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Abstract—In the national battle against COVID-19, harnessing
population-level big data is imperative, enabling authorities
to devise effective care policies, allocate healthcare resources
efficiently, and enact targeted interventions. Singapore adopted
the Home Recovery Programme (HRP) in September 2021,
diverting low-risk COVID-19 patients to home care to ease
hospital burdens amid high vaccination rates and mild symptoms.
While a patient’s suitability for HRP could be assessed using
broad-based criteria, integrating machine learning (ML) model
becomes invaluable for identifying high-risk patients prone to
severe illness, facilitating early medical assessment. Most prior
studies have traditionally depended on clinical and laboratory
data, necessitating initial clinic or hospital evaluations. None of
these studies incorporated vaccination status, a crucial variable
in a well-vaccinated population. This paper proposes a machine
learning approach to nationwide risk stratification, offering in-
tervention recommendations by harnessing nationwide datasets.
Our best-performing ML model, XGBoost achieves an AUROC
of 0.930 utilizing data from multiple data sources including pa-
tients’ demographic information, vaccination status and medical
history. For broader applicability, we also propose a parsimonious
XGBoost model with an AUROC of 0.885 with a selection of five
commonly collected variables, namely age, number of vaccine
doses taken and number of days since the first, second and
booster doses. Importantly, both of our proposed models achieve
robust predictive performance without requiring the collection
of clinical or laboratory data from patients. We believe that the
parsimonious model, leveraging easily attainable data, has the
potential for broader adoption across diverse nations, ultimately
delivering paramount value to their populations.

Index Terms—predictive analytics, public health, decision-
support, risk stratification, COVID-19 pandemic.

I. INTRODUCTION

Coronaviruses (CoV) are a large family of viruses caus-
ing illnesses ranging from the common cold to pneumonia.
COVID-19, which is an infectious disease caused by a strain of
coronavirus (SARS-CoV-2), was declared a global pandemic
by World Health Organization (WHO) in March 2020. Since
its identification, COVID-19 has caused immense strain on
healthcare systems around the world. Governments and health-
care administrators faced a challenging task in containing
the spread of SARS-CoV-2. As of June 2022, Singapore has

reported a cumulative total of 1,397,000 cases and 1,400
deaths [1]. To effectively navigate this pandemic and ensure
the populace’s health, informed policy-making by leveraging
the insights from big data to steer decision and policy-making
processes could mitigate risks for high-risk patients, and
deliver paramount value to citizens.

The Ministry of Health Singapore (MOH) has been adapting
its policies and modus operandi towards managing COVID-
19 as appropriate since the start of COVID-19 outbreak by
responding to the evolving situations. In the earlier stage,
all COVID-19 patients were required to be quarantined at
community care facilities or admitted into hospitals to limit
the spread of the disease. With stringent contact tracing and
isolation of patients, Singapore managed to keep a relatively
low fatality rate. However, with the number of COVID-19
cases began to surge in September 2021, there was a need to
triage the patients to better make use of the limited healthcare
resources. As more residents were vaccinated against COVID-
19 and over 98% of the infected individuals had no or mild
symptoms, the Home Recovery Programme (HRP) was intro-
duced to allow low-risk patients to recover at home starting
from September 2021 [2]. Since then, HRP had become the
default recovery plan for most patients, except for those who
have a higher risk of developing severe illness. A broad-
based approach using standard questionnaires was used by the
Telemedicine Allocation Reconciliation System (TMARS) to
identify high-risk patients using a few screening criteria. The
high-risk patients were given priority to be further assessed by
doctors to evaluate if they were suitable for HRP or required
hospital admission [3].

To further support the identification of high-risk patients,
we investigate the use of machine learning (ML) models
to predict if individual patient will develop severe COVID-
19 illness. Severe illness related to COVID-19 is defined as
the need for mechanical ventilation, ICU admission or death.
Numerous studies in the literature have demonstrated that ML
models can predict COVID-19 severe illness reasonably well
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using clinical and laboratory data. However, our key challenge
was that clinical and laboratory data was not commonly
collected for most patients in Singapore. For instance, patients
can self-administer an Antigen Rapid Test (ART) to test for
COVID-19 infection so visiting a doctor or laboratory test
was not always required. Moreover, to our best knowledge,
the existing studies had not included patients’ vaccination
status, hence their models may not be suitable for a highly
vaccinated population such as Singapore (more than 90% of
the total population vaccinated as of June 2022). Therefore, we
developed several ML models utilizing patients’ demographic
details, vaccination status, and medical history to predict
severe illness. We found the best-performing model to be an
XGBoost model which has good performance scores using
AUROC score, accuracy, sensitivity and specificity of 0.930.
0.958, 0.542, 0.965 respectively. To improve applicability and
adoption, we further train a parsimonious XGBoost model
using a set of five commonly collected variables, including
age, number of vaccine doses taken, and number of days since
the first, second and booster doses when a patient is tested
positive for COVID-19. The parsimonious XGBoost model has
decent performance with AUROC score, accuracy, sensitivity
and specificity of 0.885, 0.853, 0.731, 0.855 respectively. A
parsimonious XGBoost model is less likely to be affected by
data availability issues and can be more easily adopted by
other countries.

In this paper, our contributions to the realm of big data
are twofold. Firstly, we unveil the untapped potential resid-
ing in the utilization of vast national datasets to reinforce
public health efforts during pandemics, focusing on both
the expansive volume and intrinsic value encapsulated within
big data. Our analysis sheds light on the dynamic interplay
between data quantity and its intrinsic worth, accentuating
the far-reaching impact of harnessing such comprehensive
information at the national level. Secondly, we aspire that
the insights gleaned from our study, utilizing data at the
national scale, serve as a catalyst for other nations in their
pursuit of establishing effective mechanisms for safeguarding
public health. By sharing our learnings and findings, we
hope to contribute to the advancement of global public health
management, bolstered by data-driven strategies that prioritize
the well-being of populations worldwide.

II. LITERATURE REVIEW

A wealth of existing research has delved extensively into
several critical aspects surrounding the COVID-19 SARS-
CoV-2 virus, contributing to our understanding and ability to
safeguard public health. These studies have encompassed a
range of research inquiries, including evaluating the clinical
impact of the virus on human health, gauging the effectiveness
of vaccines, and harnessing machine learning models to predict
the likelihood of an individual developing severe illness.

A comprehensive review by Gallo Marin et al. [4] indicates
that demographic features, comorbidities, clinical features and
laboratory biomarkers that are associated with COVID-19

severity. For instance, older patients and male patients are
associated with higher severity risk. Patients with pre-existing
conditions or comorbidities, such as cardiovascular disease,
chronic kidney disease, chronic lung disease, diabetes mellitus,
hypertension, immunosuppression, obesity, and sickle cell dis-
eases have increased risk of requiring mechanical ventilation
and mortality. Clinical features such as hypoxia (low oxygen
saturation) and specific chest radiography images are also
linked to the development of severe disease due to infection
of the SARS-CoV-2 virus. In addition, certain clinical and
laboratory biomarkers, such as elevated D-dimer levels, C-
reactive protein (CRP), lactate hydrogenase (LDH), erythro-
cyte sedimentation rate (SER), neutrophil-to-lymphocyte ratio
(NLR), and high-sensitivity cardiac troponin are associated
with worse clinical outcomes.

With the introduction of COVID-19 vaccines, a few studies
had looked into the effectiveness of the vaccines and the
waning of protection against severe COVID-19 illness. The
first dose of BNT162b2 vaccine was found to protect against
severe illness by the third week and the second dose provides
significant protection within the first two months [5]. The
effectiveness of two doses of BNT162b2, mRNA-1273 and
ChAdOx1-S vaccines against severe illness started to decrease
after 20 weeks [6] [7]. The waning effect is greater in
adults above 65 years old and younger adults with underlying
medical conditions.

Besides research studies that investigate the relationship
between indicators and disease severity, some studies also
proposed to leverage ML models to predict whether a patient
will develop severe illness. Wollenstein-Betech et al. [8] built
five classifiers with Logistic Regression (LR), sparse versions
of LR, Support Vector Machines (SVM), Random Forest,
Gradient Boosted Trees (XGBoost) with data from Brazil to
predict disease severity. The authors reported area under the
receiver operator characteristic curve (AUROC) in the range of
0.786–0.792 and accuracy of 0.713–0.720 for mortality. The
study also reported an AUROC of 0.694–0.695 and accuracy
of 0.761–0.766 for predicting whether a patient needs me-
chanical ventilator support. Kang et al. [9] developed a neural
network model using TensorFlow to predict severe illness
using data from China. Feature selection using correlation
analysis was first performed to find the indicators that have a
strong correlation with serious illness, to reduce the number of
features from 33 to 6. A predictive model was then built with
an input layer (six nodes), two hidden layers (13 units each)
using rectified linear unit (ReLU) activation function, and
an output layer node using Sigmoid activation function. The
author reported a good prediction performance with AUROC
of 0.889–0.982, sensitivity of 1.0 and specificity of 0.857.
The research work by Quiroz-Juárez et al. [10] used data
from Mexico to develop a neural network (NN) algorithm
with two sigmoid neurons in a single hidden layer and two
softmax neurons in the output layer to predict patient mortality.
They have shown that NN model is able to achieve better
prediction in general as compared to LR, SVM and k-nearest
neighbour (kNN) at four different clinical stages (i.e., Stage 1:



initial medical assessment; Stage 2: confirmed being COVID-
19 positive; Stage 3: decision point between hospitalisation
or home recovery; Stage 4: intubated or in intensive care
(ICU). The NN algorithm has accuracy of 0.843–0.935, sen-
sitivity of 0.863–0.961, specificity of 0.824–0.909. Another
research by Ryan et al. [11] focused on predicting the need
for mechanical ventilation and patient mortality at clinically
useful windows of 12, 24, 48 and 72 hours in advance using
XGBoost algorithm and data from USA. The authors reported
an AUROC of 0.75–0.82, accuracy of 0.595–0.668, sensitivity
of 0.803–0.805, and specificity of 0.553–0.647 for predicting
the need for mechanical ventilation, AUROC of 0.862–0.910,
accuracy of 0.771–0.818, sensitivity of 0.818–0.826, and
specificity of 0.760–0.816 for mortality prediction. Lam et al.
[12] demonstrated that ML algorithm can outperform policy-
based criteria in predicting severe illness using data from USA.
Their XGBoost model has AUROC of 0.88, accuracy of 0.85,
sensitivity of 0.80 and specificity of 0.95. Laatifi et al. [13]
showed that Uniform Manifold Approximation and Projection
(UMAP) is an effective dimension reduction technique for
improving the prediction results of ML classifiers such as
XGBoost, AdaBoost, Random Forest and ExtraTrees, using
data from Morocco. They showed that UMAP can significantly
improve ML predictions to an AUROC of 1.0, accuracy of
0.98–1.0, and sensitivity of 1.0 and specificity of 0.97–1.0.
While the performance appeared to be positive, we noted that
this study has a relatively small sample size of 340 which its
validity needs to be further evaluated.

While prior literature has highlighted the potential of ML
algorithms in predicting disease severity with commendable
accuracy, these studies invariably relied on clinical and lab-
oratory data for their predictive models. These approaches
necessitate patient evaluation within medical facilities, which
is not always feasible for nationwide implementations. In
addition, a significant portion of COVID-19 cases involves
mild symptoms, leading individuals to opt for home recovery.
Furthermore, the existing ML models lack integrated analysis
using vaccination status or vaccine waning effects in their
predictive frameworks. In addressing these limitations, our
pioneering ML models stand out as unique. By harnessing na-
tionwide big data, our model derives predictions from patients’
demographic profiles, medical histories, and vaccination status
– all without the need for clinical or laboratory inputs. This
innovative approach not only fills existing gaps but also aligns
seamlessly with the context of highly vaccinated countries
such as Singapore, potentially offering value to diverse nations.

III. MATERIALS AND METHODS

A. Data Sources

The data used in this study was collected and provided
by Ministry of Health Singapore. Patients below 18 years
old were excluded in this study. It includes 316,000 patients
who were infected with COVID-19 between 1 Dec 2021
and 30 Apr 2022. The list of variables used in this study
is summarised in Table I. Only patients who saw doctors
via telemedicine services (about 130,000 patients) had their

pre-existing conditions and pregnancy status recorded by the
doctors.

B. Data Exploration

The dataset exhibited a pronounced imbalance, with only
1.1% of COVID-19 patients progressing to severe illness. In
terms of demographic distribution, 50.8% were female, while
49.2% were male. Among ethnic backgrounds, the represen-
tation comprised Chinese (68.3%), Malay (15.3%), Indian
(12.1%), and other races (4.2%). The study encompassed
COVID-19 patients aged between 18 and 114 years. Fig. 1
illustrates the trend of the COVID-19 infection and severity
across age groups. The graph shows positive case numbers on
the left y-axis, while the right y-axis denotes the proportion of
cases evolving into severe instances. Fig. 2 shows the number
of serious illness cases by age and the cumulative distribution
function plot. We observed a distinct trend whereby older
patients exhibited a heightened propensity for severe illness,
and they made up the majority of such cases. This pattern
became particularly prominent beyond the age of 60. For
noting, ages beyond 100 recorded few instances of zero in
Fig. 1 due to a lack of cases in that age group.

TABLE I: List of Variables

Variable
type

Variable name Description

Demographic
information

Age Patient’s age: between 18 and 114
years old

Gender Patient’s gender: ‘Male’ or ‘Female’
Race Patient’s race: ‘Chinese’, ‘Malay’, ‘In-

dian’ or ‘Other’ races
Pre-existing
conditions
and
pregnancy
status

Hospitalisation Patient has any disease affecting their
heart, lungs, kidneys, liver or brain
that required hospital admission in the
last 6 months

Diabetes or hy-
pertension

Patient has Diabetes Mellitus or Hy-
pertension

Weaken
immune

Patient has any disease or taking med-
ications that weaken the immune sys-
tem

Cancer Patient has been diagnosed with can-
cer before

Dialysis Patient is on dialysis
Organ
transplant

Patient had organ transplant surgery

Weight above
100kg

Patient weighs more than 100kg

Pregnant Patient is pregnant
Medical
history

ICD-10 code Patient’s medical history encoded in 3
digit ICD-10 codes

Vaccination
status

Number of vac-
cine dose

Total number of doses of vac-
cine taken before tested positive for
COVID-19

Number of days
from first dose

Number of days between first dose
of vaccine and tested positive for
COVID-19

Number of
days from
second dose

Number of days between second dose
of vaccine and tested positive for
COVID-19

Number of days
from third dose

Number of days between third dose
of vaccine and tested positive for
COVID-19



Fig. 1: Age profile and percentage of patients who developed
serious illness in each age group

Fig. 2: Number of serious illness cases by age and cumulative
distribution function

Fig. 3: Effect of vaccine over time

Among all the patients, only 2.5% were not vaccinated when
tested positive for COVID-19. There are 0.6%, 27.2% and
69.7% of the patients who had received 1, 2, and 3 doses
of vaccine respectively. We explored the waning effects of the
vaccination doses. Similar to the findings of Chemaitelly et al.
[5], Fig. 3 suggests that the protection effect of first and second
doses of vaccine against severe illness improved significantly
in the first 8 weeks, and reached optimum effectiveness after

around 15 weeks. Contrary to observations of Fabiani et al.
[6] and Andrews et al. [7], the effect of the first two doses
of vaccine started to wane much later at around 40 weeks
instead of after 20 weeks among the population in Singapore.
This could be a result of a successful vaccination campaign by
the Singapore Government, where most residents in Singapore
completed their first two doses of vaccines within a short
interval, thus prolonging the period of optimal protection. The
protection effect of the third dose of vaccine seemed to wane
faster than the first two doses, but such trend may be due to
the other confounding causes. For instance, high-risk patients,
predominantly the elderly, received their third vaccine dose
earlier than other age groups. This demographic constitutes the
majority of individuals exhibiting an extended interval between
the third vaccine dose and a positive COVID-19 test result. It’s
important to observe that the lines corresponding to the first
dose, second dose, and third dose all plateaued at zero around
week 62, 60, and 31 respectively. This phenomenon arises due
to the interval between dose administration and data collection
for analysis.

C. Software Used

This study employed machine learning models including
Random Forest, Logistic Regression, Support Vector Machine,
and Naive Bayes from Python’s Scikit-learn and XGBoost
libraries. For situations necessitating undersampling and/or
oversampling, sampling methods from Python’s Imbalanced-
learn libraries were utilized.

D. Data Processing

Binary categorical variables were encoded with 1 for the
positive class and 0 for the negative class. One hot encoding
was applied to all the categorical variables. For patients who
had received vaccinations, only those administered before their
confirmed positive COVID-19 diagnosis contributed to the cu-
mulative count of vaccine doses. The number of days between
each vaccination dose and tested COVID-19 positive was
calculated based on the vaccination date and the reported date
of confirmation of COVID-19. In cases where a specific dose
was omitted or administered after the COVID-19 confirmation,
an extensive value of 10,000 days was assigned to denote
the gap between vaccination and confirmed COVID-19 status.
Patients who required mechanical ventilation, admitted into
ICU or deceased were labeled as positive class label indicating
severe illness.

E. Handling imbalance data

Given that only 1.1% of the patients had developed severe
illness, we tested some of the common sampling methods
on the training data set which include under-sampling of the
majority negative class (Near-Miss and One-sided selection
methods), over-sampling of the minority positive class (Syn-
thetic Minority Over-sampling Technique (SMOTE)) and a
combination of over- and under-sampling methods (SMOTE
Tomek links (SMOTETomek)). None of the sampling methods
improved the prediction performance significantly. Instead of



applying sampling methods, we noticed the model perfor-
mance generally improved when the ”class weight” parameter
is set to ”balanced” during training. Hence, data imbalance was
handled by the algorithm.

F. Data Splitting

20% of the samples were randomly chosen as the test
set stratified by the sample label, i.e., severe illness. The
remaining 80% of samples were split into a training set and a
validation set in a ratio of 4:1 for hyperparameter tuning with
five-fold cross-validation to prevent overfitting.

G. Hyperparameter Tuning

Hyperparameter tuning was conducted for each ML model
and sampling method. We used Scikit-Learn’s grid search
function with five-fold stratified cross-validation to find the
optimal hyperparameter values. The range of values of each
hyperparameter is summarised in Table II. As the data set
was highly imbalanced, the “class weight” hyperparameter of
Logistic Regression, GaussianNB, SVM and Random Forest
models was set to “balanced”. For SVM, only radial basis
function kernel was used.

H. Threshold values

Delayed medical attention could have detrimental effects
on patients’ health. Hence, government or policy makers may
wish to be more conservative in identifying at-risk patients.
We tested the models using lower probability thresholds of
0.25, 0.20, 0.15 and 0.10 for the predictions, to determine if
the models can achieve similar sensitivity compared to broad-
based approach adopted by the Singapore Government while
achieving higher specificity.

TABLE II: Range of values used in hyperparameter tuning

ML model Hyperparameter Range of values searched
SVM C 0.1, 1, 10, 100

gamma 1, 0.1, 0.01, 0.001, 0.0001
Random
Forest

n estimators 500 to 3,000 (increment of 100)
max depth None, 5, 10, 15, 20, 25, 30
min samples leaf 1, 10, 15, 20, 50, 70, 100, 200
min samples split 2, 10, 15, 20, 50, 70, 100, 200

XGBoost n estimators 500 to 3,500 (increment of 100)
learning rate 0.1, 0.05, 0.01, 0.005, 0.001,

0.0005, 0.0001
max depth 1 to 35 (increment of 1)
min child weight 1 to 35 (increment of 1)
gamma 0.1 to 10 (increment of 0.1)
subsample 0.1 to 1 (increment of 0.1)
colsample bytree 0.1 to 1 (increment of 0.1)
reg alpha 1 to 50 (increment of 1)
scale pos weight 40 to 160 (increment of 10)

I. Model Evaluation

We tested a variety of common ML models, including
Logistic Regression, Gaussian Naive Bayes (GaussianNB),
Support Vector Machine (SVM), Random Forest and XG-
Boost classifiers. For the comprehensive assessment of these

ML models, we employed a range of metrics encompass-
ing AUROC, accuracy, sensitivity, specificity, F2-score, and
false negative rate (FNR). Of these, AUROC emerged as the
focal metric, carrying substantial importance, particularly in
hyperparameter tuning. It provided a holistic gauge of model
performance across varied classification thresholds, allowing
future threshold adjustments as per situational needs. The
trio of accuracy, sensitivity, and specificity, widely used in
the literature, enabled a thorough comparison of predictive
performance against existing studies. Moreover, our choice
to incorporate the F2-score stemmed from our emphasis on
recall over precision, accentuating the significance of reducing
false negatives rather than false positives. This emphasis holds
paramount importance in identifying patients prone to severe
illness, thereby safeguarding their well-being. Similarly, the
inclusion of FNR furnished a direct criterion for model selec-
tion, underscoring the imperative to minimize false negatives.
This approach ensures timely medical attention for patients
predisposed to severe illness, further cementing the efficacy
of the chosen model.

IV. RESULTS AND DISCUSSION

A. Comparison of ML Models

Two distinct datasets were curated from various data
sources. Dataset 1 encompasses patients’ demographic particu-
lars, pre-existing conditions, pregnancy status, and vaccination
records, while Dataset 2 comprises patients’ demographic
details, medical history, and vaccination records. The rationale
behind this diverse data selection lies in the recognition that
each model may exhibit varying degrees of applicability.
Dataset 1 leverages telemedicine data, where pre-existing con-
ditions are self-reported. This configuration proves beneficial
for scenarios in which comprehensive medical histories, such
as electronic medical records, are not ubiquitously imple-
mented. In contrast, Dataset 2 offers a more comprehensive
approach, incorporating individual patient’s record of medical
history. However, we acknowledge that in certain contexts,
such as in countries where medical records are not centralized
or electronically managed, this approach may not be applica-
ble, making self-reported measures a more suitable choice. By
investigating the performance of both model types, we aim to
provide the relevant model that can be employed as needed.
Table III displays the performance scores of the ML models,
while Fig. 5 illustrates the graphical representations of the
AUROC scores. The feature set labels in the AUROC plots
correspond to the usage of each of the three datasets.

For Dataset 1, Random Forest has the highest AUROC
of 0.912, good accuracy, specificity and F2-score of 0.970,
0.975 and 0.430 respectively, but has the lowest sensitivity of
0.588. XGBoost has the second highest AUROC of 0.906 and
accuracy of 0.921, while its sensitivity (0.701) and specificity
(0.923) were more balanced than Random Forest. Both XG-
Boost and Random Forest models performed better by using
Dataset 2 compared to using Dataset 1. AUROC of Random
Forest increased slightly from 0.912 to 0.916, and yielded a
more balanced sensitivity and specificity of 0.858 and 0.813



TABLE III: Comparing the performances of baseline ML models

Dataset ML Model AUROC Accuracy Sensitivity Specificity F2-score FNR

Dataset
1

Logistic Regression 0.832 0.749 0.787 0.748 0.145 0.213
GaussianNB 0.788 0.811 0.608 0.813 0.144 0.392
SVM 0.837 0.814 0.701 0.815 0.166 0.299
Random Forest 0.912 0.970 0.588 0.975 0.430 0.412
XGBoost 0.906 0.921 0.701 0.923 0.305 0.299

Dataset
2

Logistic Regression 0.786 0.589 0.643 0.588 0.115 0.357
GaussianNB 0.885 0.948 0.341 0.959 0.256 0.659
SVM 0.860 0.942 0.330 0.953 0.236 0.670
Random Forest 0.916 0.814 0.858 0.813 0.278 0.142
XGBoost 0.930 0.958 0.542 0.965 0.426 0.458

Dataset
3

Random Forest 0.884 0.801 0.806 0.801 0.245 0.194
XGBoost 0.885 0.853 0.731 0.855 0.277 0.269

Lam et al. XGBoost 0.880 0.850 0.800 0.950 - -
Keng et al. NN 0.953 - 1.000 0.857 - -

respectively. AUROC of XGBoost increased significantly from
0.906 to 0.930, which is the highest among all models using
Datasets 1 and 2. The variations in outcomes can be ascribed
to data reliability factors. The data pertaining to patients’
pre-existing conditions and pregnancy status may be less
robust due to their reliance on self-reporting by patients and
their coverage of only eight major pre-existing conditions. In
contrast, the medical history data encompasses patients’ actual
past clinical visits, with each clinical episode professionally
encoded in ICD-10 by medical providers. This medical history
data offers a much more refined dataset where each condition
is represented in a more detailed health category than high-
level classification of just eight major conditions.

B. Parsimonious Models

While using all variables in Datasets 1 and 2 produced good
performances, a parsimonious model that uses fewer and more
commonly collected variables may be more easily adopted in
real life. For instance, healthcare administrators or doctors may
need to rely on a simple checklist to make decisions when ML
prediction using a computer is not available. If any countries
want to implement our ML model, they may not have the same
set of variables collected. They are less likely to be affected
by data availability if fewer variables are required and the
variables are commonly collected data.

To explore the feasibility of a parsimonious model, we
explored variable reduction by selecting five variables among
those with highest feature importance scores using a Random
Forest model as shown in Fig. 4. In addition, these top 5
variables can be readily sourced from a single data source,
eliminating the need to combine data from multiple sources.
This streamlined dataset, denoted as Dataset 3, comprises of
age, number of days since each of the three doses, and the
total number of vaccine doses taken. Age, being a universally
available and easily obtainable data, and vaccination infor-
mation, commonly collected by countries with vaccination
programmes in place, make up these essential variables. When
employing this set of five variables, a marginal decrease
in performance was observed compared to using Datasets 1

and 2. The AUROC score of Random Forest and XGBoost
decreased by 0.028 (from 0.912 to 0.884) and 0.021 (from
0.906 to 0.885) respectively, compared to Dataset 1. These
scores decreased by 0.032 (from 0.916 to 0.884) and 0.046
(from 0.930 to 0.885), respectively, compared to Dataset 2.
The detailed results are shown in Table III. Using logistic
regression, we tested two additional models using only the
age variable or only the vaccination-related features. The
models yielded significantly lower AUROC of 0.731 and
0.615 respectively. Given the slight decline in performance
for the parsimonious models using the top 5 variables, it is
reasonable to conclude that both ML models are suitable for
most COVID-19 patients, given that the relevant information
is available and could achieve greater applicability.

Fig. 4: Feature importance scores from Random Forest Model

Compared to the results of Lam et al. [12], which also used
XGBoost for predicting severe illness, all of our XGBoost
models in Table III have higher AUROC scores (+0.005 to
+0.05). Compared to the neural network model of Keng et al.
[9], all of our XGBoost models have lower AUROC scores (-
0.023 to -0.073). Other studies broke down severe illness into
multiple sub-categories so they are not directly comparable to
our model. All of the aforementioned studies, including Lam



(a) AUROC plot of all ML models using Dataset 1 (b) AUROC plot of all ML models using Dataset 2

(c) AUROC plot of Random Forest using different datasets (d) AUROC plot of XGBoost using different datasets

Fig. 5: AUROC plots of various ML models

et al. and Keng et al., relied on clinical data collected from
patients in clinical or laboratory settings, (e.g., hemoglobin,
albumin, globulin, nitrogen level and oxygen saturation in
the blood etc) and none of them included vaccination status
or vaccine waning effect into their prediction model. While
our models exhibit slightly reduced performance compared to
Keng et al., our innovation lies in utilizing solely patients’
demographic information, vaccination status, and pre-existing
medical conditions or medical history for prediction, without
necessitating clinical or laboratory data. This approach proves
particularly relevant for nations with vaccinated populations
opting for home-based recoveries.

Furthermore, our research has shown that substantial pre-
diction accuracy can be achieved using a streamlined set of
five commonly captured variables. This not only augments the
adaptability of our model but also resonates significantly for
countries lacking access to patients’ comprehensive medical
histories. We hope that our contribution stands as a notable
effort, spotlighting the value that nationwide big data can bring
to the forefront.

V. APPLICATION IN SINGAPORE’S CONTEXT

In 2021, Singapore’s Ministry of Health (MOH) imple-
mented the National Sorting Logic to risk stratify COVID-19
patients. It was then integrated with Telemedicine Allocation
Reconciliation System (TMARS) to manage patients. The
management workflow is illustrated in Fig. 6a. After a patient
is tested positive for COVID-19, he or she will be assessed for
suitability of HRP either by a doctor or self-assessment based
on the following list of criteria. Patients not eligible for HRP
will be admitted into hospitals, while patients eligible for HRP
will be further assessed if they belong to the high-risk group
based on the following list of broad-based sorting criteria.

The following individuals (adult) are not eligible for HRP:

• Partially vaccinated or unvaccinated persons aged 80
years and older

• Pregnant women with gestation age 36 weeks and above
• Partially vaccinated or unvaccinated pregnant women



(a) Current workflow (b) Proposed improvised workflow

Fig. 6: Workflow for managing COVID-19 patients

The following individuals (adult) belong to the high-risk
group:

• Persons aged 70 years and older
• Persons who are/have

– pregnant
– on dialysis
– had organ transplant surgery
– been diagnosed with cancer previously
– any disease or taking medications that weaken the

immune system
– any disease affecting their heart, lungs, kidneys, liver

or brain that required a hospital admission in the last
6 months

The default recovery plan for low-risk patients will be the
HRP. In the case of high-risk patients who haven’t received
prior medical attention, TMARS will facilitate teleconsultation
with doctors. Subsequently, these doctors will evaluate the
necessity of hospital admission versus home recovery under
the HRP. Our ML prediction model can seamlessly integrate
into the existing workflow by becoming an additional layer of
filter within TMARS’s operations, as depicted in Fig. 6b.

The XGBoost models have FNR between 0.269 and 0.458
as shown in Table III, in which the predictions missed a
significant proportion of patients who potentially developed
serious illness. To be more conservative and identify as many
high-risk patients, we reduced the probability threshold for
predicting severe illness from 0.5 to 0.25, 0.20, 0.15, 0.10.
Compared to the broad-based sorting logic described above,
when we set the probability threshold for severe illness to
0.1 to our XGBoost models, they achieved equal or lower
FNR of 0.033−0.089 and improved specificity from 0.310 to
0.509− 0.783 (see Table IV).

Based on the preceding analysis and experimentation in-
volving various thresholds, our ML models exhibit promising
performance in the context of COVID-19 patient risk strat-
ification, particularly in identifying potential patients at risk

of developing severe illnesses. The model utilizing Dataset 1,
which incorporates self-reported medical conditions, proves
advantageous for scenarios where minimizing system inte-
gration or data integration during deployment is a priority.
Conversely, the model employing Dataset 2 emerges as the
most comprehensive and top-performing model, demonstrating
superior overall prediction capabilities. Dataset 3, known as
the parsimonious model, presents a noteworthy advantage in
its reduced data dependency, reliance on easily attainable
variables, and potential for widespread adoption. Given that
patients retain the option to seek medical attention at hospital
emergency departments in the event of exacerbated symptoms,
we maintain the perspective that a minimal number of false
negative cases would have negligible repercussions on public
health at large. Additionally, this model exhibits the lowest
False Negative Rate (FNR), indicative of sufficient recall in
identifying patients who may progress to severe illness, thus
ensuring comprehensive patient care.

At the zenith of the infectious period, Singapore had a daily
surge of over 20,000 COVID-19 cases, placing immense strain
on local healthcare resources. Should a subsequent wave of
COVID-19 infections emerge, implementing one of our ML
models can effectively curtail the total number of patients
necessitating physician evaluation, all the while ensuring that
high-risk patients are not overlooked. This highlights the
invaluable role of using big data in safeguarding public health,
particularly when faced with a significant influx of patients.

VI. LIMITATIONS AND FUTURE WORK

In this study, the maximum duration between vaccination
and tested positive for COVID-19 was 76 weeks (536 days).
As the protection effect of vaccine is expected to continue to
wane, the validity of our model should be tested again over
a longer time horizon. Lastly, SARS-CoV-2 is continuously
mutating as it circulates through the world population. The
effect of different strands of SARS-CoV-2 was not taken into
account during this study due to data limitations. As new



TABLE IV: Comparing the performances of broad-based approach and XGBoost models

Broad-based approach / ML
model

Probability threshold
for severe illness

Accuracy Sensitivity Specificity F2-score FNR

Broad-based - 0.317 0.921 0.310 0.070 0.089

XGBoost with
Dataset 1

0.25 0.827 0.814 0.827 0.202 0.186
0.20 0.791 0.845 0.791 0.181 0.155
0.15 0.741 0.880 0.739 0.157 0.120
0.10 0.663 0.921 0.660 0.131 0.089

XGBoost with
Dataset 2

0.25 0.841 0.773 0.909 0.389 0.227
0.20 0.851 0.818 0.884 0.359 0.182
0.15 0.846 0.859 0.856 0.316 0.141
0.10 0.853 0.924 0.783 0.269 0.076

XGBoost with
Dataset 3

0.25 0.663 0.923 0.658 0.186 0.077
0.20 0.624 0.943 0.618 0.173 0.057
0.15 0.578 0.960 0.571 0.160 0.040
0.10 0.517 0.967 0.509 0.144 0.033

variants continually emerge, the necessity of re-evaluating our
models in subsequent timeframes becomes apparent.

VII. CONCLUSION

This study introduces the utilization of comprehensive na-
tional big data to effectively stratify risks for the preservation
of public health in Singapore. We proposed the use of an
XGBoost machine learning model aimed at predicting the
likelihood of severe illness development among COVID-19
patients. This model harnessed patients’ demographic details,
vaccination status, and medical history. The best performing
XGBoost model exhibited commendable performance metrics:
an AUROC score of 0.930, along with accuracy, sensitivity,
and specificity values of 0.958, 0.542, and 0.965 respectively.
In addition, we further trained a parsimonious model, com-
prising only five variables (age, number of vaccine doses
administered, and days since first, second and third dose),
which yielded an AUROC score of 0.885, alongside accu-
racy, sensitivity, and specificity of 0.853, 0.731, and 0.855.
Our approach accomplished comparable performance without
incorporating clinical or laboratory data, while taking patients’
vaccination status into consideration. This is particularly piv-
otal for a populace characterized by high vaccination coverage
and a preference for home-based recovery. Moreover, the
parsimonious model, reliant on commonly collected variables,
stands less vulnerable to data availability concerns. With our
experience and model tailored for Singapore, we aspire for its
applicability to extend to other nations, ultimately contributing
to the broader big data community by showcasing the sub-
stantial value of its integration within nationwide healthcare
applications.
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