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Abstract:  

Automatic speech recognition (ASR) is a typical pattern recognition technology that converts human speeches into texts. 

With the aid of advanced deep learning models, the performance of speech recognition is significantly improved. 

Especially, the emerging Audio–Visual Speech Recognition (AVSR) methods achieve satisfactory performance by 

combining audio-modal and visual-modal information. However, various complex environments, especially noises, limit 

the effectiveness of existing methods. In response to the noisy problem, in this paper, we propose a novel cross-modal 

audio–visual speech recognition model, named CATNet. First, we devise a cross-modal bidirectional fusion model to 

analyze the close relationship between audio and visual modalities. Second, we propose an audio–visual dual-modal 

network to preprocess audio and visual information, extract significant features and filter redundant noises. The 

experimental results demonstrate the effectiveness of CATNet, which achieves excellent WER, CER and converges speeds, 

outperforms other benchmark models and overcomes the challenge posed by noisy environments. 
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1. Introduction 

Automatic Speech Recognition (ASR) [1,2] is a critical 

branch in pattern recognition research. Such 

technologies focus on videos with speeches and 

recognize speech contents into texts, and have been 

ap�plied to multiple applications [3] such as Apple Siri. 

Previously, numerous conventional speech recognition 

models are broadly researched [4]. With the rapid 

development of deep learning models, the performance 

of speech recognition has been improved [5] to a new 

level. However, undesirable noises pose serious 

challenges to deep learning meth�ods [6]. Once a noisy 

environment is encountered by these models, their 

performance will be significantly degraded in practice. 

As an alternative strategy, researchers propose that facial 

image features are observed in audio-noisy 

environments [7] and can be used to recognize speech 

contents. Such methods provide feasible solutions to 

reduce the impact of noises on speech recognition [8]. 

By applying an Automatic Lip-Reading (ALR) system 

[4], these models recognize speeches through vocal 

organs of mouths and lips [1,9], such as the typ�ical 

LipNet [10]. However, various complex environments 

pose great challenges to these models [11], such as 

optical noises or illumination conditions, which 

significantly degrade their performance. 

In recent years, various typical methods for speech 

recognition are proposed, especially Audio–Visual 

Speech Recognition (AVSR). Motivated from that visual 

information is hard to be affected by audio noises and 

vice versa, AVSR utilizes the information from audio 

and visual modalities jointly [12,13], so as to circumvent 

the impact of complex environments. Typically, Saudi et 

al. [14] propose a Long and Short Term Memory 

Bidirectional Recurrent Neural Network (LSTM-

BRNN). Zhang et al. [15] propose a Bimodal-DFSMN 

to enhance the robustness of AVSR against visual modal 

deficits. Vakhshiteh et al. [16] propose an AV-DBN-

HMM that integrates visual and audio information based 

on the entropy of different layers in a Dynamic Bayesian 

Network (DBN). In addition, AVSR reveals limited 

performance as the visual information is insufficient, 

and thus Su et al. [17] propose an audio–visual inversion 

technique, Acoustic-to-Visual (A2V), to generate visual 

features for speech recognition. Although the emergence 

of AVSR improves the performance of speech 

recognition, the deficiencies in modality combination 

and feature-dimension splicing limit the performance of 

existing methods in noisy environments, due to the 

information lack caused by noise data. 

In this paper, we propose a novel cross-modal audio–

visual speech recognition network, named CATNet 

(Cross-modal Audio–visual Time–space-channel 

Attention Module LipNet). In CATNet, we devise (1) a 

cross-modal bidirectional fusion model based on a 

Feature Pyramid Network (FPN) [18] and (2) an audio–

visual dual-modal speech recognition network 

consisting of an audio information processing network 

based on a fundamental LipNet, a Convolutional Block 

Attention Module (CBAM) [19] and a Temporal 

Attention Mechanism Module. CATNet is expected to 

be effective as well as robust against 
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Fig. 1. Architecture of CATNet.

noises, i.e., to overcome the challenge of speech recognition in noisy
environments.

Overall, the main contributions of this paper are summarized as
follows.

• We devise a cross-modal bidirectional fusion model that fuses
information from audio as well as visual modalities, so as to
absorb the advantages of audio-based and visual-based speech
recognition methods.

• We devise an audio–visual dual-modal speech recognition net-
work, where an audio information processing network extracts
significant features, a Convolutional Block Attention Module
(CBAM) filters out redundant noises, and a Temporal Attention
Mechanism Module overcomes the problem brought by feature
similarity between adjacent frames.

• The effectiveness of CATNet is evaluated by conducting system-
atic experiments. The results demonstrate that CATNet outper-
forms other benchmarks in terms of its promising Word Error Rate
(WER) and Character Error Rate (CER), efficient convergence
speed, and excellent robustness against noises.

The rest of this paper is organized as follows. Section 2 presents
the methodology of CATNet in detail, which is further evaluated in
Section 3. Finally, we conclude this work in Section 4.

2. Methodology

In this section, we present the methodology of CATNet. As the
architecture illustrated in Fig. 1, CATNet is composed of three mod-
ules, i.e., data preprocessing module, cross-modal bidirectional fusion
model, and audio–visual dual-modal speech recognition network.

2.1. Data preprocessing module

A processing step is first performed to align the visual and audio
information in temporal dimensions.

In visual data, motivated from that the changes in mouth regions
are more imperative than other ones such as eyes and noses [20,21],
the mouth regions in images are extracted as Regions of Interest (ROI).
Specifically, we utilize a DLib toolkit [22] to locate and extract salient
mouth regions, where the size of each ROI image frame is 160 × 80,
and the ROI image of each frame is normalized as:

𝑋𝑣 = 𝑋𝑣∕255.0, (1)

where 𝑋𝑣 is the pixel in each ROI image. To further extract enough
meaningful information from mouth regions, the extracted ROI image
sequences are flipped horizontally into units of video:

𝑋(𝑖,𝑗)
𝑣 = 𝑋(𝑖,160−𝑗)

𝑣 𝑖𝑓𝑟𝑎𝑛𝑑𝑜𝑚 ≥ 𝑝, (2)
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Fig. 2. Alignment between Audio and Visual data.

where 𝑟𝑎𝑛𝑑𝑜𝑚 is the random number. 𝑝 is a hyperparameter that refers
to a probability threshold to control the horizontal-flipping operations.

In audio data, to maintain the time consistency with visual data, the
frame ratio of audio to images is set to 4:1 on Mel Frequency Cepstrum
Coefficient (MFCC) [23], as illustrated in Fig. 2, and the visual feature
is then obtained by Min–Max Normalization on MFCC:

𝑋′
𝑎 =

𝑋𝑎 −𝑋𝑎_min

𝑋𝑎_max −𝑋𝑎_min
. (3)

2.2. Cross-modal bidirectional fusion model

In the yellow part of Fig. 1, a cross-modal bidirectional fusion model
is divided into visual and audio flows, which respectively extract visual
and audio information from the image and voice of a speaker.

The visual and audio flows are first input into parallel but different
Convolutional Neural Networks (CNN), so as to extract shallow, middle
and deep levels of features from different dimensions. Specifically, the
intermediate features including shallow feature 𝑓𝑎_𝑠, middle feature
𝑓𝑎_𝑚 and deep feature 𝑓𝑎_𝑑 in audio flow, and shallow feature 𝑓𝑣_𝑠,
middle feature 𝑓𝑣_𝑚 and deep feature 𝑓𝑣_𝑑 in visual flow. These features
are extracted by a Multilayer Perceptron (MLP) [24]-based dimen-
sional transformation to match the features in the following dual-modal
speech recognition network, and are then input into a cross-connecting
channel, so as to concatenate features of different layers in another
modality.

In addition, a Feature Pyramid Network (FPN) [18] is appended
to the visual flow that enables the model to focus on overall features
instead of any detailed one, and to perform multi-scale feature extrac-
tion. Ultimately, the network extracts the last-layer feature map in the
top-down feature enhancement channel in FPN.

2.3. Audio–visual dual-modal speech recognition network

In the green part of Fig. 1, an audio–visual dual-modal speech
recognition network, ATNet, is divided into three modules, i.e., visual
information processing network, audio information processing network
and feature fusion network, as detailed in Fig. 3.

ATNet is constructed based on LipNet [10], which processes visual
and audio information simultaneously to fill the gap in single-modal
networks. Note that the visual and audio information processing net-
works receive intermediate features from cross-connecting channels,
and transmit shallow, medium and deep features between different

modalities. Such strategies could improve the effectiveness of informa-
tion fusion between visual and audio data, and thereby enabling the
model to be robust against noisy environments.

The audio information processing network contains a three-layer
CNN as well as max pooling layers. Differently, the visual information
processing network consists of a three-layer Spatio-Temporal Convolu-
tional Neural Network (STCNN) [25] as well as spatial max pooling
layers which is formulated as:

[𝑠𝑡𝑐𝑜𝑛𝑣 (𝑥,𝑤)]𝑑′𝑡𝑖𝑗 =
𝐷
∑

𝑑=1

𝑘𝑡
∑

𝑡′=1

𝑘𝑤
∑

𝑖′=1

𝑘ℎ
∑

𝑗′=1
𝑤𝑑′𝑑𝑡′𝑖′𝑗′𝑥𝑑,𝑡+𝑡′ ,𝑖+𝑖′ ,𝑗+𝑗′ , (4)

where 𝑘𝑡 is the length of a time step, 𝑘𝑤 and 𝑘ℎ are kernel sizes. 𝑑 is the
number of STCNN layers and 𝑤 represents its parameters Moreover, 𝑥
refers to the image representation.

The convolution operation mixes cross-channel information and
spatial information to extract features. To enable the network to focus
on meaningful features and suppress unimportant ones, a Convolutional
Block Attention Module (CBAM) [19] is appended to each network, so
as to emphasize meaningful features in channel and spatial dimensions.

Intuitively, it is observe that features are similar between adjacent
frames in the audio and visual information processing networks, which
indicates that some necessary features are extracted from such adjacent
similar frames. Thus, a Temporal Attention Mechanism [26] module
is further adopted to extract meaningful information in the temporal
dimension as well as filter out redundant features, as follows:

𝑀𝑡 (𝐹 ) = 𝜎2
(

𝑀𝐿𝑃
(

𝜎1 (𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹 )))
)

+𝑀𝐿𝑃
(

𝜎1 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹 )))
))

= 𝜎2
(

𝑊1
(

𝜎1
(

𝑊0
(

𝐹 𝑡
max

)))

+𝑊1

(

𝜎1
(

𝑊0

(

𝐹 𝑡
𝑎𝑣𝑔

))))

,

(5)

where 𝐹 is the input feature, 𝐹 𝑡
max and 𝐹 𝑡

𝑎𝑣𝑔 are respectively features
with significant information and with background information. 𝑀𝐿𝑃
is the convolutional layer and 𝑊0 and 𝑊1 are parameters in 𝑀𝐿𝑃 . 𝜎1 (⋅)
refers to a ReLU function [27] and 𝜎2 (⋅) represents a Sigmoid function.

Fig. 4 illustrates the Temporal Attention Mechanism module utilizes
max pooling and average pooling layers to reduce the temporal dimen-
sion, so as to obtain features 𝐹 𝑡

𝑚𝑎𝑥 and 𝐹 𝑡
𝑎𝑣𝑔 that severally highlight

the distinguishing features and background information, and utilizes
a convolutional layer to filter out redundant information.

Note that the STCNN (or CNN) is combined with CBAM to extract
features in channel and space dimensions respectively, and the Tem-
poral Attention Mechanism module also extracts features in the time
dimension. CBAM and the Temporal Attention Mechanism module are
combined as TSCAM, and these product results are added and then
divided by 2.

Specifically, the operations to concatenate the intermediate features
from cross-connecting channels, and different levels of features in CNN,
are formulated as:
𝐹𝑎_𝑓𝑖𝑎𝑛𝑙 =𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀3

(

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀2 (

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀1
(

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐹𝑎_𝑜, 𝑓𝑣_𝑠
))

,

𝑓𝑣_𝑚
))

, 𝑓𝑣_𝑑
))

,

(6)

where 𝐹𝑎_𝑜 represents the MFCC of audio features, and
𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀𝑖 (⋅) is the 𝑖th layer of CNN with TSCAM. Similarly, such
concatenation operations in STCNN are formulated as:

𝐹𝑣_𝑓𝑖𝑎𝑛𝑙 =𝑆𝑇𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀3
(

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑆𝑇𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀2 (

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑆𝑇𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀1
(

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐹𝑣_𝑜, 𝑓𝑎_𝑠
))

,

𝑓𝑎_𝑚
))

, 𝑓𝑎_𝑑
))

,

(7)

where 𝐹𝑣_𝑜 is the last-layer visual features based on the top-down
feature enhancements in FPN. 𝑆𝑇𝐶𝑁𝑁_𝑇𝑆𝐶𝐴𝑀𝑖 (⋅) is the 𝑖th layer of
STCNN with TSCAM. In this way, the shallow, middle and deep features
from the cross-modal bidirectional fusion model are extracted as single
modalities, and are then transferred to the different levels in another
modality, so as to learn dual-modal information in a fused manner.
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Fig. 3. Architecture of ATNet.

Fig. 4. Architecture of temporal attention mechanism module.

Subsequently, the features from the visual and audio information
processing networks are input into a Bidirectional Gate Recurrent Unit
(Bi-GRU) layer to obtain the visual feature 𝑋𝑣 and audio feature 𝑋𝑎,
and a feature fusion network concatenates 𝑋𝑣 and 𝑋𝑎 to fuse features
as follows:

𝑋 = 𝑋𝑣 ⊕𝑋𝑎, (8)

where 𝑋 is the fused feature, and ⊕ is the concatenation equation of
the feature matrix.

Finally, based on the fused features, an additional two-layer Bi-GRU
with a Connectionist temporal classification (CTC) [28] loss function is
utilized to analyze temporal information. Formally, the objective of the
optimization is:

arg max
𝜃

𝐿 (𝐷)= − ln

(

∏

(𝑋,𝑙)∈𝐷
𝑝 (𝑙 |𝑋 )

)

= −
∑

(𝑋,𝑙)∈𝐷
ln
⎛

⎜

⎜

⎝

∑

𝜋∈𝐵−1(𝑙)

𝑝 (𝜋|𝑋)
⎞

⎟

⎟

⎠

,

(9)

where 𝐷 is the training set, 𝑋 is the fused feature, 𝑙 is the ground-truth
label and 𝜃 is the parameter of CATNet.

3. Experiments

In this section, we introduce our experimental settings, conduct
comparative experiments on the Temporal Attention Mechanism mod-
ule, and evaluate CATNet in both conventional as well as noisy envi-
ronments.

Fig. 5. Combination schemes between temporal attention mechanism and CBAM.

3.1. Experimental settings

We start with introducing the datasets and metrics that are utilized
in our experiments.

3.1.1. Dataset
To evaluate CATNet, we adopt a typical audio–visual speech recog-

nition dataset, GRID [29], to our experiments. GRID is adopted based
on the following reasons: (1) It is representative and is extensively
researched by numerous work (over 1200 citations). (2) It is broadly
applied to evaluate various speech recognition methods [10,30,31]. (3)
It covers a variety of lexical properties in English sentences collected
in complex speech-recognition environments, which has constructed
challenging conditions for speaker recognition, and is in accordance
with the challenge that is aimed to be addressed by this work.

Specifically, GRID contains 34,000 videos from 16 female and 18
male speakers, and each speaker records 1000 videos. Each video in the
dataset consists of 75 frames in the resolution of 360 * 288, segment
of 3 s, and frame rate of 25 fps. Moreover, each sentence in GRID is
composed of six word categories following the grammar: command (4)
+ color (4) + preposition (4) + letter (25) + digit (10) + adverb (4),
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Fig. 6. Experimental results on comparative combination schemes.

Table 1
Sentence structures of GRID.

Command statement Color Preposition Letter Number Adverb

bin blue at A-Z (Excluding W) 1–9, zero again
lay green by / / now
place red in / / please
set while with / / soon

Table 2
Evaluation results on conventional environments.

Speech recognition model [Modality] WER (%) CER (%)

A-LipNet [audio] 5.68 2.57
Asymmetric BLSTM [audio] 70.35 35.04
LipNet [visual] 26.18 11.56
TM-seq2seq [visual] 93.11 48.17
XFLow [visual] 5.05 2.38
AV-LipNet [audio–visual] 3.52 1.40
AV-CBAM-LipNet [audio–visual] 2.97 1.32
ATNet [audio–visual] 2.03 1.13
CATNet [audio–visual] 1.60 0.68

such as ’SET WHITE WITH M 6 PLEASE’. The numbers in parentheses
refer to the candidates for these word categories, which could produce
over 60,000 potential sentences that are sufficient for evaluation.

Table 1 presents the sentence structure of GRID, i.e., the possible
words in each position. In these positions, the letter ‘W’ is excluded, and
the number ‘0’ is pronounced ‘Zero’ to avoid potential pronunciation
problems.

3.1.2. Evaluation metrics
We adopt two typical metrics to evaluate CATNet, i.e., WER and

CER, which are extensively utilized to metric the effectiveness of speech
recognition methods [32].

Specifically, WER (%) is formulated as:

𝑊𝐸𝑅 = 100 × 𝑊𝑆 +𝑊𝐷 +𝑊 𝐼
𝑊𝑁

, (10)

where WS, WD and WI are the numbers of words to be replaced,
deleted, and inserted respectively, and WN is the number of words with
ground-truth labels.

Similarly, CER (%) is formulated as:

𝐶𝐸𝑅 = 100 × 𝐶𝑆 + 𝐶𝐷 + 𝐶𝐼
𝐶𝑁

, (11)

where CI, CD, and CS are the numbers of characters to be replaced,
deleted, and inserted respectively, and CN is the number of characters
with ground-truth labels.

Note that WER and CER results are possible over 100% depending
on the number of inserted words and characters.

Fig. 7. Training Losses of CATNet and other benchmark models.

3.2. Comparative experiments on temporal attention mechanism

Recall our methodology in Section 2, we propose to combine the
Temporal Attention Mechanism module with CBAM. To explore the
most effective combination solution beforehand, we perform compara-
tive experiments to evaluate the effect of significant features in channel-
spatial and temporal dimensions.

Specifically, as illustrated in Fig. 5, three combination strategies
are set as candidates: (1) For the features in channel-spatial and tem-
poral dimensions, the weight distributions are severally calculated for
the channel attention mechanism, and their sum weights are then
utilized to extract the features of the temporal–spatial-channel dimen-
sion. (2) The features in channel-spatial and temporal dimensions are
concatenated, and are then input into CNN to extract the features of
three dimensions. (3) The features in channel-spatial and temporal
dimensions are superimposed, and the result is divided by 2.

Further, we conduct speech recognition experiments based on these
combination schemes. As the results illustrated in Fig. 6(a), Scheme 3
achieves the best convergence speed, and the loss drops to a small range
in the first five rounds. Moreover, as results illustrated in Fig. 6(b) and
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Fig. 8. (a) CER and (b) WER of CATNet and Other Benchmark Models.

Table 3
Evaluation results on anti-noise robustness.
Speech recognition
model [Modality]

SNR

−5 dB 10 dB 20 dB

WER (%) CER (%) WER (%) CER (%) WER (%) CER (%)

A-LipNet [audio] 129.23 80.36 37.28 22.39 7.16 4.63
Asymmetric BLSTM [audio] 94.74 65.21 81.06 51.21 75.18 47.64
LipNet [visual] 26.19 9.09 26.19 9.09 26.19 9.09
XFLow [audio–visual] 88.04 58.04 73.62 46.69 37.05 25.17
AV-LipNet [audio–visual] 99.47 69.18 14.34 6.99 2.11 0.64
AV-CBAM-LipNet [audio–visual] 107.17 66.95 13.81 9.59 1.14 0.48
ATNet [audio–visual] 80.61 61.77 10.25 5.31 7.61 4.18
CATNet [audio–visual] 54.92 32.08 3.08 1.22 0.88 0.29

Fig. 6(c), Scheme 3 achieves the best WER and CER. Based on such
results, Scheme 3 is adopted to perform the following experiments.

3.3. Evaluation experiments on catnet

Next, we evaluate the complete CATNet in terms of: (1) WER and
CER, (2) convergence rate and (3) anti-noise robustness.

Specifically, based on GRID, we perform speech recognition ex-
periments to CATNet as well as multiple advanced benchmark mod-
els, including Audio-LipNet (A-LipNet), Asymmetric BLSTM [33], Lip-
Net [10], TM-seq2seq [34], XFlow [35], AV-LipNet, AV-CBAM-LipNet
and ATNet. Note that A-LipNet is constructed based on audio features
only.

3.3.1. Evaluation experiments on conventional environments
These models are first evaluated based on GRID S8/bbaefn (BIN

BLUE AT E FIVE NOW). As the results in Table 2, most of these models
successfully predict the speaking contents, and CATNet outperforms
the other models. Especially, compared with the sub-optimal ATNet,
CATNet reduces WER and CER by 0.43% and 0.45% respectively.
Such results demonstrate the promising speech recognition ability of
CATNet, which is capable of leveraging audio and visual information
to establish potential associations.

Moreover, we evaluate the convergence performance of these mod-
els based on GRID. As the training loss results illustrated in Fig. 7,
compared with other benchmark models, CATNet shows substantial
drops in the training loss of the first-ten epochs, and the training loss
curve becomes stable at around the 25th epoch. For comprehensive
evaluations, we present the trends of WER and CER during training
in Fig. 8. Compared with other benchmark models, CATNet also
presents promising performance in dropping both WER and CER. In
general, CATNet achieves the best convergence speeds among these
benchmark models, which demonstrates its excellent fitting effects and
is prospective to be applied in practice.

3.3.2. Evaluation experiments on anti-noise robustness
In the following, we evaluate the anti-robustness performance of

CATNet. Specifically, we pollute the data in GRID based on different
intensities of Gaussian white noises, i.e., under Signal to Interference
plus Noise Ratio (SNR) [36] of 20 dB, 10 dB and −5 dB.

We present the evaluation results in Table 3. To first observe the
results of those benchmark models, it is observed that LipNet achieves
promising results under 10-dB and 20-dB noises. Especially, under −5-
dB noises (the loudest noise level), LipNet performs best in terms of
both WER and CER. Recall that LipNet is a visual model that performs
speech recognition by mapping the sequence of a speaker’s mouth, so as
to recognize the entire sentences. Moreover, the added Gaussian noise
mainly affects the audio information in the video, and thus will not
affect the performance of such visual-based models. Similarly, A-LipNet
is an audio model that shows poor anti-noise robustness. Such results
further reveal the superiority of selecting LipNet as a basic component
in our CATNet.

To further observe the results in Table 3, under high-intensity
noises, Asymmetric BLSTM and XFLow achieve better results than AV-
LipNet and AV-CBAM-LipNet, since the latter models are affected by
the inclusion of susceptible audio modalities. However, the advantages
of Asymmetric BLSTM and XFLow cease to exist under low-intensity
noises, since AV-LipNet and AV-CBAM-LipNet introduce visual modal-
ities where the feature fusion modules are able to reject noises so as to
increase the noise robustness of the model. Finally, AV-CBAM-LipNet
performs better than AV-LipNet since CBAM enables the network to pay
meticulous attention to subtle features.

Finally, it is observed that CATNet achieves the best performance
among all the benchmark models, which indicates our designed net-
work has integrated the above advantages of information fusion, noise
filtering and significant feature extraction. Overall, CATNet overcomes
the challenge posed by noisy environments and is with outstanding
anti-noise robustness.



222

4. Conclusion

In this paper, we propose CATNet, a novel speech recognition
model. In CATNet, (1) a cross-modal bidirectional fusion model an-
alyzes the close relationship between audio and visual modalities,
and (2) an audio–visual dual-modal network preprocesses audio and
visual information, extracts significant features and filters redundant
noises. Our evaluation results demonstrate CATNet achieves promising
WER, CER and converges speed, overcomes the noisy-environment
challenges, and outperforms other benchmark models.

In the future, we attempt to introduce more meaningful visual
information, such as human gestures, into our models, so as to explore
potential improvements.
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