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Abstract— With the rapid development of Location-Based Ser-
vices (LBS), a large number of LBS providers outsource spatial
data to cloud servers to reduce their high computational and
storage burdens, but meanwhile incur some security issues such
as location privacy leakage. Thus, extensive privacy-preserving
LBS schemes have been proposed. However, the existing solutions
using Bloom filter do not take into account the redundant bits
that do not map information in Bloom filter, resulting in high
computational overheads, and reveal the inclusion relationship
in Bloom filter. To solve these issues, we propose an efficient
Privacy-preserving Spatial Range Query (PSRQ) scheme by
skillfully combining Geohash algorithm with Circular Shift and
Coalesce Bloom Filter (CSC-BF) framework and Symmetric-key
Hidden Vector Encryption (SHVE), which not only greatly
reduces the computational cost of generating token but also
speeds up the query efficiency on large-scale datasets. In addition,
we design a Confused Bloom Filter (CBF) to confuse the inclusion
relationship by confusing the values of 0 and 1 in the Bloom filter.
Base on this, we further propose a more secure and practical
enhanced scheme PSRQ+ by using CBF and Geohash algorithm,
which can support more query ranges and achieve adaptive
security. Finally, formal security analysis proves that our schemes
are secure against Indistinguishability under Chosen-Plaintext
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Attacks (IND-CPA) and PSRQ+ achieves adaptive IND-CPA,
and extensive experimental tests demonstrate that our schemes
using million-level dataset improve the query efficiency by 100×

compared with previous state-of-the-art solutions.

Index Terms— Location-based services, location privacy
leakage, privacy-preserving, spatial range query.

I. INTRODUCTION

WITH the explosive growth of location-aware mobile
devices, Location-Based Services (LBS) are becoming

more and more popular in social and business fields [1].
LBS has been widely used in various practical applications
such as navigation systems, leisure travel, social network, taxi
hailing and personalized recommendation. With a geographical
location, LBS can provide the most relevant Points of Interest
(PoIs) to users [2]. For example, LBS can help users find
nearby scenic spots, hospitals, restaurants, etc. Nowadays,
the computational and storage overheads of LBS providers
are exploding. It is more preferable for LBS providers (i.e.,
Google Map, Facebook, etc.) to outsource the massive amounts
of spatial data to cloud servers. However, outsourcing data
to cloud servers seriously threatens users’ privacy as cloud
servers can infer the user’s daily itinerary and preference by
using location information [3]. Thus, the secure spatial range
query has been extensively studied. However, there are still
two issues to be solved.

The first issue is that the traditional Bloom filter will reveal
the inclusion relationship between 0 and 1 in Bloom filter.
As shown in Fig. 1, “1” in Bloom filter represents inclusion
and “0” represents exclusion. Then, the attacker can speculate
whether a set contains an element according to the position of
“1” in Bloom filter. Although Twin Bloom Filter (TBF) [4], [5]
can hide inclusion relationship by confusing the values of
0 and 1 in Bloom filter, TBF needs to construct two rows
of Bloom filters for a set, resulting in huge computational and
storage overheads. It is worth noticing that the security of the
existing schemes [23], [24] using Bloom filter depends on the
security of the encryption algorithm. Although the Bloom filter
can provide space efficiency to some extent, the unencrypted
Bloom filter still enables attackers to deduce some plaintext
data mapped into it, which cannot resist common attacks such
as the chosen-plaintext attacks. Thus, it is necessary to encrypt
the Bloom filter to further protect its privacy.

The second issue is that the existing privacy-preserving
spatial range query schemes using Bloom filter do not take
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Fig. 1. Existing issues in previous solutions.

into account the redundant bits that do not map information
in the Bloom filter (i.e., gray block in Fig. 1), which leads
to huge computational and storage overheads. In token gener-
ation phase, the above schemes require users to map query
information to a fixed-length Bloom filter. Although some
privacy-preserving techniques such as Asymmetric Scalar-
Product-Preserving Encryption (ASPE) [6] or Randomizable
Matrix Multiplication (RMM) technique [29] can be used to
encrypt Bloom filter, they still make the computation complex-
ity of token generation linearly increase with the size of Bloom
filter as all bits of Bloom filter need to be encrypted [23], [24].
Furthermore, these encryption mechanisms require the cloud
server to compute the inner product between encrypted index
and token bit by bit, which leads to the linear complexity of
ciphertext retrieval [7], [11], [20], [23]. Especially, to reduce
the false positive on the large-scale dataset, the length of
Bloom filter will increase with the amount of data mapped into
it, which in turn results in increased redundant bits. Therefore,
the time of token generation and query will be too large under
large-scale datasets, which makes existing schemes unsuitable
for real-time scenarios. There are other range query schemes
that usually use Gray code [8] or prefix code [9] to generate
indexes and tokens, but lead to longer indexes and tokens, even
incur huge computational overhead as all bits of indexes and
tokens need to be calculated in token generation and query.

To solve the above issues, we first propose an efficient
Privacy-Preserving Spatial Range Query (PSRQ) scheme
by skillfully combining Geohash algorithm with Circular
Shift and Coalesce Bloom Filter (CSC-BF) framework [33]
and Symmetric-key Hidden Vector Encryption (SHVE) [34].
Specifically, PSRQ uses SHVE to encrypt the valid bits of
Geohash code mapped to CSC-BF to generate a shorter token
for users, and matches each bit of shorter token via CSC-BF
during the query, which makes the computational costs of
token generation and ciphertext retrieval independent of the
length of Bloom filter. Then, we first design a Confused
Bloom Filter (CBF) to confuse the inclusion relationship by
confusing the values of 0 and 1 in the Bloom filter. Based on
this, we further design a more secure and practical enhanced
scheme PSRQ+ by using CBF and converting the spatial
location as a set containing 8 Geohash codes, which supports
more query ranges and achieves adaptive security. The main
contributions of our work are shown as follows:

1) We first propose an efficient Privacy-Preserving Spatial
Range Query (PSRQ) scheme by skillfully combining
the Geohash algorithm with CSC-BF and SHVE, which

greatly reduces the computational cost of generating
token by reducing the length of token by using Geohash
algorithm and SHVE, and speeds up the query efficiency
on large-scale datasets via CSC-BF.

2) We design a novel Confused Bloom Filter (CBF) struc-
ture, which can confuse the inclusion relationship by
confusing the values of 0 and 1 in the traditional Bloom
filter without incurring high storage overheads.

3) We propose a more secure and practical enhanced
scheme PSRQ+ by using CBF and converting the spatial
location as a set containing 8 Geohash codes, which can
support more query ranges and achieve adaptive security.

4) We give formal security analysis to prove that
our schemes are secure against Indistinguishability
under Chosen-Plaintext Attacks (IND-CPA) and PSRQ+

achieves adaptive IND-CPA, and conduct extensive
experiments to demonstrate that our schemes using
million-level dataset improve the query efficiency by
100x compared with previous state-of-the-art solutions.

The rest of this paper is organized as follows. In Section II,
we introduce some state-of-the-art related work. In Section III,
we introduce some main preliminaries for our schemes.
In Section IV, we define the system model, threat model,
problem definition and design goals. In Section V, we demon-
strate the detail of our schemes. In Section VI, we prove the
security of our schemes. In Section VII, we conduct extensive
experimental tests to analyze and evaluate the performance of
our schemes. In Section VIII, we summarize our work.

II. RELATED WORK

Spatial range query can be divided into rectangular range
query, circular range query and geometric range query accord-
ing to the shape of query area.

A. Privacy-Preserving Rectangular Range Query

Boneh and Waters [10] designed a Hidden Vector Encryp-
tion (HVE) and proposed a public-key scheme to determine
whether a point was within a hyper-rectangle under cipher-
text environment. To improve the query efficiency of [10],
Wang et al. [11] proposed a hierarchical encrypted index
R̂-tree by combing ASPE, which can perform range query
securely and efficiently over encrypted dataset. In addition,
Wang et al. [12] used Order-Revealing Encryption (ORE) [13]
to determine the size relationship between the coordinate of
spatial point and those of the lower left and upper right corners
of query rectangle, which implements secure range query.
However, the above schemes only achieve single-dimensional
spatial range query. To this end, Shi et al. [14] proposed a
multi-dimensional spatial range query scheme, which sup-
ports secure rectangular range query based on the identity
encryption. In addition, Wang et al. [15] designed a tree-based
multi-dimensional range query algorithm by combing R-trees
and HVE to support efficient rectangular range queries.

B. Privacy-Preserving Circular Range Query

Wang et al. [16] leveraged Shen-Shi-Waters (SSW) [17] to
build a symmetric-key circle predicate encryption scheme,
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which verifies whether the point was within the circle range
by using multiple concentric circles. But the spatial data
in [16] can only be integers. To this end, Zhu et al. [18] pro-
posed a secure circle range query scheme based on improved
homomorphic encryption over composite order group, which
uses Boneh-Goh-Nissim (BGN) homomorphic encryption [19]
to calculate the distance and evaluates the resulting range
via a hash table. To reduce the computational overhead
and improve the query efficiency of [18], Zheng et al. [20]
designed a privacy-preserving circular range query scheme
by using ASPE, Order-Preserving Encryption (OPE) [21] and
R-tree. In addition, Li et al. [22] proposed an Inner Product
Range Encryption (IPRE) to judge whether a spatial data was
within the given circular region without revealing vectors.

C. Privacy-Preserving Geometric Range Query

Geometric range query includes but is not limited to rect-
angles and circles. Wang et al. [23] enumerated all integer
points within query range and mapped them into a Bloom
filter, and then determined if the point was within query
range by computing the inner product of encrypted Bloom
filters. To reduce the number of integers inserted into Bloom
filter, Cui et al. [24] provided a linear transformation strat-
egy to transform the geographic coordinates as some small
integers, which deals with the issues of dimension expansion
and space reduction. To improve query efficiency of [24],
Luo et al. [25] used circumscribed polygons to replace various
types of geometries, transformed all shapes of the query into
a unified form, and used ASPE to protect the privacy of
data. Afterwards, Li et al. [26] pointed out that [25] could
not achieve declared security, so they improved [25] to
make it secure against known-background attacks. In addition,
Wang et al. [27] used Quadtree to construct index for spatial
dataset, and mapped spatial location and query range as
Gray code, then used SHVE to encrypt and obtain range
query results under ciphertext. To reduce the index length
of [27], Yang et al. [28] mapped spatial data and query range
as Geohash code, and converted them into indexes based on
Base32. Then, they used Enhanced ASPE algorithm (EASPE)
for encryption and determined whether spatial data was within
query range by calculating the inner product of encrypted
index. However, the search shapes that the above schemes can
support are still limited. To further support arbitrary geometric
range query, Zhang et al. [29] proposed a geometric range
query scheme based on a two-server model, which employs
polynomial fitting technique to achieve accurate arbitrary
range queries and uses RMM to protect data privacy.

However, the above solutions do not consider the redundant
bits in index, resulting in huge computational overhead and
low query efficiency. Therefore, we first propose a PSRQ
scheme by using the Geohash algorithm with CSC-BF and
SHVE, which not only greatly reduces the computational cost
of generating token but also speeds up the query efficiency
on the large-scale datasets. Then, we propose a more practical
scheme PSRQ+, which can support more query ranges and
achieve adaptive security. The detailed comparison between
the previous schemes and our schemes is shown in TABLE I.

TABLE I
COMPARISON BETWEEN OUR SCHEMES AND PREVIOUS SCHEMES

Fig. 2. (a) An example of Geohash coding; (b) Accuracy of Geohash coding.

III. PRELIMINARIES

In this section, we introduce some related technologies for
our schemes, mainly including the Geohash algorithm, Circu-
lar Shift and Coalesce Bloom Filter (CSC-BF) framework, and
Symmetric-key Hidden Vector Encryption (SHVE).

A. Geohash Algorithm

Geohash algorithm [3], [30], [31], [32] is a common
geocoding method, which can recursively divide the entire
geographical space as smaller grids and convert the longitude
and latitude of each grid as a Geohash code according to
Base32. As shown in the example in Fig. 2, each Geohash code
is a unique specific rectangular range, and provides arbitrary
precision. For example, the red point (8, 13) can be denoted
as “s33 j xb67” with ±19m rectangular range or “s33 j xb6”
with ±76m.

Thus, we judge the distance between two spatial points by
matching their Geohash codes. As shown in the example in
Fig. 2, the Geohash codes of red point and green point have the
same prefix “s33 j xb6,” so we can know that the green point
is within ±76m of red point. Thus, we can determine whether
a point is within the query range by judging the number of
characters with the same prefix of two Geohash codes.

B. Circular Shift and Coalesce Bloom Filter (CSC-BF)

The Bloom filter is a data structure used to check whether
an element is included in a set. Given a set S = {s1, . . . , se}

and an element q, the Bloom filter executes the following
processes to determine whether q ∈ S.
• Init: Generate an m-bit array BF with each bit is 0,

and choose k independent hash functions H = {h0, . . . ,

hk−1}.

  



• Insertion: For each an element s ∈ S, this process sets
the values of k locations BF[(H(s)%m] in array BF as 1,
where H(s)%m = {h0(s)%m, . . . , hk−1(s)%m}.

• Query: For a query q, this process checks k locations
BF[(H(q)%m] ?

= 1. If k locations are all 1, then q ∈ S.
Thus, given n sets S = {S1, . . . , Sn}, 1 ≤ i ≤ n, the time

complexity of Bloom filter determining which set Si ∈ S
contains q is O(kn). Circular Shift and Coalesce Bloom Filter
(CSC-BF) [33] is an efficient Bloom filter framework, which
does not need to build a BF for each set Si ∈ S, thereby
greatly reducing query time. The time complexity of CSC-BF
to determine which set Si ∈ S contains q is only O(kbr),
where br ≪ n. Fig. 3 shows the framework of CSC-BF, and
the specific structure of CSC-BF is as follows.

CSC-BF is r m-bit Bloom filter {CSCt |1 ≤ t ≤ r} with k
independent hash functions H = {h0, . . . , hk−1} and all bits
are initialized to 0. Given n sets S = {S1, . . . , Sn}, 1 ≤ i ≤ n,
CSC-BF defines r repetitions. Note that each repetition Rt
has a unique partition function gt which uniformly maps n
sets into b (b ≪ n) random partitions {Pl |1 ≤ l ≤ b}, where
gt (i) = l and 1 ≤ t ≤ r . To support set inclusion query,
CSC-BF needs to perform the following two processes:
• Insertion: For each repetition Rt , this process only gen-

erates a unique Bloom filter CSCt for all n sets S. For
each set Si , this process sets the values of k locations
CSCt [(H(s)%m + gt (i))%m] in CSCt as 1 to insert
each element s ∈ Si , where H(s)%m = {h0(s)%m, . . . ,

hk−1(s)%m} are k anchor locations and gt (i) is offset.
• Query: For a query element q in repetition Rt , this

process calculates its k anchor locations H(q)%m, and
then checks the next b offset locations (H(q)%m+0)%m,

. . . , (H(q)%m + b− 1)%m of CSCt to determine which
partitions contain q . That is, CSCt [(H(q)%m+ l)%m] =
1 indicates that q ∈ Pl . For partitions that report the
existence of element q, this process takes the union of
sets mapped into these partitions to generate a candidate
membership set Mt . Finally, this process takes the inter-
section of r candidate membership sets {M1, . . . , Mr } to
find which sets contain q .

The element s in different sets has the same anchor, and
then is divided into b different partitions by offset. In query
phase, CSC-BF only needs to calculate the anchor of q and
checks the next b locations to find which partitions contain
q. Then, CSC-BF takes all sets within these partitions as a
candidate member set M . To reduce false positives, CSC-BF
needs to repeat the above process r times, and finally takes
the intersection of r candidate member sets as the result.

C. Symmetric-Key Hidden Vector Encryption (SHVE)

SHVE [34] is an encryption scheme that supports equality,
conjunctive and comparison queries over encrypted data. For
vectors v = {v0, . . . , vm−1} ∈ 6m and x = {x0, . . . , xm−1}

∈ 6m , where 6 ∈ {0, 1} is a finite set of attributes, we have:

P SH V E
v (x) =

{
1, ∀0 ≤ j ≤ m − 1(v j = x j ),
0, otherwise.

(1)

That is, if x matches v in all dimensions, P SH V E
v (x) = 1.

Fig. 3. The framework of CSC-BF.

Fig. 4. Construction details of SHVE.

SHVE is achieved by using a Pseudo Random Function
(PRF) F : {0, 1}λ × {0, 1}λ+log λ

→ {0, 1}λ+log λ and a
symmetric encryption (Sym.Enc, Sym.Dec) with IND-CPA
security, where λ is a security parameter. The details of the
construction are shown in Fig. 4.

IV. PROBLEM FORMULATION

In this section, we formalize the system model, threat
model, problem definition and design goals of our schemes.

A. System Model & Threat Model

In this paper, we consider an encrypted cloud data outsourc-
ing scenario. As shown in Fig. 5, the system model of our
schemes includes three entities, namely LBS providers, mobile
users and the cloud server. The role of each entity is shown
as follows:
• LBS Provider: The LBS provider owns the spatial

dataset and is responsible for building index for each
spatial data, and then encrypts spatial dataset and indexes
before outsourcing them to the cloud server.

• Mobile User: The authorized mobile user has access to
the outsourced spatial dataset. He/She first encrypts the
query information as token, and then submits it to the
cloud server.

• Cloud Server: The cloud server which has unlimited
computing and storage capabilities stores encrypted data
and indexes outsourced by the LBS provider, and provides
LBS for mobile users.

  



Fig. 5. System model of our schemes.

LBS provider first builds an index for each spatial data in
dataset DB, and then outsources the encrypted spatial dataset
and indexes to the cloud server (steps ①, ②). Mobile users
are authorized after registering themselves with LBS provider
(step ③). When the mobile user wants to make query requests
Q, he/she encrypts the query information as token, and submits
it to the cloud server (step ④). After receiving the token, the
cloud server finds the spatial data satisfying query requests
and then returns them to the mobile user (step ⑤).

Threat Model: Consistent with most of previous schemes,
the cloud server in our schemes is considered to be “honest-
but-curious,” which honestly performs the established protocol
but curiously collects or analyzes the meaningful informa-
tion such as locations and mobile user’s query information.
The LBS provider and the mobile user are assumed to be
completely trusted, which means that they execute specified
operations properly and cannot collude with any unauthorized
mobile users and the cloud server. In addition, the access,
authorization and transmission channels between all entities
are also assumed to be secure. And we consider the following
threat model:
• Chosen-Plaintext-Attack Model: Apart from the cipher-

texts of all spatial data, indexes, and query information,
the cloud servers can also access the ciphertext of a spatial
data corresponding to the plaintext it selects.

B. Problem Definition

The existing solutions using Bloom filter do not take
into account the invalid bits that do not map information
in Bloom filter, resulting in high computational overheads.
For example, as shown in the example in Fig. 1, given a
query request q , the mobile user first initializes an m-bit
Bloom filter index BF = (0, 0, . . . , 0), then sets k positions
BF[h1(q)%m], . . . , BF[hk(q)%m] of BF as 1, and finally
encrypts each bit BF[ j] by using an encryption algorithm (e.g.,
ASPE [6]) for generating a token TQ, where 0 ≤ j ≤ m − 1.
And the cloud server needs to calculate the inner product
of encrypted index and token both described by BF bit by
bit. Therefore, there are (m − k) invalid 0-bits in each BF,
which need to be encrypted and involved in the inner product
operation. Especially on the large-scale dataset, to reduce false
positives, m will increase with the amount of data mapped into
Bloom filter, which will lead to an increase in the number
of invalid 0-bits. And the computation complexities of token
generation and query are proportional to the size of m, which

TABLE II
NOTATIONS AND DESCRIPTIONS

makes the time of token generation and query too large under
large datasets. In addition, directly encrypting the Bloom
filter will reveal the inclusion relationship between 0 and
1. For example, the cloud server can judge whether the bit
corresponding to the Bloom filter is the ciphertext of “1” if
a set contains an element, thereby inferring the whole Bloom
filter. Next, we give the formal definition of our schemes as
follows:

Definition 1 (Spatial Range Query, SRQ): Given a spatial
database DB = {o1, . . . , on} and a query request Q, all spatial
data DB are mapped as Geohash codes to generate a set
S = {S1, . . . , Sn}, and Q is mapped as a Geohash code q.
SRQ runs the Insertion and Query algorithms to retrieve a
subset Result = {id1, id2, . . . , idh} from D, such that ∀ide ∈

Result , 1 ≤ e ≤ h, q ∈ Se.

C. Design Goals

To achieve an efficient and secure spatial range query, our
solutions should meet the following requirements:
• Data Privacy: The plaintext dataset cannot be disclosed

to any unauthorized entities and the cloud server. And
they should not obtain any sensitive about these data.

• Query Privacy: Only authorized mobile users can gener-
ate tokens for queries and the cloud server cannot get or
infer any actual query content over the token.

• Efficiency: Our scheme should achieve efficient token
generation and query over large-scale datasets in real-
time scenarios.

V. OUR PROPOSED SCHEME

In this section, we first propose an efficient
Privacy-preserving Spatial Range Query (PSRQ) scheme
by combining Geohash algorithm with CSC-BF and SHVE.
And we design a Confused Bloom Filter (CBF) by using
hash function and XOR. Then, we propose a more practical
enhanced scheme PSRQ+ by using CBF to query more ranges
and achieve adaptive security. Before introducing our schemes
in detail, we first give the description of some important
notations used in our proposed schemes in TABLE II.

A. Basic Scheme: Efficient Privacy-Preserving Spatial Range
Query (PSRQ)

The commonly used homomorphic encryption is difficult
to implement fast queries under large-scale data sets due to

  



Fig. 6. Construction process of our schemes.

its high computational overhead, and ASPE has been proved
to be insecure against known-plaintext attacks [35] despite
its low overhead. Therefore, we choose SHVE algorithm by
comprehensively considering the cost and security. In addition,
there are some range query schemes that usually use Gray
code or prefix code to generate encrypted indexes and tokens,
but lead to longer encrypted indexes and tokens, even incur
huge computational overhead as all bits of encrypted indexes
and tokens need to be calculated in token generation and
query phases. Therefore, we use Geohash algorithm to achieve
range query, which greatly reduces the burden on mobile users
by converting the query range as an 8-character Geohash
code whose length is far less than those of Gray code and
prefix code. However, Geohash algorithm trades efficiency for
approximate query, i.e., it can only achieve approximate range
query as shown in Fig. 2 (b).

Technical Overview of PSRQ: The most existing solutions
usually use ASPE algorithm to encrypt all bits of Bloom
filter to generate token and then compute the inner product
of encrypted Bloom filter bit by bit during query, resulting
in excessive computational overheads of token generation and
query. Therefore, we first propose an efficient PSRQ scheme
by skillfully combining Geohash algorithm with CSC-BF and
SHVE, which uses SHVE to encrypt the valid bits of Geohash
code mapped to CSC-BF to generate a shorter token for
mobile users, and matches its each bit via CSC-BF during
the query. Thus, our PSRQ can make the complexity of token
generation independent of the length of Bloom filter, and
greatly reduce the computational cost of generating token
and speeds up the query efficiency, as shown in Fig. 6 (a).
Specifically, in IndexBuild phase, LBS provider maps the
spatial location oi .l = (xi , yi ) of each spatial data oi as an
8-character Geohash code si . Then, LBS provider generates
r m-bit Bloom filters {CSC1, . . . , CSCr } for n Geohash
codes {s1, . . . , sn} by calling Insertion algorithm of CSC-BF.

Finally, LBS provider encrypts each bit v j of each CSCt

for generating r encrypted indexes {ĈSC1, . . . , ĈSCr }, where
1 ≤ t ≤ r , 0 ≤ j ≤ m − 1. In TokenGen phase, the
mobile user first encodes query location Q.l = (xQ, yQ)

as an 8-character Geohash code q , then calculates its k
anchor locations H(q)%m and gets corresponding b offset
locations {(H(q)%m + 0)%m, . . . , (H(q)%m + b − 1)%m}
by shifting b times, where H(q)%m = {h0(q)%m, . . . ,

hk−1(q)%m}. Finally, the mobile user encrypts kb offset
locations as {c0, . . . , cb−1} for generating a token TQ =

{H(q)%m, c0, . . . , cb−1}. In Query phase, the cloud server
checks the next b locations of H(q)%m in each ĈSCt to
determine which partitions contain q, then takes all spatial
data object identities {idi } in these partitions as a candidate
membership set Mt . Finally, the cloud server returns the
intersection of candidate membership set {M1, . . . , Mr } to
the mobile user. The concrete construction of PSRQ is as
follows.

Setup. LBS provider generates a master key msk by
calling SHVE.Setup, and generates a PRF F , k independent
hash functions H = {h0, . . . , hk−1} and r independent hash
functions {g1, . . . , gr }.

IndexBuild. The specific construction is shown in
Algorithm 1. Let DB = {o1, o2, . . . , on} be a spatial database
owned by LBS provider. Each spatial data oi in DB has a
unique identity idi and its spatial geographic location oi .l =
(xi , yi ). For each oi , LBS provider maps oi .l as an 8-character
Geohash code si . As shown in the example in Fig. 2, the spatial
location (8, 13) will be converted as “s33 j xb67.” Then, LBS
provider sets r repetitions {R1, . . . , Rr } and initializes an m-
bit Bloom filter CSCt for each Rt , where 1 ≤ t ≤ r . For
each Rt , LBS provider maps all Geohash codes {s1, . . . , sn}

as b (b < n) random partitions {Pl |1 ≤ l ≤ b} by
calculating gt (i)%m, and then sets the values of k locations
CSCt [(H(si )%m + gt (i))%m] in CSCt as 1 to insert each si

 
 



MIAO et al.: EFFICIENT PSRQ OVER OUTSOURCED ENCRYPTED DATA

into CSCt , where H(si )%m = {h0(si )%m, . . . , hk−1(si )%m}.
Thus, LBS provider generates r indexes {CSC1, . . . , CSCr } for
DB. Then, LBS provider randomly samples K

$
← {0, 1}λ+log λ

and encrypts each bit v j of each CSCt as d j,0 and d j,1
by Eq. 2, where 1 ≤ j ≤ m − 1. Finally, LBS provider
outsources r encrypted indexes EDB = {ĈSC1, . . . , ĈSCr }

to cloud server.

Algorithm 1 IndexBuild
Input: DB = {o1, o2, . . . , on}

Output: EDB
1 for 1 ≤ i ≤ n do
2 Convert oi .l as an 8-character Geohash code si ;

3 for 1 ≤ t ≤ r do
4 Initialize an m-bit Bloom filter CSCt ;
5 Map {s1, . . . , sn} uniformly as b random partitions

{Pl |1 ≤ l ≤ b} by calculating gt (i)%m;
6 // Generate an index CSCt ;
7 for 1 ≤ i ≤ n do
8 Set k locations CSCt [(H(si )%m + gt (i))%m]

in CSCt as 1;

9 // Generate an encrypted index ĈSCt ;
10 for 0 ≤ j ≤ m − 1 do
11 Encrypt each bit v j ∈ CSCt as:

d j,0 = F(msk, v j || j)⊕ K ,

d j,1 = Sym.Enc(K , 0λ+log λ). (2)

12 return EDB = {ĈSC1, . . . , ĈSCr }.

Algorithm 2 TokenGen
Input: Q.l
Output: TQ

1 Convert Q.l as an 8-character Geohash code q;
2 Calculate k anchor locations H(q)%m;
3 for 0 ≤ l ≤ b − 1 do
4 Calculate (H(q)%m + l)%m and encrypt it as:

cl = F(msk, 1||H(q)%m + l)%m); (3)

5 return TQ = {H(q)%m, c0, . . . , cb−1}.

TokenGen. The specific construction is shown in
Algorithm 2. Given a query location Q.l = (xQ, yQ), the
mobile user first encodes Q.l as an 8-character Geohash
code q. Then, the mobile user calculates its k anchor loca-
tions as H(q)%m and gets corresponding b offset positions
{H(q)%m + l)%m|0 ≤ l ≤ b − 1} by shifting b times, where
H(q)%m = {h0(q)%m, . . . , hk−1(q)%m}. Then, the mobile
user encrypts kb offset positions as {c0, . . . , cb−1} by Eq. 3.
Finally, the mobile user submits the token TQ to the cloud
server.

Query. The specific construction is in Algorithm 3. After
receiving the mobile user’s token TQ, the cloud server checks

the next b locations {H(q)%m + l)%m|0 ≤ l ≤ b − 1}
of anchor locations H(q)%m in each ĈSCt to determine
which partitions contain q by Eq. 4. If µ′ = 0λ+log λ, i.e.,
CSCt [(H(q)%m + l)%m] = 1, then Pl contains q . The cloud
server takes all spatial data object identities {idi } in partition
Pl as a candidate membership set Mt . Finally, the cloud
server returns the intersection of the candidate membership
set {M1, . . . , Mr } obtained by each repetition as Result to
the mobile user.

Algorithm 3 Query

Input: EDB = {ĈSCt |1 ≤ t ≤ r} and
TQ = {H(q)%m, c0, c1, . . . , cb−1}

1 Initialize a set Result = ∅;
2 for 1 ≤ t ≤ r do
3 Initialize a candidate membership set Mt ;
4 for 0 ≤ l ≤ b − 1 do
5 j = H(q)%m + l;
6 Determine if partition Pl contains q as:

K ′ = cl ⊕ d j,0,

µ′ = Sym.Dec(K ′, d j,1); (4)

7 if µ′ = 0λ+log λ then
8 Mt .add(idi ), ∀oi ∈ Pl ;

9 Result = ∩r
t=1 Mt ;

10 return Result.

Correctness. For each offset location (H(q)%m+ l)%m in
each ĈSCt , cl ⊕ d j,0 is calculated as Eq. 5,

cl ⊕ d j,0 = F(msk, 1||H(q)%m + l)%m)

⊕ F(msk, v j || j)⊕ K = K ′, (5)

where 0 ≤ l ≤ b − 1, j = (H(q)%m + l)%m. If µ′ =

Sym.Dec(K ′, d j,1) = 0λ+log λ, we can know that K = K ′

and v j = 1. Therefore, the (H(q)%m + l)%m-th bit of CSCt
is 1 and the l-th partition Pl contains q , i.e., there is a Geohash
code si in Pl which is the same as q .

Remark 1: As the length of each Geohash code is far less
than those of other spatial codes such as Gray code, the
Geohash code can be inserted into CSC-BF as a keyword to
greatly improve the query efficiency. And PSRQ uses SHVE
to encrypt the valid bits of Geohash code mapped to CSC-BF,
and matches its each bit via CSC-BF during the query, which
makes the time complexity O(kb) of TokenGen and the time
complexity O(kbr) of Query independent of the length m of
Bloom filter. However, since the basic solution only encodes
spatial data as an 8-character Geohash code, the mobile users
can only search for PoIs within 19 meters, which is not
practical for mobile users. In addition, PSRQ encrypts the
generated Bloom filter directly, which may reveal the inclusion
relationship between 0 and 1 in the Bloom filter. For example,
the cloud server can judge whether the bit corresponding to
Bloom filter is the ciphertext of “1” base on the partition added
to candidate set, so that it can infer the entire Bloom filter.

  



Fig. 7. Technical overview of CBF.

B. Enhanced Scheme: Practical Privacy-Preserving Spatial
Range Query (PSRQ+)

1) Technical Overview of PSRQ+: To solve the flaws of
basic scheme, we first encode the spatial location oi .l as a set
containing 8 Geohash codes of different lengths according to
the accuracy of Geohash algorithm, then allow the mobile user
to encode the query request as a Geohash code of any length
to achieve range query. To protect the values of 0 and 1 in
Bloom filter, the most direct way is to use Twin Bloom Filter
(TBF) [4], [5] to confuse the inclusion relationship of 0 and
1 to achieve adaptive security, but TBF needs to construct
two rows of Bloom filters, resulting in huge computational
and storage overheads, as shown in Fig. 7. Therefore, we first
devise a Confused Bloom Filter (CBF) scheme by using hash
function and XOR, which achieves the same adaptive security
as TBF and generates only one row of Bloom filter. The
specific construction is as follows.

2) Construction of Confused Bloom Filter (CBF): CBF
confuses inclusion relationship of 0 and 1 in Bloom filter,
which includes the following processes.
• CBF.Setup: Generate an m-bit Bloom Filter BF for a set S

through k hash functions H = {h0, . . . , hk−1}. Choose a
random number γ and a hash function HF : {ρ} → {0, 1},
where ρ is an arbitrary number.

• CBF.Init: Generate an m-bit binary vector V , where
V [ j] = HF( j + γ ), 0 ≤ j ≤ m − 1. Then, negate each
bit of V to generate an m-bit binary vector V ′ = ¬V ,
where V ′[ j] = ¬HF( j + γ ) and “¬” represents the sign
of binary negation.

• CBF.Confuse: XOR each bit in BF with the bit in V ′ to
generate a CBF.

• CBF.Query: For a query q, this process checks k loca-
tions CBF[(H(q)%m] ?

= HF(H(q)%m + γ ), where
H(q)%m = {h0(q)%m, . . . , hk−1(q)%m} ∈ [0, m − 1].
If so, then q ∈ S.

Correctness. The Bloom filter sets the values of k locations
BF[ j] as 1 to insert each element s ∈ S, where j = H(s)%m.
Then, the Bloom filter determines whether q ∈ S by checking
whether k locations BF[(H(q)%m] = 1. Different from
Bloom filter, in order to insert element s, the CBF sets the
values of k locations CBF[ j] by Eq. 6.

CBF[ j] = ¬HF( j + γ )⊕ BF[ j]
=
¬HF( j + γ )⊕ 1

= HF( j + γ )⊕ 1⊕ 1
= HF( j + γ ). (6)

Then, CBF determines whether q ∈ S by checking whether
CBF[(H(q)%m] = HF(H(q)%m+γ ) holds. Since the values
of k locations HF(H(s)%m+γ ) are 0 or 1, CBF can confuse

Fig. 8. An example of CBF.

the inclusion relationship of Bloom filter. Fig. 8 shows an
example of CBF. To insert element s1, CBF sets CBF[1] =
1 and CBF[5] = 0. Thus, even if an attacker knows that s1 ∈

S, he cannot determine that the corresponding location is 1,
i.e., 0 can also indicate that the location contains elements.

Then, we improve PSRQ to propose a more secure and
practical enhanced scheme PSRQ+, as shown in Fig. 6 (b).
Specifically, LBS provider encodes each spatial location oi .l
in dataset DB as a set containing 8 Geohash codes of different
lengths and inserts them into CSC-BF, and then confuses
CSC-BF with CBF and encrypts it with SHVE. The specific
construction of PSRQ+ is as follows.

Setup. LBS provider generates a master key msk by calling
SHVE.Setup, and generates a PRF F , k hash functions H =
{h0, . . . , hk−1}, r independent hash functions {g1, . . . , gr },
a random number γ and a hash function HF:{ρ} → {0, 1},
where ρ is an arbitrary number.

Algorithm 4 IndexBuild
Input: DB = {o1, o2, . . . , on}

Output: EDB
1 for 1 ≤ i ≤ n do
2 Convert oi .l as a set Si = {s1, s2, . . . , s8}

containing 8 Geohash codes of different lengths;

3 Generate an m-bit binary vector V ;
4 Negate each bit of V to generate V ′;
5 for 1 ≤ t ≤ r do
6 Initialize a m-bit Bloom filter CSCt ;
7 Map {S1, . . . , Sn} uniformly as b random partitions

{Pl |1 ≤ l ≤ b} by calculating gt (i)%m;
8 for 1 ≤ i ≤ n do
9 for s ∈ Si do

10 Set CSCt [(H(s)%m + gt (i))%m] as 1;

11 for each bit v j ∈ CSCt do
12 v′j = v j ⊕ V ′[ j] ;
13 Encrypt v′j as d j,0 and d j,1 by Eq. 2;

14 return EDB = {ĈSC′1, . . . , ĈSC′r }.

IndexBuild. The specific construction is shown in
Algorithm 4. Different from PSRQ, for each spatial data
oi , LBS provider maps the spatial location oi .l as 8 Geo-
hash codes of different lengths for generating a set
Si = {s1, s2, . . . , s8} according to the accuracy of Geo-
hash algorithm. As shown in the example in Fig. 2,
the spatial location (8, 13) will be converted as a set
S = {s, s3, s33, . . . , s33 j xb67} containing 8 Geohash codes.
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Then, similar to PSRQ, LBS provider generates r indexes
{CSC1, . . . , CSCr } for n sets {S1, . . . , Sn}.

To confuse the inclusion relationship of each bit in CSCt ,
LBS provider generates an m-bit binary vector V , where the
value of j-th bit is HF( j + γ ), 0 ≤ j ≤ m − 1. And
LBS provider negates each bit of V to generate an m-bit
binary vector V ′. Then, LBS provider XORs each bit in
each CSCt with the bit in V ′ to generate r new indexes
{CSC′1, . . . , CSC′r }. Finally, LBS provider encrypts them as
EDB = {ĈSC′1, . . . , ĈSC′r } by Eq. 2, and outsources EDB to
the cloud server.

TokenGen. The specific construction is shown in
Algorithm 5. Given a query request Q = {Q.l, Q.r}, where
Q.l = (xQ, yQ) is geographic coordinate of query and Q.r is
search range, the mobile user can encode Q.l as a Geohash
code q with a length of t-character according to Q.r . For
example, Q.l = (8, 13) is encoded as Geohash code q =
“s33 j xb” according to Q.r = 600m, or Q.l = (8, 13) is
encoded as q = “s33 j x” according to Q.r = 2km. Then,
similar to PSRQ, the mobile user gets corresponding b offset
positions {H(q)%m+ l)%m|0 ≤ l ≤ b− 1}. Then, the mobile
user encrypts each offset position as cl by Eq. 7.

cl = F(msk, HF((H(q)%m + l)%m+γ )||H(q)%m+l)%m).

(7)

Finally, the mobile user submits the token TQ = {H(q)%m,

c0, c1, . . . , cb−1} to the cloud server.

Algorithm 5 TokenGen
Input: Q = {Q.l, Q.r}
Output: TQ

1 Convert Q.l as an t-character Geohash code q
according to Q.r ;

2 Calculate k anchor locations H(q)%m;
3 for 0 ≤ l ≤ b − 1 do
4 Calculate (H(q)%m + l)%m and encrypt it as cl

by Eq. 7.
5 return TQ = {H(q)%m, c0, . . . , cb−1}.

Query. This process is the same as that of PSRQ.
Correctness. Similar to PSRQ, for each offset loca-

tion (H(q)%m + l)%m in each ĈSC′t , cl ⊕ d j,0 =

F(msk, HF((H(q)%m + l)%m + γ )||H(q)%m + l)%m) ⊕

F(msk, v′j || j) ⊕ K = K ′, where 0 ≤ l ≤ b − 1, j =
(H(q)%m + l)%m. If µ′ = Sym.Dec(K ′, d j,1) = 0λ+log λ,
we can know that K = K ′ and v′j = HF((H(q)%m + l)%m
+ γ ), i.e., CSC′t [(H(q)%m + l)%m] = HF((H(q)%m +
l)%m + γ ). Therefore, according to the properties of CBF,
the l-th partition Pl contains q, i.e., there is a set Si in Pl that
contains q.

Remark 2: In our enhanced scheme, the same query range
can be generated as the same token, but does not leak the
plaintext query information, which also achieves the accept-
able security requirements as most of existing SSE solutions.
Even though the cloud server can deduce that any two tokens
are associated with the same Geohash code, these two result

sets are still different as several adjacent spatial locations
can be encoded as the same Geohash code. In addition, the
cloud server may infer the approximate query range based on
the same token, but cannot know the specific query range.
However, PSRQ+ also has some shortcomings, i.e., it only
provides eight approximate query ranges due to the precision
limitation of Geohash algorithm. Our current solutions focus
on achieving efficient query on large-scale datasets, and arbi-
trary range query will be addressed as an important issue in
future work.

VI. SECURITY ANALYSIS

In this section, we give the formal security definition to
prove that PSRQ is secure against IND-CPA and PSRQ+ is
secure against an adaptive IND-CPA adversary.

Before proving that PSRQ guarantees data privacy and
query privacy against IND-CPA, we first simulate a security
game played between an adversary A from the ideal security
and a challenger C.

Definition 2 (IND-CPA of PSRQ): Let 5 = (Setup,
IndexBuid, TokenGen, Query) be a PSRQ scheme. The
security game between an adversary A and a challenger C is
defined as:
• Init: Input a security parameter λ, A generates two

databases DB0 = (d0,1, d0,2, . . . , d0,n) and DB1 =

(d1,1, d1,2, . . . , d1,n) with the same number of spatial
data to C, where d0,i and d1,i are spatial data, 1 ≤ i ≤ n.

• Setup: The challenger C runs Setup to generate a master
key msk and keeps msk private.

• Phase1: A submits a series of requests, which are
divided into the following two types:

1) On the j-th ciphertext request, the adversary A
outputs a spatial dataset DB′j = {d

′

j,1, . . . , d ′j,n},
where d ′j,i is spatial data object, 1 ≤ i ≤ n.
Challenger C responses with an encrypted dataset
EDB j through IndexBuid.

2) On the j-th query request, the adversary A out-
puts a spatial range query Q′j = {Q

′

j .l, Q′j .r}.
Challenger C responses with a token TQ j through
TokenGen.

• Challenge: C chooses a random bit b ∈ {0, 1}, and cal-
culates the ciphertext EDBb of DBb through IndexBuid
or token TQb of Qb through TokenGen before sending
it to A.

• Phase2: A can continue to adaptively submit a series
of requests that are the same as those in phase 1.

• Guess: A takes a guess b′ of b.
We say that PSRQ is secure against IND-CPA if for any

polynomial-time adversary in the above security game, it has
at most a negligible advantage

AdvIND−CPA−Data
PSRQ,A (1λ) = |Pr(b′ = b)−

1
2
| ≤ negl(λ),

where negl(λ) represents a negligible function.
Theorem 1 (Data Privacy of PSRQ): PSRQ is IND-CPA

data secure if there exists no adversary that can break the
above IND-CPA game with non-negligible advantage.

  



Proof: To prove the IND-CPA data privacy of PSRQ,
we first simulate the above security game with an adversary
A. And we should prove that A cannot distinguish EDB0,i
and EDB1,i , even if the adversary A has oracle access to
IndexBuild. Assume that one of the messages in DB′j is d ′j,i .
Note that d ′j,i is first converted into Geohash code s j,i , then
inserted into CSC-BF to generate an index CSC by calculating
(H(s j,i )%m + gt (i))%m, where H and gt are independent
hash functions. Finally, each bit v f of ĈSC is encrypted as
d0 = F(msk, v f || f ) ⊕ K and d1 = Sym.Enc(K , 0λ+log λ),
where msk and K are randomly sampled from {0, 1}λ and
{0, 1}λ+log λ respectively. Since A has no idea about H, gt ,
msk and K , he cannot recover the ciphertext EDB j,i .

In Phase 1 and Phase 2 of security game, the adversary A
chooses different d ′j,i each time and observes its ciphertext
EDB j,i . However, since ĈSC is a random vector determined
by C, H and gt are random independent hash functions,
msk

$
← {0, 1}λ K

$
← {0, 1}λ+log λ, the ciphertext EDB j,i

is random to adversary A. That is, for any message and its
corresponding ciphertext selected by adversary A, A cannot
distinguish which message is actually encrypted. Thus, even
if the adversary A can access IndexBuild, b′ can only be
obtained by random guessing. So we have

AdvIND−CPA−Data
PSRQ,A (1λ) = |Pr(b′ = b)−

1
2
| ≤ negl(λ).

Therefore, PSRQ is IND-CPA data secure base on the above
specific analysis.

Theorem 2 (Query Privacy of PSRQ): PSRQ is IND-CPA
query secure if there is no adversary that can break the
adaptive IND-CPA game with non-negligible advantage.

Proof: The proof of query privacy of PSRQ is similar
to the proof of data privacy mentioned above. We first simu-
late the above security game to prove the query privacy of
PSRQ. And we should prove that the adversary A cannot
distinguish TQ0 and TQ1, even if A has oracle access to
TokenGen. According to the process of TokenGen, Q′j is
first converted into Geohash code q j , then encrypted as c =
F(msk, 1||H(q j )%m)%m), where H and gt are independent
hash functions, msk and K are randomly sampled from
{0, 1}λ and {0, 1}λ+log λ respectively. Since A has no idea
about H, gt , msk and K , the ciphertext TQ j is random to
A who cannot recover the ciphertext TQ j . for any message
and its corresponding ciphertext selected by adversary A, the
adversary A cannot distinguish which query request is actually
encrypted. Thus, even if A can access TokenGen, b′ can only
be obtained by random guessing. So we have

AdvIND−CPA−Query
PSRQ,A (1λ) = |Pr(b′ = b)−

1
2
| ≤ negl(λ).

Therefore, PSRQ is IND-CPA query secure base on the
above specific analysis.

PSRQ+ improves the security of PSRQ by confusing the
inclusion relationship between 0 and 1 in Bloom filter. We next
demonstrate that PSRQ+ is adaptive security.

Theorem 3: PSRQ+ is secure against an adaptive IND-CPA
adversary on condition that the adversary can only break the
above security game.

Proof: “1” in traditional Bloom filter represents inclusion
and “0” represents exclusion, i.e., 1-bit in Bloom filter indi-
cates that there is an element inserted at this location. Our CBF
scheme confuses the inclusion relationship of Bloom filter,
i.e., “0” can also represent inclusion and “1” can represent
exclusion. Therefore, the value of each bit of Bloom filter no
longer has any meaning, and the adversary cannot determine
whether an element has been inserted based on whether the
location is 1.

Specifically, we use several pseudo-random hash functions
F , H, gt , HF, and a random number γ to generate encrypted
index and token. Note that, a hash function is a pseudo-random
hash function if and only if the polynomial time adversary
cannot distinguish between the output of this function and
that of a truly random function. We consider a probabilistic
polynomial-time adaptive adversary who can access the result
of past encrypted indexes, tokens and results before choosing
the next query in the simulator. We first construct a simulator
that can build a simulated encrypted index and token. The
simulator first uses H and gt to insert the spatial data s into
CSC, then uses HF and γ to confuse 0 and 1 in CSC to
generate a new CSC′, and finally uses F to encrypt it as a
simulated index. For query Q, the simulator uses HF and γ

to confuse H(Q), and then uses F to encrypt it as a token.
Now if a probabilistic polynomial time adversary wants to
issue a search request, the simulator generates a token for this
search as above. The adversary cannot distinguish between the
token given by the simulator and the query result generated by
the simulation index as F , H, gt and HF are pseudo-random
functions and γ is a random number. Thus, PSRQ+ is secure
against an adaptive IND-CPA adversary.

VII. PERFORMANCE ANALYSIS

In this section, we first conduct detailed accuracy anal-
ysis and test for our schemes, and then conduct specific
performance analysis, and extensive experimental tests for
IndexBuid, TokenGen and Query. The whole experiments
are carried out by using C++ programming language on 64-bit
Windows 10 system and completed on Intel(R) Core(TM)
i7-10700 CPU @2.90GHz server.

A. Accuracy Analysis

We use CSC-BF, an improved Bloom filter, to build index.
Thus, the accuracy of our schemes is mainly affected by the
false positives of CSC-BF.

We first introduce the false positives of traditional Bloom
filter. For q /∈ S, the Bloom filter may incorrectly report q ∈ S,
which leads to false positives due to its corresponding k bits
h0(q), . . . , hk−1(q) may be set as 1 by other elements. If m
is very large, the false positive rate of Bloom filter incorrectly
reporting q ∈ S can be approximately calculated as

ϵb f (m, k, |S|) ≈ (1− (1−
1
m

)k|S|)k
≈ (1− e−k|S|/m)k,

where |S| represents the number of elements in set S.
For a query element q existing in v sets out of n sets
{S1, . . . , Sn}, i.e., v = |Mq |. For a set Si , i ∈ {1, . . . , n} \Mq ,

  



TABLE III
LENGTH OF A CSC-BF INDEX WHEN FALSE POSITIVE IS CLOSE TO 0

the false positive rate ϵ of CSC-BF incorrectly reporting q ∈ Si
is bounded as

ϵ ⪅ (1− (1− ϵb f (m, k,

n∑
i=1

|Si |))(1−
1
b
)v)r , (8)

where r ≥ 2 and ϵb f (m, k,
∑n

i=1 |Si |) is the false positive rate
of a Bloom filter with m bits, k hash functions and

∑n
i=1 |Si |

elements inserted [33].
For a more detailed analysis of CSC-BF false positives,

please refer to [33]. We can know that the main factors
causing false positives are the variable r , the length m of
CSC-BF, and the number b of partitions. Note that r and m
together determine the cost of IndexBuid, r and b together
determine the costs of TokenGen and Query. To provide the
mobile users with better LBS, we will use real dataset (USA
road network1) to test the conditions (i.e., r, b, m) when false
positives are close to 0, on condition that the overheads of
TokenGen and Query are as low as possible by varying the
size of dataset (i.e., n). Therefore, we take PSRQ+ as the
representative and show its experimental results in TABLE III.
Since the information that PSRQ needs to map to CSC-BF is
much less than that of PSRQ+, which also applies to PSRQ.

B. Theoretical Analysis

We analyze the theoretical complexities of PSRQ, PSRQ+,
PPBSKQ [24] and PPTR [29] in terms of computational
and storage overheads of IndexBuid, TokenGen and Query.
TABLE IV gives a specific theoretical complexity comparison
results of four schemes.

Both PSRQ and PSRQ+ use SHVE to encrypt each bit
of index. The difference is that PSRQ and PSRQ+ need to
map 1 and 8 Geohash codes corresponding to each object to
Bloom filter respectively. Without losing generality, we assume
that the size of each ciphertext bit is |X |. In IndexBuid
phase, the time complexity of PSRQ is O(n(k + r) + rm))

and its corresponding storage overhead is rm|X |, thus the
time complexity of PSRQ+ is O(8n(k + r) + rm) and its
corresponding storage overhead is rm|X |. In TokenGen
phase, the time complexities of PSRQ and PSRQ+ are both
O(kb), and their corresponding storage overheads are both
kb|X |. In Query phase, the total cost of set intersection and

1http://www.diag.uniroma1.it//challenge9/download.shtml

TABLE IV
COMPARISON OF PERFORMANCE ANALYSIS

TABLE V
COMPUTATIONAL OVERHEAD OF Query IN DIFFERENT DATASETS

union is O(((n−v)ϵ+v)r), so the time complexities of PSRQ
and PSRQ+ are both O(rb + ((n − v)ϵ + v)r).

PPBSKQ first inserts spatial data into Bloom filters to
generate indexes, then encrypts the indexes by using ASPE,
and finally calculates the inner product of encrypted indexes
to obtain query results. We assume that the length of a
Bloom filter is w, and the size of each ciphertext bit is |Y |.
In IndexBuid phase, the time complexity is O(nk+2nw2), and
its corresponding storage overhead is 2nw|Y |. In TokenGen
phase, the time complexity is O(k+2w2), and its correspond-
ing storage overhead is 2w|Y |. In Query phase, the total time
complexity is O(2nw).

PPTR first employs polynomial fitting technique to build
indexes, and then uses randomizable matrix multiplication
technology to encrypt them, in which the encryption keys are
(η + 8) × (η + 8) random invertible matrices. We assume that
the degree of polynomial fit is η and the size of each ciphertext
index is |Z |. In IndexBuid phase, the time complexity is
O(n(η + 8)3), and its corresponding storage overhead is n|Z |.
In TokenGen phase, the time complexity is O(2(η + 8)3), and
its corresponding storage overhead is 2|Z |. In Query phase,
the time complexity is O(2n(η + 8)3).

C. Experimental Evaluation

We use the real spatial dataset (USA road network1) to
conduct sufficient experiments to perform performance testing

  



Fig. 9. (1) Overhead of IndexBuid: (a) (b) (c) (d); (2) Overhead of TokenGen: (e) (f); (3) Overhead of Query: (g) (h).

Fig. 10. Accuracy test by varying m and k.

and detailed analysis on the IndexBuid, TokenGen and
Query phases of the PSRQ, PSRQ+, PPBSKQ [24], and
PPTR [29].

Note that, since four schemes have false positives, we will
test four schemes under the condition that the false positive
is close to 0, i.e., PSRQ and PSRQ+ is r = 4, b = 60 in
TABLE III, PPBSKQ is w = 200 and PPTR is η = 10.

IndexBuid. We first test the computational and storage
overheads of four schemes by varying the size of dataset
n. The test results are shown in Fig. 9 (a) (b). Then, let
n = 1 × 106, we test the computational and storage overheads
by varying the length of Bloom filter, i.e., for PSRQ and
PSRQ+, m1 = 3.5 × 107, m2 = 3.6 × 107, m3 = 3.7 ×
107, m4 = 3.8 × 107, m5 = 3.9 × 107, and for PPBSKQ,
w1 = 220, w2 = 240, w3 = 260, w4 = 280, w5 = 300. Note
that, PPTR is independent of the length of Bloom filter. The
test results are shown in Fig. 9 (c) (d).

TokenGen. We test the computational and storage over-
heads by varying the length of Bloom filter, i.e., for PSRQ
and PSRQ+, m1 = 3.5 × 107, m2 = 3.6 × 107, m3 = 3.7 ×
107, m4 = 3.8 × 107, m5 = 3.9 × 107, and for PPBSKQ,
w1 = 220, w2 = 240, w3 = 260, w4 = 280, w5 = 300. Note
that, PPTR is independent of the length of Bloom filter. The
test results are shown in Fig. 9 (e) (f).

Query. We first test the computational overheads of four
schemes by varying the size of dataset n. The test results are
shown in Fig. 9 (g). Then, let n = 1 × 106, we test the
computational overhead by varying the length of Bloom filter,
i.e., the range of variation is the same as those in IndexBuid
and TokenGen. The test results are shown in Fig. 9 (h).

PSRQ+ is very efficient in the query process, which can
provide millisecond level query service and its query effi-
ciency is 100x higher than those of state-of-the-art solutions.
To further prove the efficiency and practicality of PSRQ+

in practice, we also conduct a large number of experimental
tests for Query phase over different real spatial datasets, such
as USA Road Network,1 Road Network of North America1

and Gowalla dataset.2 Then, We set r = 4, b = 60, w =

200 and η = 10 to test the computational overhead of
PSRQ, PSRQ+, PPBSKQ [24], and PPTR [29] under dif-
ferent real spatial datasets. We can see from the results in
TABLE V that the performance of PSRQ+ is roughly the
same under three different real spatial datasets, i.e., the perfor-
mance of PSRQ will not be significantly affected by various
datasets.

To further prove the accuracy of our schemes, let
n = 1 × 106, we change the length of the Bloom filter, where
k = 5, and the number of hash functions, where m = 3 × 107,
to test the following schemes: (I) SHVE encrypts the tradi-
tional Bloom filter (i.e., r = 1, b = 0); (II) SHVE encrypts
CSC-BF (i.e., our schemes). The results are shown in Fig. 10.

VIII. CONCLUSION

In this paper, we first propose an efficient PrivacyPreserving
Spatial Range Query (PSRQ) scheme by skillfully combin-
ing Geohash algorithm with CSC-BF and SHVE, which not
only greatly reduces the computational cost of generating

2http://snap.stanford.edu/data/loc-Gowalla.html
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token but also speeds up the query efficiency on large-
scale dataset. Then, we design a CBF structure, which can
confuse the inclusion relationship of traditional Bloom filter.
Finally, we propose a more practical enhanced scheme PSRQ+

by using CBF and converting the spatial location as a set
containing 8 Geohash codes, which supports more query
ranges and achieves adaptive security. In addition, we give
formal security analysis to prove that PSRQ is secure against
IND-CPA and PSRQ+ achieves adaptive security, and conduct
extensive experimental tests to demonstrate that our schemes
using million-level dataset improve the query efficiency by
100x compared with previous schemes. As part of our future
work, we will try to increase the query range diversity, not just
limited to the range of a few precisions provided by Geohash
algorithm.

REFERENCES

[1] J. Chen, K. He, Q. Yuan, M. Chen, R. Du, and Y. Xiang, “Blind
filtering at third parties: An efficient privacy-preserving framework for
location-based services,” IEEE Trans. Mobile Comput., vol. 17, no. 11,
pp. 2524–2535, Nov. 2018.

[2] C. Yang, Z. Jia, and S. Li, “Privacy-preserving proximity detection
framework for location-based services,” in Proc. Int. Conf. Netw. Netw.
Appl. (NaNA), Oct. 2021, pp. 99–106.

[3] Q. Huang, J. Du, G. Yan, Y. Yang, and Q. Wei, “Privacy-preserving
spatio-temporal keyword search for outsourced location-based ser-
vices,” IEEE Trans. Services Comput., vol. 15, no. 6, pp. 3443–3456,
Nov. 2022, doi: 10.1109/TSC.2021.3088131.

[4] R. Li and A. X. Liu, “Adaptively secure conjunctive query processing
over encrypted data for cloud computing,” in Proc. IEEE 33rd Int. Conf.
Data Eng. (ICDE), Apr. 2017, pp. 697–708.

[5] Q. Tong, Y. Miao, J. Weng, X. Liu, K. R. Choo, and R. H. Deng, “Ver-
ifiable fuzzy multi-keyword search over encrypted data with adaptive
security,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 5386–5399,
May 2023, doi: 10.1109/TKDE.2022.3152033.

[6] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proc. Int. Conf. Manage. Data
(SIGMOD), 2009, pp. 139–152.

[7] F. Song, Z. Qin, L. Xue, J. Zhang, X. Lin, and X. Shen, “Privacy-
preserving keyword similarity search over encrypted spatial data in cloud
computing,” IEEE Internet Things J., vol. 9, no. 8, pp. 6184–6198,
Apr. 2022, doi: 10.1109/JIOT.2021.3110300.

[8] J. R. Bitner, G. Ehrlich, and E. M. Reingold, “Efficient generation of the
binary reflected gray code and its applications,” Commun. ACM, vol. 19,
no. 9, pp. 517–521, Sep. 1976.

[9] A. X. Liu and F. Chen, “Privacy preserving collaborative enforcement
of firewall policies in virtual private networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 5, pp. 887–895, May 2011.

[10] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Proc. Theory Cryptogr. Conf. (TCC), 2007,
pp. 535–554.

[11] P. Wang and C. V. Ravishankar, “Secure and efficient range queries on
outsourced databases using R̂-trees,” in Proc. IEEE 29th Int. Conf. Data
Eng. (ICDE), Apr. 2013, pp. 314–325.

[12] X. Wang, J. Ma, and X. Liu, “Enabling efficient and expressive spatial
keyword queries on encrypted data,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Jun. 2021, pp. 2670–2674.

[13] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions,
applications, and lower bounds,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), Oct. 2016, pp. 1167–1178.

[14] E. Shi, J. Bethencourt, T.-H.-H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2007, pp. 350–364.

[15] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: Scalable multi-
dimensional range search over encrypted cloud data with tree-based
index,” in Proc. 9th ACM Symp. Inf., Comput. Commun. Secur. (ASIA
CCS), Jun. 2014, pp. 111–122.

[16] B. Wang, M. Li, H. Wang, and H. Li, “Circular range search on
encrypted spatial data,” in Proc. IEEE 35th Int. Conf. Distrib. Comput.
Syst. (CNS), Jun. 2015, pp. 794–795.

[17] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in Proc. Theory Cryptogr. Conf. (TCC), 2009, pp. 457–473.

[18] H. Zhu, R. Lu, C. Huang, L. Chen, and H. Li, “An efficient privacy-
preserving location-based services query scheme in outsourced cloud,”
IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7729–7739, Sep. 2016.

[19] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. Theory Cryptogr. Conf. (TCC), 2005, pp. 325–341.

[20] Z. Zheng, Z. Cao, and J. Shen, “Practical and secure circular range
search on private spatial data,” in Proc. IEEE 19th Int. Conf. Trust,
Secur. Privacy Comput. Commun. (TrustCom), Dec. 2020, pp. 639–645.

[21] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neil, “Order-preserving
symmetric encryption,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn. (EUROCRYPT), 2009, pp. 224–241.

[22] L. Li, R. Lu, and C. Huang, “EPLQ: Efficient privacy-preserving
location-based query over outsourced encrypted data,” IEEE Internet
Things J., vol. 3, no. 2, pp. 206–218, Apr. 2016.

[23] B. Wang, M. Li, and H. Wang, “Geometric range search on encrypted
spatial data,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 4,
pp. 704–719, Apr. 2016.

[24] N. Cui, J. Li, X. Yang, B. Wang, M. Reynolds, and Y. Xiang, “When
geo-text meets security: Privacy-preserving Boolean spatial keyword
queries,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019,
pp. 1046–1057.

[25] Y. Luo, S. Fu, D. Wang, M. Xu, and X. Jia, “Efficient and generalized
geometric range search on encrypted spatial data in the cloud,” in
Proc. IEEE/ACM 25th Int. Symp. Quality Service (IWQoS), Jun. 2017,
pp. 1–10.

[26] X. Li, Y. Zhu, J. Wang, and J. Zhang, “Efficient and secure multi-
dimensional geometric range query over encrypted data in cloud,”
J. Parallel Distrib. Comput., vol. 131, pp. 44–54, Sep. 2019.

[27] X. Wang et al., “Search me in the dark: Privacy-preserving Boolean
range query over encrypted spatial data,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 2253–2262.

[28] Y. Yang, Y. Miao, K. R. Choo, and R. H. Deng, “Lightweight privacy-
preserving spatial keyword query over encrypted cloud data,” in Proc.
IEEE 42nd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2022,
pp. 392–402.

[29] C. Zhang, L. Zhu, C. Xu, J. Ni, C. Huang, and X. Shen, “Location
privacy-preserving task recommendation with geometric range query in
mobile crowdsensing,” IEEE Trans. Mobile Comput., vol. 21, no. 12,
pp. 4410–4425, Dec. 2022, doi: 10.1109/TMC.2021.3080714.

[30] R. Guo, B. Qin, Y. Wu, R. Liu, H. Chen, and C. Li, “LuxGeo:
Efficient and secure enhanced geometric range queries,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 2, pp. 1775–1790, Feb. 2023, doi:
10.1109/TKDE.2021.3093909.

[31] N. Davis, G. Raina, and K. Jagannathan, “Taxi demand forecasting:
A HEDGE-based tessellation strategy for improved accuracy,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3686–3697, Nov. 2018.

[32] R. Gelda, K. Jagannathan, and G. Raina, “Forecasting supply in Voronoi
regions for app-based taxi hailing services,” in Proc. 6th IEEE Int. Conf.
Adv. Logistics Transp. (ICALT), Jul. 2017, pp. 47–52.

[33] R. Li et al., “Building fast and compact sketches for approximately
multi-set multi-membership querying,” in Proc. Int. Conf. Manage. Data
(SIGMOD), Jun. 2021, pp. 1077–1089.

[34] S. Lai et al., “Result pattern hiding searchable encryption for conjunctive
queries,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
Oct. 2018, pp. 745–762.

[35] W. Lin, K. Wang, Z. Zhang, and H. Chen, “Revisiting security risks
of asymmetric scalar product preserving encryption and its variants,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 1116–1125.

  

http://dx.doi.org/10.1109/TSC.2021.3088131
http://dx.doi.org/10.1109/TKDE.2022.3152033
http://dx.doi.org/10.1109/JIOT.2021.3110300
http://dx.doi.org/10.1109/TMC.2021.3080714
http://dx.doi.org/10.1109/TKDE.2021.3093909

