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Rust is an emerging programming language designed for the development of systems software. To facilitate
the reuse of Rust code, crates.io, as a central package registry of the Rust ecosystem, hosts thousands of
third-party Rust packages. The openness of crates.io enables the growth of the Rust ecosystem but comes
with security risks by severe security advisories. Although Rust guarantees a software program to be safe
via programming language features and strict compile-time checking, the unsafe keyword in Rust allows
developers to bypass compiler safety checks for certain regions of code. Prior studies empirically investigate
the memory safety and concurrency bugs in the Rust ecosystem, as well as the usage of unsafe keywords in
practice. Nonetheless, the literature lacks a systematic investigation of the security risks in the Rust ecosystem.

In this paper, we perform a comprehensive investigation into the security risks present in the Rust ecosystem,
asking “what are the characteristics of the vulnerabilities, what are the characteristics of the vulnerable
packages, and how are the vulnerabilities fixed in practice?”. To facilitate the study, we first compile a dataset
of 433 vulnerabilities, 300 vulnerable code repositories, and 218 vulnerability fix commits in the Rust ecosystem,
spanning over 7 years. With the dataset, we characterize the types, life spans, and evolution of the disclosed
vulnerabilities. We then characterize the popularity, categorization, and vulnerability density of the vulnerable
Rust packages, as well as their versions and code regions affected by the disclosed vulnerabilities. Finally, we
characterize the complexity of vulnerability fixes and localities of corresponding code changes, and inspect
how practitioners fix vulnerabilities in Rust packages with various localities.

We find that memory safety and concurrency issues account for nearly two thirds of the vulnerabilities
in the Rust ecosystem. It takes over 2 years for the vulnerabilities to become publicly disclosed, and one
third of the vulnerabilities have no fixes committed before their disclosure. In terms of vulnerability density,
we observe a continuous upward trend at the package level over time, but a decreasing trend at the code
level since August 2020. In the vulnerable Rust packages, the vulnerable code tends to be localized at the file
level, and contains statistically significantly more unsafe functions and blocks than the rest of the code. More
popular packages tend to have more vulnerabilities, while the less popular packages suffer from vulnerabilities
for more versions. The vulnerability fix commits tend to be localized to a limited number of lines of code.
Developers tend to address vulnerable safe functions by adding safe functions or lines to them, vulnerable
unsafe blocks by removing them, and vulnerable unsafe functions by modifying unsafe trait implementations.
Based on our findings, we discuss implications, provide recommendations for software practitioners, and
outline directions for future research.

CCS Concepts: • Software and its engineering→ Language types; • Human-centered computing→
Open source software; • Security and privacy → Software security engineering.

Additional Key Words and Phrases: Rust, ecosystem, security risks, vulnerability, empirical study

1 INTRODUCTION
Modern software systems benefit from reusing code from open source projects, leading to the
formation of complex interdependency networks, i.e., software ecosystems [60]. The reusable code
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2 Zheng et al.

usually takes the form of packages delivered by package management systems, such as npm for
JavaScript packages, PyPI for Python packages, and Maven for Java packages. In recent years,
researchers conduct substantial studies to investigate a variety of aspects of software ecosystems,
including their evolution [17, 22], dependencies of packages [14–16] and security risks [1, 27, 71].
A few studies make comparisons across software ecosystems, such as the structure [26] and
evolution [17] of dependencies across software ecosystems.

Rust is an emerging programming language designed for the development of systems software [10,
49, 56]. Over the past few years, Rust has experienced explosive growth and gained popularity [33–
35], especially in developing systems software like operating systems and browsers [40, 43, 48, 54,
57]. According to the annual developer survey of Stack Overflow1, Rust has been named the “most
loved programming language” for six years in a row, from 2016 to 2021. To support Rust practitioners
with third-party code, crates.io, as a central package registry of the Rust ecosystem, provides
thousands of reusable packages (crates). The openness of crates.io enables the growth of the Rust
ecosystem, ranging from small utility packages to complex Web programming frameworks and
cryptography libraries. Rust guarantees a software program to be safe via programming language
features, and with strict compile-time checking [21, 51, 55]. Nonetheless, the openness of the Rust
ecosystem comes with security risks as evidenced by severe security advisories. For instance, in
January 2022, Rust maintainers released a security update for a high-severity vulnerability (CVE-
2022-21658). Attackers could abuse the vulnerability to purge files and directories from a vulnerable
system in an unauthorized manner. In addition, Rust introduces an unsafe keyword that allows
developers to bypass compiler safety checks for certain regions of code. It is unclear if the code
regions with unsafe keywords tend to suffer from more vulnerabilities.

Several recent works perform empirical studies to characterize memory safety and concurrency
bugs in Rust systems [39, 65] and understand the usage of unsafe keyword in the Rust ecosystem [2,
19]. Nevertheless, the literature lacks a systematic investigation of the security risks of the Rust
ecosystem. Given the popularity of Rust, a better understanding of its security risks is an important
step toward sustaining and securing this software ecosystem. To address this gap, we followed a
mixed-methods approach to perform a large-scale empirical study on the vulnerabilities of the Rust
ecosystem.

We compiled a dataset of 433 vulnerabilities, 300 vulnerable code repositories, and 218 vulnera-
bility fix commits in the Rust ecosystem, spanning over 7 years in history. With our dataset, we
investigated the following research questions:
RQ1: What are the characteristics of the vulnerabilities in the Rust ecosystem?
Previous studies investigated the characteristics of specific types of vulnerabilities in the Rust

ecosystem, e.g., memory safety [65] and concurrency issues [39]. The answer to this question aims
to build a systematic view of a wide range of vulnerabilities in the Rust ecosystem, rather than a
focused view of specific vulnerability types.

In RQ1, we characterized the types, life spans, and evolution of numbers of vulnerabilities in the
Rust ecosystem. Our study identified 17 types of vulnerabilities disclosed in the Rust ecosystem,
among which memory safety and concurrency issues account for two-thirds of the categorized
vulnerabilities and demonstrate the fastest growth rates over time. It takes an average of 770
days (2.1 years) for a vulnerability to be disclosed after its introduction in a code repository. One-
third of the vulnerabilities have no fixes released by their public disclosure, leaving a window
of opportunity for potential attacker exploitation. The number of vulnerabilities disclosed grows
slowly from November 2014 to November 2020, and has experienced two rapid growth phases,
starting from November 2020 and July 2021, respectively. Meanwhile, the number of vulnerabilities

1https://insights.stackoverflow.com/survey/2021#technology-most-loved-dreaded-and-wanted
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A Closer Look at the Security Risks in the Rust Ecosystem 3

introduced into code repositories demonstrates a linear growth from July 2015 to January 2020,
and has stabilized since March 2020. In addition, the normalized numbers of vulnerabilities per one
thousand packages and lines of code indicate an increasing trend in package-level security risks
but a decreasing trend in code-level security risks, respectively.
RQ2: What are the characteristics of the vulnerable packages in the Rust ecosystem?
Package reuse in software ecosystems introduces potential security risks that arise from vul-

nerable packages and propagate through multiple levels of dependencies among packages [26, 71].
A prior study [19] investigated the usage of unsafe keyword in Rust packages and found that
the security risks of limited usage of unsafe keyword could be amplified by their propagation
through package dependencies. Nonetheless, it remains unclear whether unsafe code introduces
more vulnerabilities compared to safe code in Rust packages. The answer to this question aims to
guide practitioners in securing the Rust ecosystem.

In RQ2, we investigated the affected versions, popularity, categorization, and affected code regions
of vulnerable Rust packages. Our study found that the vulnerable packages in the Rust ecosystem
have an average of 1.3 disclosed vulnerabilities and 28.6 versions affected by the vulnerabilities.
Popular packages tend to have more vulnerabilities, while unpopular packages tend to have
more versions affected. The memory management package category has the greatest number of
vulnerabilities per package among different Rust package categories, and tends to have more
memory access, memory management, and synchronization vulnerabilities as compared to other
package categories. In terms of vulnerability locality, a disclosed vulnerability affects 1.85 files,
3.35 safe functions, 0.15 unsafe functions, and 1.39 unsafe blocks on average in the vulnerable
packages. 95% of the affected functions are safe functions. Among the affected safe functions, 41.5%
contain unsafe blocks in their body. In the vulnerable packages, vulnerable code has statistically
significantly higher ratios of unsafe functions and unsafe blocks compared to complete code,
implying the potential higher security risks in unsafe functions and unsafe blocks.
RQ3: How are the vulnerabilities in the Rust ecosystem fixed in practice?
While numerous works have investigated general vulnerability fixes [37, 50, 52, 69], few have

considered the vulnerability fixes in the Rust ecosystem. The characteristics of vulnerability fixes
are important to understand as they may reflect the ability to expeditiously generate fixes, verify
their safety, and assess their impact on applications [27].

In RQ3, we considered the facets of vulnerability fixes such as the complexity of fixes and locality
of code changes, and investigated how practitioners fix vulnerabilities in Rust packages with
different localities. The study revealed that the commits of vulnerability fixes involve an average
of 41 and 18 LOC added and deleted, touching 3.85 safe functions, 0.16 unsafe functions, and 1.49
unsafe blocks on average. 96% of the touched functions are safe functions, among which, 38.8%
contain unsafe blocks in their body. The vulnerabilities of different types differ widely in localities
of fix commits, among which, the exception management vulnerabilities have the greatest number
of safe functions touched by their fix commits. This indicates that their fixes are the least localized
at the function level, indicating potential challenges of fixing in practice.
In addition, our study uncovered three patterns in the vulnerability fixes – developers tend to

(1) add safe functions or add lines in safe functions to fix vulnerable safe functions, (2) remove
unsafe blocks to fix vulnerable unsafe blocks, and (3) modify unsafe trait implementations2 to fix
vulnerable unsafe functions.

Based on our findings, we discuss implications and provide practical lessons for securing the Rust
ecosystem, such as undertaking comparable efforts into safe and unsafe code when securing Rust
packages. We also highlight several research avenues, such as continuous collection and analyses

2The trait syntax in Rust is similar to the Java interface syntax.
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4 Zheng et al.

of vulnerabilities to increase the awareness of security risks in the Rust ecosystem. This paper
makes the following contributions:

• We performed a large-scale empirical study to investigate the security risks in the Rust
ecosystem.

• We provided a dataset that include 433 vulnerabilities, 300 vulnerable code repositories, and
218 vulnerability fix commits for future investigations by others3.

• We summarized the vulnerability fix patterns of different localities in Rust code, which can
be used as guidelines to resolve vulnerabilities in practice.

• We provided a discussion of practical implications and outlined future avenues of research.
The replication package is online at https://github.com/ZXXYy/rust_ecosystem.

2 BACKGROUND AND PRELIMINARY EXPERIMENTS
This section gives some background on Rust, including its safety mechanisms and unsafe Rust code
that are relevant to our study, and conducts preliminary experiments on Rust ecosystem.

2.1 Rust Safety Mechanisms
Rust is a type-safe language designed for systems software development, which gives developers
low-level control over resources but ensures memory and thread safety via a set of strict rules. The
Rust compiler checks these rules to statically rule out potential safety issues. Rust programs behave
like C programs, and could achieve comparable runtime performance as C programs. The Rust’s
safety mechanisms aim to prevent memory and thread safety issues that have plagued C programs.
The safety mechanisms center around several basic concepts:

• Ownership. The ownership mechanism governs how a Rust program manages its memory,
and prevents a Rust program from reading uninitialized memory and dangling pointers. Under
Rust’s basic ownership rule, a value (memory location) has one exclusive owner (variable).
When the owner of a value goes out of a specific scope, the value would be dropped or
freed. The variable assignment leads to the transfer of ownership. Once a variable loses the
ownership of a value, the variable would become unusable.

• Borrowing. To enable sharing a value without moving its ownership, the borrowing mech-
anism allows the creation of a reference and passes the reference to another variable. In
addition, Rust supports multiple shared immutable references, i.e., references that allow
read-only aliasing. Rust enforces the memory locations reachable by a shared reference to be
immutable to prevent data races and inadvertent side effects.

• Lifetime. Lifetime explains the scopes for which references in a Rust program are valid. The
lifetime feature in Rust includes a variety of generics that indicate how references relate to
each other. Specifically, to determine when references go out of their scopes, the compiler
associates each borrowed reference with a lifetime and tracks constraints between references.
The lifetime inference assures that the lifetime of a borrowed ownership would last long
enough for use.

2.2 Unsafe Rust Code
Rust developers usually need flexibility in writing their code, including accessing arbitrary memory
with C-style pointers, invoking system calls, and accessing global static memory. Rust allows
programs to bypass its security mechanisms with the unsafe keyword. Code regions marked with
the unsafe keyword could bypass Rust’s compiler checks, and be able to perform five types of
operations: dereferencing and manipulating raw pointers, calling unsafe functions, accessing or
3https://zenodo.org/record/7828059#.ZDo1v-xBy3Y
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A Closer Look at the Security Risks in the Rust Ecosystem 5

modifying mutable static variables (i.e., global variables), implementing unsafe traits, and accessing
fields of unions. For simplicity, we use the phrase “unsafe code” throughout the paper to refer to
the code regions that are marked with the unsafe keyword. The code regions that can be marked
as unsafe include:

• Unsafe Blocks. An unsafe block defines a block of Rust code in which some compiler safety
checks would be disabled. For instance, as shown in Listing 1, an unsafe block dereferences a
raw pointer r. The dereferencing operation can bypass compiler checks due to the unsafe
keyword. Note that if a block of Rust code is marked with the unsafe keyword but does
not contain any of the aforementioned five types of operations, the compiler would emit a
warning message.

Listing 1. Unsafe block example.

let mut address = 5;
// create a raw pointer
let r = &address as *const i32;
unsafe {

print!("r␣is:␣{}", *r)
}

• Unsafe Functions. A Rust function can be declared as an unsafe function with the unsafe
keyword. The unsafe keyword requires the callers of unsafe functions to satisfy some
preconditions or bypass compiler checks via unsafe blocks. If an unsafe function only includes
safe operations, the compiler would not emit a warning because it cannot tell whether
programmers do it intentionally or by mistake. Listing 2 shows a typical usage of an unsafe
function: the unsafe function bar() is called within an unsafe block of the safe function
foo(), indicating that unsafe functions are encapsulated by their callers.

Listing 2. Unsafe function example.

unsafe fn bar() {...}

fn foo() { // a safe function
unsafe {

bar(); // call an unsafe function in an unsafe block
}

}

• Unsafe Traits. The trait is an advanced feature in the Rust type system to enable inheritance.
In general, traits of Rust are similar to interfaces to Java or abstract classes to C++. A trait
can be declared as unsafe with the unsafe keyword if it contains unsafe functions or its
implementations is required to satisfy any invariant.

2.3 Preliminary Investigation of Rust Ecosystem
Rust is a striving ecosystem with ongoing and even accelerating growth in the number of packages
and downloads. An increasing number of areas start to choose Rust as the programming language
for software development. Figure 1 shows the evolution of the number of packages in the Rust
ecosystem since its inception. The first package in the Rust ecosystem hosted on crates.io was
published on November 11, 2014. The number of packages grows 1.6x per year on average from
2015 to 2020. From 2020 to 2021, the growth in the number of packages slightly slows down,
exhibiting a 1.4x growth rate. Figure 2 shows the number of packages that are being created on
crates.io every month since November 2014. From late 2014 to early 2018, the increasing number

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2023.



6 Zheng et al.

Fig. 1. Evolution of number of packages per month. Fig. 2. Growth rate of packages created per month.

Fig. 3. Evolution of numbers of packages per year across package categories.

Fig. 4. Evolution of package downloads. Fig. 5. Evolution of package downloads across pack-
age categories.

of packages per month is less than 500. Since early 2018, the growth in the increasing number
of packages per month accelerates, experiencing a peak in March 2021, which may be due to
the official announcement of the Rust Foundation4 on February 8, 2021. Following the peak, the
increasing number of packages per month shows steady growth and resembles the trend prior to
2021, indicating that the announcement acted as a boost for the Rust ecosystem. As shown in
Figure 3, the top 5 categories with the most packages, command line utilities, no standard library,
development tools, api bindings and data structures, undergo continuous near-exponential growth in
the number of packages over time, which resembles the growth of the Rust ecosystem.

We also investigate the downloads of all Rust packages on a monthly basis fromNovember 2014 to
May 2022. As Figure 4 shows, the downloads of Rust packages grow exponentially from November
2014 to May 2022. The growth rate of downloads has experienced a dramatic increase since April
4https://foundation.rust-lang.org/news/2021-02-08-hello-world/
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Fig. 6. Overview of research methodology.

2019, which is far greater than the growth rate of package numbers. Figure 5 presents the top 5
categories of Rust packages that have the greatest downloads of packages, i.e., no standard library,
development tools, algorithms, data structures and asynchronous. The 5 categories of Rust packages
experience a continuous near-exponential growth in downloads over time, resembling the growth
of package downloads in the Rust ecosystem. The number of packages in the memory management
and concurrency categories grow linearly as indicated by regression analysis (𝑅2 = 0.9163 and
0.9460).

3 RESEARCH METHODOLOGY
We designed and conducted a mixed-methods empirical study, analyzing a dataset of vulnerabilities,
vulnerable packages, and vulnerability fixes in the Rust ecosystem, as depicted in Figure 6. Our
research methodology is detailed in the following subsections.

3.1 Data Collection and Preprocessing
Step 1: Collecting vulnerabilities in the Rust ecosystem. We collected an initial set of 776
vulnerabilities disclosed on OSV5 from November 11, 2014, to May 24, 2022. OSV is a distributed
vulnerability database for open source ecosystems, which serves as an aggregator of vulnerability
databases including GitHub Security Advisories, RustSec, the National Vulnerability Database
(NVD), and the Global Security Database. We identified 343 duplicated vulnerabilities from the
initial set and merged the information of vulnerabilities with the same references to NVD or
RustSec, resulting in a final set of 433 unique vulnerabilities. For each vulnerability, we obtained
the summary, detail, published date, modified date, vulnerability introduced and fixed versions,
references (e.g., code repository, fix commit, issue, and pull request), and type(s) of the vulnerability.
Step 2: Locating code repositories of vulnerable Rust packages. We further located the
code repositories of vulnerable Rust packages by following the references provided by disclosed
vulnerabilities. We found that 17 disclosed vulnerabilities from 13 Rust packages do not provide
references to their code repositories, thus we did not consider the 17 vulnerabilities in this step. As
a result, we obtained a total of 300 code repositories for vulnerable packages on GitHub and GitLab.

5https://osv.dev
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8 Zheng et al.

Fig. 7. An example fix commit applied to vulnerability RUSTSEC-2020-0052 of crossbeam-channel.

Step 3: Identifying vulnerability-fix commits in vulnerable code repositories. We identified
an initial set of 287 vulnerability-fix commits by analyzing three types of fix references that are
provided by collected vulnerability reports:

• Commit.We considered the commit in the reference as the vulnerability-fix commit.
• Pull Request. Given a pull request could have multiple commits, we identified vulnerability-fix
commits by searching vulnerability-fix related keywords in commit messages, including fix,
repair, error, bug, issue, exception and cve.

• Issue.We located the pull requests or commits related to an issue to identify the vulnerability-
fix commits.We only considered the closed issues because they indicate that the corresponding
vulnerabilities are fixed.

With the initial set of vulnerability-fix commits, we further excluded commits that do not
have code for vulnerability fixing, .e.g., for refactoring purpose. Specifically, we inspected the
vulnerability-fix commits in the initial set and excluded 69 commits irrelevant to vulnerability fixes,
including 34 commits that modified change logs, corrected spelling or styling, 28 that reported the
packages as unmaintained and did not fix any vulnerabilities, and 7 that involved code refactoring
in the fix. As a result, we collected 218 vulnerability-fix commits for 180 vulnerabilities in the Rust
ecosystem.

3.2 Processing Vulnerability Fixes
For each fix commit we collected, we considered the removed lines in the fix commit as vulnerable
code, and the added lines as fixing code, as with prior work [9, 42, 50, 59]. Similar to prior work [27],
we excluded non-source code files, e.g., documentation, change logs, and test files, and further

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2023.



A Closer Look at the Security Risks in the Rust Ecosystem 9

removed non-functional source code, e.g., empty lines, comment lines, and lines that are not inside
any functions. We used git diff wrapped in PyDriller [53] to obtain the textual diffs of the commit
and located the removed and added lines. Figure 7 gives an example of a fix commit that represents
code changes as textual diffs. The black, red and green colors represent unchanged code, deleted
lines, and added lines, respectively. In the example fix commit, lines 12, 22, 23, and 32 are vulnerable
code; lines 13, 24, 25, and 36 are fixing code; and lines 2, 3, 33, 34, and 35 are non-functional source
code.

We further developed a Rust compiler plugin to determine whether the functions and blocks in
the vulnerability-fix commits marked unsafe. First, we extracted the two versions of affected files
before and after the fix commit. Second, we extracted the line numbers of vulnerable and fixing
code for each affected file 𝑢 (i.e., compilation unit) before and after the commit, namely, 𝐿𝑖𝑛𝑒𝑉𝑢𝑙𝑢
and 𝐿𝑖𝑛𝑒𝐹𝑖𝑥𝑢 . We denote the code ranges of a function and an unsafe block in the compilation
unit 𝑢 by 𝐹𝑅𝑎𝑛𝑔𝑒 and𝑈𝐵𝑅𝑎𝑛𝑔𝑒 , respectively. Third, the plugin identified the code ranges of each
function in the affected files before and after the commit, namely, (𝐹𝑅𝑎𝑛𝑔𝑒, 𝐹𝑅𝑎𝑛𝑔𝑒 ′ ), as well as the
code ranges of each unsafe block, namely, (𝑈𝐵𝑅𝑎𝑛𝑔𝑒,𝑈𝐵𝑅𝑎𝑛𝑔𝑒

′ ). Finally, to locate vulnerable code
with respect to functions and unsafe blocks in a compilation unit, we checked whether the range of
vulnerable code is inside 𝐹𝑅𝑎𝑛𝑔𝑒 and𝑈𝐵𝑅𝑎𝑛𝑔𝑒 . Specifically, for each function 𝑓 in a compilation
unit 𝑢, we checked whether there exists 𝐿𝑖𝑛𝑒𝑉𝑢𝑙𝑢 in the corresponding affected file, such that
𝐿𝑖𝑛𝑒𝑉𝑢𝑙𝑢 ∩ 𝐹𝑅𝑎𝑛𝑔𝑒𝑓 ≠ ∅. If so, we considered the function 𝑓 as a vulnerable function. Similarly,
we identified vulnerable unsafe block 𝑏, such that 𝐿𝑖𝑛𝑒𝑉𝑢𝑙𝑢 ∩𝑈𝐵𝑅𝑎𝑛𝑔𝑒𝑏 ≠ ∅. Likewise, to locate
fixing code with respect to functions and unsafe blocks in a compilation unit, the plugin checked
whether the range of fixing code is inside 𝐹𝑅𝑎𝑛𝑔𝑒′ and 𝑈𝐵𝑅𝑎𝑛𝑔𝑒′. Specifically, for each function 𝑓

in a compilation unit 𝑢, we checked whether there exists 𝐿𝑖𝑛𝑒𝐹𝑖𝑥𝑢 in the corresponding affected
file, such that 𝐿𝑖𝑛𝑒𝐹𝑖𝑥𝑢 ∩ 𝐹𝑅𝑎𝑛𝑔𝑒

′

𝑓
≠ ∅. If so, we considered the function 𝑓 as a fixing function.

Similarly, we identified fixing unsafe block 𝑏, such that 𝐿𝑖𝑛𝑒𝐹𝑖𝑥𝑢 ∩𝑈𝐵𝑅𝑎𝑛𝑔𝑒
′

𝑏
≠ ∅.

3.3 Characterizing Vulnerabilities, Vulnerable Packages, and Fixes
Vulnerability categorization (RQ1). The vulnerabilities from the four sources use two classi-
fication schemes, i.e., Common Weakness Enumeration (CWE) and RustSec categorization. To
categorize disclosed vulnerabilities in the Rust ecosystem, we leveraged Software Fault Patterns
(SFP) [31] to build connections between two classification schemes of vulnerabilities. As shown in
Table 1, we identified 17 vulnerability types in our dataset (the Vulnerability Type column), with the
corresponding CWE IDs and RustSec categorization in the CWE ID and RustSec Category columns.
We further categorized the disclosed vulnerabilities in our dataset into the 17 vulnerability types.
Vulnerability life spans (RQ1). Upon a vulnerability’s disclosure, we might ask how long it
plagued a code repository before a developer fix the vulnerability. We denote the duration as the life
span of the vulnerability in the code repository, which is investigated in prior work [27]. In the life
span of a vulnerability, we also measured two duration: (1) the duration between the introduction
and disclosure of a vulnerability, which reflects the window of opportunity for attackers who
silently discover a vulnerability to leverage it offensively, before any defensive measures are taken,
and (2) the duration between the disclosure and fixing of a vulnerability, which affects the the
remediation process and the potential impact of the vulnerability. Reliably determining when a
vulnerability was born and fixed automatically is challenging, as it requires understanding the
source code and the nature of the vulnerability [27]. Thus, we utilized the collected and processed
vulnerability-fix commits. Specifically, for all lines of code deleted by a fix commit, i.e. 𝐿𝑖𝑛𝑒𝑉𝑢𝑙 ,
we used git blame to retrieve the last modification date of each line [50]. Note that we ignore
the commits with only additions due to newly added lines did not exist prior to the commit. We
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Table 1. Vulnerability types with mappings between classification schemes.

Vulnerability Type CWE ID RustSec Category

Memory Access 118, 119, 120, 121, 122, 125, 126, 127, 131, 135, 170, 416, 467, 476,
588, 785, 787, 824

memory-exposure

Memory Management 415, 590, 761, 762, 763 memory-corruption
Synchronization 362, 363, 364, 366, 367, 370, 412, 413, 414, 543, 567, 585, 609, 638,

662, 667, 764, 765
thread-safety

Tainted Input 15, 20, 74, 77, 78, 643, 644, 652, 687, 129 format-injection
Resource Management 400, 404, 459, 672, 674, 770, 774, 772, 789 denial-of-service
Exception Management 248, 252, 253, 273, 280, 390, 431, 478, 484, 584, 600, 665, 908, 909 -
Cryptography 327, 347, 1240 cryptography
Risky Values 28, 190, 194, 369, 456, 466, 468, 475, 480, 486, 562, 570, 579, 587,

594, 597, 681, 685, 704, 768, 843
-

Path Resolution 22, 30, 42, 51, 57, 58, 59, 62, 64, 65, 67, 73, 243, 706 file-disclosure
Information Leak 8, 14, 117, 200, 214, 226, 244, 256, 311, 374, 403, 495, 501, 523,

532, 591, 598, 607, 642, 668, 767
-

Privilege 269, 272 privilege-escalation
Predictability 330, 338, 340 -
Authentication 259, 293, 306, 307, 321, 350, 360, 422, 425, 565, 605, 620, 295 -
API 111,242,245,382,474,477,479,558,572,586,589,617,676,758 -
Access Control 279, 285, 424 -
Failure to Release Memory 401 -
Other 188, 193, 657, 670, 682, 697, 835 code-execution

conservatively designate the earliest blame date across all lines as the estimated date of vulnerability
introduction. We used the commit date of the fix commit to estimate when the vulnerability is
fixed. In case the vulnerability had multiple fix commits, we conservatively designated the most
recent commit date of the fix commits as the estimated date of vulnerability fix.
Vulnerability evolution (RQ1). We investigated the evolution of numbers of vulnerabilities that
are introduced and disclosed in the Rust ecosystem over time. To mitigate the impact from the
package growth on vulnerability evolution, we normalized the number of disclosed vulnerabilities
to both the number of packages and the lines of code (LOC) of vulnerable packages in the ecosystem.
In addition, we compared the evolution of numbers of disclosed vulnerabilities across vulnerability
types and package categories.
Affected versions of vulnerable packages (RQ2).We extracted package names from the vulner-
ability reports and identified the unique set of packages that contained at least one vulnerability.
For each vulnerable package, we aggregated the affected versions by each of its corresponding
vulnerabilities as indicated in the vulnerability reports. We also analyzed the packages with the
most vulnerabilities to investigate whether the package popularity would impact the number of
vulnerabilities disclosed in a package.
Vulnerable package categorization (RQ2). We categorized the vulnerable packages by referring
to the categorization information provided by crates.io. Given crates.io does not provide
categorization information for 165 vulnerable packages, we identified an average of 2.10 package
categories (median = 2) for the rest 172 vulnerable packages with categorization information. We
further compared the numbers of vulnerabilities, total packages and downloads, as well as the
distributions of vulnerability types across different package categories.
Vulnerable code locality (RQ2). For each vulnerability, we first counted the numbers of files,
functions, and unsafe blocks that are touched by the corresponding vulnerable code. We then used
the total numbers of functions and unsafe blocks in affected versions of vulnerable packages (i.e.,
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Table 2. Descriptive statistics of vulnerable packages.

# Safe Functions # Unsafe Functions # Unsafe Blocks

mean (𝜇) 637.22 16.69 77.30
median (M) 226 2 14
min 2 0 0
max 7,804 361 1,804
std 1,176.03 49.07 181.58
total 137,003 3,589 16,620

the version before vulnerability fixes) as the baseline for normalization. For code that failed in
compilation, we used regular expression to estimate the numbers of functions and unsafe blocks.
The resulting baseline is shown in Table 2: the vulnerable packages contain an average of 637.22
safe functions, 16.69 unsafe functions and 77.30 unsafe blocks (a median of 226 safe functions, 2
unsafe functions, and 14 unsafe blocks). With the baseline, we further measured the ratios of unsafe
functions and unsafe blocks touched by vulnerable code in vulnerable packages, and compared
them with the corresponding ratios in the complete code of vulnerable packages. In addition, we
compared the vulnerable code localities across different vulnerability types in terms of numbers of
commits, files, safe and unsafe functions, and unsafe blocks.
Fix commit complexity and locality (RQ3). To investigate the complexity of a fix commit,
we used lines of code (LOC) touched by the fix commit, .i.e, its vulnerable and fixing code, as a
simple-albeit-rudimentary metric as with prior studies [24, 32, 50, 67]. Meanwhile, to investigate
the locality of a fix commit, we first counted the numbers of functions, unsafe functions, and
unsafe blocks touched by its vulnerable and fixing code. In addition, we compared the localities of
vulnerability fix commits across vulnerability types in terms of numbers of commits, files, safe and
unsafe functions, and unsafe blocks.
Fix patterns (RQ3).We inspected vulnerability fix commits and summarized fix patterns in the fix
commits with identical locality category. Each fix commit could fall into multiple locality categories
from three categories: (1) the safe function category, if the vulnerable code in the fix commit includes
safe function(s), (2) the unsafe function category, if its vulnerable code includes unsafe function(s),
and (3) the unsafe block category, if its vulnerable code includes unsafe block(s).

4 RESULTS
In this section, we present the results of our research questions that investigate the security risks
in the Rust ecosystem.

4.1 RQ1: Vulnerabilities in the Rust Ecosystem
We investigated the characteristics of disclosed vulnerabilities in the Rust ecosystem, including the
vulnerability types, life spans, and the evolution of the number of vulnerabilities.
Types of vulnerabilities. We collected a total of 433 unique vulnerabilities in the Rust ecosystem,
out of which 73 have not been categorized, leaving 360 vulnerabilities that are categorized with a
median of 1 vulnerability type (min: 1, max: 4, mean: 1.65, std: 0.76). Table 3 presents the overall
distribution of vulnerabilities across 17 vulnerability types. Memory safety and concurrency issues
account for 63.6% of the 360 categorized vulnerabilities.
Memory safety issues involve memory access (39.17%) and memory management (40.00%) vul-

nerability types, accounting for 59.7% of the categorized vulnerabilities. The memory access vul-
nerabilities usually arise from buffer or pointer access problems, e.g., buffer overflow, use after
free, and null pointer deference. We take the RUSTSEC-2021-0128 in the rusqlite package as an
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Table 3. Distribution of vulnerabilities across vulnerability types. "Percentage" denotes the number of vulner-
abilities belonging to a specific vulnerability type divided by the number of categorized vulnerabilities, .i.e,
count/360. "Disclosure Duration" denotes the median duration between introduction and disclosure reported
in days. "Fix Duration" denotes the median duration between disclosure and fix reported in days.

Vulnerability Type Count (with Fix) Percentage Disclosure
Duration

Fix Duration

Memory Management 144 (67) 40.00% 668.0 1.0
Memory Access 141 (53) 39.17% 678.0 0.0
Synchronization 74 (44) 20.56% 770.5 0.0
Tainted Input 46 (23) 12.78% 780.0 -5.0
Resource Management 40 (37) 11.11% 599.0 -2.0
Exception Management 38 (18) 10.56% 1062.5 18.0
Cryptography 26 (8) 7.22% 757.5 -2.0
Other 26 (10) 7.22% 419.5 -1.0
Risky Values 21 (10) 5.83% 802.0 -2.0
Path Resolution 14 (12) 3.89% 165.5 -2.0
Information Leak 9 (3) 2.50% 80.0 -14.0
Privilege 4 (1) 1.11% 76.0 -5.0
Predictability 3 (2) 0.83% 107.5 -2.0
Authentication 3 (0) 0.83% / /
API 2 (1) 0.56% 846 30.0
Access Control 2 (0) 0.56% / /
Failure to Release Memory 1 (0) 0.28% / /

example of memory access vulnerability. In the vulnerable code of the rusqlite package affected
by RUSTSEC-2021-0128, the lifetime bounds on several closure-accepting functions are so loose
that allow the access to dropped objects on the stack thus cause use after free error. The memory
management vulnerabilities are due to problems in memory allocation or deallocation, e.g., double
free. RUSTSEC-2021-0033 in the stack_dst package is an example of memory management vul-
nerabilities. Specifically, the push_cloned function in the vulnerable code of stack_dst package
deallocates uninitialized memory thus cause double free error.

Concurrency issues involve synchronization vulnerabilities, which rank the third in the frequency
of occurrence across different types of vulnerabilities (20.56%). The Synchronization vulnerabilities
occur when multiple processes or threads share resources, including race condition and misuse
of locks. For instance, the unsafe Send trait implementation in the atom package involved in
RUSTSEC-2020-0044 causes data race error.
Vulnerability life spans. Figure 8 illustrates the distribution of disclosure duration for vulner-
abilities. It takes an average of 770 days (2.1 years) for a vulnerability to be disclosed after the
vulnerability was introduced in a Rust package (median: 693, min: 2, max: 2,364, std: 534.2). As the
per-vulnerability median indicates, 50% of the vulnerabilities had disclosure duration exceeding 693
days (1.9 years). Our observations concur with prior findings that vulnerabilities in the npm ecosys-
tem are disclosed within a median of 24 months, considerably shorter than the 37 months required
for the vulnerabilities in the PyPI ecosystem [1]. The vulnerability with the longest disclosure
duration (2,364 days) is RUSTSEC-2022-0029 in the crossbeam package, introduced in December
2015 and disclosed in June 2022. 1.8% of the vulnerabilities had a disclosure duration lower bound
of less than 30 days, most of which are introduced after August 2021, indicating an increase in the
security awareness within the Rust ecosystem.
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Fig. 8. CDFs of the duration between the introduc-
tion and disclosure of a vulnerability.

Fig. 9. CDFs of the duration between the disclosure
and fixing of a vulnerability.

In Figure 9, we depict the cumulative distribution function (CDF) of the number of days be-
tween disclosure and fixing. The predominant behavior in Figure 9, observed for two-thirds of
the vulnerabilities (120 out of 180), is that the vulnerability fixes were committed by disclosure
time, manifesting as negative or zero time differences. The predominant behavior suggests that the
majority of vulnerabilities in the Rust ecosystem were either internally discovered or disclosed
to project developers using private channels, which is the expected best practice for vulnerability
disclosure [70]. In Figure 9, vulnerabilities disclosed but not yet fixed manifest as positive time dif-
ference values, which occurred for one-third of vulnerabilities (60 out of 180) in the Rust ecosystem.
The percentage of unpatched vulnerabilities by disclosure is higher than the 21.2% as reported in
prior study [27] and comparable to the 30% for Windows vulnerabilities [20]. The 60 vulnerabilities
with positive time difference values have an average of 88 days of their fixing duration (median:
23.5, min: 1, max: 686, std: 146.0). The vulnerability with the longest fix duration (686 days) was
RUSTSEC-2017-0006 in the rmpv package, which was disclosed in November 2017 and fixed in
October 2019. In addition, approximately 42% of the vulnerabilities remain unpatched for more than
30 days after their disclosure, leaving a window of opportunity for potential attacker exploitation.
We further compared the duration of vulnerability disclosure and fixing across vulnerability

types as shown in Table 3. We observe that the duration of vulnerability disclosure and fixing vary
widely across vulnerability types. Generally, frequently occurred vulnerability types (Count > 20)
tend to have a significantly longer duration of disclosure compared to rarely occurred vulnerability
types (Count < 20), as supported by Wilcoxon rank-sum tests (p-value = 0.0266). Among the rarely
occurred vulnerability types, the API vulnerabilities turn out to be an exception with the longest
duration of disclosure and fixing across vulnerability types.
Vulnerability evolution.We present the evolution of the number of vulnerabilities disclosed over
time in the Rust ecosystem in Figure 10. We observe that the number of vulnerabilities disclosed
grows slowly from November 2014 to November 2020, and experiences two rapid growth phases.
The first rapid growth starts from November 2020 and ends in March 2021, while the second
occurs in July 2021. The first rapid growth may attribute to a large-scale campaign during that
period of time, in which RustSec has published 129 memory safety vulnerabilities as part of the
research efforts made by Bae et al. [4]. During the second rapid growth, the number of disclosed
vulnerabilities increased from 197 to 330 due to unrestricted Send or Sync on generic types, which
is also discussed in prior work [4]. The evolution in the numbers of vulnerabilities vary widely
across vulnerabilities types as shown in Figure 11. The memory access, memory management and
synchronization vulnerabilities grow fastest over time, with a growth pattern that resembles the
evolution of vulnerabilities disclosed in the Rust ecosystem as shown in Figure 10.
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Fig. 10. Evolution of number of vulnerabilities dis-
closed over time.

Fig. 11. Evolution of numbers of disclosed vulnera-
bilities across vulnerability types.

Fig. 12. Evolution of number of vulnerabilities intro-
duced into Rust code repositories over time.

We also present the evolution of the number of vulnerabilities introduced into Rust code reposito-
ries over time in Figure 12, which demonstrates a linear growth rate from July 2015 to January 2020
(𝑅2 = 0.9561) and becomes stabilized after March 2020. The numbers of vulnerabilities disclosed and
introduced demonstrate different growth rates over time, which may be due to the increase of indi-
viduals and organizations participated in Rust vulnerability discovery as Rust becomes increasingly
popular in systems software development. Another possible reason could be the development and
application of vulnerability detection tools in the Rust ecosystem, which facilitate the discovery of
vulnerabilities [4, 28].

Next, we investigated whether package growth in the Rust ecosystem contributes to the increase
of disclosed vulnerabilities. As shown in Figure 13, the normalized number of vulnerabilities
disclosed per 1,000 packages grows from one in 2017 to five in 2022, indicating an increase of package-
wise security risks in the Rust ecosystem. Meanwhile, the normalized number of vulnerabilities
disclosed per 100,000 lines of code in vulnerable packages reaches the peak (2.1) in August 2020
after three climbing stages, and have experienced a sharp decrease to 0.5 since then, as shown in
Figure 14, suggesting a decreasing tendency in security risks per lines of code in the Rust ecosystem.

Finally, we investigated how vulnerabilities with different types evolve over time with respect to
package category as shown in Figure 15. We make several observations:

• Memory management vulnerabilities are disclosed across package categories, but with differ-
ent frequencies of occurrence and growth rates.
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Fig. 13. Disclosed vulnerabilities per 1,000 packages. Fig. 14. Disclosed vulnerabilities per 100,000 lines of
code in vulnerable packages.

• Command line utilities packages have no vulnerability disclosed until April 2021, and have 12
vulnerabilities disclosed in total until April 2022, indicating relatively low security risk over
time (Figure 15c).

• No standard library and data structures packages both have more than 60 vulnerabilities
disclosed in total until April 2022, among whichmemory management vulnerabilities account
for a majority (44.0% in no standard library and 53.7% in data structures) (Figure 15a and
Figure 15d). The numbers of disclosed vulnerabilities are greater than any other package
categories, indicating relatively higher security risk over time.

Summary for RQ1: The top three vulnerability types in the Rust ecosystem are memory access,
memory management, and synchronization, accounting for 63.6% of categorized vulnerabilities
and exhibiting the fastest growth rates. It takes over 2 years for the vulnerabilities to be publicly
disclosed, among which 66.7% have fixes committed before their disclosure. The number of
disclosed vulnerabilities experiences two rapid growth periods, while the number of vulnerabilities
introduced into code repositories grows linearly. Normalized numbers of disclosed vulnerabilities
suggest a continuously increasing trend in package-level security risks over time, yet a decreasing
trend in code-level security risks since August 2020. In addition, the security risks in the Rust
ecosystem vary widely across different package categories.

4.2 RQ2: Vulnerable Packages in the Rust Ecosystem
We identified a total of 337 vulnerable packages, accounting for 0.40% of packages in the Rust
ecosystem. 120 out of 337 vulnerable packages remain unpatched. The 337 vulnerable packages
have an average of 1.3 disclosed vulnerabilities (min: 1, max: 14, median: 1, std: 1.04). The disclosed
vulnerabilities affect an average of 28.6 versions of the Rust packages (min: 1, max: 339, median: 17,
std: 34.33), accounting for 75.09% of the versions per package on average (min: 1.37%, max: 100%,
median: 82.07%, std: 0.27).
Popularity of vulnerable packages. On the one hand, popular packages tend to have more vul-
nerabilities. Specifically, the top 5 Rust packages with the most vulnerabilities are (1) openssl-src,
with 14 vulnerabilities and 55 versions affected (87.27%), (2) wasmtime, with 7 vulnerabilities and
62 versions affected (58.06%), (3) hyper, with 7 vulnerabilities and 224 versions affected (92.41%),
(4) ckb, with 7 vulnerabilities and 32 versions affected (28.13%), and (5) smallvec, with 5 vulner-
abilities and 54 versions affected (68.52%). Among the top 5 packages, openssl-src, hyper and
smallvec have over 9 millions of downloads till April 2023. One possible reason could be that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2023.



16 Zheng et al.

(a) No standard library (b) Development tools

(c) Command line utilities (d) Data structures

(e) Memory management (f) Web programming

(g) Asynchronous (h) Cryptography

Fig. 15. Evolution of numbers of disclosed vulnerabilities across package categories.

popular packages have far more developers and users than less popular ones. The larger community
of developers and users for popular Rust packages tend to uncover more vulnerabilities compared to
less popular packages. On the other hand, some popular packages officially published by September
2016 have no vulnerabilities disclosed, e.g., libc and syn, which have over 100 million downloads.
In addition, we observe that unpopular packages (with less than 100,000 downloads) tend to suffer
from vulnerabilities for more versions. Particularly, among the 109 vulnerable packages with all
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Table 4. Characteristics of package categories with vulnerable packages.

Package Category # Vulnerabilities # Packages # Downloads # Vulnerabilities
per Package

Memory management 28 468 397,961,797 5.98%
Concurrency 26 909 799,571,861 2.86%
Data structures 54 2,144 1,170,205,196 2.52%
Caching 5 234 68,948,180 2.14%
Network programming 33 2,138 816,412,017 1.54%
Asynchronous 28 1,900 1,039,591,569 1.47%
Encoding 22 1,494 904,623,837 1.47%
No standard library 50 3,671 3,704,866,624 1.36%
Rust patterns 15 1,158 829,299,334 1.30%
Parsing tools 8 1,272 363,898,651 1.26%
Text processing 11 943 484,155,024 1.17%
Cryptography 22 1,933 912,432,279 1.14%
Web programming 27 2,386 650,382,813 1.13%
Algorithms 17 1,595 1,190,075,755 1.07%
Operating systems 8 1,013 603,471,887 0.79%
API bindings 10 2,265 417,282,873 0.44%
Development tools 12 3,725 1,640,269,851 0.32%
Command line utilities 12 4,418 25,115,904 0.27%
(vulnerabilities<=6) 90 14,670 2,461,533,553 0.61%
Non-categorized 214 55,895 - 0.38%

versions affected by vulnerabilities, 76 packages have less than 100,000 downloads in total over
time.
Categories of vulnerable packages. Table 4 reports the numbers of disclosed vulnerabilities,
packages, and downloads till May 2022, as well as the average numbers of vulnerabilities per package
across package categories. The top 3 package categories with the most vulnerabilities are data
structures, no standard library and network programming. In the meantime, memory management,
concurrency and data structures rank the top 3 among package categories in terms of the average
number of vulnerabilities per package. Interestingly, the memory management category has fewer
packages (468) and downloads (around 400 million downloads), but relatively more vulnerabilities
disclosed (28), compared with other package categories, indicating that memory management
packages are more prone to vulnerabilities.

We further compare the distributions of vulnerability types across package categories. As shown
in Table 5, we chose the union of the top 5 categories with vulnerable package percentage and the
top 5 categories with vulnerabilities in Table 4 for analysis. The distributions of vulnerability types
vary substantially across package categories: The memory management package category tends to
have morememory access,memory management and synchronization vulnerabilities; the concurrency
packages tend to have more synchronization and memory management vulnerabilities; and the data
structure packages tend to have more tainted input vulnerabilities. To see if the differences in the
distributions of vulnerability types are statistically significant, we conduct Wilcoxon signed-rank
tests [63] with Bonferroni correction at 95% significance level. As a result, we observe statistically
significant differences (1) caching vs. data structures (p-value = 0.0490) and (2) caching vs. no
standard library (p-value = 0.0490), indicating the penitential impact of package categories on
disclosed vulnerability types in the Rust ecosystem.
Vulnerability locality in vulnerable packages. As illustrated in Table 6, a disclosed vulnerability
affects 1.85 files, 3.35 safe functions, 0.15 unsafe functions, and 1.39 unsafe blocks on average in

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2023.



18 Zheng et al.

Table 5. Distributions of vulnerability types in top 5 package categories with vulnerabilities and top 5 package
categories with vulnerable package percentages.

Memory
Manage-
ment

Concurrency Data Struc-
tures

Caching No Stan-
dard
Library

Network
Program-
ming

Vulnerability Type

Memory Access 11 8 19 2 25 11
Memory Management 15 17 29 3 22 10
Synchronization 10 17 11 4 8 4
Tainted Input 2 4 5 0 1 3
Resource Management 0 1 1 0 0 4
Exception Management 1 0 4 0 4 3
Cryptography 0 0 0 0 6 3
Other 0 0 3 0 4 2
Risky Values 2 0 4 0 3 1
Path Resolution 1 0 1 0 0 3
Predictability 0 0 0 0 2 0
API 0 0 0 0 1 0
Failure to Release Memory 0 0 1 0 0 0
Total 28 26 54 5 50 33

Table 6. Descriptive statistics of vulnerability locality in vulnerable packages.

# Files # Safe Functions # Unsafe Functions # Unsafe Blocks

mean (𝜇) 1.85 3.35 0.15 1.39
median (M) 1 1 0 0
min 1 0 0 0
max 14 83 4 50
std 1.95 8.84 0.53 5.20
total 395 684 31 284

Fig. 16. Ratios of unsafe functions in vulnerable code
vs. all code of vulnerable packages. Fig. 17. Ratios of unsafe blocks in vulnerable code

vs. all code of vulnerable packages.

vulnerable packages in the Rust ecosystem (1 file, 1 safe function, 0 unsafe function, and 0 unsafe
block in median). The small median number of affected files per fix commit indicates that vulnerable
code in the Rust ecosystem is localized at the file level. At functional level, 95% of the affected
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Table 7. Descriptive statistics of vulnerability locality across vulnerability types.

Vulnerability type
Memory
Access

Memory
Management Synchronization

Tainted
Input

Resource
Management

Exception
Management

Path
Resolution

# Commits 42 28 39 21 9 6 6

# Files

𝜇 2.30 2.14 1.59 1.57 1.89 2.33 1.83
M 1 1 1 1 2 2 1.5
min 1 1 1 1 1 1 1
max 14 14 5 4 3 5 3
std 2.94 2.72 1.25 0.95 0.93 1.51 0.98

# Safe functions

𝜇 3.88 4.32 1.05 1.43 2 8.67 1.33
M 1 1 0 1 2 3 1
min 0 0 0 0 1 1 1
max 59 33 13 5 5 40 3
std 10.92 8.56 2.67 1.12 1.32 15.41 0.82

# Unsafe functions

𝜇 0.17 0.14 0.15 0.05 0 0 0
M 0 0 0 0 0 0 0
min 0 0 0 0 0 0 0
max 2 3 2 1 0 0 0
std 0.44 0.59 0.49 0.22 0 0 0

# Unsafe blocks

𝜇 2.14 2.39 0.21 0.19 0 7.67 0
M 0 0 0 0 0 2 0
min 0 0 0 0 0 0 0
max 50 67 6 3 0 40 0
std 7.85 6.32 0.98 0.68 0 15.87 0

functions are safe functions; Among the affected safe functions, 41.5% contain unsafe blocks in
their body of a function. One possible reason for the high percentage of safe functions in vulnerable
code is that developers tend to wrap unsafe code in safe functions and provide conditional checks
in those functions before entering the unsafe code, which is in line with the Rust idiomatic style to
encapsulate unsafety [4].

We further compared the ratios of unsafe functions and unsafe blocks between vulnerable code
vs. all code in vulnerable packages as shown in Figure 16 and Figure 17, respectively. We observe
that vulnerable packages have higher ratios of unsafe functions (0.059 vs. 0.034 on average) and
unsafe blocks (0.261 vs. 0.165 on average) in their vulnerable code as compared to their complete
code. The Wilcoxon signed-rank test at 95% significance level suggests statistically significant
differences exist in the ratios of unsafe functions (p-value = 0.002) and unsafe blocks (p-value =
0.017) between vulnerable code and complete code in vulnerable packages.

Finally, we compared the vulnerability localities across vulnerability types, including the numbers
of commits, files, safe and unsafe functions, and unsafe blocks, as shown in Table 7. We make the
following observations:

• The exception management vulnerabilities tend to be the least localized at the file and function
levels, considering the greatest numbers of files and safe functions affected by them as
compared to other vulnerability types.

• The synchronization vulnerabilities tend to be the most localized at the function level, consid-
ering the smallest number of safe functions on average they affected.

• The memory management and memory access vulnerabilities show the tendency to locate
more frequently in safe functions than in unsafe functions, considering they affected more
safe functions than unsafe ones.

• The resource management and path resolution vulnerabilities originate from the safe code in
safe functions, considering they affected neither unsafe functions nor unsafe blocks.
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Table 8. Descriptive statistics of vulnerability fixes.

# Lines Added # Lines Deleted # Safe Functions # Unsafe Functions # Unsafe Blocks

mean (𝜇) 41.13 18.17 3.85 0.16 1.49
median (M) 14 4 1 0 0
min 1 0 0 0 0
max 665 330 83 4 50
std 81.97 39.75 9.12 0.53 5.24
total - - 786 32 304

Summary for RQ2: Vulnerable packages in the Rust ecosystem have an average of 1.3 disclosed
vulnerabilities that affected 28.6 versions of the corresponding packages. Popular packages tend
to have more vulnerabilities, while less popular ones tend to suffer from vulnerabilities for
more versions. Memory management is the most vulnerable package category, with a small
number of packages but a large number of vulnerabilities. In addition, the memory management
package category tends to have more memory access, memory management, and synchronization
vulnerabilities as compared to other package categories. The exception management vulnerabilities
tend to be the least localized at the file and function levels as compared to other vulnerability
types. In vulnerable packages, the vulnerable code tends to involve statistically significantly more
unsafe functions and unsafe blocks as compared to complete code, which is localized at the file
level.

4.3 RQ3: Vulnerability Fixes in the Rust Ecosystem
Fix commit complexity and locality. As shown in Table 8, the commits of vulnerability fixes in
the Rust ecosystem involve an average of 41 and 18 LOC added and deleted, respectively (14 and
4 LOC added and deleted in median). The commits of vulnerability fixes have touched 3.85 safe
functions, 0.16 unsafe functions, and 1.49 unsafe blocks on average. Safe functions account for 96%
of all the functions touched by the vulnerability fixes, among which 38.8% contain unsafe blocks.
Next, we compared the locality of vulnerability fix commits across vulnerability types with

respect to the numbers of safe functions, unsafe functions, and unsafe blocks touched by the
commits as shown in Table 9. The fix commits of exception management vulnerabilities involve
the most safe functions compared to other vulnerability types (8.67), indicating the widest spread
of touched code and potential challenges when fixing exception management vulnerabilities in
practice. On the contrary, the fix commits of synchronization vulnerabilities touch the fewest safe
functions compared to other vulnerability types (1.21), indicating the most localized fixes across
vulnerability types.
Vulnerability fix patterns. To capture how developers fix different types of vulnerabilities,
we first compared the numbers of safe functions, unsafe functions, and unsafe blocks affected
by vulnerabilities (Table 7) with those touched by corresponding fixes (Table 9). We make the
following observations: (1) The tainted input vulnerabilities demonstrate the greatest increase in
the number of unsafe blocks compared to other vulnerability types, from 0.19 to 0.24; The increase
indicates that developers tend to add unsafe blocks when fixing tainted input vulnerabilities. (2)
The path resolution vulnerabilities have the greatest increase in the number of safe functions, from
1.33 to 2.17, indicating the addition of safe functions when fixing such vulnerabilities. (3) The path
resolution vulnerabilities have the greatest increase in the number of unsafe functions, from 0.17 to
0.19, indicating the addition of unsafe functions when fixing such vulnerabilities.
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Table 9. Statistics of commit locality of vulnerability fixes across vulnerability types.

Vulnerability Type
Memory
Access

Memory
Management Synchronization

Tainted
Input

Resource
Management

Exception
Management

Path
Resolution

# Safe Functions

𝜇 4.0 4.71 1.21 2.0 3.44 8.67 2.17
M 1 2 0 1 2 3 2
min 0 0 0 0 1 1 1
max 59 33 16 8 12 40 5
std 10.89 8.60 3.22 1.79 3.50 15.41 1.47

# Unsafe Functions

𝜇 0.19 0.14 0.15 0.05 0 0 0
M 0 0 0 0 0 0 0
min 0 0 0 0 0 0 0
max 2 3 2 1 0 0 0
std 0.45 0.59 0.49 0.22 0 0 0

# Unsafe Blocks

𝜇 2.17 2.39 0.21 0.24 0 7.67 0
M 0 0 0 0 0 2 0
min 0 0 0 0 0 0 0
max 50 33 6 3 0 40 0
std 7.84 6.32 0.98 0.70 0 15.87 0

Table 10. The characteristics of vulnerability fix commits across localities.

Vulnerability Locality Fix Pattern Count

Safe function add safe functions 28
remove safe functions 12
modify safe functions 117

Unsafe function add unsafe functions 0
remove unsafe functions 0
modify unsafe functions 16

Unsafe block add functions or lines in function 5
remove unsafe blocks 27
modify unsafe blocks 36

We further summarized the resulting fix patterns of our our manual inspection with respect to
different vulnerability localities as shown in Table 10. In general, we observe three operations, i.e.,
addition, deletion, and modification of code, when developers fix vulnerabilities. Among the three
operations, the modification operation accounts for the majority of fix commits across different
vulnerability localities. We also make the following observations in particular:
Observation 1: Developers tend to add safe functions, or add lines in safe functions to
fix vulnerable safe functions. Developers tend to add safe code when fixing vulnerabilities that
locate in safe functions, rather than removing existing code.

The added safe functions or lines validate pre-conditions or customize the default implemented
functions, thus fix corresponding vulnerabilities. Taking the fix of the denial-of-service vulnerability
(CVE-2022-24713) as an example (Listing 3), the fix inserts an additional function c_empty() to
deal with an empty string, which may cause denial of service.
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Listing 3. Example vulnerability fix ( CVE-2022-24713).

// code snapshot before fix commit
fn c(&mut self, expr: &Hir) -> ResultOrEmpty {

...
match *expr.kind() {

Empty => Ok(None),
...

}
}

// code snapshot after fix commit
fn c_empty(&mut self) -> ResultOrEmpty {

self.extra_inst_bytes +=
std::mem::size_of::<Inst>();

Ok(None)
}
fn c(&mut self, expr: &Hir) -> ResultOrEmpty {

...
match *expr.kind() {

Empty => self.c_empty(),
...

}
}

Observation 2: Developers tend to remove unsafe blocks to fix vulnerable unsafe blocks.
Developers tend to remove existing code, rather than adding code to fix vulnerabilities that locate
in unsafe blocks. Taking the fix of the memory exposure vulnerability (RUSTSEC-2021-0086) as an
example (Listing 4), the fix removes the unsafe block and zeroes out the buffer buf before further
operations can be undertaken.

Listing 4. Example vulnerability fix ( RUSTSEC-2021-0086).

// code snapshot before fix commit
let mut buf = Vec::with_capacity(frame.data_size);
unsafe { buf.set_len(frame.data_size) };

// code snapshot after fix commit
let mut buf = vec![0; frame.data_size];

Observation 3: Developers tend to modify unsafe trait implementations to fix vulnerable
unsafe functions. Specifically, we identified a data race pattern that occurs in disclosed vulnerabil-
ities that locate in unsafe functions as shown in Listing 5. In such vulnerability pattern, objects do
not restrict to sendable or syncable types when they implement Send or Sync traits, leading to the
sharing of non-syncable types across threads in concurrent programs. To fix such vulnerabilities,
developers tend to use Send or Sync traits as bounds to stipulate the functionality that the generic
type T must implement.
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Listing 5. Vulnerability fix pattern of data race vulnerabilities.

// code snapshot before fix commit
unsafe impl<T> Send for MyObject<T> {}
unsafe impl<T> Sync for MyObject<T> {}

// code snapshot after fix commit
unsafe impl<T: Send> Send for MyObject<T> {}
unsafe impl<T: Sync> Sync for MyObject<T> {}

Summary for RQ3: The vulnerability fix commits in the Rust ecosystem involve a median of
14 lines of code added, and a median of 4 lines of code deleted, suggesting that vulnerability
fix commits are typically localized. 96% of the functions touched by these fix commits are safe
functions. The fix commits of exception management vulnerabilities involve the highest proportion
of safe functions compared to other vulnerability types, indicating potential challenges of fixing
exception management vulnerabilities in practice. In addition, developers tend to (1) add safe
functions or add lines in safe functions to fix vulnerable safe functions, (2) remove unsafe blocks
to fix vulnerable unsafe blocks, and (3) modify unsafe trait implementations to fix vulnerable
unsafe functions.

5 DISCUSSION
We now summarize our main results, discuss their implications, and highlight the avenues for
future research.
Rust is an active and growing software ecosystem at its early stage, coupled with an
increasing awareness of risks of security vulnerabilities. The Rust ecosystem hosts over 100
thousand packages on crates.io by March 2023, and has been experiencing exponential growth in
number of packages and downloads from 2014 to 2022 as observed in our preliminary investigation
(Section 2.3). As compared to other ecosystems like npm, PyPI and Maven, which host over 2
million packages6, 440 thousand packages7, and 32 million artifacts8, respectively by March 2023,
we observed a significantly smaller number of packages in the Rust ecosystem, indicating Rust
is at its early age of development. In addition, the exponential growth in number of packages in
the Rust ecosystem resembles the trends of package growth at the early ages of the PyPI [8] and
Maven ecosystems [45], suggesting Rust to be an active and growing ecosystem.
Interestingly, our preliminary investigation observed a sharp decline in the increasing number

of Rust packages since mid-late 2020, which may be caused by the Mozilla lay-off in (August 2020)9.
The Rust packages in the no standard library category, ranked the second in terms of the total
number across package categories, received the most downloads over time. Future work could
systematically investigate the factors that influence the evolution of the number of packages, and
analyze how the sub-categories in the no standard library category could affect the evolution of
package downloads in the Rust ecosystem.
The number of vulnerabilities disclosed per 1,000 packages in the Rust ecosystem grows from

one in 2017 to five in 2022 (RQ1), indicating an increasing awareness of the risks of security
vulnerabilities in the ecosystem. The increasing trends in the number of disclosed vulnerabilities
are observed in the PyPI and npm ecosystems as well [8], which may attribute to the coordinated
6http://www.modulecounts.com/
7https://pypi.org/
8https://mvnrepository.com/repos
9https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
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efforts in the increasing awareness of security risks in the ecosystems and continuous process of
testing packages to detect vulnerabilities before exploited.
The majority of the vulnerabilities in the Rust ecosystem relate to memory safety and
concurrency issues. Memory safety and concurrency issues account for two-thirds of the vulner-
abilities in the Rust ecosystem (RQ1). The frequent occurrence of memory safety and concurrency
issues may be due to that developers tend to use the Rust programming language for systems
software development, thus manipulating memory and threads in their code frequently. In contrast,
cross-site scripting vulnerabilities appear to be the most common type of vulnerability in both PyPI
and npm ecosystems as discussed in prior research [8], given Python and JavaScript are popular
programming languages for the development of Web applications. We also find that 77% of the
vulnerabilities related to memory safety and concurrency issues locate in unsafe code of vulnerable
Rust packages (RQ2), suggesting that practitioners should pay more attention to operations related
to memory and concurrency when writing unsafe code. For instance, practitioners could enforce
bound constraints when implementing Send and Sync traits to avoid data race as observed in RQ3.
Vulnerabilities in the Rust ecosystem are not localized in unsafe functions, but relate
more to unsafe blocks in safe functions as compared to the safe code in safe functions.
Safe functions account for 95% of the functions in the vulnerable packages affected by disclosed
vulnerabilities (RQ2). The percentage of safe functions in the vulnerable packages affected by
disclosed vulnerabilities is close to the percentage of safe functions in the Rust ecosystem as reported
in a recent study (95.9%) [36], indicating that vulnerabilities in the Rust ecosystem are not localized
in unsafe functions. Meanwhile, 41.5% of the safe functions in the vulnerable packages affected
by disclosed vulnerabilities contain unsafe blocks in their function body (RQ2). The frequency of
occurrence of unsafe blocks in safe functions in the vulnerable packages is significantly higher than
that of all the Rust packages (13.8%) as reported in a recent study [36], indicating that practitioners
could put forth more effort on unsafe blocks for securing safe functions compared to their safe
code.
Practices towards safer Rust code. 86.67% of the tainted input and resource management vul-
nerabilities reside in safe code of vulnerable packages (RQ2), indicating that the tainted input and
resource management vulnerabilities are more localized in safe code than other types of vulnerabili-
ties. The results suggest that practitioners should pay more attention to safe code for data validation
when dealing with user input as compared to unsafe code. In terms of fixing vulnerabilities, prior
study [27] reported that the median security commit diff involved 7 LOC. The results of RQ3
revealed that the median fix commit diff of the Rust ecosystem includes 14 and 4 LOC added and
deleted, respectively, indicating that the fixes in Rust are more complex. Moreover, the study [27]
found that 59% of security changes were located in a single function, while the results of RQ3
showed that the median fix commit involves an average of 3.85 safe functions (median = 3.85),
suggesting that the fixes are less localized in the Rust ecosystem. In addition, developers tend to
modify both safe and unsafe code in vulnerable packages, rather than directly remove unsafe code
when fixing vulnerabilities (RQ3), suggesting the necessity of unsafe code in the development of
Rust packages, which is in line with the findings of a previous study [19] – practitioners use the
unsafe keyword in 29.4% of the Rust libraries. Thus, both safe and unsafe code deserve a comparable
consideration when securing Rust packages in practice.

6 THREATS TO VALIDITY
Construct validity. Our dataset contains the complete list of disclosed vulnerabilities in the Rust
ecosystem by May 24, 2022, thus it is inevitable that the characteristics of vulnerabilities and fixes
in the Rust ecosystem may evolve along with the expansion of vulnerability dataset over time. We
analyzed vulnerability fix commits for the investigation of vulnerable packages and fixes in the
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Rust ecosystem, which is in line with previous studies [9, 42, 50, 59]. The approach may introduce
noise into the dataset given that some code inside the fix commits might not be vulnerable or fix
vulnerabilities. To mitigate the threat, we manually inspected the 287 fix commits we have collected
and excluded 69 fix commits with irrelevant code, e.g., refactoring and typo fixes. As a result, the
vulnerability fix commits in our dataset involve a median of 14 and 4 LOC added and deleted,
respectively, whose sizes are comparable to vulnerability fix commits in previous studies [27, 66].
Internal validity.We implemented a Rust compiler plugin and all scripts by ourselves with careful
review; despite the extensive testing phase, we may not exclude all possible implementation errors.
For the sake of replicability, we made all data and scripts employed publicly available10. Some
steps in our methodology rely on information produced by the Rust compiler, e.g., identifying the
localities of Rust vulnerabilities. Consequently, these steps may be sensitive to unfixed bugs in the
Rust compiler.

For the 33 fix commits (15.14%) that fail the compilation process, we used text analysis to collect
the numbers of safe/unsafe functions and unsafe blocks in their code. To estimate the potential
threat introduced by the text analysis, we used the 185 fix commits that pass the compilation process
and compared their numbers of safe/unsafe functions and unsafe blocks identified by text analysis
with those identified by the compiler plugin. We found that text analysis identifies 23.7% less unsafe
blocks, 10.5% less safe functions, and 14.4% less unsafe functions compared to the compiler plugin.
As a result, text analysis would underestimate the total numbers of unsafe blocks, safe functions
and unsafe functions by 3.6%, 1.6% and 2.2% in our dataset, respectively. The ratio of unsafe block
and unsafe function in all code of vulnerable package would reduce by 2% and 0.6%, respectively.
Thus, the slight underestimation of safe/unsafe functions and unsafe blocks would not affect our
conclusions in RQ2 on the ratios of unsafe functions and blocks in vulnerable packages.
Conclusion validity. In RQ2, we investigated the affected versions of vulnerable packages. We
noticed that some vulnerabilities do not explicitly indicate the earliest affected package versions,
and considered the initial releases of their affected packages as the earliest versions affected by
those vulnerabilities. The approach is also used in previous studies [68] to estimate the earliest
package versions affected by vulnerabilities, which could lead to inaccuracy in the range of affected
package versions. To evaluate the inaccuracy of the approach adopted, we took a random sample of
40 vulnerabilities out of 364 that do not specify the earliest affected versions by vulnerabilities, with
a 95% confidence interval and 15% sampling error. For each sampled vulnerability, we manually
checked the corresponding fix commit(s) to determine whether the vulnerability exists in the initial
release of the affected package. We found that 8 out of the sampled 40 vulnerabilities do not exist
in the initial releases of the affected packages, leading to an overestimation of affected versions of
packages by vulnerabilities. The 95% Agresti-Coull confidence interval is (0.6498, 0.8976).

Memory safety issues account for the majority of disclosed vulnerabilities in the Rust ecosystem.
The large amount of memory related vulnerabilities may attribute to the fact that security experts
and researchers tend to focus on memory problems in Rust packages given that Rust is claimed to
ensure memory safety [4, 39, 65]. Regarding vulnerability locality, security experts and researchers
tend to focus on hunting vulnerabilities in unsafe code of Rust packages [4, 19], leading to the
potential increase in the ratio of unsafe code in vulnerable code of the Rust ecosystem.

7 RELATEDWORK
7.1 Software Ecosystems
Prior research presents a steady stream of empirical studies on various software ecosystems,
including JavaScript (npm) ecosystem [11, 26, 30, 64, 71], Python (PyPI) ecosystem [1, 5, 8, 23], and

10https://github.com/ZXXYy/rust_ecosystem
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Java ecosystem [7, 38, 61]. In terms of the npm ecosystem, researchers investigate the package
usage [11, 64], dependencies of packages [12, 26, 64, 71], and security risks in the ecosystem [30, 71].
The studies find that the npm ecosystem is steadily growing, with ongoing and accelerating
growth in the number of packages and increasing dependencies between packages [64]; individual
vulnerable packages could impact a large portion of the entire npm ecosystem [71]. As for the Python
ecosystem, researchers characterize the developers of the ecosystem [23], growth in packages [8],
dependencies of packages [1], and security risks in the ecosystem [1, 5]. The findings indicate
that the Python ecosystem grows exponentially [8, 23]; the number of disclosed vulnerabilities
in Python packages increases over time, and the vulnerabilities have been disclosed over 3 years
after the relevant code was introduced in code repositories [1]. Studies on the Java ecosystem also
explore the dependencies of packages [7], and the security risks in the Java ecosystem [38, 61].

A few studies investigate some aspects of the Rust ecosystem, by comparing it with other software
ecosystems. Kikas et al.’s work [26] compared the structure and evolution of dependency networks
across the JavaScript, Ruby, and Rust ecosystems. The reported results show that the analyzed
ecosystems are alive and growing, with JavaScript having the fastest growth; software ecosystems
are not as vulnerable to the removal of individual packages as they used to be. Serebrenik et al. [47]
conducted a meta-analysis of the open challenges in software ecosystem research. As a result, they
identified six open challenges, including quality and design, governance, dynamics and evolution,
data analytics, domain-specific ecosystem solutions, and analysis of ecosystems.
Different from the studies above, we focus our research on the Rust ecosystem, by applying a

systematic approach to investigating the security risks in the Rust ecosystem. Given dependencies
of Rust packages have been investigated in a previous study [26], we do not include such analysis
in our study.

7.2 Empirical Studies on Rust
In the past, researchers have conducted empirical studies on various aspects of Rust libraries and
projects in practice, including the usage of Rust language features [2, 39] and bug characteristics [19,
65]. Some recent studies investigate the usage of unsafe Rust code in practice [2, 19]. Astrauskas
et al. [2] analyze a large corpus of Rust projects to assess the validity of the Rust hypothesis, and
classify the purposes of unsafe Rust code. Evans et al. [19] study how software developers use
unsafe Rust code. Different from the studies on the usage of unsafe Rust code, our study investigates
the relations between unsafe Rust code and disclosed vulnerabilities in the Rust ecosystem. A recent
study [46] investigated the social risks of the Rust ecosystem from the perspective of developers
and suggested ways for deploying limited developer resources to improve overall ecosystem health.
Our work focuses more on the security risks in the Rust ecosystem from a technical perspective.
Other recent studies explore memory safety and concurrency issues in real-world Rust pro-

grams [39, 65]. Qin et al. [39] manually inspect 850 unsafe code usages, 70 memory safety bugs,
and 100 thread safety bugs located in five open-source Rust-based systems and applications, and
five widely-used Rust libraries. Xu et al. [65] focus their study on 186 Rust bug reports related to
memory safety by December 31, 2020. They find that Rust can keep its memory safety promise,
given that developers are unable to write memory-safety bugs without using unsafe code.

Different from Xu et al.’s work [65], our study does not focus on memory safety issues. Instead,
our study involves a variety of types of vulnerabilities and makes an in-depth analysis across
different types of vulnerabilities. In addition, we investigate the relation between vulnerabilities
and code regions with unsafe keywords in vulnerable Rust packages. Different from Qin et al.’s
work [39], our work investigates whether and how unsafe Rust code involves in vulnerabilities of
the Rust ecosystem. Moreover, our dataset includes real-world Rust vulnerabilities of a variety of
types, apart from the memory safety and concurrency issues as investigated in the prior work [39].
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7.3 Securing Rust
Some research efforts have been invested in securing Rust software via formal verification [3,
6, 13, 25, 44, 62]. Patina [44] is a formalization of the Rust type system. Patina captures the key
Rust features relevant to memory safety and specifies how the features guarantee memory safety.
RustBelt [13, 25] defines rules to model Rust programs, and further uses these rules to prove the
safety of Rust APIs. RustBelt also formally proves the memory safety of a realistic subset of Rust,
including several standard Rust libraries with the existence of unsafe Rust. For a new Rust library
that uses unsafe Rust code, RustBelt can tell the verification conditions that the library should
meet to be considered as a safe extension to the Rust language. Baranowski et al. [6] extend the
SMACK verifier [41], a software verification toolchain, to enable its usage on Rust programs. In
addition, Astrauskas et al. [3] propose a verification technique that utilizes the type system of Rust
to simplify the specification and verification of Rust programs. The technique can assist developers
to verify their programs with formal methods.
Researchers also propose numerous techniques to detect bugs in Rust software programs [18,

29, 58]. Dewey et al. [18] propose a fuzzing testing approach to detect type-checker bugs of Rust
programs. Toman et al. [58] introduce CRUST, a tool that combines exhaustive test generation and
bounded model checking to verify memory safety in unsafe Rust code. The experimental results
indicate that CRUST is effective at finding memory errors in the Rust standard libraries. Lindner et
al. [29] propose a verification process for Rust programs via symbolic execution to detect unsafe
and panic issues. Our work investigates the fix patterns of different types of vulnerabilities in the
Rust ecosystem to shed lights on securing Rust software programs.

8 CONCLUSION AND FUTUREWORK
In this paper, we conducted a large-scale empirical study on the security risks of the Rust ecosystem,
one of the emerging and growing software ecosystems aimed at the development of systems
software. Specifically, we characterized the disclosed vulnerabilities, vulnerable packages affected
by the vulnerabilities, and corresponding vulnerability fixes in the Rust ecosystem. We find that
the vulnerabilities of different types differ widely in total numbers, disclosure and fixing duration,
growth rates, and distributions across package categories in the Rust ecosystem. Among the 17
vulnerability types we identified, the memory safety and concurrency issues account for the
majority of the disclosed vulnerabilities and demonstrate the fastest growth rates over time. One-
third of the vulnerabilities have no fixes released by their public disclosure, leaving a window of
opportunity for potential attacker exploitation. In the vulnerable packages, vulnerable code has
statistically significantly higher ratios of unsafe functions and unsafe blocks compared to complete
code, implying the potential higher security risks in unsafe functions and unsafe blocks. In addition,
we identified three fix patterns for Rust vulnerabilities of different localities in Rust code.

Future work could consider developing an automatic tool to continuously collect and analyze
the packages and vulnerabilities in the Rust ecosystem, and further leverage the real-time analysis
results to gain awareness of the security risks in the Rust ecosystem in a timely way.
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