL exploits the Compres-
sive Sensing (CS) [8], [20] to ease the uplink communication
overheads of clients, which is a simple and fast method that in-
cludes both compression and decompression. Experiments have
demonstrated that ESFL can indeed improve the model accuracy
under a lower privacy budget, reduce the high communication
costs and resist the backdoor attacks. The main contributions of
this paper are summarized as follows:
� In the conference version of CAFL [21], we design a

novel adaptive DP mechanism to implement the privacy-
preserving FL, which improves the model utility under a
lower privacy budget and adjusts the dilemma of excessive
noise used in the traditional DP mechanisms, and apply
CS to efficiently compress the local models to reduce high
communication overheads, which accurately decompress
the global model to guarantee the model utility.

� In this improved version of ESFL, we apply adaptive DP
combined with Gaussian noise to resist backdoor attacks,
which not only has the advantages of CAFL but also
achieves a lower attack success rate.

� Our strict mathematical derivation proves that ESFL satis-
fies ε-LDP security. We also conduct extensive experiments
to demonstrate that ESFL achieves the best model accuracy
and lowest attack success rate using different datasets,
when compared with previous state-of-the-art solutions.

The remainder of this paper is organized as follows: we begin
with introducing some work related to this paper in Section II
followed by preliminaries in Section III. Then we formalize
the problems to be solved in this paper in Section IV. Our
scheme’s details will be described in Section V and we give
the mathematical privacy analysis of our scheme in Section VI.
We conduct extensive evaluations and show the results in Sec-
tion VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

In this section, we will introduce some related work about
privacy-preserving FL based on DP and defense measures
against backdoor attack.

A. DP-Based Privacy-Preserving Federated Learning

As a lightweight privacy protection mechanism, DP can add
noise to protect data without increasing the burden of resource-
constrained clients, which has attracted much attention from
both academic and industrial fields. For example, Geyer et al.
countered differential attacks by adding Gaussian noise at the
client level, hiding the contribution of the client to the global
model [6]. But their goal is to deduce whether a client partic-
ipates in training rather than to protect the training data itself.
Seif et al. studied FL in wireless channel modeled by Gaussian
multiple access channel, and realized private wireless gradient
aggregation through random Gaussian noise [7]. Kerkouche et
al. put forward FL-CS-DP by using compressive sensing and
Gaussian noise. This scheme first compresses and clips the local
model updates, then adds Gaussian noise, finally allows the
server to aggregate the updates and restore the global model [8].
However, this scheme has a strong assumption that the model
updates are sparse, which is difficult to meet in practice.

All the above schemes have achieved the privacy-preserving
FL, but cause a loss of model accuracy due to a random
distribution of noise source. To this end, Sun et al. proposed
utilizing the hierarchy of DNN to design a semi-adaptive local
DP mechanism, which can achieve privacy and high accuracy
on complex models [9]. But this scheme perturbs the parameters
of the same layer into two fixed values.

B. Backdoor Attack and its Defenses

The purpose of backdoor attack is to make model output the
adversary-chosen target label to the input instance with triggers.
Because of its strong concealment, many measures to resist
backdoor attack have been put forward.

Regarding existing defenses against backdoor attack, they
can be roughly divided into anomaly detection-based methods,
methods to ensure the training integrity of participants, and
robust aggregation methods. Cao et al. relied on the server
training a root model to perform anomaly detection on the local
models [14]. However, this assumption is too strong as the server



is usually not trusted. Nguyen et al. proposed applying cosine
similarity to calculate the distance between the clients, and used
an expensive clustering algorithm to cluster the clients into
malicious and non-malicious clusters [4]. Xu et al. utilized the
concept of true discovery to dynamically calculate each client’s
trust score, and used this trust score as the weight assigned to
each client during weighted aggregation [15]. In addition, when
defending against backdoor attack, this scheme also applies the
cosine similarity to filter the clients before calculating the trust
score. Although the method of applying true discovery is novel,
it will introduce high computation overheads.

Methods to ensure the training integrity of participants can
reduce the anomalies caused by backdoor attacks by guarantee-
ing the full participation of local clients and the correctness of
training process and results. Zhang et al. leveraged trusted exe-
cution environments and designed a commitment-based method
with specific data selection to defend against various malicious
attacks [22]. With the help of the idea of proof-of-work in
blockchain, Jia et al. proposed a proof-of-learning method,
which made malicious attackers spend a huge price to deceive
the verifier [23]. However, this kind of methods have not been
proved to guarantee security and robustness in ciphertext space,
and they will have a huge overhead burden on the central server
or local clients.

The robust aggregation algorithm is a defense from the per-
spective of the server, which implies the premise of a trusted
server. Yin et al. proposed aggregating the local models at the
dimension wise by taking the median and trimmed-mean [16],
while Pillutla et al. took the median at the vector wise to aggre-
gate the local models [17]. Blanchard et al. first calculated the
euclidean distance between pairs of local models, then selected
the nearest d distances and summed them as a score for each
local model. It is worth noticing that the local model with the
lowest score is selected as the updated global one [18]. This
method of calculating the distance between two local models
introduces the time complexity of O(n2), and wastes the local
resources as it only selects one local model to update the global
one.

On the contrary, a fast DP mechanism can resist backdoor
attack and protect privacy at the same time while saving compu-
tation overheads. Nguyen et al. added the defense mechanism of
Gaussian noise apart from the filtering measure [4], which uses
Centralized DP (CDP) deployed on server. As the server is not
fully trusted, CDP will lead to an unrealistic assumption, and
the traditional Local DP (LDP) seriously damages the model
accuracy due to the random distribution of noise source. To this
end, Naseri et al. tested the effectiveness of CDP and LDP against
backdoor attack in FL framework [5]. A comparison between
previous schemes and our scheme is summarized in Table I.

III. PRELIMINARIES

In this section, we will introduce preliminary knowledge
of related technologies, including federated learning, backdoor
attacks, differential privacy and compressive sensing.

TABLE I
COMPARISON BETWEEN OUR SCHEME WITH PREVIOUS WORK

A. Federated Learning

As a distributed machine learning paradigm, FL links N
clients {C1, C2, . . . , CN} with a server to cooperatively train
a model, in which each client Ci(i ∈ [1, N ]) collects data as
its private local dataset Di. FL differs from traditional cen-
tralized machine learning in that the former assumes that Di

and Dj(i �= j) are Non-Independent and Identically Distributed
(Non-IID). Without losing generality, a general FL problem can
be formally described as the following optimization problem by
(1), {

argmin
w∈Rn

L(w) = 1
N

∑N
i=1 Li(w, X);

Li(w, X) = Ex∼Pi [Li(w, x)],
(1)

where Li(w, X) is the local loss function of client Ci, w is
the model, X represents the sample variable, x is a sample data
in Di, Pi denotes the data distribution of Di such that Pi �=
Pj for i �= j, and the symbol E represents the mathematical
expectation.

Suppose FL needs a total T of communication rounds, the
following steps are iteratively performed between the clients
and the server in each communication round t ∈ [1, T ].
� Step-1: Before starting round t, the server distributes the

latest global modelwt−1 toNt random clients, whereNt ≤
N and the initial global model w0 is randomly initialized
by the server.

� Step-2: Based on the local dataset Di, each client Ci trains
its local model wt

i by wt
i = wt

i − η · �Li(w
t
i , X), where

i ∈ [1, Nt], η is the local learning rate and�Li(w
t
i , X) is

the gradient of its loss function Li.
� Step-3: After the local training, the local model up-

dates {Δwt
i = wt

i −wt−1, i ∈ [1, Nt]} are uploaded to
the server which is responsible for aggregating and up-
dating the global model wt = wt−1 + ζ

N ·
∑Nt

i=1 Δwt
i .

1

1The global learning rate ζ controls the proportion of the joint model in
each update. Especially, when ζ = N

Nt
, the aggregation rule is equivalent to

FedAvg [1].



Fig. 1. Comparison of weight vectors between benign and poisonous models.

B. Backdoor Attacks

The poisoning attacks include data poisoning attacks [24],
[25], [26], [27], model poisoning attacks [27], [28], [29], [30],
[31], untargeted attacks [28], [29], [30], targeted attacks [24],
[32] and backdoor attacks [25], [26], [33], [34]. The last one is a
special case of data poisoning attacks and target attacks, which
inject adversary-chosen (whether artificial or semantic) triggers
into the training data and behaves abnormally when the model
encounters data with the trigger. Moreover, the backdoor attacks
can also be combined with model poisoning attacks to improve
the attack accuracy. For example, the adversary can enlarge the
weights of its poisonous model by (2),

wt
adv = γ ·wt

adv, (2)

where the subscriptadv andγ indicates the adversary and scaling
factor, respectively.

Since we can regard a DNN model as a vector, the direction
and magnitude between vectors can be distinct. Therefore, there
are four differences between benign models and poisonous ones.
First, the direction between the two models is different but
the magnitude is analogous, such as the benign model w1 and
the poisonous model w′1 in Fig. 1. Second, they are similar in
direction but diverse in magnitude, such as the benign model w2

and the poisonous model w′2 in Fig. 1. The last two differences
are that the direction and magnitude are similar, such as the
benign model w3 and the poisonous model w′3 in Fig. 1, or
poles apart, such as the benign model w4 and the poisonous
model w′4. In addition, the backdoor attacks only misclassifies
inputs with triggers and behaves as benign models for other
inputs, so the adversary A will clip its poisonous model(s) to
evade the anomaly detection and maximize the memory of its
poisonous model(s) to the triggers.

C. Differential Privacy

Differential Privacy (DP) [35] is a de facto paradigm to
protect data privacy by perturbing original data so that any
adversary cannot infer the original private information from the
obtained data. DP does not require special attack assumptions
and is indifferent to the background knowledge of the attacker.
Therefore, it can resist attacks in a more realistic scenario. The
formal definition of local DP is as follows:

Definition 1 (Local differential privacy (LDP)): LetM be a
randomized perturbation mechanism, for any pair input x and

x′ in D and any output Y ofM,M satisfies ε-LDP such that

Pr[M(x) = Y ] ≤ eε · Pr[M(x′) = Y ],

where ε is the privacy budget of M. A smaller value for ε
indicates a stronger privacy guarantee, but also means lower
data availability [9].

D. Compressive Sensing

Compressive Sensing (CS) aims to compress a signal during
sampling and the original information is recovered from the
sampled fewer measurements [8].

Given a signal x ∈ R
n, we want to sample it as a compressed

signal y ∈ R
m, where m < n. This can be easily achieved

by matrix multiplication as y = Φx, where Φ ∈ R
m×n is the

measurement matrix. And the compression ratio is denoted as
CR = m

n .
However, we cannot directly solve x from y and Φ unless

that the original signal x itself is sparse. That is, x only has
a few non-zero values. So we need to sparse x first and get
its sparse representation s ∈ R

n as x = Ψs, where Ψ ∈ R
n×n

is the sparsity orthonormal basis matrix. Note that if Ψ is an
identity matrix, then s is equal to x, which means that x itself is
sparse. Therefore, we can get

C(x,m) = y = Φx = ΦΨs = Θs, (3)

where C indicates compression operation symbol and Θ is the
sparsity sensing matrix.

Note that the compression operator C in (3) is linear, which
means that {∑K

k=1 C(xk,m) = C(∑K
k=1 xk,m);

D(∑K
k=1 C(xk,m)) ≈∑K

k=1 xk,
(4)

where D indicates decompression operation symbol. This lin-
earity guarantees that we can first aggregate the compressed
local models to obtain a compressed global model easily, then
decompress at one time to obtain a complete global model,
instead of decompressing multiple incomplete local models for
multiple times before aggregation, which saves the calculation
time.

IV. SYSTEM AND PROBLEM SETTING

In this section, we will formally describe the problem in this
paper from the aspects of system model, threat model, problem
definition and design goals.

A. System Model

Our system model is shown in Fig. 2, and consists of a
server and a total of N clients, among which the PA ∈ [0, 0.5]
proportion of N clients are compromised by the adversary A
and become malicious.

– The server acts as an aggregator, which is responsible for
collecting Nt local model updates and aggregating them
into a global model update to optimize the global model.
In our scheme, it also needs to perform decompression
operation.



Fig. 2. System model of our scheme.

– The non-malicious clients are isolated devices, which are
in charge of performing local model training on clean
datasets, compression and noise addition.

– The malicious clients will conduct local model training
on poisonous datasets with their chosen triggers, then
compress and amplify model updates before uploading.
Note that they do not add noise.

B. Threat Model

In our scheme, we assume that the server is semi-honest which
faithfully aggregates all uploaded local model updates without
deliberately dropping anyone into a global model update, but
it can invade privacy only by tracking the local and global
model updates in every communication round to infer additional
information about any client. The clients are divided into two
categories: non-malicious and malicious. The former honestly
adheres to algorithms, but infers the private information of their
chosen victims from the global model. The latter injects or alters
instances with crafted triggers into their datasets, and trains
poisonous models with backdoor. Therefore, the threats of our
scheme can be summarized as follows:
� Privacy leakage of clients data: If the model updates are

transmitted in plaintext form, semi-honest server and non-
malicious clients can infer private information about the
training data.

� Backdoor attacks: For malicious clients, they will launch
backdoor attack on the model training process to make the
model misclassify the input with trigger.

� Model utility reduction: The backdoor attacks can cause a
portion of test samples to be misclassified, which impairs
the model utility.

C. Problem Definition

1) Local Differential Privacy and Compression: In the tra-
ditional DP-based FL schemes resisting backdoor attack, the
weight w of local model is perturbed as follows,

w∗ = w + δ s.t. δ ∼ N (0, σ2), (5)

where w∗ is the perturbed weight and δ is the random noise
sampled from the Gaussian distribution N (0, σ2). Then, the
server aggregates the noisy local model updates into a latest

noisy global model update by (6),

Nt∑
i=1

Δwt∗
i . (6)

However, the noise δ is randomly sampled from the Gaussian
distributionN (0, σ2), which makes its magnitude not be strictly
controlled and non-adaptive.

For adaptive perturbation, Sun et al. perturbed local model
weights hierarchically [9]. Specifically, their scheme first cal-
culates the range interval [cl − rl, cl + rl] of the weights of the
l-th layer, where cl represents the range center and rl represents
the range radius. Then it perturbs the weight according to the
privacy budget ε, range center cl and range radius rl as follows,

M(w) = w∗

=

{
cl + rl · eε+1

eε−1 ,w.p. (w−cl)(e
ε−1)+rl(e

ε+1)
2rl(eε+1) ;

cl − rl · eε+1
eε−1 ,w.p.−(w−cl)(e

ε−1)+rl(e
ε+1)

2rl(eε+1) ,
(7)

whereM the perturbation function and “w.p.” stands for “with
probability”. However, the range center cl and range radius rl
are uniform for all weights in the same layer l. In addition, the
product factor eε+1

eε−1 is also identical in (7). Thus, this scheme
results in the weights of the same layer being perturbed to only
two values, which cannot facilitate the real adaptability.

Besides, the high dimension of DNN model not only causes
high communication overheads but also increases the computa-
tion overheads of clients. However, the existing compression
methods either are inefficient or lead to a loss of accuracy.
Thus, a method of integrating efficient compression and accurate
decompression needs to be considered.

2) Defense Against Backdoor Attacks: Following the prin-
ciple of backdoor attacks, the adversary A first injects triggers
into the private datasets of the malicious clients, and then loyally
executes the training algorithm as the normal clients to obtain its
poisonous local models. To enhance the memory of poisonous
models for triggers and to resist the weakening of the aggregation
on the server, the adversary A will amplify the weights of its
poisonous models by (2).

Then, to avoid anomaly detection and keep the memory of
triggers to the maximum extent, the adversary A will clip the
weights of its poisonous models as follows,

wt
i = min

(
1,

S

||wt
i ||2

)
·wt

i , (8)

where S is the clipping boundary and the symbol || · ||2 repre-
sents the l2 norm.

In our scheme, we use the local differential privacy mech-
anism to encrypt local models, which makes the anomaly
detection-based defense methods ineffective. Formally, we use
δG to represent the traditional Gaussian noise and δada to
represent the adaptive noise, so we have the following defense
formula:

wt
i = wt

i + δG + δada. (9)

Note that we proceed with δG first and then with δada.



Fig. 3. Weights changes in different layers of the DNN model.

D. Design Goals

Inspired by previous work [5], [8], [9], we aim to design a
backdoor-resistant and privacy-preserving FL with high model
accuracy and low communication overheads. Based on these,
our scheme should achieve the following goals:

1) High model precision: Our scheme should maintain high
model accuracy after successfully implementing privacy
protection and resisting backdoor attacks by using DP.

2) Mitigate the curse of dimensionality in DNN: Since our
scheme is a model designed under the DNN structure, we
should alleviate the large amount of traffic caused by high
dimensions.

3) Reduction of backdoor attacks success rate: Our scheme
should not output the adversary-expected target label when
the final global model faces a testing input instance with
an adversary-chosen trigger.

V. ESFL

In this section, we first introduce the technical overview of our
scheme, then formally and completely describe the workflow of
our scheme.

A. Technical Overview

In our ESFL, we will compress the local models before
perturbation. This is because our adaptive perturbation func-
tion is done sequentially for individual weights, which saves
computation overheads for clients. Specifically, we first use
the Discrete Cosine Transform (DCT) to change the form of
original weights, then employ the compression algorithm of CS
to compress local models from the original total n weights to m
via a simple and fast matrix multiplication, which mitigates the
uplink communication overheads, where m < n.

After compression, we start to perturb the model weights.
Our intuition is that since the different layers of DNN process
different information, the weights in different layers should also
have different range intervals. We empirically demonstrate the
intuition through experiments, referring to Fig. 3, where the
range intervals of different layers are different and variational.
Similar to scheme [9], we assume that the DNN model has a

Fig. 4. Overview of our ESFL.

total of L layers, in which each layer l ∈ [1, L] will be in a
range interval [cl − rl, cl + rl]. The perturbation functionM of
ESFL involves the offset μ of each weight from its range center
cl rather than the range radius rl, whereμ = w − cl. Thus, ESFL
achieves finer-grained noise addition, thereby minimizing noise,
improving model accuracy and realizing the real adaptability.
Referring to (7), the independent variables involved in the per-
turbation functionM of scheme [9] are range center cl, range
radius rl and privacy budget ε, while ours are range center cl,
offset μ and privacy budget ε.

Considering that the adaptive perturbation can control the
scale of the noise, we intend to utilize this method to adjust
the traditional Gaussian noise whose effectiveness has been
empirically proven. Specifically, we must first add Gaussian
noise and then adaptive noise, not in reverse order. Throughout
experiments, we know that if the noise is added in the opposite
order, it will seriously damage the final model utility even though
it can well defend against the backdoor attacks.

Finally, we consider the synchronous scenario where the
server will wait for enough Nt local model updates to be
uploaded before starting the aggregation. Since CS is linear, we
can aggregate first and then decompress at one time. Specifically,
after obtaining the aggregation result of the t-th round, the server
performs inverse discrete cosine transform on the incomplete
global model update containing m weights to recover the orig-
inal data form, then restores the complete global model update
containing n weights through the decompression algorithm of
CS, and finally updates the global model.

B. Full Flow of ESFL

Referring to Fig. 4, each selected client Ci(i ∈ [1, Nt]) first
downloads the latest complete global model wt−1 as its local
model wt

i (step I). For non-malicious clients, they faithfully
perform local training (step II-n) on their clean datasets, while
for malicious clients, they launch backdoor attacks (step II-m)
by adding triggers into datasets. Then, for all Nt clients, they
must perform the compression (step III-n/III-m). After that, the
non-malicious clients will perform an additional phase of adding
noise to resist attacks (step IV-n) before uploading the model
updates (step V-n), while malicious clients will amplifying
model updates for strengthening the attacks effect (step IV-m)
before uploading (step V-m). By exploiting the linear advantage
of compressive sensing, the server aggregates local updates first,



Algorithm 1: Local Training with SGD.

Input: Latest complete global model wt−1; total local
epochs E; total batches B; learning rate η

Output: Trained local model wt
i

ClientCi (i ∈ [1, Nt]):
1: wt

i ← wt−1;
2: for each local epoch e = 1, 2, . . . , E do
3: for each mini batch b ∈ B do
4: wt

i = wt
i − η�Li(w

t
i , b);

5: end for
6: end for
7: if Ci is malicious then
8: wt

i = γ ·wt
i ;

9: wt
i = min(1, S

||wt
i ||2 ) ·w

t
i ;

10: end if
11: Return Δwt

i = wt
i −wt−1.

then reconstructs global update, and finally updates the global
model (step VI-s).

1) Server-Side Initialization: Before formally starting the
model training, we require the server to initialize a global model
which is then distributed to each client. In this paper, since
we use DNN as model structure and exploit its hierarchical
characteristics to design the adaptive perturbation functionM,
we can make the server negotiate with all N clients relying on
their prior knowledge or rich experience. Specifically, for each
layer l ∈ [1, L], each client participates in the negotiation of
an initial range interval [cl − rl, cl + rl] and a set pair (C,R),
where C represents a set containing L range centers and R
represents a set containing L corresponding range radii. Finally,
the server initializes the global model w0 according to (C,R)
and issues to random N1 clients participating in the first round
of communication.

2) Local Training: At this stage, both malicious (if they are
selected in Nt) and non-malicious clients will honestly imple-
ment the optimization algorithm of the model.

In Algorithm 1, the clientCi first replaces its local modelwt−1
i

of the previous round with the latest complete global modelwt−1

(line 1), and then performs local iterations multiple epochs to
adequately train its local model wt

i (lines 2-6). In each epoch
e ∈ [1, E], the client Ci samples a mini batch b from its dataset
Di and puts it into the model to speed up the local training,
where b is a user-defined super-parameter and B is the total
batches whose number is equal to |Di|/b. Note that�Li(w

t
i , b)

represents the gradient of the loss function Li with respect to
the mini batch b.

If there are malicious clients in this round, they will amplify
their local models to enhance the ability of classifying poisonous
instances (line 8). To further reduce the difference between
malicious clients and other non-malicious ones, they also need
to clip their enlarged models (line 9).

3) Local Compression: In the preliminary knowledge of CS
in Section III-D, we define the notion of compression ratio
CR, which is conducive to achieve our compression purpose by

Algorithm 2: Local Compression.

Input: Trained local model wt
i ; total layers L;

compression ratio CR
Output: Trained and compressed local model update cti
ClientCi (i ∈ [1, Nt]):
1: cti = Δwt

i ;
2: for each layer l ∈ [1, L] in cti do
3: nl = len(cti,l); // the number of weights for this layer
4: ml = nl × CR;
5: cti,l = C(cti,l,ml); // including DCT and compression
6: end for
7: Return cti.

setting any CR ∈ (0, 1). Since the subsequent adaptive pertur-
bation stage is performed hierarchically, we will also compress
Δwt

i hierarchically, instead of flattening total n weights of Δwt
i

into an n-dimensional vector xn and then compressing it into
only m-dimensional vector ym(m < n). Specifically, we first
acquire the initial number nl of weights of the l-th layer by
using a function len (·) (line 3), then calculate the compressed
number ml of weights of this layer based on CR (line 4), finally
perform compression after the transformation by DCT (line 5).

In Algorithm 2, we represent the trained and compressed local
model update with the symbol cti (except for line 1 for obvious
reasons) and the symbol cti,l for the l-th layer.

4) Gaussian Noise Addition and Adaptive Perturbation: Af-
ter the non-malicious client Ci obtains its cti, it will add noise
into the model update to resist backdoor attack. In Algorithm 3,
let pt

i be the compressed perturbed local model update and pt
i,l

be weights in the l-th layer.
For Gaussian noise δG, the distribution of noise source is
N (0, σ2), where the sampled δG from it is random. Note that
when adding noise to the weights, we should do it one by one, but
we describe Gaussian noise addition layer by layer in Algorithm
3 for simplicity (line 3), which is different from the adaptive
noise addition (lines 7-11).

For adaptive noise δada, the non-malicious clientCi first needs
to calculate the range interval [cl − rl, cl + rl] of each layer
l ∈ [1, L]. Specifically, the non-malicious client Ci acquires the
maximum weight wmax

l and the minimum weight wmin
l for the

l-th layer by using functions max(·) and min(·) respectively
(lines 4-5), then obtains the range center and radius of this layer
by (10) (line 6), {

cl =
(wmax

l +wmin
l )

2 ;
rl = wmax

l − cl.
(10)

Next, the non-malicious client Ci calculates the offset μ of
each weight w from the range center cl as follows (line 8),

μ = w − cl. (11)

Note that the calculation method of offset μ does not take
absolute value, but that of range radius rl ensures that it is always
non-negative. The reason why we do this will be explained in
detail after giving the specific form of the adaptive perturbation
functionM.



Let’s rewrite (11) to get the expression for the weight w, i.e.,
w = cl + μ. For all weights located at a certain layer l, the range
center cl is the same and fixed. Thus, the difference between the
weights is only reflected in the offset μ, which deduces that the
perturbation of weight w is essentially the perturbation of offset
μ.

Similar to scheme [9], we design the perturbation function
M as a piecewise function which perturbs different weights
in various ways according to different conditions. Concretely,
we first calculate the distribution probability Pr of Bernoulli
variable b based on the privacy budget ε by (12),{

Pr[b = 1] = eε−1
2eε ;

Pr[b = 0] = eε+1
2eε .

(12)

Then, the non-malicious client Ci randomly samples from the
Bernoulli distribution satisfying the above probability, and per-
turbs the weight w as follows,

M(w) = w∗ =

{
cl + μ · eε+1

eε−1 , if b = 1;

cl + μ · eε−1eε+1 , if b = 0.
(13)

Note that the product factors of the offsets are reciprocal, which
helps to further reduce the degree of perturbation as eε−1

eε+1 <
eε+1
eε−1 . As can be seen from (13), our adaptive perturbation is
indeed perturbing the offset μ in essence. Below we give the
detailed improvements of our scheme:

1) As mentioned earlier, the offset μ does not take the abso-
lute value, which naturally implies that the sign does not
need the explicit explanation as in the scheme [9].

2) Comparing (10) with (11), we can find that the range radius
rl is always not less than any offset μ. Therefore, our
perturbation on μ is limited to a smaller scope, which
reduces the amount of noise and thus improves the model
utility.

3) We flip the product factor so that the perturbation function
M cannot always change the weight with an increasing
tendency, which weakens the weights amplified by the
adversary A.

5) Aggregation and Decompression: After the non-
malicious client Ci performs local training, compression
and noise adding, it uploads the compressed perturbed local
model update pt

i to the server. Note that the malicious client
will not add noise to its cti. Thus, for ease of expression, we
still pt

i to represent the compressed non-perturbed local model
update of the malicious client.

Because we are considering FL in the synchronous scenario,
the server will wait until a total of Nt local model updates from
different clients are collected before starting the aggregation. In
Section III-D, we mention that CS is linear, which facilitates the
server to aggregate first and then decompress once. Therefore,
the aggregated but compressed global model update is yt =∑Nt

i=1 p
t
i.

Following the basic principles of local compression and noise
addition, the server decompresses yt hierarchically. In Algo-
rithm 4, we use yt

∗,l to represent weights of the l-th layer for
yt, Δwt

∗,l to represent updates of the l-th layer for the final
complete global model update Δwt. Specifically, the server

Algorithm 3: Gaussian Noise Addition and Adaptive Per-
turbation.

Input: Trained and compressed local model update cti
Output: Trained, compressed and perturbed local model
update pt

i

Non−maliciousClientCi:
1: pt

i = cti
2: for each layer l ∈ [1, L] in pt

i do
3: pt

i,l = pt
i,l +N (0, σ2);

4: wmax
l = max(pt

i,l);
5: wmin

l = min(pt
i,l);

6: Calculate the range center cl by (10);
7: for each weight w ∈ pt

i,l do
8: Calculate the offset μ by (11);
9: Randomly sample a Bernoulli variable b according

to the Bernoulli sampling probability in (12);
10: Perturb the weight w by (13);
11: end for
12: end for
13: Return pt

i.

Algorithm 4: Aggregation and Decompression.

Input: Nt local model updates {pt
1,p

t
2, . . . ,p

t
Nt
};

compression ratio CR
Output: Complete global model wt

Server:
1: Aggregate Nt local model updates into a compressed

global model update yt;
2: for each l ∈ (i ∈ [1, L]) in yt do
3: ml = len(yt

∗,l);
4: nl =

ml

CR ;
5: Δwt

∗,l = D(yt
∗,l, nl);

6: end for
7: Δwt = assemble(Δwt

∗,1,Δwt
∗,2, . . . ,Δwt

∗,L);
8: update the global model wt = wt−1 + ζ

N ·Δwt

9: Return wt.

first calculates the compressed number ml of weights in the
l-th layer (line 3), then gets the original number nl according
to the compression ratio CR (line 4), finally decompresses yt

∗,l
after inverse discrete cosine transform (line 5). After getting L
reconstructed Δwt

∗,l, the server assembles them into a complete
global model update Δwt (line 7) and updates the global model
wt = wt−1 + ζ

N ·Δwt (line 8).
After the server obtains the latest complete global model

wt, it will repeat all the processes except the above-mentioned
initialization phase.There are generally two conditions for stop-
ping communication. (1) After the server aggregates the global
model wt, we can test its accuracy on the main task. If the
accuracy is kept within a certain accuracy range for several
consecutive rounds, it is considered that the model training has
reached convergence. (2) The communication will continue until
the number of communication rounds increases to the preset



Algorithm 5: The Complete Algorithm Process of ESFL.
Server:
1: Initialize a global model w0 ∈ R

n based on (C,R),
where C = {c1, c2, . . . , cL} and R = {r1, r2, . . . , rL};

2: for each round t = 1 to T do
3: Select Nt clients randomly in total N clients;
4: for each client Ci(i ∈ [1, Nt]) in parallel do
5: pt

i = ClientCi (w
t−1);

6: end for
7: //Aggregation and decompression
8: Call Algorithm 4 to generate wt;
9: end for

10: Output wT

ClientCi (w
t−1):

1: //Local training
2: Call Algorithm 1 to generate wt

i ;
3: //Local compression
4: Call Algorithm 2 to generate cti;
5: //Gaussiannoise addition and adaptive perturbation
6: if Ci is non-malicious then
7: Call Algorithm 3 to generate pt

i;
8: end if
9: Return pt

i.

maximum value T . For simplicity, we adopt the second method
in the complete Algorithm 5.

VI. PRIVACY ANALYSIS

In this section, we will formally analyze the privacy guarantee
and utility cost of our adaptive perturbation mechanism.

First, according to Theorem 1, our scheme satisfies the defi-
nition of LDP under the given conditions.

Theorem 1: Given an arbitrary weight w ∈ [cl − rl, cl + rl]
and the privacy budget ε ≥ ln(1 +

√
2), the perturbation mech-

anismM proposed in Eq.13 satisfies ε-LDP.
Proof: Suppose the perturbed weightw∗ = cl + μ · eε+1

eε−1 , the
probability of a Bernoulli variable b taking 1 is equal to eε−1

2eε <
1
2 . For any w,w′ ∈ [cl − rl, cl + rl], we get

Pr[M(w) = w∗]
Pr[M(w′) = w∗]

≤ maxwPr[M(w) = w∗]
minw′Pr[M(w′) = w∗]

=
1− eε−1

2eε

eε−1
2eε

=
eε + 1

eε − 1
. (14)

According to the Definition 1 of LDP, we expect the above
expression to satisfy the constraint: eε+1

eε−1 ≤ eε. Therefore, we

can get a threshold ε0 = ln(1 +
√
2). This allows the Definition

1 to be satisfied only if the privacy budget satisfies ε ≥ ε0. �
Second, we will prove that the adaptive perturbation mech-

anism in Algorithm 3 estimates the average weights with zero
bias.

Theorem 2: The adaptive perturbation mechanism introduces
zero bias to estimating average weights, i.e., E[M(w)] = w.

Proof: For any weight w from any client Ci and its corre-
sponding cl and μ,

E[M(w)] =

(
cl + μ · e

ε + 1

eε − 1

)
· e

ε − 1

2eε

+

(
cl + μ · e

ε − 1

eε + 1

)
·
(
1− eε − 1

2eε

)
=cl + μ = w;

(15)

E[M(w)] = E

[
1

Nt

∑Nt

i=1
M(w)

]
=

1

Nt

∑Nt

i=1
E[M(w)]

=
1

Nt

∑Nt

i=1
w = w. (16)

�
Theorem 3: Algorithm 3 can achieve the same security per-

formance as the traditional DP mechanism based on Gaussian
noise.

Proof: Algorithm 3 stipulates that Gaussian noise must be
added first and then adaptive noise be added. Theorem 2 indi-
cates that the adaptive perturbation mechanism introduces zero
bias to evaluating the average weights, which shows that the
security achieved by introducing Gaussian noise will not be
destroyed by the adaptive perturbation mechanism. �

In Algorithm 3, since the center cl has no product factor
associated with it, we can equivalently regard it as a perturbation
to the offset μ which is perturbed into μ∗. Therefore, we have
the following Theorem 4.

Theorem 4: Given any weight w, the variance of the pertur-
bation function is V ar[M(w)] = 4r2

e2ε−1 .
Proof: Given any parameter w, the variance of the perturbed

model parameter can be derived as follows:

V ar[M(w)] = V ar[w∗] = V ar[c+ μ∗] = V ar[μ∗]

= E[μ∗2]− E
2[μ∗] = E[μ∗2]− μ2; (17)

E[μ∗2] =
(
μ · e

ε + 1

eε − 1

)2

· e
ε − 1

2eε

+

(
μ · e

ε − 1

eε + 1

)2

·
(
1− eε − 1

2eε

)

=
μ2

2eε
·
[
(eε + 1)2

eε − 1
+

(eε − 1)2

eε + 1

]

≤ r2

2eε
·
[
(eε + 1)2

eε − 1
+

(eε − 1)2

eε + 1

]
; (18)

V ar[M(w)] ≤ r2

2eε
·
[
(eε + 1)2

eε − 1
+

(eε − 1)2

eε + 1

]
− μ2

≤ r2

2eε
·
[
(eε + 1)2

eε − 1
+

(eε − 1)2

eε + 1

]
− r2

=
4r2

e2ε − 1
. (19)

�



Then, for the variance of the estimated average perturbed
weight M(w), we analyze its lower bound and upper bound
as below.

Theorem 5: LetM(w) be the estimated average weight. The
lower bound and upper bound of the estimated average weight
is: 0 ≤ V ar[M(w)] ≤ 4r2

N ·(e2ε−1) .
Proof: The variance of the estimated average weight is

V ar[M(w)] = V ar

[
1

Nt

Nt∑
i=1

M(w)

]

=
1

Nt

{
μ2

2eε
·
[
(eε + 1)2

eε − 1
+

(eε − 1)2

eε + 1

]
− μ2

}

=
4μ2

Nt · (e2ε − 1)
. (20)

Thus, the bound of variance is

0 ≤ V ar[M(w)] ≤ 4r2

Nt · (e2ε − 1)
. (21)

�
From Theorem 5 above, we can see that the bounds of vari-

ance are determined by the radius r, the number Nt of clients
participating in the round t and the privacy budget ε. Thus, if
there are enough participating clients, we can get a low variance
on the estimated average perturbed weight.

Finally, since the model accuracy is directly affected by the
average perturbation weightM(w), we need to ensure that the
deviation from the true average weight w is within an acceptable
range. Therefore, we will analyze the accuracy guarantee for
calculating average weights based on the above theorems.

Theorem 6: Given any weight w, with at least 1− β proba-

bility, |M(w)− w| < O(
r
√
−logβ

ε
√
Nt

), where β is a small number
which is close to 0.

Proof: For each client Ci, |M(w)− w| ≤ c+ r · eε+1
eε−1 −

(c− r) = 2reε

eε−1 and V ar[M(w)] = V ar[M(w)− w] =

E[(M(w)− w)2]− E
2[M(w)− w]. According to Theorem

2, E[M(w)− w] = 0. Thus, V ar[M(w)] = E[(M(w)− w)2]
holds according to Bernstein inequality,

Pr[|M(w)− w| ≥ λ]

= Pr

[∣∣∣∣∣
Nt∑
i=1

M(w)−
∑
i=1

Ntwk

∣∣∣∣∣ ≥ λNt

]

≤ 2 · exp
{
−

1
2λ2N2

t∑Nt

i=1 E[(M(w)− w)2] + 2λNtreε

3(eε−1)

}

≤ 2 · exp
{
− λ2N2

t

2Nt
4r2

e2ε−1 + 4λNtreε

3(eε−1)

}

= 2 · exp
{
− λ2Nt

8r2

e2ε−1 + 4λreε

3(eε−1)

}

= 2 · exp
{
− λ2Nt

r2 ·O(ε−2) + λr ·O(ε−1)

}
. (22)

Fig. 5. Visual pictures for dynamic backdoor attacks.

In other words, there exists λ = O(
r
√
−logβ

ε
√
Nt

) such that |M(w)−
w| < λ holds with at least 1 − β probability. �

VII. EXPERIMENTS

In this section, we will show the performance of our scheme
on different DNN models and datasets.

A. Experimental Setup

1) Datasets and Backdoor Attack Schemes: We test the back-
door attack and our defense against it using three common
open source datasets, MNIST, Fashion-MNIST, and CIFAR10.
To simulate the realistic Non-IID scenarios, we first scramble
the entire dataset, and then divide it into multiple slices evenly,
where each slice contains an equal number of samples but the
labels are not distributed evenly. Each client has an unequal
number of slices. Take MNIST dataset as an example, a total
of 60,000 training samples are divided into 300 slices, that is,
each slice contains 200 samples, in which slice 1 only contains
samples of digits 1, 4 and 5, and slice 2 only contains samples of
digits 3 and 7, etc. Moreover, in slice 1, the numbers of samples
of digits 1, 4 and 5 are also different.

In the experiments, we test the performance of our defense
scheme in three state-of-the-art backdoor attacks schemes. We
will briefly describe their core attack methods as follows:

1) Model Replacement Attacks (MRA) [36]: Assume that
the client C1 is malicious. A attempts to replace the
global model wt with its malicious model wt

adv , i.e.,
wt

adv = wt−1 + ζ
N ·

∑Nt

i=1 Δwt
i . When the model train-

ing approaches convergence, the local model updatesΔwt
i

uploaded by the honest clients (i ∈ [2, Nt]) are almost
equal to 0. Thus, wt

adv ≈ wt−1 + ζ
N ·Δwt

1 = wt−1 +
ζ
N · (wt

1 −wt−1). Then the local model wt
1 of client C1

is scaled up to N
ζ · (wt

adv −wt−1) +wt−1, where N
ζ is

the scaling factor.
2) Dynamic Backdoor Attacks (DBA-I) [37]: The authors

in [37] consider the influence of different trigger patterns
and different adding positions on backdoor attacks. In our
experiments, the attacker generates different patterns of
triggers and adds them to any position in the picture.
For example, Fig. 5 shows the visual pictures in which
triggers of same or different patterns are added at different
positions.

3) Distributed Backdoor Attacks (DBA-II) [38]: The authors
in [37] exploit the distributed learning concept of FL
to decompose the complete global trigger into multiple
local triggers, and make malicious clients add only one of



Fig. 6. Visual pictures for distributed backdoor attacks.

TABLE II
MODEL STRUCTURE

the local triggers to their datasets. For example, the left
part of Fig. 6 shows the complete global trigger of the
previous schemes, while the right part of Fig. 6 shows the
decomposed local triggers of DBA-II.

2) Model Structure: The model structures we adopted are
shown in Table II.

3) Metric Criteria and Key Parameters: To simulate the
actual attack scene as much as possible, we define the key
parameters for A’s attack strategies and ability, and the real
training process of FL, which need to be considered for any
attack or defense scheme.

Note that A will not pollute all instances, which has two
advantages: 1) it prevents the poisonous models from being
detected due to abnormal performance in any instance; 2) it
improves the distinguishability of the trained model between
the backdoor and the non-backdoor, so as to promote the at-
tack success rate. For simplicity, we define the notion of local
poisoning ratio as follows,

Definition 2 (Local Poisoning Ratio (LPR)): For a malicious
client Ci, its local dataset Di contains a total of di instances,
in which includes d̂i instances with triggers. Therefore, its local
poisoning ratio LPR = d̂i/di.

In the community, a lot of previous work has assumed that FL
is in a honesty-majority situation where the total number PA of
malicious clients is less than 50% out of a total of N clients, and
tests the attack success rate or effect of defense mechanism with
the increase of PA. However, in the general scenario of FL, the
clients and their number Nt in each round are randomly selected
from N . Therefore, we cannot guarantee that malicious clients

can participate in every round. Consequently, in this paper, we
define the notion of participation rate PR as follows,

Definition 3 (Participation Rate (PR)): Among the total T of
communication rounds, the number of rounds that the malicious
clients are really selected to participate in model training is TA.
Thus, the participation rate PR = TA/T .

In our experiments, we test the attack success rate and the
effect of defense mechanism with the change ofPR, which is not
widely considered in prior work. Moreover, the proportion PA
of malicious clients is actually a very important metric criteria,
which we will slightly modify its definition. Since the number
of clients participating in the t-th round is Nt, it may include the
existence of malicious clients (assuming the number is NAt

) or
not. Therefore, we have the following definition,

Definition 4 (Malicious proportion): In the t-th round, there
are total Nt clients randomly selected, including NAt

malicious
clients. Thus, the malicious proportion P̃A = NAt

/Nt, which
is slightly different from PA in concept. We also test how the
attack success rate and the effectiveness of defense mechanism
vary as the P̃A changes.

In a word, LPR and P̃A simulate A’s attack strategies in one
communication round, while PR simulates A’s attack ability in
a total of T communication rounds.

For non-malicious clients, they desire the model to correctly
classify as many data instances as possible. Therefore, we use
accuracy as their metric criterion. As for malicious clients, they
desire the model to remember as many triggers as possible and
classify them into adversary-chosen labels. Therefore, we use
the attack success rate (ASR) defined below as the adversary’s
metric criterion.

Definition 5 (Attack Success Rate (ASR)): The adversary A
gets the number NAt

of malicious clients according to the
malicious proportion P̃A. Let the dataset size of malicious
client Ci(i ∈ [1, NAt

]) be di. Ci calculates the number d̂i of
data instances to be poisoned according to the local poisoning
ratio LPR, and counts the number d̂∗i of data instances that are
successfully classified as the adversary-chosen labels by the
model. Then the attack success rate ASRi of Ci equals to d̂∗i/d̂i.
Finally the adversary A calculates the average attack success
rate ASR = 1

NAt
·∑NAt

i=1 ASRi.
Table IV summarizes the values of the key parameters mea-

sured in our experiments. Note that the bolded values represent
the default values of other parameters when measuring the im-
pact of changes in one parameter on the scheme, unless explicitly
indicated.

4) Runtime Environment: Our experiments are implemented
by Pytorch 1.10.0 and Numpy 1.21.5 with a single CPU @
3.30 GHz, 16.0 GB RAM.

B. Effect of Privacy Budget and Compression Ratio

The two most critical parameters in our scheme are the privacy
budget ε and the compression ratio CR. Therefore, we first
show the influence of these two parameters on the performance
of the schemes under different attack methods. Note that for



TABLE III
EFFECT OF PRIVACY BUDGET ε AND COMPRESSION RATIO CR ON MRA

TABLE IV
SUMMARY OF KEY PARAMETERS

traditional differential privacy defense methods, they do not
have the parameter CR. But for the sake of equal comparison,
we added this step to other defense schemes that did not use
compressive sensing in our experiments. Tables III, V and VI
show the effect of privacy budget and compression ratio of
defense scheme on resisting MRA, DBA-I and DBA-II attacks.

Note that Tables III, V and VI show the results of the ablation
experiments. When we change the ε (or CR), the CR (or ε) is
fixed. Although we fix CR as 0.05 instead of 1 when changing
ε alone, CS’s main contribution is to reduce the overhead of up-
link communication rather than resist backdoor attacks because
of its decompression ability. Similarly, when we change CR
separately, we fix ε as 2 instead of +∞ because adding noise
will not cause additional burden on communication overhead.
The contribution of CS is shown in Section VII-F.

For the privacy budget ε, the results show that the smaller ε
is, the smaller the model accuracy on the main task is, and the
lower the attack success rate on the backdoor task is. Besides, we
can see that, compared with the traditional defense method [5]
of clipping and Gaussian noise, CAFL [21] has improved the
accuracy of the main task (whether it is a simple dataset or a
complex dataset), but it has shown different performances in
reducing the attack success rate of backdoor tasks for datasets
with different difficulties. For example, CAFL is nearly as effec-
tive against backdoor attacks on the simple dataset MNIST as
traditional methods, but less effective against complex datasets
FMNIST and CIFAR10. However, the accuracy of ESFL on the
main task is almost consistent with that of CAFL, and the attack
success rate on the backdoor task is almost consistent with the

strong defense ability of traditional scheme (whether on simple
dataset MNIST or complex datasets FMNIST and CIFAR10).

For compression ratio CR, its main function is to reduce the
overhead of uplink communication from clients to server. Exper-
imental results show that compressive sensing (CS) reduces the
communication cost by 95%. In addition, we also find that CS
is helpful to improve the defense capability of the schemes. For
example, with the reduction ofCR, the degree of compression is
also strengthened, and the attack success rate of backdoor attacks
is also reduced by several percentage points. This is because CS
is a kind of lossy compression technique, and the server cannot
perfectly recover the real aggregation results, which leads to the
introduction of noise in another form and achieves the effect of
defending against backdoor attacks.

Note that ESFL is improved on CAFL, and CAFL is improved
on [9]. We have tested the effectiveness of CAFL and [9] in
resisting backdoor attacks, and the results show that they are
almost consistent. Therefore, we only show the experimental
results of CAFL in this paper. From Tables III, V and VI, we
can find that ESFL is more robust than CAFL, which indirectly
shows that ESFL is also more resistant to backdoor attacks
than [9].

C. Effect of Local Poisoning Ratio

When an attacker launches the backdoor attacks, it generally
only pollutes part of the local dataset in order for the model to
be able to distinguish between backdoor data and clean data,
and in order to avoid being detected by the server due to its
excessively abnormal behavior. Therefore, we test the effect of
the local poisoning ratio (LPR) on attack capability and defense
mechanisms in experiments. Note that LPR= 0 indicates that the
attacker does not launch the backdoor attacks. The test results on
the MNIST, Fashion-MNIST and CIFAR10 datasets are shown
in Fig. 7.

It can be seen from the solid broken line that the traditional
gaussian noise will seriously reduce the model accuracy on the
main task. For example, the accuracy of the classical FedAvg
algorithm is 97.92% when it is attacked by MRA on the simple
dataset MNIST and there is no defense, while the accuracy is



TABLE V
EFFECT OF PRIVACY BUDGET ε AND COMPRESSION RATIO CR ON DBA-I

TABLE VI
EFFECT OF PRIVACY BUDGET ε AND COMPRESSION RATIO CR ON DBA-II

88.76% after adding Gaussian noise for defense, a decrease
of 9.16%, which is unacceptable for such a simple dataset. In
contrast, the accuracy of CAFL and ESFL in the main task only
decreased by 2.76% and 2.57%, respectively. This indicates
that CAFL and ESFL can guarantee the availability of the
model.

With the increase of local poisoning rate (LPR), the attack
success rate (ASR) of backdoor attacks should increase both
intuitively and theoretically. The experimental results also con-
firmed this, but the increase is very small. For example, when
the LPR increases from 10% to 50%, the maximum gap between
ASR is only 7.67%, which indicates the robustness of the dif-
ferential privacy defense mechanism against backdoor attacks.
In addition, the ASR of CAFL is very close to that of traditional
Gaussian noise and ESFL on simple dataset MNIST, and the
difference is very significant on complex datasets Fashion-
MNIST and CIFAR10. For example, the maximum difference
between ASR of CAFL on MNIST and traditional Gaussian
noise and ESFL is about 5%, while their maximum difference
on Fashion-MNIST is about 25.6% and about 30% on CIFAR10.
Furthermore, the ASR of ESFL is located between CAFL and
traditional Gaussian noise, and is closer to the latter, which
indicates that ESFL can achieve strong protection capability
similar to Gaussian noise.

D. Effect of Participation Rate

Since the server randomly selects Nt out of N clients to
participate in t-th round communication, the attacker cannot
control the number of rounds of attacks by malicious clients.
But we intuitively know that the more attack rounds the attacker
participates in, the better the attack effect will be (i.e., the larger
ASR). Therefore, in order to simulate the robustness of each
scheme against the backdoor attacks under this scenario, we de-
fine the total number of participation rounds TA of the malicious
clients in the total number of T rounds of communication in
Definition 3, i.e., the participation rate PR = TA/T . Note that
the extreme cases of PR = 0 and PR = 1 indicate that there is
no attacker and there are malicious clients participating in the
model training for each round of communication, respectively.
The test results on the MNIST, Fashion-MNIST and CIFAR10
datasets are shown in Fig. 8.

From the experimental results, with the increase of the partic-
ipation rate PR of malicious clients, the model accuracy on the
main task generally presents a downward trend, while the ASR
on the backdoor task generally presents an upward trend, which
verifies our intuition.

In terms of model accuracy, CAFL and ESFL decrease by
about 5% and Gaussian noise by about 10% as compared with



Fig. 7. Impact of local poisoning ratio.

plain FedAvg, which indicates that ESFL can guarantee the
availability of the model under differentPR of malicious clients.
In addition, CAFL contains only an adaptive noise, while ESFL
introduces two kinds of noises and one of them is also the noise
that impairs the model utility. Therefore, in most cases, the model
accuracy ESFL is lower than that of CAFL, but the difference
is only about 5% at most. For example, as shown in Fig. 8(e),
whenPR = 0, the model accuracy of ESFL is 5.01% lower than
that of CAFL; when PR = 0.2, the model accuracy of ESFL is
4.33% lower than that of CAFL.

As far as ASR of backdoor task is concerned, the results
of ESFL are between CAFL and Gaussian noise, and the virtual
polyline ofASR of ESFL is closer to Gaussian noise than CAFL,
which indicates that ESFL has strong defense capability against
backdoor attacks. Moreover, we also found that CAFL has
different defense effects for the backdoor attacks schemes with
different degrees of complexity. For example, CAFL’s defense
effect on MRA, DBA-I and DBA-II gradually decreases. When
PR = 1, the ASR of CAFL is about 25% for MRA, about 40%
for DBA-I, and nearly 50% for DBA-II.

E. Effect of Malicious Proportion P̃A

Many of the current schemes focus on the proportion of
malicious clients in all clients because this is a critical factor in
the effectiveness of an attack and an important factor in assessing
defense capabilities. However, under the general framework
of federated learning, not all clients will participate in every
round of communication, but some random clients. Then the
proportion of malicious clients in all clients loses its original
meaning. For example, suppose that the percentage of malicious
clients is 50%, but due to the random scheduling principle, the
percentage of malicious clients that actually launch attacks will
be significantly lower than 50%. Therefore, in the experiments,
we turn to control the proportion of malicious clients among
the Nt clients in t-th communication round, i.e., Malicious
Proportion P̃A. The test results on the MNIST, Fashion-MNIST
and CIFAR10 datasets are shown in Fig. 9.

The test results show that the broken lines (whether the
accuracy of the main task or the ASR of the backdoor tasks)
obviously show a slight fluctuation. This indicates that even if



Fig. 8. Impact of participation rate.

the percentage of malicious clients in a certain round of com-
munication reaches 50%, the local differential privacy-based
defense method can still effectively weaken the role of backdoor
attacks.

Similarly, under different P̃A, the model trained by the defense
method based on Gaussian noise has much lower accuracy on the
main task than those of CAFL and ESFL, and the curves of CAFL
and ESFL are very close in most cases. Generally speaking, the
model accuracy of ESFL is lower than that of CAFL, but only
about 2.5% lower at most, as shown in Fig. 9(b). The model
accuracy of ESFL is higher than that of gaussian noise, about
6% on average, which indicates that ESFL can resist attacks and
ensure the availability of the model.

1) Discussion: From the existing work on attacks, as the
percentage of malicious clients increases, the attack success rate
should also increase. But our experimental results do not show
this phenomenon. We suspect this is because the rounds that
malicious clients are selected by the server to participate in are
almost always the first part of the total rounds T . In the frame-
work of FL, the server needs to perform aggregation operation,
and the role of aggregation can be seen as either cohesion or
weakening individual contributions. If the rounds selected by

the server for the malicious client are located in the front part
of the total number of rounds T , for example, in the first 1

3T
rounds, then the effect of the attack is gradually weakened as the
communication round t increases. Thus, we cannot determine
whether the aggregation operation or the differential privacy
mechanism works against the backdoor attacks.

To solve the above doubts and guesses, in another set of
tests, we fix the rounds t that malicious clients participate to
the front and latter part of the total communication rounds
T , e.g., t ∈ [0, 1

3T ] and t ∈ [ 23T, T ] respectively. To show the
impact of a uniform distribution of t, we test the scenario where
malicious clients would be selected every I rounds and launch
the backdoor attacks. For illustration purposes, the above three
situations correspond to front-fixing, tail-fixing and even-fixing,
respectively. The test results are shown in Fig. 10 and we only
test MRA attacks.

The broken lines in Fig. 10(a) are more horizontal than those
in Fig. 10(b) and (c), which indicates that the timing of launching
the attacks is critical. If it is front fixing, the attacks effect will be
mainly weakened by aggregation operation on the server. If it is
tail-fixing or even-fixing, the attacks effect is mainly weakened
by the local differential privacy mechanism.



Fig. 9. Impact of malicious proportion P̃A.

Fig. 10. Impact of malicious proportion P̃A on MNIST for different round t.

F. Communication Efficiency of ESFL

Similar to CAFL [21], we adopt CS to compress and upload
models, which reduces the uplink communication overhead on
the premise of ensuring the model accuracy. It is worth noting
that the extended function of ESFL compared with CAFL and
the noise adding process of LDP mechanism will not cause
additional burden on communication efficiency. Therefore, the

communication efficiency of ESFL is as superior as that of
CAFL. Read CAFL for detailed experimental results.

VIII. CONCLUSION

In this paper, to solve the issues that the traditional DP-based
FL cannot realize adaptive perturbation and the high communi-
cation cost under the DNN model structure, we first propose a ba-



sic scheme that uses CS to alleviate uplink traffic and adaptively
perturbs local model by exploiting the hierarchy of DNN. On
this basis, we further adopt the adaptive perturbation mechanism
to adjust the traditional gaussian noise, which resists backdoor
attack. Extensive experiments prove that we can improve the
model accuracy and defense performance under a lower privacy
budget, and reduce the communication cost. In the future work,
we will test the effectiveness of our scheme on larger DNN
models and datasets, and further reduce the communication
overheads of uploading and downloading models.
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