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Abstract. Sanitizable Signature is a digital signature variant that
enables modification operations, allowing sanitizers to alter the signed
data in a regulated manner without requiring any interaction with the
original signer. It is widely used in scenarios such as healthcare data
privacy protection, social networks, secure routing, etc. In existing sani-
tizable signature schemes, anyone can verify the validity and authenticity
of the sanitized message, which results in costly certificate management
overhead or complicated key escrow problems. To address these chal-
lenges, a designated verifier certificateless sanitizable signature scheme is
proposed. This scheme introduces the concept of a designated verifier into
sanitizable signatures, allowing sanitizers to specify verifier for the san-
itized message. Only the specified verifiers can verify the validity of the
message/signature pair, ensuring that the message information remains
confidential to parties other than the designated verifiers. Security anal-
ysis demonstrates that the proposed scheme satisfies the properties of
unforgeability, immutability, privacy and non-transferability. Compara-
tive analysis demonstrates that the proposed scheme provides additional
support for designated verifiers compared to traditional sanitizable signa-
ture schemes, while eliminating certificate management and key escrow
issues. We have conducted an experiment, and the results demonstrate
that the proposed scheme displays excellent efficiency.

Keywords: Data Sharing · Sanitizable Signature · Certificateless ·
Designated Verifier

1 Introduction

Given the swift advancement and integration of technologies such as cloud com-
puting, big data, and the Internet of Things (IoT), data is being shared among
various users and organizations, and its value is becoming increasingly signifi-
cant. However, as data empowers and enables intelligence, it also faces severe
privacy protection challenges. To strengthen the management and protection
of data, many countries have enacted relevant laws and regulations. Examples
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include China’s “Data Security Law of the People’s Republic of China” and
“Personal Information Protection Law of the People’s Republic of China,” the
European Union’s General Data Protection Regulation (GDPR), and the United
States’ Health Insurance Portability and Accountability Act (HIPAA) for med-
ical data security [3]. These regulations aim to establish sound data security
governance systems and enhance data security capabilities.

Digital signatures play a crucial role in cryptographic techniques, guarantee-
ing the authenticity and integrity of data. Any slight modification to signed data
will result in the failure of signature verification. While digital signatures provide
a solid security foundation for identity authentication and data integrity, they
also limit the ability to make reasonable modifications to signed data in certain
application scenarios, hindering users from flexibly and efficiently utilizing doc-
uments. For example, when the government discloses documents, sensitive data
involving personal information and national secrets often need to be redacted.
If traditional digital signature schemes are used to sign the documents, citizens
are unable to verify the authenticity of the disclosed information due to the
partial modification of the document’s data. To ensure the validity of the mod-
ified document, it would require the signer to re-sign it. If there are numerous
versions of modified documents, this method would incur significant computa-
tional overhead. Similarly, in scenarios such as electronic health records [8,14],
multimedia forensics, e-commerce, and smart grids, using only traditional digital
signature schemes cannot efficiently verify the validity of shared sub-documents.
To address this issue, sanitizable signatures provide an effective solution [1].

Sanitizable Signature permits a semi-trusted intermediary, referred to as the
sanitizer, to meticulously and non-interactively modify the signed data, all the
while retaining the capability to generate a new signature that can be validated
effectively. It ensures the integrity and authenticity of shared data and enables
the flexible hiding of specific sensitive information based on different data sharing
scenarios and recipients, thus ensuring data security while harnessing the value
of the data and promoting the development of data-driven applications.

Sanitizable signatures enable the hiding of sensitive data by the sanitizer for
privacy protection. However, in practice, the unmodified parts of the sanitized
document may still contain private information. Unfortunately, most sanitizable
signature schemes do not consider the risk of information leakage from these
unmodified parts during the data sharing process. Taking medical data as an
example, after a doctor signs an electronic medical record, the patient can act as
the sanitizer to hide sensitive information before submitting the sanitized record
to an insurance company for claims processing. At this point, the insurance
company may sell the patient’s medical information to interested parties, and
any other party that obtains the sanitized document can verify its validity, posing
a severe privacy threat to the patient. Therefore, it is necessary to adopt a
Designated Verifier mechanism to limit the scope of data verification and ensure
that only specific recipients can authenticate and validate the integrity of the
shared data [2,11].



Sanitizable signatures are typically based on traditional public key cryptog-
raphy, requiring a trusted certificate authority to issue certificates for authenti-
cating user public keys. As the number of users increases, this leads to expensive
certificate management overhead. To tackle this issue, several identity-based san-
itizable signature schemes [7,10,12,13] and attribute-based sanitizable signature
schemes [4,6] have been proposed. The former uses unique public identity infor-
mation of users, such as ID numbers, phone numbers, and email addresses, as
public keys, while the latter associates ciphertext and keys with attribute sets
and access structures. However, these schemes face the issue of key escrow. The
Private Key Generation Center (PKG) holds the master key for generating all
user private keys, making the security of user keys entirely dependent on the
PKG. This poses significant challenges to data privacy protection. Certificate-
less cryptography, on the other hand, offers a solution to the key escrow problem.
In certificateless cryptography, the Key Generation Center (KGC) collaborates
with users to generate complete private keys, eliminating the need for a central
authority like the PKG [5,9,15].

Contribution. The primary contributions of this paper can be succinctly sum-
marized as follow: addressing the issues of data leakage by data sharing parties
in sanitizable signature schemes, as well as the challenges of certificate manage-
ment and key escrow, we propose a designated verifier certificateless sanitizable
signature scheme based on the idea of Universal Designated Verifier Signatures
(UDVS).

– Firstly, the signer generates a message and signs it, and then sends it to the
sanitizer via a secure channel. The sanitizer acts as both the sanitizer of the
message and the holder of the UDVS signature. They specify the designated
verifier for the sanitized message and its signature according to their specific
requirements. Only the designated verifier can validate and have confidence
in the validity of the message and its signature, ensuring that the message
information remains confidential to parties other than the designated verifier.

– Secondly, the proposed scheme builds upon certificateless signatures, elimi-
nating the necessity for complex certificate management and resolving the
key escrow issue.

– Thirdly, by conducting formal security analysis, we establish that the scheme
effectively safeguards against malicious users and a malicious Key Genera-
tion Center (KGC), ensuring unforgeability, immutability, privacy, and non-
transferability.

– Fourthly, both experimental results and theoretical analysis substantiate that
the performance of the proposed scheme surpasses that of comparable schemes
in terms of efficiency and effectiveness.



2 System Model and Security Goals

2.1 System Model

Figure 1 illustrates the system model of the proposed scheme in this chapter. The
system consists of four entities: Key Generation Center (KGC), Signer, Sanitizer,
and Verifier. Each entity is defined as follows:

Fig. 1. System Model

– Key Generation Center (KGC): The Key Generation Center (KGC)
assumes the responsibility of system initialization and generates the corre-
sponding key pairs based on user identities. A segment of the user’s private
key is securely transmitted through a protected channel.

– Signer: The Signer assumes the responsibility for generating and signing
message. They can define the content that can be sanitized and send the
message and its signature to the Sanitizer through a secure channel.

– Sanitizer: The Sanitizer can sanitize sensitive data in the shared message,
generate a new signature, and specify the Verifier to validate the sanitized
message and its signature.

– Verifier: The Verifier is assigned by the data sharing party. Only the desig-
nated Verifier can validate the authenticity of the corresponding message.



2.2 Security Goals

In order to facilitate secure data sharing effectively, this scheme aims to accom-
plish the following objectives:

– Unforgeability: Only the signer, sanitizer, and designated verifier can gen-
erate valid signatures. No one else can forge a valid signature.

– Immutability: The sanitizer cannot modify the data blocks in the message
that are not allowed to be sanitized.

– Privacy: Privacy guarantees that only the signer and sanitizer possess infor-
mation regarding the sanitized portions of the data, preventing anyone else
from obtaining such details.

– Non-Transferability: The designated verifier lacks the ability to prove the
validity of the signature to third parties.

These objectives play a critical role in ensuring the security and integrity of
the shared data while preserving the privacy of sensitive information.

3 The Proposed Scheme

3.1 Overview

This scheme implements a certificateless sanitizable signature scheme with des-
ignated verifiers, using the concepts of certificateless signatures and universal
designated verifier signatures. In this scheme, the signer and verifiers obtain the
certificateless signature key pair from the Key Generation Center (KGC). The
signer first computes the certificateless signature on the message m and generates
auxiliary information aux required for sanitization. The message/signature pair
(m, s) and aux are then transmitted to the sanitizer through a secure channel.
In the universal designated verifier signature scheme, the sanitizer assumes the
role of the “signature holder”. Upon receiving (m, s), the sanitizer first verifies
its validity. If valid, the sanitizer utilizes the auxiliary information to sanitize
the document, resulting in a sanitized document m′ and a certificateless signa-
ture σ′. The sanitizer then designates a verifier for the message/signature pair
(m′, σ′) and generates a designated verifier signature σ′′ for it. This yields a mes-
sage/signature pair (m′, σ′′) that can only be verified by the designated verifier.

3.2 Detail

The specific algorithm for the designated verifier sanitizable signature without
certificates scheme is as follow:

(pp, msk) ← Setup(λ). Input the security parameter λ, the KGC executes
the Setup algorithm to generate the system’s public parameters PP and the
system master key msk.



– Let the bilinear pairing e : G × G → GT , where G and GT are respectively
cyclic groups of prime order q for addition and multiplication. Let P be the
generator of G.

– Select the hash function h1 : {0, 1}∗ → Z
∗
q and H1,H2 : {0, 1}∗ → G

∗.
– Randomly choose s ∈ Z

∗
p, then let msk = s and compute the main public key

Ppub = sP

KGC keeps the msk in secret and output the system public parameter pp =
{q, e,G,GT , P, Ppub, h1, h2,H1,H2,H3}.

(pkSig/V rf , skSig/V rf ) ← KGen(pp, msk, IDSig/V rf ). Input pp, msk
and the identity of the signer IDSig, KGC interacts with the signer to exe-
cute the KGen algorithm to generate the secret key pair (pkSig, skSig) of the
signer.

– Generating the secret value: the signer randomly chooses the secret value
sSig ∈ Z

∗
q and compute PSig = sSigP , QSig = H1(IDSig||PSig), and then

sends QSig to KGC.
– Generating public key: the signer generates the public key pkSig =

(PSig, QSig).
– Generating partial secret key: KGC computes the partial secret key of the

signer dSig = sQSig, and sends it to the signer through a secure channel.
– Generating private key: the signer generates the private key skSig =

(dSig, sSig).

And finally we get the secret key pair (pkSig, skSig) of the signer.
Similarly, KGC interacts with the verifier and executes (pkV rf , skV rf ) ←

KGen(pp,msk, IDV rf ) to obtain the verifier’s key pair (pkV rf , skV rf ).

(m, σ, aux) ← Sign(pp, m, pkSig , skSig , IDSig , ADM). Input the system
public parameter pp, message m, the secret key pair (pkSig, skSig), the identity
of the signer IDSig and ADM , the signer executes Sign algorithm to generate
the signature σ for m, and generates the required aux for the sanitizable data
blocks.

– Divide m to n data blocks m = m1||m2||...||mn.
– For each data block mi(i ∈ [1, n]), randomly chooses ti ∈ Z

∗
q and computes the

signature for mi as follow: Compute Ti = tiP, αi = h1(IDSig||PSig||mi||Ti)
and W = H2(Ppub). Then compute σi = dSig + αi · ti · W + sSig · W =
dSig +(αi · ti ·sSig) ·W . And for each i ∈ ADM , computes the transformation
value χi = ti · W .

– Finally, the signer obtains he message/signature pair (m,σ) and aux, where
σ = ({σi}i∈[1,n] , {Ti}i∈[1,n]), aux = ({χi}i∈ADM , ADM). The signer sends
them to the sanitizer through a secure channel.

0/1 ← V erify(pp, m, σ, pkSig , IDSig). Input the system public parameter
pp, original message/signature pair (m,σ), the public key pkSig = (PSig, QSig)



of the signer and the identity of the signer IDSig, the sanitizer executes V erify
algorithm to authenticate the validity of the message/signature pair (m,σ).

The sanitizer computes W = H2(Ppub). For each i ∈ [1, n], computes αi =
h1(IDSig||PSig||mi||Ti). And then computes σ = Σn

i=1σi, T = Σn
i=1αi · Ti and

verifies:
e(σ, P ) = e(Ppub, QSig)n · e(T,W ) · e(PSig,W )n (1)

is satisfied or not. If the condition is true, it indicates that (m,σ) is a valid
message/signature pair and the output is 1. Otherwise, the output is 0.

(m′, σ′) ← Sanit(pp, m, σ, pkSig , IDSig , MOD, aux). Input the system
public parameter pp, original message/signature pair (m,σ), the public key
pkSig = (PSig, QSig) of the original signer, the identity of the signer IDSig,
the description MOD of the data block to be sanitized and aux, the sanitizer
executes Sanit algorithm to sanitize the message m and generates a valid signa-
ture σ′ for the sanitized message m′.

– If ADM(MOD) = 0, output ⊥.
– Sanitize m to obtain m′ = MOD(m) = {m′}i∈[1,n], where for i ∈ MOD,m′

i �=
mi. Otherwise m′

i = mi.
– For each data block m′

i(i ∈ [1, n]), compute sanitized signature σ′:
If i /∈ MOD, then σ′

i = σi; if i ∈ MOD, then computes α′
i =

h1(IDSig||PSig||mi||Ti) and α′
i = h1(IDSig||PSig||m′

i||Ti), then σ′
i = σi −

αi · χi + α′
i · χi = σi + (α′

i − αi) · χi.

After the sanitization, fo each i ∈ [1, n], σ′
i = dSig + α′

i · ti · W + sSig · W . And
finally, the sanitizer obtains the sanitized message/signature pair (m′, σ′), where
σ′ = ({σ′

i}i∈[1,n] , {Ti}i∈[1,n]).

(m′, σ′′) ← DSign(pp, m′, σ′, pkV rf ). Input the system public parameter
pp, sanitized message/signature pair (m′, σ′) and the public key pkV rf =
(PV rf , QV rf ) of the designated verifier, the sanitizer execute DSign to assign
verifier to (m′, σ′).

For each signature σ′
i(i ∈ [1, n]), the sanitizer compute σ̄i = e(σ′, PV rf ).

Finally, it outputs the message/signature pair (m′, σ′′) of the designated verifier,
where σ′′ = ({σ̄i}i∈[1,n] , {Ti}i∈[1,n]).

0/1 ← DV erify(pp, m′, σ′′, pkSig , IDSig, skV rf ). Input the system pub-
lic parameter pp, message/signature pair (m′, σ′′) of the designated verifier, the
public key of the signer pkSig = (PSig, QSig), the identity of the signer IDSig

and the private key of the designate verifier skV rf = (dV rf , sV rf ), the desig-
nated verifier execute DV erify algorithm to authenticate the validity of the
message/signature pair (m′, σ′′).

The designated verifier computes W = H2(Ppub). For each i ∈ [1, n], com-
putes α′

i = h1(IDSig||PSig||m′
i||Ti). And then computes σ̄ = Πn

i=1σ̄i, T =
Σn

i=1αi · Ti, and verifies:

σ̄ = [e(Ppub, QSig)n · e(T ′,W ) · e(PSig,W )n]sV rf (2)



is satisfied or not. If the condition is true, it indicates that (m′, σ′′) is a valid
message/signature pair and the output is 1. Otherwise, the output is 0.

3.3 Security Analysis

Unforgeability. This scheme exhibits unforgeability against adaptive cho-
sen message attacks and selective identity attacks. Below, we provide secu-
rity analysis for forgery attacks from two types of adversaries: AI and AII .
Assuming a Computational Diffie-Hellman (CDH) problem instance is given
(P,Q1 = aP,Q2 = bP,Q3 = abP ).

For AI type forgeries, the attacker does not have access to the master key s
of the system but can replace a legitimate public key of the user. Let’s assume
an AI attacker replaces the public key pks = (Ps, Qs) of a legitimate user IDs

with pk∗
s = (P ∗

s , Q∗
s). Using the replaced public key, the attacker successfully

forges a signature (m∗, σ∗) for a message m. Let Ppub = Q1 = aP,Q∗
s = ϑsQ2 =

ϑsbP,W = ωP . Computes σ = Σn
i=1σi, T = Σn

i=1αi ·Ti, and then sign and verify
the equation e(σ, P ) = e(Ppub, QSig)n · e(T,W ) · e(PSig,W )n is satisfied. We
have:

e (σ∗
i , P ) = e (Ppub, QS) · e (α∗

i · Ti,W ) · e (PS ,W )

⇒ e (Ppub, QS) = e (σ∗
i , P ) · [e (α∗

i · Ti,W ) · e (PS ,W )]−1

⇒ e (aP, ϑSbP ) = e (σ∗
i , P ) · [e (α∗

i · Ti, ωP ) · e (PS , ωP )]−1

⇒ e (ϑS · abP, P ) = e (σ∗
i , P ) · [e (ω · α∗

i · Ti, P ) · e (ω · PS , P )]−1

⇒ abP = ϑ−1
S (σ∗

i − ω · α∗
i · Ti − ω · PS)

By successfully solving the CDH problem using adversary AI , the CDH prob-
lem itself is resolved. However, the CDH problem is a difficult problem that
cannot be currently solved in the real world. Therefore, the forgery attack by
adversary AI cannot succeed.

For adversary AII , this particular adversary possesses access to the system
master key s, but lacks the capability to substitute legitimate the public keys of
the user. Suppose an AII adversary successfully performs a forgery attack using
the public key pks = (Ps, Qs) of user IDs on message m, resulting in a forged
signature (m∗, σ∗). Let Ps = Q1 = aP,W = ωbP . Computes σ = Σn

i=1σi, T =
Σn

i=1αi · Ti, and then sign and verify the equation e(σ, P ) = e(PPub, QSig)n ·
e(T,W ) · e(PSig,W )n is satisfied. We have:

e (σ∗
i , P ) = e (Ppub, QS) · e (α∗

i · Ti,W ) · e (PS ,W )

⇒ e (PS ,W ) = e (σ∗
i , P ) · [e (Ppub, QS) · e (α∗

i · Ti,W )]−1

⇒ e(aP, ωbP ) = e (σ∗
i , P ) · [e (sP,QS) · e (α∗

i · Ti,W )]−1

⇒ e(ω · abP, P ) = e (σ∗
i , P ) · [e (sQS , P ) · e (α∗

i · ti · W,P )]−1

⇒ abP = (ω)−1 (σ∗
i − sQS − α∗

i · ti · W )



The adversary AII , as a subroutine, successfully solves the CDH problem.
However, it is based on the security assumption that the CDH problem is difficult
and currently unsolved in the real world. Therefore, the forgery attack by the
adversary AII cannot be successful.

Immutability. In this scheme, only the data blocks that are allowed to be
sanitized that i ∈ ADM , have corresponding computation transformation values
χi. Data blocks that are not allowed to be sanitized do not have corresponding
χi values in the scheme. If the sanitizer wants to sanitize the data block, it
needs to compute σ′

i = σi − αi · χi + α′
i · χi = σi + (α′

i − αi) · χi, which requires
the transformation value χi, while the data blocks that are not allowed to be
sanitized σ′

i = dSig + α′
i · ti · W + sSig · W = dSig + α′

i · χi + sSig · W , cannot
obtain the value of ti through computation, and χi = ti · W can be regard as a
Discrete Logarithm (DL) problem. According to the DL problem, the Sanitizer
cannot obtain ti. Therefore, the Sanitizer is unable to perform sanitization on
these data blocks. As a result, the proposed scheme satisfies the immutability
property.

Privacy. Verification parties must not have the ability to deduce sensitive infor-
mation from the sanitized message/signature pairs. Because this scheme is des-
ignated for specific verification parties, the confirmation of the validity of the
message/signature pairs is restricted solely to the designated parties, and can-
not be accomplished by any other entity, and therefore, the information that
has been sanitized cannot be recovered. However, for the designated verification
parties, the message/signature pairs (m′, σ′′) do not involve information about
the sanitized part of the message mi(mi �= m′

i). As a result, this scheme meets
the privacy requirement.

Non-transferability. Non-Transferability refers to the property that given a
message/signature pair (m′, σ′′) for a designated verifier, no one other than the
designated verifier can determine whether (m′, σ′′) was generated by the sanitizer
or the designated verifier, even if they have knowledge of all users’ private keys.
This is because the designated verifier can simulate the generation of a signature
counterpart σ∗, and this counterpart cannot be distinguished from the signature
σ′′ output by the sanitizer. The process of the designated verifier simulating the
signature is as follows:

The designated verifier computes W = H2(Ppub). For each i ∈ [1, n], ran-
domly chooses T ∗

i ∈ G and computes α∗
i = h1(IDSig||PSig||m′

i||T ∗
i ). Then com-

putes T ∗ = Σn
i=1α

∗
i ·T ∗

i , and outputs a signature counterpart σ∗ = σ̄∗, {T ∗
i }i∈[1,n]

for the message m′, where σ̄∗ = e(sV rf · Ppub, QSig)n · e(sV rfT ∗,W ) · e(sV rf ·
PSig,W )n. This counterpart satisfied the correctness:

σ̄∗ = e(sV rf · Ppub, QSig)n · e(sV rf · T ∗,W ) · e(sV rf · PSig,W )n

= e(Ppub,QSig
)sV rf ·n · e(T ∗,W )sV rf · e(PSig,W )sV rf ·n

= [e(QSig, Ppub)n · e(T ∗,W ) · e(PSig,W )n]sV rf



Therefore, for message m′, the designated verifier generates a signature coun-
terpart σ∗ that is indistinguishable from the signature σ′′ produced by the san-
itizer.

4 Performance Analysis

In this section, we conduct a comparison between our scheme and the identity-
based revocable proxy signature scheme [13] and the certificateless revocable
proxy signature scheme [16] in terms of theoretical and experimental evaluations.

4.1 Theory Comparison

Table 1. Function Comparison

Scheme Unforgeability Immutability Certificate Management Problems Key Escrow Problems Designated verifier

[13] � × � × ×
[16] − � � � ×
Ours � � � � �

Table 1 shows the difference of the features between our proposed scheme and
the related purifiable signature schemes [13] and [16]. The following analysis is
conducted on these features:

– Unforgeability is a fundamental and important property that ensures that
individuals without the signing key cannot generate valid signatures. Scheme
[13] and our proposed scheme both satisfy this property, while scheme [16]
does not define or discuss this property.

– Immutability ensures that the sanitizer can only sanitize data within the range
specified by the signer. In scheme [13], the signer computes transformation
values for sanitization, and the sanitizer with access to these values can modify
any data block, violating the property of immutability. Scheme [16] and our
proposed scheme both satisfy this property.

– Traditional public key encryption involves users generating public/private key
pairs and having their public keys certified by a Certification Authority (CA),
resulting in expensive certificate management overhead. Scheme [13] is based
on identity-based cryptography, while schemes [16] and our proposed scheme
are based on certificateless cryptography, eliminating this problem.

– The identity-based scheme [13] relies on a private key generator (PKG) to
generate the private keys for the user, resulting in a key escrow problem.
The certificateless cryptography schemes [16] and our proposed scheme do
not have this problem.

– Only designated verifiers are allowed to verify the validity of mes-
sage/signature pairs. Except for our proposed scheme, the other two sani-
tizable signature schemes do not support designated verifiers.



Based on the aforementioned information, we can conclude that our pro-
posed scheme surpasses existing schemes in several aspects. It eliminates the
need for costly certificate management, resolves the challenges associated with
key escrow, guarantees non-forgeability and immutability, and provides support
for designated verifiers.

Table 2. Single Execution Time of Each Operation

Notations Description Single execution time (ms)

pair The operation of bilinear pairing 4.50315
ExpGT The exponentiation operation on GT 0.55745
MulGT The multiplication operation on GT 0.00515
AddG The addition operation on G 0.04015
MulG The multiplication operation on G 0.04015
HashG The hash operation on G 18.6542

Due to the computational overhead mainly focused on operations in groups
G and GT , operations on Zq are ignored in this context. To directly compare
the computational costs of different schemes, we tested the execution time of
various operations based on the JPBC library. The experimental environment
consists of an Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz, 16GB RAM, and
Windows 10(x64) OS. Table 2 provides the symbol descriptions and the time
overhead of single executions for various operations. Additionally, the number
of data blocks is represented as n, the size of the set of data blocks that can be
sanitized (ADM) is denoted as ladm, and the size of the set of data blocks to be
sanitized (MOD) is denoted as lmod.

Table 2 presents a comparison of the computational costs between the saniti-
zable signature scheme [13], the scheme [16], and the proposed scheme. Since the
scheme [13] and the scheme [16] do not support specified verifier, only the pro-
posed scheme provides the costs for the specified verifier signature algorithm and
the specified verifier verification algorithm. From the table, it can be observed
that the costs of signature and verification are linearly related to the number of
data blocks, denoted as n. The cost of sanitization exhibits a linear relationship
with either the number of blocks that can be sanitized (ladm) or the number of
blocks to be sanitized (lmod). In the proposed scheme, the costs associated with
designated verifier signature and designated verifier verification also demonstrate
a linear increase as the number of data blocks, n, grows.

In the signature generation phase, compared to scheme [13], the proposed
scheme reduces n AddG operations, (n − ladm) MulG operations, and (2n − 1)
HashG operations. Compared to scheme [16], the proposed scheme reduces n
MulG operations and (n − 1) HashG operations. Since both HashG and MulG
have significant costs, overall, the proposed scheme exhibits significantly lower
signature generation costs compared to scheme [13] and scheme [16].



In the sanitization phase, since lmod ≤ ladm ≤ n, the computing consumption
of our scheme and scheme [13] are the same and generally lower than scheme
[16]. In the verification phase, the proposed scheme reduces computational costs
compared to scheme [13] by 2AddG +MulG+(n−1)HashG −MulGT

−ExpGT
−

Pair, and this difference increases linearly with n. The proposed scheme also
reduces computing consumption compared to scheme [16] by nAddG +2MulG +
(n − 1)HashG − MulGT

− 2ExpGT
− Pair, and this difference also increases

linearly with n.
Overall, Our proposed scheme exhibits lower overhead compared to scheme

[13] and scheme [16], and the difference between them increases linearly with the
increase in n. Furthermore, our scheme surpasses both scheme [13] and scheme
[16] in terms of security and functionality.

Table 3. Computation Cost Comparison Between Sanitizable Signature Scheme

Algorithm [13] [16] Ours

Signature 2nAddG + 3nMulG +
2nHashG

nAddG + (3n+
ladm)MulG+nHashG

nAddG + (2n+
ladm)MulG +HashG

Verification 2nAddG + (n+
1)MulG + nHashG +
MulGT + ExpGT +
3Pair

(3n− 2)AddG + (n+
2)MulG + nHashG +
MulGT + 3Pair

(2n− 1)AddG +
nMulG +HashG +
2MulGT +2ExpGT +
4Pair

Sanitization lmodAddG +
lmodMulG

ladmAddG +
ladmMulG

lmodAddG +
lmodMulG

Designated
verifier
signature

− − nPair

Designated
verifier
verification

− − (n− 1)AddG +
nMulG +HashG +
(n+ 1)MulGT +
3ExpGT + 3Pair

4.2 Experiment Comparison

In this section, we conducted performance testing of our proposed scheme using
the JPBC library and compared it with scheme [13] and scheme [16]. The exper-
iments were conducted on an Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz,
16GB RAM, and Windows 10 (x64) OS. All three schemes were implemented
based on the supersingular curve SS512, which achieves an 80-bit security level.

Figure 2 shows the computational overhead of each algorithm in our scheme.
For this test, we set the number of data block n, to 50, and the total number
of blocks that can be sanitized, ladm, and the total number of blocks to be
sanitized, lmod, both to 20. As shown in Fig. 2, the required time for signature,
verification, sanitization, designated verifier, and designated verifier verification



algorithms were 0.92 s, 0.41 s, 0.15 s, 0.21 s, and 0.41 s, respectively. Among them,
the signature algorithm has the highest overhead, while the verification algorithm
and the designated verifier verification algorithm have similar overheads.

Fig. 2. Algorithm Computation Cost of This Scheme

Figure 3a demonstrates the impact of the number of data blocks, n, on the
computational overhead of our proposed scheme. With ladm = 20, we gradually
increase n from 50 to 300 and test the computational overhead of each algo-
rithm. It can be observed that the sanitization overhead remains constant and
unaffected by n. On the contrary, the computational overhead of the remaining
algorithms experiences a linear increase as n increases. According to the analysis
in Table 3, the signature, verification, and designated verifier verification algo-
rithms involve time-consuming MulG and HashG, resulting in higher computa-
tional overhead compared to the designated verifier signature algorithm, which
only requires Pair operations. Additionally, among the signature overhead, ver-
ification overhead, and designated verifier verification overhead, the coefficient
of MulG is larger, indicating a more pronounced growth trend in the signature
overhead.

Fig. 3. Impact of n and ladm



Figure 3b demonstrates the impact of the total number of sanitizable data
blocks, ladm, on the computational cost of our scheme. We set n = 300 and
gradually increase ladm from 0 to 300, while keeping lmod = ladm. We test the
computational cost of various algorithms. It shows that only the signature cost
and sanitization cost increase linearly with ladm, while the costs of other algo-
rithms remain relatively constant. According to the analysis in Table 3, the sig-
nature algorithm requires ladm multiplications on G to generate the auxiliary
information required for sanitization, and the sanitization algorithm requires
ladm additions and multiplications on G to generate the sanitizable signature.
Since the cost of AddG is negligible and the cost of MulG is approximately 8ms,
the signature cost and sanitization cost increase by approximately 2.4 s when
ladm = 300 compared to ladm = 0, under the current settings.

Figure 4 illustrates the computational costs of the signature, verification, and
sanitization algorithms for [13], scheme [16], and our proposed scheme. Here, we
set ladm = 50, lmod = 20, and gradually increase n from 50 to 300.

Fig. 4. Computation Cost Comparison of Algorithm Between IBBS, CLSS and Ours

As shown in Fig. 4a, the signature cost of the proposed scheme is significantly
lower than that in the IBSS scheme and the CLSS scheme, and the gap between
them increases with the increase of n. When n = 300, the signature cost of



our proposed scheme is approximately 11.8 s less than the IBSS scheme and
approximately 7.3 s less than the CLSS scheme.

As shown in Fig. 4b, the cost in verification of the IBSS scheme and the
CLSS scheme remains similar, while the verification cost of the proposed scheme
is significantly lower than these two schemes. Moreover, this difference increases
noticeably with the increase of n, which is consistent with the analysis in Table 3.
When n = 300, the difference between our proposed scheme and the IBSS scheme
is approximately 4.98 s, and the difference between our proposed scheme and the
CLSS scheme is approximately 5.07 s.

As shown in Fig. 4c, the sanitization cost of the proposed scheme is the same
as that in the IBSS scheme and both are lower than the CLSS scheme. According
to the analysis in Table 3, the sanitization cost of our proposed scheme and
the IBSS scheme is related to lmod, while the CLSS scheme depends on ladm.
Therefore, when ladm ≥ lmod, the sanitization cost of the CLSS scheme is the
highest among the three schemes. When ladm = lmod, the sanitization cost is the
same for all three schemes.

Through experimental comparisons, it can be observed that the performance
of our proposed solution is not inferior and even superior to existing sanitizable
signature schemes. Our approach is based on certificateless signatures, which
avoids the key escrow issue present in the IBSS scheme. In comparison to the
CLSS scheme, our solution incorporates an additional mechanism for designated
verifiers, addressing the concern of information leakage on the verifier’s side and
further ensuring the privacy and security of shared data.

5 Conclusion

In order to ensure the privacy of shared data, our proposed sanitizable signature
scheme addresses the issues of information leakage by data sharers, the costly
certificate management overhead, and the potential security risks associated with
key escrow in existing schemes.

Firstly, our solution introduces a certificateless approach for sanitizable sig-
natures. The public key is derived from the public information of the user, and
the private key is generated jointly by the user and the KGC, eliminating the
need for a dedicated organization to manage user certificates and preventing the
compromise of user private keys by the KGC, thus safeguarding data security.

Secondly, our scheme supports designated verifiers. After generating multiple
sanitized versions of a message based on different usage scenarios, the sanitizer
can designate a verifier for each version. The designated verifier represents the
current data sharer, ensuring that only the sharer can verify the validity of
the corresponding sanitized message, thereby preventing the leakage of message
information to others.

Finally, through theoretical and experimental comparisons with similar sani-
tizable signature schemes, we have demonstrated that our proposed scheme offers
improved security and functionality, while also being more efficient than existing
solutions.
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