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ABSTRACT
Object detection, while being an attractive interaction method for
Augmented Reality (AR), is fundamentally error-prone due to the
probabilistic nature of the underlying AI models, resulting in sub-
optimal user experiences. In this paper, we explore the effect of
three game design concepts, Ambiguity, Transparency, and Con-
trollability, to provide better gameplay experiences in AR games
that use error-prone object detection-based interaction modalities.
First, we developed a base AR pet breeding game, called Bubbleu
that uses object detection as a key interaction method. We then
implemented three different variants, each according to the three
concepts, to investigate the impact of each design concept on the
overall user experience. Our user study results show that each de-
sign has its own strengths and can improve player experiences in
different ways such as decreasing perceived errors (Ambiguity), ex-
plaining the system (Transparency), and enabling users to control
the rate of uncertainties (Controllability).

CCS CONCEPTS
• Applied computing→ Computer games; •Human-centered
computing → Mixed / augmented reality; Human computer
interaction (HCI); • Computing methodologies → Object de-
tection.
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computer vision, vision sensing, Human-AI Interaction
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1 INTRODUCTION
Augmented Reality (AR) games have newly adopted diverse in-
terfaces and interaction methods [10, 12, 89]. In particular, recent
advances in Artificial Intelligence (AI) and computer vision tech-
niques have opened up sophisticated ways to integrate the real
world and virtual game contexts for a high-quality player expe-
rience. An important example is object detection which allows
AR games to interpret objects in the camera scene [94], enabling
tangible interactions with diverse real-world objects.

Object detection techniques, however, have fundamental limita-
tions due to their statistical nature based on Deep Neural Networks
(DNN). Even the state-of-the-art DNN models trained with huge
datasets inevitably suffer from unpredictable inference errors. The
error rates increase when the observed scenes are beyond the scope
of training data [38, 85]. Such errors during gameplay prevent
players from controlling the game as they intended. In this light,
understanding how errors in object detection occur and impact
the gameplay experience is a critical issue when adopting object
detection as a key interaction method in AR games.

In both fields of AI and Human-Computer Interaction (HCI), it
has been recognized as an important research topic to build usable
applications with uncertain AI solutions and enable quality user
experiences. Prior studies investigate the effect of AI errors on the
interaction [29, 91] and several works explore design guidelines to
improve user experiences with the uncertain results [7, 9]. However,
the investigations are in an early stage and focus on a few specific
AI-driven applications such as chatbots [43], voice agents [66], and
recommendation systems [32] while games remain as an under-
explored yet important application domain. Games require unique
considerations to adopt AI solutions due to the distinctive charac-
teristics of game design [23, 39, 78].

In this paper, we aim to shed light on how to utilize uncertain
AI solutions as game interaction mechanics for game designers
and HCI researchers. In particular, we deeply investigate how to
overcome the inherent uncertainties of DNN-based object detection
with interaction designs in the context of AR games. Our work is
one of the first attempts to provide useful insights into designing
game interactions with fast-penetrating AI solutions. Such findings
will especially be important for emerging AR games where AI
solutions are essential for physical scene analysis and seamless
virtual content rendering. In addition, our work extends existing
HAI studies with a new target application and findings.
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Figure 1: Gameplay of Bubbleu. a) Screenshots of the gameplay. b) A player playing Bubbleu using a real object.

Emerging AR game applications with new AI-based interaction
modalities have a large design space yet to be explored. We conduct
a sequence of three essential studies to dissect the design space and
rigorously study the effects of various designs (see Section 3 for
study procedure overview). In our first study, we design Bubbleu,
an AR pet breeding simulation game for handheld mobile devices
(Figure 1). Bubbleu utilizes object detection as the sole interaction
method, allowing players to control the game bymanipulating phys-
ical objects in the camera scene. In our second study, we improve
Bubbleu with three design concepts - Ambiguity, Transparency, and
Controllability - to preserve the gameplay experience with the pres-
ence of different types of object detection errors (see Section 5.3 for
details). Through the preliminary gameplay of Bubbleu, we learn
that various object detection errors have different negative effects
on the intended player experience. We carefully choose the three
designs based on prior HAI and game design guidelines to mitigate
such negative impact.

We finally conduct a user study with 36 participants to evaluate
the effectiveness of the three Bubbleu variants, in improving the
player experience upon object detection errors. Through the exper-
iments, we aim to answer the following two research questions:

RQ1. How do errors occurring in the object detection interaction
affect the user experience in AR games?

RQ2. What possible game designs can improve the player experi-
ence when object detection errors occur in the gameplay?

The results show that each design variant has different effects on
preserving user experience by decreasing the perception of errors
(Ambiguity), making users understand the ambiguous interaction
(Transparency), and enabling the users to control the uncertainties
(Controllability). Ambiguity design decreased the success rate of the
interaction for 19.77 % in the erroneous environment. Transparency
and Controllability design did not result in a clear decrease in error
rates but had high user preference compared to the baseline with
their abilities to explain and control the uncertainties.

The main contributions of this paper are as follows:
• We systematically characterize the types of object detection
errors that lead to negative gameplay experiences.

• We show the potential of object detection as an interaction
method for AR games by implementing a novel AR game
called Bubbleu that uses object detection as a key interaction
modality.

• We investigate how different game designs from three con-
cepts – Ambiguity, Transparency and Controllability – can

possibly reduce the negative impact of object detection er-
rors and improve the Bubbleu gameplay experience.

• We present design implications for future games to adopt
object detection-based game interaction.

2 RELATEDWORK
2.1 Object Detection-based Applications
Object detection is a long-studied topic in computer vision. It en-
ables seamless interaction with real-world objects in the digital
context with two useful features: estimating the locations and cate-
gories of various objects [94, 96]. The synergy between large-scale
data [21, 56] and breakthroughs in DNNs has shown unprecedented
in-the-wild performance; various objects in a scene can be detected
and recognized with a single image input [13, 48, 60, 79]. This
technology paved the way for numerous applications including
autonomous driving [80] or Amazon’s in-store autonomous check-
out [82]. In these applications, even a single failure can lead to fatal
results (e.g., accidents with autonomous driving cars [35, 63]), and
thus they use many high-end cameras and powerful computing
equipment to minimize the uncertainty.

A large set of applications were proposed that use lightweight
object detection technology for the automation of everyday tasks.
Some examples include optical character recognition (OCR) for
image-to-text [77], face detection for camera auto-focus [4, 65], pet
monitoring [33], and hands-free control of IoT devices with smart
cameras [40, 73, 86]. Many studies also showed that object detec-
tion enables efficient video analysis for note-taking [16], caption
generation [49], and sports analysis [20]. Unlike mission-critical
applications, these applications achieved sufficient accuracy to min-
imize human labor and provided intuitive interfaces to overcome
uncertainties with explicit user feedback.

Recently, a large body of work has explored the design space of
integrating AR and object detection-based interactions. In partic-
ular, many applications were proposed for educational purposes
that used context awareness and gamification. Draxler et al. [25]
presented a context-based grammar learning application, which
recommends a sentence related to the types and positions of the
objects in the scene. Kang et al. [42] presented ARMath, a math
education application with an object detection-based tangible ob-
ject manipulation interaction. Kwon et al. [50] proposed one of the
first systems that support language guidance during parent-child
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interactions. Other works aim to provide new entertaining expe-
riences integrating virtual content and real-world objects. Liang
et al. [55] implemented a virtual reality pet system that generates
context-aware behavior of a pet related to the real-world scene.
Putze et al. [70] presented an AR guessing game that utilizes ob-
ject detection. These works all focus on showing the potential of
novel interactions, however, the consequences of object detection
uncertainty remain underexplored.

2.2 Uncertainty in Human-AI Interactions
The uncertainty of AI-based systems has been extensively studied
in the field of Human-AI Interaction (HAI), with various terms
such as eXplainable AI (XAI), transparent AI, and responsible AI
being coined [5]. A large body of work studied how users create
mental models when encountering uncertain and unexpected AI
behaviors. Studies have shown that the timing of encountering AI
model errors [44, 68], level of expertise [53, 67], and fidelity of the
information used to explain the AI model results [45, 93] affects the
user’s trust and understanding towards the system. Another set of
studies explored how to guide users to overcome AI model errors.
Das et al. proposed new ways to provide non-experts with expla-
nations on how to overcome AI-based robot failures [18]. Lindvall
et al. explored the design space of interacting with imperfect AI
(e.g., hiding underlying probabilities) for digital pathologists [57].
Kocielnik et al. conducted a case study with a scheduling assistant
AI application to understand user expectations towards imperfect
AI [47]. They found that higher recall resulted in a higher percep-
tion of accuracy compared to higher precision. In addition, giving
control to the user to adjust the precision and recall trade-off re-
sulted in higher user acceptance. In this work, we deeply investigate
AI uncertainty in the important but under-explored context of AR
games where the findings can differ from prior work even when
applying similar design strategies.

Prior works have attempted to generate a set of guidelines for
UI/UX practitioners to handle uncertainties. Yang et al. claimed that
the unique challenges of designing human-AI interactions come
from the capability of uncertainty - uncertainties surrounding what
the system can do and how well it performs [91]. Amershi et al. pre-
sented a set of general guidelines applicable to AI applications [7]
including the guidelines to handle the cases when AI is wrong.
Furthermore, companies are taking initiatives to ensure respon-
sibility and accountability for commercialized products. Google’s
People+AI research group (PAIR) presented a guidebook [3] that
highlights things to consider for error handling. Apple [2] and
IBM [1] also proposed a set of guidelines to serve similar purposes.

In our work, we aim to discover a set of new design implica-
tions that account for game-specific contexts. Our findings may
align with or contradict existing knowledge as many of them are
performance-centric and miss the notion of AI as play. Furthermore,
we focus on games where AI errors impact the player experience di-
rectly rather than games where AI-controlled characters indirectly
impact the experience.

2.3 Uncertainty in Games
Errors during gameplay have become diversified, with the increas-
ing complexity of games and the adoption of new technology. Prior

work has studied the influence of various error types on the payer
experience. For instance, several studies explored the impact of
network latency in various types of games [11, 36, 37, 59]. Others
studied errors regarding input accuracy when adopting novel in-
teraction modalities [19, 74]. Many commercial games denote any
type of error as bugs and something to avoid [54, 81] since they can
violate the player’s intentions and cause frustration. Indeed, users
often perceive most of the conventional errors as system failures
or malfunctions [3].

As no error-free AI systems exist, prior work has explored new
game designs to make AI-based games error-tolerable. Zhu et al.
conducted a systematic review on AI-infused games [95]. One study
showed that players could be generous about bugs as long as they
were entertained [81]. Other studies suggested using different input
modalities or controlling granularity [61]. ARMath provided a fixa-
tion UI that allowed users to fix the AI results using gamification
features [42]. Zargham et al. proposed anticipatory error handling,
allowing the game to choose the best action for achieving the goal
when the user input is not accurately recognized [92]. In line with
these works, we explore various designs to handle AI errors that
consider the characteristics of the game and player expectations.

3 STUDY OVERVIEW
We illustrate our overall study procedure in Figure 2(a) along with a
detailed description of individual study in Figure 2(b). We obtained
IRB approval for all of our user studies. Also, the study process fol-
lowed the government’s COVID-19 health protocol. In this section,
we overview the three studies while we explain further details of
the methodology and study designs in the corresponding sections.

The first study is a pre-design workshop with 7 participant group
of HCI researchers and game design experts to understand the de-
sign space of objection detection-based games (Study 1 in Figure 2).
Through a two-phase workshop and a post-workshop survey, we i)
explored how object detection can be used as a game interaction
modality, ii) investigated how object detection errors can affect
the gameplay, and iii) constructed a game design suitable for un-
derstanding the effects of the errors. Based on the results of the
pre-design study, we implemented the baseline game Bubbleu. In
the second study, we conducted another design workshop to ex-
plore how the baseline design can be improved to minimize the
impact of object detection errors on the player experience (Study
2). As a result, we converged design improvement ideas into three
different concepts - Ambiguity, Transparency, and Controllability.
We implemented three variants of Bubbleu following each design
concept. Finally, we conducted a user study of 36 participants in-
cluding two types of experiments and interviews (Study 3). We
aimed to investigate i) if the three design concepts reduce the ac-
tual and perceived errors during gameplay and ii) how they affect
the player experience, both in natural gameplay environments and
controlled environments with manually injected errors.

4 STUDY1: PRE-DESIGN EXPLORATION
4.1 Methodology
We conducted a two-phase design workshop to explore object
detection-based AR games. We recruited a group of researchers
including two game design experts with more than four years of
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Study 1: Pre-Design Exploration Workshop Sec. 4

Ideation of games using object detection as a key 
mechanic for interactions.

Study 2: Design Improvements Workshop Sec. 5

Generating object detection error handling design
concepts for games.

Study 3: User Study Sec. 6

Studying the effectiveness of the proposed design
concepts with free and controlled game play.

(a) Study procedure overview.

Study 1: Pre-Design Exploration Workshop
Participants 2 game design experts, 5 computer vision/HCI researchers

Phase 1: Game Concept Brainstorming
Think of game ideas using object detection as main interaction modality 

Phase 2: Taxonomy Generation
Categorization of the design space and error types of object detection

Post-Workshop Literature Survey & Implementations
Iterative baseline game design and error taxonomy generation

Study 2: Design Improvements Workshop
Participants Identical to Study 1

Pre-Workshop Phase
Bubbleu-Baseline game trial session (10~15 minutes per participant)

Phase 1: Free Brainstorming Session 
Generate design ideas to improve Bubbleu-Baseline game experience

Phase 2: Guided Brainstorming Session
Generate design ideas regarding existing guidelines and scope down 
feasible designs for implementation

Study 3: User Study
Participants & Apparatus 
▪ Between-subject studies with three improved designs of Bubbleu
▪ 36 users randomly assigned to three groups
▪ Each group tests two versions of the game (Bubbleu-Baseline 

and assigned design)
Session 1: Free Gameplay
▪ Play until reaching game level 3
▪ Collected Data: session video recording, game play log

Session 2: Controlled Gameplay
▪ 15 predefined task with injected errors
▪ Collected Data: game play log

Questionnaire
▪ NASA-TLX 
▪ Follow-up open/closed questions

• Did you notice any errors during gameplay?
• Did you notice each error type in the taxonomy? 
• If yes, when did it occur? 

Interview Questions
▪ Did you identify the difference between the two game versions? 
▪ If yes, which one do you prefer and why? 
▪ If yes, how did the difference affect your gameplay experience?
▪ Was the error occurrence rate between the two game versions 

different? Which version showed more or less errors?

x2

(b) Details of each study phase.

Figure 2: Overview of our study methodology.

experience and five researchers who have more than two years of
experience in HCI and computer vision (4 females and 3 males aged
between 24∼28). We recruited the participants considering that the
study is at the intersection of computer vision, HCI, and game de-
sign. The recruitment was done through our intranet channel and
the participation was voluntary. All the participants had hands-on
experience with training and testing state-of-the-art object detec-
tion models. The workshop was held at an on-site meeting room
following the government’s COVID-19 health protocol, and lasted
two hours in total.

In the first phase of the workshop, the participants were asked
to generate game concept ideas using object detection as the pri-
mary interaction modality. We provided the MDA framework [39],
a formal approach for game design, to facilitate the ideation process
for non-experts in game design. The participants were guided to
generate new ideas regarding the three main components of games;
i) the rule and system of the game (Mechanics), ii) the run-time
behavior of the game (Dynamics), and iii) the desirable emotional
responses evoked by the game (Aesthetics). As we aimed to explore
the design space of object detection-based interaction, we provided
more detailed information on the mechanics [26, 76] and encour-
aged the participants to generate ideas focusing on the mechanics
utilizing object detection. Experienced game designers preferred
not to be limited by the framework. This phase of the study lasted

approximately one hour. As a result, we converged to 33 interesting
game ideas, including ’a room escape game to interact with real-world
objects (e.g., a real key to open a door)’, ’a shooting game to shoot
real-world objects around them’ and ’a game to create a bouquet by
collecting real flowers’.

In the second phase, we collectively discussed the various sugges-
tions to organize our findings. We conducted an affinity diagram-
ming exercise to categorize the design space of games using object
detection as a primary interaction modality. Table 1 shows the cat-
egorization along with examples. Then, we extensively discussed
and chose a single prototype game with a rich set of interactions to
highlight the potential problems caused by object detection errors.
We also discovered that different types of object detection errors
have varying impacts on gameplay. Thus, we conducted a thorough
literature review after the workshop to identify the errors found
in prior studies [15, 38] and generated a taxonomy. We organize
the findings of the workshop into two sections; i) design space of
object detection-based games and our design choices (Section 4.2),
and ii) taxonomy of object detection error types (Section 4.3).

4.2 AR Game Design with Object Detection
Table 1 presents the final four designs categories and example
games, separated by two criteria: i) whether they require interaction
with multiple objects at the same time, and ii) whether the user
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Table 1: Categories of AR game designs that utilize object
detection as a key mechanic. A) A quiz game where a virtual
character asks the player to show an object to solve a short
quiz. B) A pet breeding game where the player can feed a
virtual pet by manipulating a real food object. C) A stroll
game where a virtual fairy talks about the scene while walk-
ing outdoors. D) An education game where the player should
manipulate real objects to solve a math problem.

Static Manipulation Dynamic Manipulation

Single
Object

A. Quiz game B. Virtual pet

Multiple
Objects

C. Stroll assistant D. Math education

dynamically manipulates the object (e.g., moving it around) during
the interaction - versus just selecting the object. We also considered
the third aspect, i.e., the types of objects to be detected and used in
the game. However, as the accuracy of object detection with diverse
object types is heavily affected by the specific DNN models and
training data used rather than the game design, we excluded this
third factor in our final design consideration.
Design choices of our prototype game. From the workshop
results, we carefully designed a prototype game that could clearly
show the impact of object detection errors. In particular, we picked
the category of single-object and dynamic manipulation. Firstly, the
single-object manipulation highlights the type of object detection
errors and their effects. We excluded multi-object interactions since
different types of errors could be blended, making the analysis non-
trivial. In addition, we chose dynamic manipulation over static one
since it not only enables a fun game experience but also generates
diverse types of errors. With these considerations, we built a virtual
pet breeding game named Bubbleu (see Section 5).

4.3 Errors in Object Detection Interaction
Table 2 is a generated taxonomy of errors caused by deep learning-
based object detection during gameplay. The taxonomy includes
four error types – Missing detection, False detection, Mislocaliza-
tion and Misclassification – regarding the two capabilities of object
detection: i) detecting the position of an object and ii) classifying

Table 2: Taxonomy of object detection errors.

Error Type Description and Metric

Missing
detection

Fails to localize and recognize the object
in the scene (False negative)
𝐴𝑟𝑒𝑎𝑂𝑓 (𝑃𝑏𝑏𝑜𝑥 ) = 0, 𝐴𝑟𝑒𝑎𝑂𝑓 (𝐺𝑇𝑏𝑏𝑜𝑥 ) > 0

False detection
Localize and recognize a non-existing
object (False positive)
𝐴𝑟𝑒𝑎𝑂𝑓 (𝑃𝑏𝑏𝑜𝑥 ) > 0, 𝐼𝑜𝑈 (𝑃𝑏𝑏𝑜𝑥 ,𝐺𝑇𝑏𝑏𝑜𝑥 ) < 𝑡𝑏

Mislocalization
Correct recognition of an object in the
scene but in the wrong location
𝑡𝑏 < 𝐼𝑜𝑈 (𝑃𝑏𝑏𝑜𝑥 ,𝐺𝑇𝑏𝑏𝑜𝑥 ) <= 𝑡𝑓

Misclassification
Correct localization of object in the scene
but recognized as a different class
𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (𝑃𝑏𝑏𝑜𝑥 ) ≠ 𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (𝐺𝑇𝑏𝑏𝑜𝑥 )

*𝐴𝑟𝑒𝑎𝑂𝑓 is the size of the bounding box, 𝐼𝑜𝑈 is the intersection-over-union
quantifying the overlapping region of two boxes (threshold values are empirically
determined, e.g., 𝑡𝑏 = 0.1, 𝑡𝑓 = 0.5),𝐶𝑙𝑎𝑠𝑠𝑂𝑓 is the classified object type.

its category. Note that even though these errors can be alleviated
with improved object detection algorithms, they cannot be fully
eliminated due to the probabilistic nature of deep learning-based
approaches [69] and mismatches between the training data and
highly diverse gameplay scenarios. We observed that the errors
indeed occur in Bubbleu gameplay sessions at different frequencies
(Section 6.2.1) and discussed the potential causes of those errors
(Section 7.3).

5 STUDY2: BUBBLEU DESIGN
5.1 Methodology
Based on the findings of the pre-design workshop, we built a base-
line prototype of Bubbleu that utilizes object detection as the pri-
mary interaction modality. To enrich our observations, we iter-
atively designed Bubbleu’s interaction modalities to expose the
effects of the different error types listed in Section 4.3. The final
design of Bubbleu is represented by the Finite State Machine (FSM)
architecture shown in Figure 4. We explain how the different error
types are reflected in the Bubbleu design (using the FSM architec-
ture) in Section 5.2. This baseline Bubbleu (referred to as Bubbleu-
Baseline, hereinafter) was used to study the effects of different types
of object detection errors during gameplay.

We then conducted a second design workshop in two phases
with the same group of researchers who attended the first workshop.
Before the start of the workshop, each participant played a trial
session with Bubbleu-Baseline to understand the game features and
to experience the impact of object detection errors during game-
play. In the first phase (for half an hour), the participants engaged
in a free brainstorming session where they were encouraged to
suggest ideas for improving Bubbleu-Baseline. Many of these ideas
included adding or completely changing the features of the game
(e.g., making the player teach the rabbit when errors occur, adding
another pet to distract the user from errors, asking the players to



CHI ’23, April 23–28, 2023, Hamburg, Germany Minji Kim, Kyungjin Lee, Rajesh Balan and Youngki Lee

Table 3: Types of interactable objects and the consecutive
interactions in Bubbleu. The types of objects are selected
from COCO dataset labels.

Name Behavior of the Pet Interactable Objects

Eat The pet eats the object.
Apple, Banana, Orange,
Donut, Carrot, Broccoli

Wash The pet washes its face. Cup, Bottle
Play The pet follows the hand. Hand

move objects only when no interaction has occurred within a short
time period, etc.).

For the second phase (also for half an hour), we organized a
guided brainstorming session to narrow down the design space.
We first clarified the FSM architecture of Bubbleu and showed the
types of errors that could occur in each state. Then, we provided a
set of design guidelines that could help stimulate additional ideas.
We carefully selected the guidelines from existing game design
theories [23, 39, 83, 90] and Human-AI interaction guidelines [7, 51].
The participants were encouraged to generate new ideas or refine
their existing ideas.

We collated all the ideas generated from the two phases and con-
ducted an affinity diagramming exercise to classify and converge
the ideas into three different concepts (explained in Section 5.3).
Then, we chose a set of specific ideas to implement. After the work-
shop, we performed several iterative prototyping rounds by testing
and improving the implemented designs. Section 5.3 describes how
we extracted the three design concepts and the final chosen de-
signs. Note that the selected designs from the workshop are not
exhaustive or representative. We discuss some of the limitations
and possible improvements in Section 7. Figure 5 shows how the
workshop was conducted and provides the full list of converged
ideas in Appendix 10.

5.2 Baseline Game Design of Bubbleu
We first describe how the baseline version of Bubbleu works.

5.2.1 Overall Gameplay. Bubbleu is an augmented-reality pet breed-
ing simulation game played on a handheld smartphone. The game
is played by manipulating real-world objects on flat surfaces (e.g.,
floors or desks) captured by the device’s rear camera. As the game
begins, a virtual rabbit pet appears on the surface. The goal is to
breed the virtual pet seen on the screen by fulfilling its needs and
gaining EXP (EXperience Points) to level up the pet. The pet has
three needs; eat, wash, and play. The player can fulfill the pet’s
needs by bringing real-world objects near the pet. For example, the
player could place an apple in front of the virtual pet. When an
apple is detected in the scene, the pet will eat it, and its satisfaction
gauge for that need will increase. As the satisfaction gauges are
fulfilled, the player is rewarded with EXP scores, which in turn
increases the level of the pet.

The pet can detect and interact with 9 different types of objects
(Table 3). In particular, the player can feed the pet with food objects
and wash the pet with the cup and bottle objects. To move the pet
to specific positions, the player needs to show their hand on the

Figure 3: The gameplay state sequence of Bubbleu. a) The
pet becomes curious after detecting an interactable object. b)
The pet moves to the position of the detected object. c) The
pet checks if the detected object is still in the same position.
d) The pet interacts with the detected object.
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Figure 4: The Finite State Machine (FSM) for Bubbleu.

screen – this will cause the pet to follow the hand. The pet’s need
to play is fulfilled when the player consecutively leads the pet to
follow his hand 5 times.

5.2.2 Behavior of the Pet. The behavior of the pet follows a 7-state
FSM as illustrated in Figure 4. Figure 3 describes an example tran-
sition sequence for major states. The initial and default state of
the game is IDLE, where the virtual pet stands at a fixed location.
When the system detects an interactable object in the camera input,
the pet switches into the CURIOUS state. In this state, the pet indi-
cates its curiosity while the system identifies the class of detected
objects (Figure 3(a)). If the object is detected and recognized for 10
consecutive frames, the pet successfully transitions into the MOVE
state and walks toward the detected position (Figure 3(b)). After
the pet moves close to the detected object, the CONFIRM state is
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Figure 5: Conducting game design workshop for Bubbleu
improvements.

executed and checks if the detected object is still in the right posi-
tion for another 10 consecutive frames (Figure 3(c)). A successful
confirmation causes a transition to the INTERACT phase, where
the virtual pet performs different interactions depending on the
class of the detected object (Figure 3(d)). If either the CURIOUS
or CONFIRM fails, the pet transitions to a QUESTION state that
shows an animation of the pet being confused. After finishing the
INTERACT or the QUESTION action, the pet transitions back to
the IDLE state and waits until another object is detected.

5.2.3 Object Detection Components of Bubbleu. We adopted SSD
(Single Shot Multibox Detector) Lite [60] model trained by the
COCO (Common Objects in Context) object detection dataset [56]
to perform object detection in Bubbleu. We chose the model as it
was optimized for mobile devices (did not result in any noticeable
lag), and the error rate was only a little higher (COCOmAP@.5=46.5
%) than the state-of-art model (COCO mAP@.5=56.8 % [84]). Thus,
the findings of this paper will still apply to other object detection
models. Bubbleu confirms the detection only after checking that the
object is consistently detected with a confidence level higher than
the empirically chosen threshold (th >= 0.55) for 10 consecutive
frames in the CURIOUS and CONFIRM states.

We observed that different types of object detection errors occur
at various states. First, missing detection and false detection influ-
ence the IDLE and CHECK states. For instance, in the IDLE state, a
missing detection does not trigger the transition to the CURIOUS
state, while a false detection makes an unintended transition. In the
CHECK state, a missing and false detection incurs a wrong state
transition to the QUESTION and INTERACT states, respectively.
Mislocalization errors appear between CURIOUS and MOVE states,
affecting all subsequent transitions. When it occurs, the virtual
rabbit moves to the wrong position and performs interactions there
(e.g., the rabbit eating an apple far away from it). Lastly, misclas-
sification errors occur in the INTERACTION state. They lead to
activating wrong interactions (e.g., the washing action when the
detected object is an apple). To accommodate these errors, we care-
fully design Bubbleu-Baseline to handle these object detection errors
at different FSM states.

5.3 Error Handling Designs
From the second workshop, we classified the design ideas into three
concepts - Ambiguity, Transparency, and Controllability. In this

section, we define these concepts and detail how these concepts
were implemented into specific Bubbleu variants for the user study.

5.3.1 Ambiguity. Ambiguity is a design concept to overcome nega-
tive experiences caused by technical limitations by pursuing multi-
ple interpretations of the expression [14, 28, 75]. This design concept
can be applied to Bubbleu by abstracting the interaction feedback
into ambiguous expressions to prevent object detection errors from
being perceived by the players. For example, classifying an orange
as an apple is a common error in Bubbleu. When the system dis-
plays an exact icon of the object (e.g., displaying the “apple” icon
when it detects an apple), the player easily discovers the error. How-
ever, when the detection results of apple and orange are abstracted
and displayed as the same “eat” icon, the player does not notice
whether an error has occurred. The Missing detection errors (e.g.,
the pet does not react when an object is placed in front of the
pet) could also leverage ambiguity by having the pet do random
interactions when no object is detected for a certain period. We
incorporated various ideas related to ambiguity to create a new
version, Bubbleu-Ambiguity.
Implementation of Bubbleu-Ambiguity We define a concept
of level-of-interaction, which divides interactions into three levels
by confidence scores. When an object is detected with a low con-
fidence score, the pet in Bubbleu-Ambiguity performs a new type
of interaction called observe. The observe interaction is an abstract
interaction that can be done with any type of object detected in
Bubbleu. Unlike eat and wash, the pet doesn’t move near the object
or display the object icon. Instead, it only looks (“observes”) at
the object. This interaction aims to hide Mislocalization and Mis-
classification errors while still allowing the player to interact with
the object. Bubbleu-Ambiguity divides eat and wash interactions
into three levels. When the confidence level is low, the pet observes
the object instead of eating or washing (A-1 in Table 4). When the
confidence is medium, the pet displays the higher group of the
object type. For example, when an apple is detected with medium
confidence, the pet shows the eat gesture and displays the eat icon.
In contrast, when the same object is detected with high confidence,
the pet shows the eat gesture along with the apple icon and informs
that it is eating an apple in a dialogue. To reinforce that observe
belongs to a successful interaction, the players receive EXP as a
reward of observe.

The observe interaction is also played randomly in the IDLE state
(A-2 in Table 4). When this triggers, the pet will start looking at a
random position, and an observing gesture will be displayed. This
feature attempts to hideMissing detection errors by showing natural
feedback when the system fails to detect an object for a long time.

5.3.2 Transparency. Transparency has long been considered an in-
dispensable principle for designing understandable systems [27, 30].
Transparent systems help users to understand the behavior of com-
plicated sub-systems such as algorithms [8, 24, 46, 52] or AI mod-
els [58, 64, 72]. In particular, transparency helps improve user accep-
tance, trust, fairness, and usability [64]. During the workshop, mul-
tiple participants suggested different designs for providing trans-
parent information about the detection results. For example, one
participant suggested that the pet should first identify how confi-
dent the pet is about the detection before the interaction. Another
idea was that the pet should provide additional information on
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Table 4: Applications of three design variants in error-expected situations.
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A-1. Level-of-interaction
The pet shows ambiguous
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current confidence score.
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Displays detected object and
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detection process.
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After the interaction, the pet
sometimes asks the player to
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A-2. Random observe
The pet randomly observes
the location where no object is
detected at

B-2. Guide to recalibrate
The pet guides the player to
recalibrate the scene for better
detection.

C-2. Threshold control
The player can use a hand
gesture to lower the confidence
score threshold.

why the failures happened and how to overcome them. We im-
plement Bubbleu-Transparency to investigate whether providing
transparency results in positive effects when unexpected errors
occur.
Implementation ofBubbleu-Transparency Bubbleu-Transparency
displays the detected object class and the confidence level during
the full detection process (B-1 in Table 4). The interaction reward
changes depending on the detected confidence level. When the
confidence level is low, the pet would ask the player to try detecting
the object again instead of performing an interaction – here, no
EXP will be provided. When the confidence level is high, an addi-
tional effect would be played and the EXP reward will be slightly
higher than common. Note that, unlike the other two designs, this

behavior is always shown regardless of the confidence score to
maintain consistency of the information.

When no object is detected for a long time period, the pet tells
that no object is being detected and provides tips on how to improve
the object detection accuracy (B-2 in Table 4). For example, the pet
will sometimes say "Please move the camera around slowly" when
no object is detected for a while.

5.3.3 Controllability. Controllability is an essential design element
for digital games [22, 39, 88]. In HAI, controllability is used to
enhance the trust of users by explaining what is happening and
how they can control the system to react appropriately [6, 62]. In
Bubbleu, we adopted controllability to allow the user to tune the
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Table 5: Participant distribution in three groups of the user
study. All participants were in the age group of 20-39.

Group Participant Gender
(M/F)

AR Experience
Level (1-4)

Ambiguity P1-P12 7/5 2.08 ± 0.80

Transparency P13-P24 4/8 2.17 ± 0.71

Controllability P25-P36 6/6 2.50 ± 0.90

capability of the object detection models. Some suggested ideas for
controllability were to let users control the sensitivity of the object
detection by, for example, allowing users to force the pet behavior
in a dark environment. Other suggestions were to explicitly ask for
corrections to improve the object detection models. We thus im-
plement Bubbleu-Controllability to understand whether providing
controllability improves the player experience.
Implementation of Bubbleu-Controllability The final variant,
Bubbleu-Controllability, provides a feature that lets players control
the confidence threshold of the detection. When no object is de-
tected for a while, the pet will ask the player to show their hand on
the screen (e.g., the message "I don’t detect anything. Please show
me your hand if there is an object to detect." will appear). If the
player shows their hand, the confidence threshold lowers so that
the sensitivity of the object detection would be increased (C-2 in
Table 4). This allows the players to avoid Missing detection errors,
while chances of False detection errors also increase.

Bubbleu-Controllability also asks players to correct the detec-
tion results (C-1 in Table 4). When the detection confidence level
is low, the pet questions the player about whether the previous
object detection was performed correctly. This design thus allows
users to provide feedback to the object detection subsystem about
its runtime performance. The given feedback can be utilized to
dynamically improve the system to increase performance.

5.3.4 Applying the three concepts to Bubbleu. Each design con-
cept is applied in the following way. Firstly, Bubbleu estimates
the two potential situations where errors likely occur: i) situations
where no interaction has happened over a long period (i.e., Miss-
ing detection errors are expected), and ii) situations where inter-
actions are occurring but the confidence score is lower than the
pre-determined threshold (0.65, decided empirically) (i.e., False de-
tection, Misclassification, or Mislocalization errors are expected). In
these two situations, each variant behaves differently following its
own implementation (Table 4). Note that the game system cannot
predict whether the error has truly occurred. These behaviors could
also occur in non-erroneous circumstances.

6 STUDY3: USER STUDY
6.1 Study Design
6.1.1 Participants and apparatus. We recruited 36 participants in
South Korea via an online survey. The participant group consisted
of 17 males and 19 females between 20 to 39 years of age. All
of them had a level of education above a bachelor’s degree. Dur-
ing recruitment, we asked each participant to report their prior

experience level in AR applications in a 4-point Likert survey; 5
participants have never used AR applications, 20 have used but
not consistently, 8 have used consistently, and 3 have developed or
researched AR applications. To reduce selection bias, we divided
them randomly into three groups of 12 participants except for the
5 complete novices and the 3 expert developers who were spread
across the groups. Table 5 shows the distribution of the partici-
pants. We conducted between-subjects experiments with the three
improved designs of Bubbleu. Each group was assigned to play
one of the variants (Bubbleu-Ambiguity, Bubbleu-Transparency, or
Bubbleu-Controllability) along with Bubbleu-Baseline, which serves
as a common baseline for the within-subjects comparative anal-
ysis. The results were analyzed within each group only with no
comparison between the groups.

The study was conducted on-site in a conference room of our
university building. At the start of the study, each participant was
provided with game instructions and informed about the study
procedure. Then, they signed a document that they agreed to partic-
ipate in the experiment. Before starting the game, the participants
went through a short tutorial gameplay session.

For each version of the game, the participants went through two
sessions of experiments: free gameplay and controlled gameplay. In
the free gameplay session, we asked participants to play the game
naturally without instructions. In the controlled gameplay session,
the participants were guided to perform specific interaction tasks.
Here, object detection errors were manually injected into some of
the tasks. The order between the assigned variant of Bubbleu and
the baseline Bubbleu was randomly counterbalanced. Every session
was conducted in a think-aloud manner. One researcher resided
in the same room throughout the entire study session to assist
the participants with the experiment procedure when requested.
The entire user study lasted 1 to 1.5 hours per participant and was
carried out in a span of three weeks. During all sessions, the game
screens and participants’ behaviors were video-recorded under
consent.

• Free Gameplay Setup. The participants could control the
smartphone device and manipulate the objects freely. Each
participant played the game until they achieve level 3 of the
game, which requires about 15 successful interactions. Six
interactable objects were provided: apple, banana, orange,
donut, bottle, and cup. We asked them to interact with the
pet using every object at least twice.

• Controlled Gameplay Setup. We adopted a Wizard-of-
Oz approach for the controlled gameplay session. The par-
ticipants were guided to follow 15 predefined tasks given
through the game message. We randomly divided the 15
tasks into 7 successful tasks and 8 erroneous tasks. For the
successful tasks, object detection was performed at 100 %
accuracy. On the other hand, for the erroneous tasks, we
injected one of the 4 types of errors (listed in Table 2). Each
error type occurred twice. The participants were asked to
perform three actions in sequence with a target object: i)
moving the target object to the indicated position on the
desk, ii) observing the interaction between the pet and the
object, and iii) removing the object from the desk. Upon the
completion of each task, the participant was instructed to
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press either the "Report" or "Continue" buttons. If the partic-
ipant pressed the "Report", they could then select the type
of error they have noticed in the popup UI. Otherwise, they
would proceed directly to the next task if they pressed "Con-
tinue". The participants were only allowed to manipulate the
single object specified in the instructions during the task. We
used the same six interactable objects from the free gameplay
study.

After each gameplay session, we asked the participants to first
fill out the questions from NASA Task Load Index (TLX) question-
naire [34] in 7-point Likert scales to validate whether the improved
design caused an additional mental workload. Then, the partici-
pants were given closed and open questions in a semi-structured
interview format. The essence of the questions was whether the
participant noticed any errors and if the types of errors could be
identified. At the end of the two sessions, we conducted an ad-
ditional interview to ask the participants about the overall game
experiences and differences between the baseline and improved
design. We asked if the participants noticed the difference between
the two game versions, which one they preferred, and which one
showed fewer errors. The specific questions for both interviews are
shown in Figure 2. All the interviews were audio recorded under
consent.

All the studies were conducted with Samsung Galaxy S21 devices.
We found that the device’s thermal issues could affect the gameplay
by causing noticeable object detection latency. Therefore, we used
two devices alternatively and attached them to a device cooler in
between the sessions.

6.1.2 Data, metrics, and analysis methods. Our user study gener-
ated four sets of data for analysis.

• Video recordings and gameplay logs (free gameplays).
We aligned the video recordings with the gameplay log and
identified the following quantitative metrics for analysis: i)
the total number of interaction attempts (the participants’
action of placing a new object and/or moving the camera
towards an object), ii) the success rates (number of successful
attempts over total interaction attempts), and iii) the number
and types of errors that occurred (as determined by in the
taxonomy in Table 2). We used the paired two-tailed t-test
to analyze the statistical significance between the baseline
and a variant of improved Bubbleu. The results are reported
in Section 6.2.1. Note we removed the outlier data (P3 from
Bubbleu-Ambiguity, P16 from Bubbleu-Transparency, and P29
from Bubbleu-Controllability). For these outlier participants,
their number of interaction attempts was significantly higher
than the average (more than two standard deviations away)
indicating that they had not learned how to play the game
properly.

• Gameplay logs (controlled gameplays). We obtained the
perceived error rate (defined as the percentage of the re-
ported errors) from the error report logs of the controlled
gameplays. We report the relevant results in Section 6.2.2.

• Quantitative perceived task load (free and controlled
gameplays). Participants answered six survey questions

from the NASA-TLX questionnaire (regarding task load in-
dex) [34] after playing each gameplay session. We compared
the scores of each question (between the Bubbleu baseline
and our design variant) with the paired two-tailed t-test. The
results are reported in Section 6.2.3.

• Qualitative interview. We manually transcribed all the in-
terview data from the audio recordings. We used the data to
analyze the users’ preference towards each design variation
(Section 6.2.4). We also organized our observations on the
user behaviors and their answers to our questions related
to error perception (Section 6.2.5). The interviews were con-
ducted in Korean. Thus, all the reported quotes in this paper
were translated by a bilingual speaker and verified by the
authors.

6.2 Results
6.2.1 Success rate of interactions in free gameplay. The success rate
of the interaction attempts during free gameplay is shown in Table 6.
The results include the total number of attempts, the number of
successful attempts, the success rate, along with the number of
error occurrences (total and per type). Overall, all three designs
helped improve successful interactions (with statistical significance
for Bubbleu-Ambiguity and Bubbleu-Transparency).

In Bubbleu-Ambiguity, the results show a clear increase in the
success rate, defined as the number of successes divided by the
total attempts - there was a statistically significant ≈20% increase
from 58.19% to 77.96%. Specifically, the Missing detection error de-
creased from 3.78 to 2.33. In Bubbleu-Transparency, the success rate
also increased by 8.51% (from 72.18% of the baseline to 80.69%).
Bubbleu-Transparency is the only variant that decreases the False
detection error rate. Bubbleu-Controllability also resulted in a higher
success rate and lower failure rate, but the numbers are statistically
insignificant.

6.2.2 Perceived errors in controlled gameplay. Next, we show the
perceived error rate results measured from the controlled gameplay
session. Table 7 describes the percentage of error reports for 8 out
of the 15 tasks with injected errors. A lower error rate means that
the number of reported errors was smaller.

Bubbleu-Ambiguity showed a significantly lower perceived er-
ror rate compared to the baseline across all four error types (e.g.,
11.11% decrease from 90.28% to 79.17%). The most significant de-
crease appeared in the Misclassification error. In contrast, Bubbleu-
Transparency resulted in a higher perceived error rate for Missing
detection,False detection, and Misclassification errors. The results
for Bubbleu-Controllability differed across error types. The report
rate of Mislocalization errors was lower than the other error types
(except for Bubbleu-Ambiguity and Bubbleu-Controllability where
error handling design was included), while Missing detection and
False detection errors were frequently reported.

6.2.3 Gameplay experience and perceived task load. Finally, we
investigated the perceived workload of the game by analyzing the
perceived task load survey results collected from the free gameplay
session (Figure 6). The reported result did not significantly differ
between the baseline and the improved design. Two factors of
Bubbleu-Ambiguity showed statistical difference: the self-reported
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Table 6: Effectiveness of three design variants during free gameplay. Total number of attempts of interaction, successful
attempts, failed attempts, total errors, and occurrences of different types of errors (* indicates p < 0.05.)

Version # Intended
Attempts # Success Success

Rate
# Total
Errors

# Missing
Detection

# Mis-
localization

# Mis-
classification

# False
Detection

Ambiguity 15.11 *11.78 *77.96 4.56 2.33 1 0.67 0.56
Baseline 13.56 *7.89 *58.19 6.56 3.78 1.11 0.78 0.89

Transparency 14.5 *11.7 80.69 2.9 1.8 0.8 0.2 0.1
Baseline 13.3 *9.6 72.18 4.2 2.1 1 0.6 0.5

Controllability 15.27 *11 72.04 4.91 2.27 1.09 0.91 0.64
Baseline 13.91 *9.55 68.66 5.36 2.18 1.09 1.09 1

Table 7: Perceived error rates in controlled gameplay.

Played Version Missing Detection False Detection Misclassification Mislocalization

Ambiguity 79.17 87.5 20.83 41.67
Baseline 91.67 91.67 50 37.5

Transparency 100 100 87.5 62.5
Baseline 100 94.44 79.17 70.83

Controllability 100 87.5 41.67 54.17
Baseline 95.83 91.67 91.67 37.5

task load related to the Temporal Demand (which indicates the
amount of time pressure felt by the individual due to the pace
of the task) and the Performance (which indicates the individual
perception at howwell they had achieved the goals of the task). This
implies that the players had finished tasks with better performance
when playing Bubbleu-Ambiguity but with higher temporal demand,
which may serve as one hidden reason why the players did not
prefer Bubbleu-Ambiguity.

6.2.4 User preference on designs. Wenow report the semi-structured
interview results regarding the users’ preference toward each de-
sign.
Bubbleu-Ambiguity. The participants showed mixed opinions
about their preference for this design. Several participants (P3-P5,
P9) mentioned that the ambiguous interaction of observe frustrated
their intention to make an interaction: "I felt confused when I ex-
pected an interaction, but the pet ended up with only observing." (P3),
"It didn’t seem sufficient when the pet’s action finished after obser-
vation. I waited to see if there would be some other interaction but
nothing happened." (P9). Several other participants (P1, P11) men-
tioned that they disliked ambiguous expressions of object type: "I
was doubtful whether I was correct when the pet did not recognize
the specific type of object." (P1), "I felt more fun with the interaction
distributing diverse object types." (P11). Participants who preferred
Bubbleu-Ambiguity (P7, P8, P10, P12) answered that they preferred
accuracy to the diversity of the interaction. Two of them men-
tioned the error rate while telling the preference: "The first version
(Bubbleu-Ambiguity) was better. It was better to show that the pet
noticed something rather than doing some wrong interaction." (P7)
and "I thought the second version(Bubbleu-Baseline) had many errors.

I want the pet to rather observe instead of interact with a wrong ob-
ject." (P8). The recorded gameplay video of the free study reveals
that both players had experienced less rate of error in Bubbleu-
Ambiguity (27.78%, 44.44% each) than Bubbleu-Baseline (54.17%, 50%
each). Note that several participants used the direct term "observe"
because the pet’s dialogue during the observe interaction mentions
that it is "observing" the object.
Bubbleu-Transparency.Overall, participants preferred the Bubbleu-
Transparency design. Participants liked the additional information
on the detection results (P15-19, P22-24): "Since some interactions
could be done with errors, it was useful to understand the object detec-
tion is correctly done or not." (P19). They also liked the pet’s advice
on how to make detection better (P14-19, P22-24): "I could correct
the detection when it told me to move the camera around." (P15). How-
ever, several participants (P13-14, P20-21) indicated that they did
not feel the additional information was helpful: "I am not sure if the
confidence score information is necessary. The object was sometimes
detected properly even when the confidence was low" (P13), "Whether
or not I could check the result, I still cannot improve the accuracy of
the system. I don’t think the information is needed" (P21).
Bubbleu-Controllability.The preference for Bubbleu-Controllability
was interesting as every participantwho played Bubbleu-Controllability
liked the feature of threshold control. 6 (P25, P27-28, P30-32) men-
tioned that they preferred wrong interactions happening more
than failing to interact: "Failing in interaction in the first gameplay
(Bubbleu-Baseline) frustrated me a lot. The second one (Bubbleu-
Controllability) felt better when I had a chance to make the object
detection more sensitive when the target object was not detected as I
intended." (P27). Some participants (P26, P34) explained the reason
in relation to the correction feedback feature: "I prefer to get wrong
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Table 8: User preference for three design variants vs. Bubbleu-Baseline.

Played Version Design Feature Counts Quotes

Ambiguity
Different levels of interaction,
observe at low confidence 4/12 I expected some interaction but the pet ended up only observing.

Observe randomly when no de-
tection happens 2/12 I was confused when the pet continued observing even when I did not give

any object.

Transparency Detection report 8/12 I felt successful when the object I intended was detected with a high score.

Guide to recalibrate when no de-
tection happens 9/12 I did not notice the design at the time but I think showing the guidance is

far better than none.

Controllability
Ask for correction at low confi-
dence 7/12 It would be nice if the accuracy becomes higher in the future, but answering

the validation question during the gameplay was cumbersome for me.

Ability to control threshold 12/12 It is needed because it is very annoying when I consistently fail in detection.

interaction rather than to fail the detection. Besides, I can tell the pet
about the right interaction, so it is okay to be wrong." (P26).

7 out of 12 participants (P25-28, P30, P32, P34) preferred the
other sub-design (the request for correction upon low confidence).
Some participants (P25-26, P34) liked the ability to give feedback for
the wrong detection results: "The pet asked me to teach the correct
interaction when it was confused between the object." (P25) Some
of them also mentioned that asking for correction made the pet
feel more natural (P25, P27): "I felt more like breeding the young pet
when I taught it." (P25). 6 participants (P26, P28, P30, P32, P34-35)
mentioned the expectation of better accuracy: "I liked giving the
feedback to the pet in that my feedback would increase the accuracy
in the future." (P30). In contrast, 4 participants (P29, P31, P33, P36)
mentioned that they disliked the feature in that the flow of the
gameplay is disturbed: "I think the feature is not needed. It only
disturbs me from continuing the interaction. I would rather like to
verify the result before the interaction starts." (P29).

When asked to choose the preferred interaction design between
the baseline and the improved design candidate, some participants
mentioned the errors that frustrated the gameplay to explain the
reason for the preference. For example, one participant preferred
Bubbleu-Ambiguity and stated that "Ending up by only observing is
still better to misunderstanding the object." (P8), while another par-
ticipant reported that they preferred Bubbleu-Baseline mentioning
that "I was confused when the pet continued observing when I did
not give any object." (P6). Similarly, several participants who played
Bubbleu-Controllability (P27, P30) mentioned they liked the design
to control the threshold level in relation to the error types: "Even
if it gets wrong, I’d like to have threshold control. Wrong interaction
felt better than nothing happens in my experience." (P30).

Besides the preference for individual interaction designs, many
participants (P1, P7-8, P9, P11, P13, P21, P23, P35-36) stated that
they preferred the overall experience of one version over the other
by explicitly referring to the perceived error rate of the gameplay.
For example, "I preferred the first version because it had less error
than the second one" (P8), or "I liked the second version. The object
was detected faster than the prior one." (P21).

6.2.5 Other observations. Relationship between player behav-
iors and error rates. There was a bidirectional relationship be-
tween the error rates and player behaviors. During the free game-
play study, participants’ way of manipulating the objects and the
device affected the rate of errors. Commonly, the object is detected
successfully when the object was positioned in the center of the
screen and not occluded or cropped outside the scene [85]. Partici-
pants who tended to manipulate the objects closer to the device or
who moved the camera continuously around the object could detect
the object in a short time. In contrast, participants who tended to
position the object far from the ideal scene (e.g., placing the object
far away from the camera or occluding the object with their hand)
experienced more errors.

The fluctuating error rates between participants also incurred
different player behaviors, which made an impact on the overall
error rate again. We observed that several participants developed
their own ways to get object detection to become successful. For
example, one participant (P35) figured out that an apple was easier
to detect accurately and then attempted to interact only with apples.
One participant (P8) failed to interact with the donut several times
until they succeeded in the interaction when they rotated the donut
upside down by accident. Afterward, they started rotating the donut
upside down consistently. Another participant (P26) consistently
put the objects right in front of the camera after they realized that
this increased the success rate.

The strategy to recover from the failure also resulted in different
error rates. For example, one participant (P2) immediately changed
the object when they failed to detect the object, while another
participant (P4) kept attempting to detect the same object multiple
times until they finally succeeded. The rate of error differs largely
between the two participants, as the latter participant experienced
continuous Missing detection error before the success, while the
prior participant did the interaction successfully on the second
attempt.
Players’ interpretation of uncertainty. When reporting the
type of error that occurred during the user study, participants often
misinterpreted the actual type of error as some other error. The
most frequent confusion was understanding a False detection error
as aMisclassification or aMislocalization error. 17 participants (P1-2,
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Figure 6: Perceived workload using 7-point Likert scales (*
indicates p < 0.05). For Performance, a higher value implies
a better experience. For the other components, the lower the
better.

P6, P8-12, P17-18, P20, P22-24, P28-29, P36) mentioned that they
had witnessed a Misclassification and Mislocalization error such
as "I tried to give a bottle to wash, but the pet tried to eat it at the
other position" (P11) or "It should not have recognized my hand as
a banana" (P20). When a False detection error occurs at the same
time when the player is manipulating an object, the pet would start
unintended interaction at a different position (i.e., it interacts with
a location where no object actually exists). The participants often
misinterpreted this situation as both the position and the type of
object were detected wrong.

Some of the participants (P1, P4, P16, P25, P27, P30) tended to
understand the behavior of the system in relation to the narrative
components of the pet. Some of them (P1, P4, P25, P27) mentioned
the consistency of the detection result in relation to the preference
of the pet: "It seems that the pet wants to eat an apple. It is ignoring
the donut." (P4). One participant mentioned the background story
of the pet (which is shown at the beginning of the game) when
explaining their experience. They said that it is natural that the
pet confuses the objects because it is "a baby rabbit from the other
planet": "I was okay when it confused the objects because it’s so young
to distinguish the objects. What I felt wrong was when it totally missed
an object." (P16).

Players’ expectation towards the AI-based system. Several
participants (P2, P26, P28-29, P35) mentioned that they expected
the pet to learn from experience: "Does it learn the object when it
observes? I think it is unsure what the object is." (P2 while playing
Bubbleu-Ambiguity). Some participantsmentioned that the accuracy
of the detection increased over time due to learning: "As I taught
the pet about the wrong interaction, the accuracy of the detection
was better in the later part of the game." (P26, after playing Bubbleu-
Controllability), even though the object detection accuracy was not
changed while they were playing.

7 DISCUSSION
In this section, we further discuss the results of our studies on three
design variants. Also, based on the findings of our overall design
study, we present general design implications to improve errors in
object detection-based game interaction.

7.1 Impact of the Three Design Candidates
7.1.1 Ambiguity synergies with game aesthetics and reduces per-
ceived errors. The results showed that the Bubbleu-Ambiguity vari-
ant reduced perceived error rates in both the free (Table 6) and
controlled gameplay sessions (Table 7). The reduced perceived er-
ror rates imply that Bubbleu-Ambiguity successfully hides minor
errors within the ambiguous expression. As an extension of the
prior works [14, 28, 75], we found that our design has the ability to
reduce the negative experience of the uncertain system. In addition,
designers could adjust narratives of the games [41, 87] to the desired
expressions. In some cases, the ambiguous expression improves the
aesthetic components of the games [17, 28]. We plan to revisit the
potential of using ambiguity to improve errors in other types of
games in future work.

However, our post-study interview (Table 8) revealed that many
participants were confused when ambiguous interactions appeared
instead of their intended interactions. This is consistent with prior
studies that showed that ambiguous interactions often confuse the
users by displaying results that could be interpreted in multiple
ways [28]. We attempted to mitigate this confusion by providing the
game rewards (e.g., ambiguous interaction due to low confidence
rewarded the same experience points as high confidence results).
However, this itself could not resolve the confusion.

Another interesting finding was that the players using Bubbleu-
Ambiguity finished their tasks with better performance but with
higher temporal demand (Figure 6) – we plan to investigate this in
more detail in the future. We thus conclude that even though our
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Bubbleu-Ambiguity variant could reduce the perceived error and
increase the players’ perceived game performance, we should adopt
it carefully, as ambiguous expressions may confuse and annoy the
players.

7.1.2 Transparency helps players to understand and avoid errors.
The transparent expressions helped users to understand and over-
come errors but also led to a higher rate of perceived errors. Specif-
ically, Bubbleu-Transparency showed lower error rates during the
free gameplay but resulted in the highest perceived error rate in
the controlled gameplay. As Bubbleu-Transparency reveals the la-
bel of the detected object and the confidence level, the players
using Bubbleu-Transparency could more accurately discover errors
compared to the baseline. Interestingly, this increased the overall
success rate in the free gameplay sessions, as the players could
self-learn how to control the device and objects to obtain more
accurate results. This self-efficacy related to the fixation of errors
was also reflected in the preference for the Bubbleu-Transparency
design. During the interview, several players mentioned preferring
the additional information as a useful means to overcome errors.

Generally, in conventional games, errors are mostly intolera-
ble by users and considered as something to avoid as much as
possible [54, 81]. However, in line with recent studies on using
transparency in AI-based systems [27, 58], we observed that mak-
ing errors more perceivable also had a positive impact on the player
experience. This can be interpreted that users prefer having a better
understanding of the system when uncertainty is inevitable.

7.1.3 Players prefer to have controllability over the uncertain system.
Our Bubbleu-Controllability design, which provides control of the
detection confidence threshold, was preferred by all users (highest
number out of the three designs, 12/12) in our study. The results
were well aligned with the findings from prior works; controllabil-
ity enhances usability and induces a positive user experience by
allowing users to manipulate the system [6, 31].

In Bubbleu-Controllability, lowering the detection threshold in-
evitably led to making more false positives. Though, many users
preferred at least some interaction, even if they were wrong, over
no interactions at all. On the other hand, a few users from our study
also mentioned that they were confused when wrong interactions
happened sometimes. This was consistent with studies of other
AI-based applications such as a scheduling assistant [47]. Thus,
we posit that providing the ability to control stands as a trade-off
between the number of interactions and the detection accuracy, but
can satisfy user preferences.

Although the primary goal of Bubbleu-Controllability was to
enhance the player experience that it was not targeting to decrease
the error rate itself, Bubbleu-Controllability also resulted in lower
perceived error rates during controlled gameplay sessions. We ob-
served that participants reported errors correctly when the pet
asked the verification questions due to low detection confidence.
However, when the pet did not ask the question with relatively high
confidence scores, they did not report the errors. These differences
mainly arise due to the limitations of the confidence-based error
estimation. Confidence values are good proxies for the accuracy
of predictions, but not a perfect measure to cover various usage
scenarios. Exploring alternatives to confidence values remains an
important future research topic.

7.2 Design Implications
We now discuss various design implications for AR games that
utilize object interaction as an interaction mechanism.

7.2.1 Avoid stopping players from interacting. Even though it is
ideal to build games without any errors, a certain percentage of
errors is inevitable, especially for AI-enabled games. In such con-
ditions, we noticed that the games should be still playable with
errors. Filtering of incorrect results needs to be done conserva-
tively. For example, the player’s preference for the threshold con-
trol of Bubbleu-Controllability suggests that participants prefer in-
teractions happening even when the subsequent interactions are
not quite precise. Participants who played Bubbleu-Ambiguity and
Bubbleu-Transparency also preferred continuing their interactions
rather than not being able to interact when the detection confi-
dence was low. We thus recommend that any confidence thresholds
should be carefully configured with a primary focus on reducing
or eliminating the players’ inability to interact.

7.2.2 Good narrative can be used to excuse uncertainty. In Sec-
tion 6.2.5, we observed that the narrative of the game serves as an
explanation for the uncertainty and allows players to accept the fail-
ures. The narrative is one of the unique features of games [41, 71, 87].
In addition to aesthetic pleasure, game narratives also provide rea-
sons for the various in-game behaviors [87]. Narratives have the
potential to gracefully explain the uncertainty of the system. In
this study, we did not include narratives as a main design candidate
concept due to the difficulty of controlling narratives in our exper-
iments. For future research, we suggest that adequate narratives
could be included to compensate for in-game errors.

7.2.3 Provide time for players to verify in-game interactions. We
suggest designing slower game interaction modalities when devel-
oping games with an object detection-based mechanic to ensure
the AI inference system has sufficient time to interpret real-world
scenes. Bubbleu does this by preserving additional time to detect the
scene over multiple frames during the animation sequences. A large
portion of False detection and Missing detection errors mainly occur
in short frames between the correct frames. The system can easily
detect and eliminate errors in inconsistent frames in a slow and
steady scene. In contrast, games where the scene changes quickly
(e.g., a game that is played while running) would have insufficient
time to confirm the detection. Moreover, in situations where the de-
vice itself moves quickly, motion blur in the images would worsen
the detection quality.

7.3 Impact of Object Types on Detection Errors
To quantitatively identify the occurrence of different object detec-
tion error types when using different objects, we collected 1500
seconds of video of the research team playing Bubbleu. We ran
object detection on each frame of the video and investigated errors
in every detected bounding box. Table 9 shows the breakdown of
object detection error rates by type of object. The results show that
the four different types of errors occur with different frequencies
and at different rates depending on the type of object being detected.
The cup object had the lowest error rate, having fewer Missing de-
tection errors (10.39 %, compared to 22.62 % on average) but more
Mislocalization errors. In contrast, donuts had much higher error
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Table 9: Error rates in detecting different objects

Object
type

Total
frames Correct Miss False Loc Cls

Apple 1276 62.62 17.79 4.47 1.25 13.87
Banana 1206 64.93 18.41 4.06 0.33 12.27
Orange 1161 60.29 18.09 7.24 0.95 13.44
Donut 1242 31.08 49.52 4.99 2.25 12.16
Cup 1222 71.69 10.39 4.5 4.66 8.76
Bottle 1046 64.44 20.75 2.29 1.24 11.28
Total 7153 58.97 22.62 4.63 1.8 11.98

rates than other object types. This implies that the choice of objects
used can have a high impact on the end-user experience.

7.4 Limitations and Future Work
Scaling the user study. In our study, the number, and diversity
of participants per design were relatively small (36 participants di-
vided into three groups). Also, the participants were recruited from
the same country and selected from a small pool (using an online
survey) over a short period of 3 weeks. In our future work, we plan
to investigate the player experience with more diverse participant
demographics and with a longer duration study to understand the
learning effects.
Diversifying the designs. In this work, we investigated just
three distinct design concepts from a much larger design space.
Even for the three design candidates, many additional variants
and implementation options are available. For example, in Bubbleu-
Transparency, we can provide object detection status and confidence
level information in different ways (e.g., by providing saliency maps
showing how the camera captured the scene and which pixels con-
tributed the most to the detection outcome [45]). Furthermore, we
can allow more fine-grained control in Bubbleu-Controllability by
allowing the user to set different detection confidence thresholds
per object type. We could also extend our system to other design
concepts (some are listed in Table 10 in the Appendix). Lastly, study-
ing the effects of concurrently applying multiple design concepts
remains an important future research direction.
Extending to other games and AI models.We also plan to study
the implications of our error-handling strategies for other types
of games and AI-based interactions. In this work, we focused on
a single game (i.e., a pet breeding game) with object detection as
an underlying game mechanic. It will be interesting to explore a
similar set of research questions for other types of games (e.g., fast-
pacing shooting games), interaction categories (e.g., multi-object
interaction), and other underlying AI models (e.g., segmentation,
3D object detection, or generation).

8 CONCLUSION
We presented the design of Bubbleu to investigate the potential of
object detection as an AR game interaction method – in particular,
how game design strategies affect the user perception of underlying
object detection errors. Through an empirical design improvement
process coupled with a user study, we showed the potential of three
different game design concepts - Ambiguity, Transparency, and

Controllability to achieve better player experience with uncertain
AI-based interactions. We observed that Ambiguity and Trans-
parency improve the success rate of interaction, but in completely
different ways; Ambiguity hides the errors perceived by the user
while Transparency explicitly exposes the errors and helps users
learn how to interact appropriately. We also found that the players
preferred Transparency and Controllability over Ambiguity, indicat-
ing that game experiences are less affected by errors when given
higher controllability and diversity of interactions. We believe that
our findings will serve as a useful design material for the design of
future AR games that use object detection as a key mechanism.
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RESULTS

Table 10: Design ideas from the workshop

Related
Concepts Design

Narratives The pet tells "I’m not hungry" when the confidence is low.
Narratives The pet has bad sights that it cannot interact objects in a far distance.

Narratives Express as if the pet prefers the object that are commonly detected in
high accuracy(e.g., apple)

Narratives
Randomness

Add pet behaviors to indicate that the pet is young and unskilled
(e.g., falling down occasionally)

Ambiguity Use ambiguous interaction expression instead of showing precise results
(e.g., show ’fruit’ icon instead of an ’apple’ icon)

Ambiguity Show detection results in different levels regarding the detection confidence
(e.g., show ’eat’ icon when confidence is low, show ’apple’ when high)

Ambiguity Add an interaction that can be done whether the error occurs

Transparency Tell the players that detection is not being done when no object is detected
for a long time period

Transparency Show detection results before the interaction
Controllability After the interaction, let players choose to retry in case it is wrong
Controllability Let players to give feedbacks when the pet is wrong

Controllability Enable players to force specific interactions with a button
(e.g., force the pet to eat with an ’eat’ button)

Guidance Ask players to move objects around when the object is not detected

Emotion Show additional message when a hand is detected
(because the players feel large emotional fulfillment when touching the pet)

Challenge Give better rewards when the detected confidence is high

Randomness Distract the players when the error is predicted
(e.g., another pet appears, the pet runs away ...)
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