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Abstract—With the rapid development of geographic location
technology and the explosive growth of data, a large amount of
spatial data is outsourced to the cloud server for reducing the
local high storage and computing burdens, but at the same time
causes security issues. Thus, extensive privacy-preserving spatial
data query schemes have been proposed. Most of the existing
schemes use Asymmetric Scalar-Product-Preserving Encryption
(ASPE) to encrypt data, but ASPE has proven to be insecure
against known plaintext attack. And the existing schemes require
users to provide more information about query range and thus
generate a large amount of ciphertexts, which causes high storage
and computational burdens. To solve these issues, based on en-
hanced ASPE designed in our conference version, we first propose
a basic Privacy-preserving Spatial Data Query (PSDQ) scheme by
using a new unified index structure, which only requires users to
provide less information about query range. Then, we propose an
enhanced PSDQ scheme (PSDQ+) by using Geohash-based R-tree
structure (called GR-tree) and efficient pruning strategy, which
greatly reduces the query time. Formal security analysis proves that
our schemes achieve Indistinguishability under Chosen Plaintext
Attack (IND-CPA), and extensive experiments demonstrate that
our schemes are efficient in practice.

Index Terms—Cloud server, privacy-preserving, query range,
security issues, spatial data.

Manuscript received 21 June 2022; revised 2 May 2023; accepted 1 June
2023. Date of publication 5 June 2023; date of current version 27 Novem-
ber 2023. This work was supported in part by the National Natural Science
Foundation of China under Grant 62072361, in part by the Key Research
and Development Program of Shaanxi under Grant 2022GY-019, in part by
Shaanxi Fundamental Science Research Project for Mathematics and Physics
under Grant 22JSY019, in pat by the National Natural Science Foundation of
China under Grant 62125205, in part by Fundamental Research Funds for the
Central Universities under Grant QTZX23091, in part by Fellowship of China
Postdoctoral Science Foundation under Grant 2022T150507, and in part by the
Opening Project of Intelligent Policing Key Laboratory of Sichuan Province
under Grant ZNJW2023KFMS002. Recommended for acceptance by X. Xiao.
(Corresponding author: Zhiquan Liu.)

Yinbin Miao and Yutao Yang are with the School of Cyber Engineering, Xid-
ian University, Xi’an 710071, China (e-mail: ybmiao@xidian.edu.cn; yangyu-
tao_13@163.com).

Xinghua Li is with the State Key Laboratory of Integrated Service Networks,
School of Cyber Engineering, Xidian University, Xi’an 710071, China, and
also with the Engineering Research Center of Big data Security, Ministry of
Education, Xi’an 710071, China (e-mail: xhli1@mail.xidian.edu.cn).

Linfeng Wei is with the School of Cyber Security, Jinan University,
Guangzhou 510632, China (e-mail: twei@jnu.edu.cn).

Zhiquan Liu is with the College of Cyber Security, Jinan University,
Guangzhou 510632, China (e-mail: zqliu@vip.qq.com).

Robert H. Deng is with the School of Information Systems, Singapore
Management University, Singapore 178902 (e-mail: robertdeng@smu.edu.sg).

Digital Object Identifier 10.1109/TKDE.2023.3283020

I. INTRODUCTION

W ITH the increasing popularity of positioning de-
vices in the mobile Internet, Location Based Services

(LBS) [1], [2], [3] are becoming more and more popular. The
goal of LBS is to find Points of Interest (PoIs) that satisfy
the user’s query requirements. Generally, PoIs contain spatial
location information and keywords, which are also called as
spatial data objects. With the continuous enrichment of query
services, spatial data query is also widely used in various fields
such as spatial crowdsourcing [4], task recommendation [5],
ride service [6], smart city [7], and epidemic prevention and
control [8]. Due to the explosive growth of data, more and more
data owners tend to outsource their spatial data to cloud servers
for reducing local storage and computing burdens, but this oper-
ation is subject to privacy leakages. Thus, the privacy-preserving
spatial data query has been extensively studied. However, there
are still two issues to be solved.

The first issue is that most of the existing privacy-preserving
spatial data query schemes require users to provide more in-
formation about the query range, which incurs huge compu-
tational and storage overheads on query users. For example,
for rectangle range search [9], [10], [30], [35], users need to
provide at least two 2-dimensional coordinates of the lower
left corner and the upper right corner of the rectangle, which
results in two ciphertexts for two coordinates respectively. And
for geometric range query implemented by polynomial fitting
technology [4], [23], [34], it requires users to provide an accurate
closed curve formed by the query area, which also incurs two
ciphertexts for the upper half and the lower half of the closed
curve respectively.

The second issue is that many previous privacy-preserving
spatial data query solutions [5], [13], [30], [35] based on Asym-
metric Scalar-Product-Preserving Encryption (ASPE) [11] do
not achieve higher security as ASPE is insecure against known-
plaintext attack [12]. Although there are already some schemes
to enhance the security of ASPE, there are still some problems.
For example, [13] proposed an enhanced version of ASPE by
adding Laplacian noise after the index vector, namely ASPE
with Noises (ASPEN), which is secure against chosen-plaintext
attack and known-plaintext attack. However, this scheme will
lead to inaccurate query results as the scalar product of ASPEN
is disturbed by noises.

To solve the above issues, our conference version [14] pro-
posed an Enhanced ASPE (EASPE) scheme by adding some
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random numbers and a random permutation, which can achieve
Indistinguishability under Chosen Plaintext Attack (IND-CPA)
and guarantee that query accuracy is not affected. Based on EA-
SPE, [14] first proposed a naive Spatial Keyword Query (SKQ)
scheme by using Geohash algorithm, which only requires users
to provide less information about query range. However, SKQ
incurs huge computational and storage overheads. Then, [14]
proposed an Lightweight SKQ (LSKQ) scheme by designing
an efficient unified index structure for spatial range and mul-
tiple keywords, which greatly reduces the computational and
storage costs of SKQ in all phases. However, LSKQ leads to
false positives. To further improve solutions in our conference
version, in this paper, we first design a new unified index con-
struction method to improve the accuracy of [14], which dose not
cause false positive. Then, we propose a Geohash-based R-tree
structure (called GR-tree) and an efficient pruning strategy to
further reduce query time. Compared with the solutions in our
conference version [14], this paper has new contributions shown
as follows:

1) We use Geohash algorithm to achieve spatial range query,
which only requires users to provide less information
about query range. And we first propose a linear Privacy-
preserving Spatial Data Query (PSDQ) scheme by using
a new unified index structure for spatial range and multi-
keyword, which dose not cause any loss of accuracy.

2) Then, we propose a more efficient PSDQ scheme
(PSDQ+) by using Geohash-based R-tree structure
(called GR-tree) and pruning strategy based on both spa-
tial range and keywords, which achieves the sublinear
search complexity.

3) We give the formal security analysis to prove that our
schemes are secure against IND-CPA, and conduct ex-
tensive experiments to demonstrate that our schemes are
efficient in practice, especially the query efficiency of
PSDQ+ is about 10x faster than that of our conference
version.

II. RELATED WORK

To achieve privacy-preserving spatial data query, we will
mainly focus on the following topics such as secure spatial range
query, secure keyword query, and secure spatial keyword query.

Privacy-Preserving Spatial Range Query: Spatial range query
aims to find all points within the query range. To search for
rectangular areas, Wang et al. [15] proposed a hierarchical
encrypted index (R̂-tree) by using ASPE, which enables secure
and efficient range queries over encrypted database. But this
scheme only supports single dimension range query. So Wang
et al. [16] designed a tree-based public key multi-dimensional
range search encryption scheme by combining R-tree and hid-
den vector encryption [17] to support multi-dimensional rectan-
gular range query. To search for circular areas, Wang et al. [18]
leveraged Shen-Shi-Waters [19] to build a symmetric-key circle
predicate encryption scheme, which can verify whether a point
is inside a circle by using a number of concentric circles. To
reduce the computational and storage overheads of [18], Zheng
et al. [20] devised a secure circular range search system by

using ASPE, Order-Preserving Encryption (OPE) [21], [22]
and R-tree structure. With continuous research, it has been
realized to query arbitrary geometric regions, including but not
limited to rectangles and circles. For example, Zhang et al. [23]
employed the polynomial fitting technique [24] to fit query
range to achieve accurate arbitrary geometric range query, and
used Randomizable Matrix Multiplication (RMM) to protect
data privacy. They propose a personalized privacy protection
index for location-based services, which can ensure quantitative
privacy protection while realizing information sharing.

Privacy-Preserving Keyword Query: Keyword query aims
to find objects related to query keywords. Boneh et al. [25]
proposed a Public Key Encryption (PKE) scheme with key-
word search over encrypted data, which enables the server to
test whether a specific keyword is included in the encrypted
keyword set without revealing any other information. But this
scheme just supports single keyword query. To search multi-
ple keywords, Liu et al. [26] proposed a privacy-preserving
multi-keyword searchable encryption scheme based on a subset
decision mechanism, which can determine whether an input set
is a subset of another input set. In addition, Tang et al. [27]
first proposed a Personalized Privacy Protection Index (PPI) to
ensure quantitative privacy protection, then proposed a PPI ab-
stract method [28], which can quantitatively control the privacy
leakage for multi-keyword document query. And Tang et al. [29]
proposed a novel authentication framework, which achieves the
lightweight verification of data version freshness on massive
data update streams.

Privacy-Preserving Spatial Keyword Query: Spatial keyword
query aims to find objects that satisfy both spatial location and
keywords of the query. Cui et al. [30] proposed a novel spatial
textual Bloom filter encoding method by mapping spatial and
textual information into bloom filters, and encrypted them by us-
ing ASPE. After that, they used the inner-product based match-
ing operation to answer query without decryption. However,
the scheme can only search the rectangular range. To support
searching for more shapes, Wang et al. [31] used Gray code [32]
and bitmap to encode spatio-textual objects into uniform in-
dex vectors, and used Symmetrickey Hiden Vector Encryption
(SHVE) [33] to encrypt them for secure vector matching. Then,
they designed a Bitmap Quad-tree (BQ-tree) to further improve
query performance over large scale datasets. However, the search
shapes that [31] can support are still limited. To further support
arbitrary geometric range query, Yang et al. [34] used the poly-
nomial fitting technique and vector space model to encode the
spatial location and keyword into a uniform index, and then
used Randomizable Matrix Multiplication (RMM) technique to
encrypt index matrix. In the query process, the cloud server finds
the object that satisfies the query requirement by calculating the
trace of matrix product. To sort the results by keyword similarity,
Tong et al. [35] designd a comparable product encoding strategy
to encode spatio-textual objects as a unified index, and used
ASPE to encrypt them, which allows the cloud server to check
whether the object falls in the query range and to deduce its
textual similarity simultaneously.

However, the above solutions cannot solve our problems
simultaneously. Therefore, we design a new unified index



TABLE I
COMPARISON BETWEEN PREVIOUS SCHEMES AND OUR SCHEMES

structure to propose a Privacy-Preserving Spatial Fata Query
(PSDQ) scheme by using Geohash algorithm, which only re-
quires users to provide less information about the query range.
The challenge issue of PSDQ is how to convert Geohash algo-
rithm and multi-keyword query into a unified index and achieve
spatial data query by calculating inner products. Then, we design
a GR-tree structure based on Geohash algorithm and R-tree,
which avoids the range intersection problem between non-leaf
nodes in R-tree. We encode each node of GR-tree as a unified
index, and design a pruning strategy based on both spatial in-
formation and keywords, which achieves spatial keyword query
with sub-linear search complexity. The comparison between our
schemes and the previous scheme is shown in Table I.

III. PRELIMINARIES

In this section, we mainly review some related background
knowledge, including Geohash algorithm [36], [37], [38], [39],
Enhanced Asymmetric Scalar-Product-Preserving Encryption
(EASPE) [14] and R-tree [40], [41].

A. Geohash Algorithm

Geohash algorithm is a geocoding method that recursively
divides the geographic space into smaller grids, and converts the
two-dimensional latitude and longitude of each grid into Geo-
hash code according to Base32. Each Geohash code represents
a specific rectangular region on the earth, as shown in Fig. 1.

The Geohash code provides arbitrary precision. The length
of the Geohash code gets shorter as the range increases. Given
a longer Geohash code, we can get a more precise geographic
location. For example, in Fig. 1, the red dot (8, 13) can be de-
noted as “s33jxb67” with±19 m rectangular range, “s33jxb6”
with ±76 m, or “s33jxb” with ±610 m. The precision of each
Geohash code is shown in Table II.

Therefore, we can determine the distance between two points
by matching the Geohash codes. For example, in Fig. 1, the
Geohash codes of the red dot and the green dot have the same
prefix “s33jxb6”, then we can know that the green dot is within
±76 m of the red dot. Therefore, we can judge whether the
spatial point is within the query range of the query point by

Fig. 1. An example of Geohash coding.

TABLE II
ACCURACY OF GEOHASH CODING

judging the number of the same prefix of the two Geohash
codes. Moreover, when the length of the Geohash code is 8, the
accuracy is about 19 meters, then an 8-character Geohash code
can accurately correspond to a spatial point in the real world.

B. Enhanced Asymmetric Scalar-Product-Preserving
Encryption (EASPE)

ASPE [11] is an important technology for similarity search
over encrypted data, which can calculate the inner product of two
vectors without revealing privacy. However, ASPE is insecure
against known-plaintext attack as shown in [12]. Therefore, we
enhanced the security of ASPE in our conference version [14].

Assuming that p and q are two d-dimensional vectors, the
specific structure of EASPE is as follows:
� EASPE.KeyGen(1ζ)→ SK: Given a security parameter ζ,

this algorithm generates a secret key SK

SK = {s,M1,M2, π, r1, r2, r3, r4, r5, r6},

where s is a random (d+ 3)-dimensional bit vector, M1

and M2 are two random (d+ 3)× (d+ 3) invertible
matrices, π : R(d+3) → R(d+3) is a random permutation,
r1, r2, r3, r4, r5 and r6 are random numbers and satisfy
r1r4 + r2r5 + r3r6 = 0.

� EASPE.Enc(p, SK) → C: Given the secret key SK and
d-dimensional vector p, this algorithm first extends p as a
(d+ 3)-dimensional vector pv = (p, r1, r2, r3) and then
permutes it as p̂v = π(pv) by π. Finally, this algorithm
encrypts p̂v as C by (1)

C = (MT
1 p̂v

′,MT
2 p̂v

′′), (1)



where p̂v is split into two vectors p̂v
′, p̂v

′′ by using the bit
vector s, which is shown by (2){

p̂v
′[κ] = p̂v

′′[κ] = p̂v[κ], ifs[κ] = 0;
p̂v

′[κ] + p̂v
′′[κ] = p̂v[κ], ifs[κ] = 1.

(2)

� EASPE.TrapGen(q, SK) → TQ: Given the secret key SK
and d-dimensional vector q, this algorithm first extends
q as a (d+ 3)-dimensional vector qv = (q, r4, r5, r6)
and then permutes it as q̂v = π(qv) by π. Finally, this
algorithm encrypts q̂v as as TQ by (3)

TQ = (M−1
1 q̂v

′,M−1
2 q̂v

′′), (3)

where q̂v is split into two vectors q̂v
′, q̂v

′′ by using the bit
vector s, which is shown by (4){

q̂v
′[κ] + q̂v

′′[κ] = q̂v[κ], ifs[κ] = 0;
q̂v

′[κ] = q̂v
′′[κ] = q̂v[κ], ifs[κ] = 1.

(4)

� EASPE.Query(C, TQ) → pT · q: This algorithm calcu-
lates the inner product of C and TQ by (5)

CT · TQ = ((p̂v
′)TM1) · (M−1

1 q̂v
′)

+ ((p̂v
′′)TM2) · (M−1

2 q̂v
′′)

= pT
v · qv = pT · q. (5)

Compared with the ASPE scheme, EASPE scheme introduces
three random numbers and a random permutation π before
encryption. It is worth noting that this process requires the data
owner and the data user to preprocess the vectors in practice,
and take the confused vectors p̂v and q̂v as the original plaintext
vectors.

C. R-Tree

The function of R-tree is to recursively classify spatial data
based on the distance between spatial points. In R-tree, there
are two types of nodes, namely leaf nodes and internal nodes.
Each leaf node represents a spatial data, and each internal node
represents a range composed of a Minimum Bounding Rectangle
(MBR), note that the child nodes of internal nodes must be within
the range. The search ofR-tree can be divided into the following
two phases.

1) Filtration Phase: This phase starts from the root node
and traverses the entire tree, and its goal is to find all
deepest internal nodes intersected with the given searching
rectangle. If such internal nodes exist, this phase adds all
leaf nodes of the internal nodes to the candidate set and
moves to the next step; otherwise, it returns null.

2) Verification Phase: This phase checks whether each node
in the candidate set meets the query requirements in turn.
If such nodes exist, it returns them to the user; otherwise,
it returns null.

Fig. 2 shows an example of R-tree. All spatial data points are
first divided into MBRs sequentially and then formed an R-tree.
Assume that o1 satisfies the query requirements, the filtration
phase first traverses from top to bottom and finds the deepest
intersecting internal node S4, and then takes the child nodes of
S4 as candidate nodes. The verification phase verifies whether

Fig. 2. A example of R-tree.

Fig. 3. System model of our schemes.

the candidate nodes o1 and o2 meet the query requirements.
Finally, o1 is returned to the user.

IV. PROBLEM FORMULATION

In this section, we formalize our system model, problem
definition, threat model and design goals.

A. System Model

In this article, we consider a cloud data outsourcing scenario.
As depicted in Fig. 3, the system model of our schemes consists
of three entities, namely data owner, data user and cloud server.
The role of each entity is shown as follows:
� Data owner: The data owner (individual or organization)

owns the spatial dataset and is responsible for building
the searchable index for each object in the dataset, and
encrypting the spatial data objects and indexes before
outsourcing them to the cloud server.

� Data user: The authorized data user has access to the
outsourced spatial data. He first encrypts the query content
as trapdoor, and then submits the trapdoor to the cloud
server.

� Cloud server: The cloud server which has unlimited stor-
age and computing capabilities, stores encrypted objects
and indexes outsourced by the data owner, and provides
query services for data users.

The data owner first builds an index for each spatial data object
in dataset D, and then outsources the encrypted spatial data
objects and indexes to the cloud server (step 1©, 2©). The data
user is authorized after registering himself with the data owner
(step 3©). When the data user wants to make a search request
Q, he/she encrypts the query content as a trapdoor, and submits
the trapdoor to the cloud server (step 4©). After receiving the
trapdoor, the cloud server finds the spatial data objects that meet



Fig. 4. A example of spatial data query.

the data user’s query requirements and returns them to the data
user (step 5©).

B. Problem Definition

The problem of spatial data query is to find objects that are
within the query range and contain all query keywords. As shown
in the example in Fig. 4, the red area is the query range and the
query keywords are {w2, w5}, so o2 is the result of query.

Let W = {w1, w2, . . . , wm} be a total keyword set, D =
{o1, o2, . . . , on} be a spatial dataset owned by the data owner.
Each object oi in D has a unique identity idi and can be
represented as tuple (oi.l, oi.k), where oi.l = (xi, yi) is spatial
geographic location, oi.k = {w1, w2, . . . , wg} ⊆ W is a set of
keywords. We first give the definition of spatial data query as
follows:

Definition 1: (Spatial Data Query) Given a query request Q
= {R,Q.k}, whereR represents the query range (i.e., rectangle)
and Q.k = {w′

1, w
′
2, . . . , w

′
k} ⊆ W represents a set of query

keywords, SDQ is to retrieve a subset Result = {id1, id2, . . .,
idh} fromD, such that∀ide ∈ Result, 1 ≤ e ≤ h, oe.l ∈ R and
Q.k ⊆ oe.k.

Our conference version [14] proposed a naive Spatial Key-
word Query (SKQ) scheme and Lightweight SKQ (LSKQ)
scheme to solve spatial data query problem by using Geohash
algorithm, where the query range R = (Q.l, r) consists of a
coordinateQ.l and a number r. However, SKQ needs to generate
8 index vectors for each object oi or query request Q, which
incurs high computation and storage overheads. Although LSKQ
only needs to generate one index vector for oi or Q to improve
efficiency, it leads to false positives when mapping each Geohash
code to a binary index vector based on Base32. To eliminate the
false positive of LSKQ in our conference version, we attempt
to design a new unified index construction method, which does
not have any loss of accuracy.

C. Threat Model

Consistent with most of previous schemes, the cloud server
in our schemes is considered to be honest-but-curious, which
honestly performs the established protocol but may be curious
to collect or analyze the meaningful information. Data owner and
data user are assumed to be fully trusted. They execute specified
operations properly and do not collude with the cloud server and
unauthorized data users. In addition, the authorization, access
and transmission channels between all entities are also assumed
to be secure.

� Ciphertext-Only-Attack (COA) Model: In this model, the
cloud server knows the ciphertexts of all the outsourced
spatial data and can observe the encrypted trapdoors, but
cannot obtain the corresponding plaintext.

� Chosen-Plaintext-Attack (CPA) Model: In this model, the
cloud server can access object ciphertexts corresponding to
plaintexts of its choice in addition to knowing the encrypted
spatial data, index and trapdoor.

D. Design Goals

To achieve a secure spatial keyword query, our schemes
should satisfy the following requirements. Note that, access
pattern privacy means that the cloud server does not know
the specific location in memory of the encrypted index being
accessed during the search process, it is beyond the scope of
our discussion and will be solved as an important issue in future
work.
� Data Privacy: The plaintext dataset should not be leaked to

the cloud server and unauthorized entities. And they should
not obtain any information about these data.

� Trapdoor Privacy: Only authorized data users can generate
valid trapdoors for search queries, but it requires that the
cloud server cannot get the actual query content or infer
the query over the trapdoors.

� Trapdoor Unlinkability: The cloud server should not be
able to associate one trapdoor with another, which means
that it cannot determine whether two different trapdoors
are generated from the same query.

� Result Privacy: The query results returned by the cloud
server should not be disclosed to others, while data users
can obtain the real data that meets the query conditions.

V. OUR PROPOSED SCHEME

In this section, we first briefly review the problems of our
conference version [14] and introduce the main idea to solve
these problems. Then, we propose a linear Privacy-Preserving
Spatial Data Query (PSDQ) scheme by designing a new uni-
fied index structure. And we design a Geohash-based R-tree
structure, called GR-tree, and propose a more efficient Privacy-
Preserving Spatial Data Query (PSDQ+) scheme to improve
query efficiency.

A. Main Idea

The existing spatial data query schemes require data users to
provide more information about the query range and generate
a large number of ciphertexts, resulting in huge storage and
computational overheads. To solve this problem, our conference
version [14] first proposed a naive scheme (i.e., SKQ) by sim-
ply combining Geohash algorithm with EASPE, which needs
to generate 8 indexes for each object oi or query request Q.
Then, [14] improved the SKQ to construct a Lightweight scheme
(i.e., LSKQ), which only needs to generate one index for each oi
or Q to greatly reduce the computational and storage overheads.
Specifically, in the data encryption phase, the data owner first
maps the geographic location oi.l = (xi, yi) of the object oi



Fig. 5. An example of LSKQ leading false positives.

as 8-character Geohash code by using Geohash algorithm and
encodes the Geohash code as an 8-dimensional order vector
oi.l according to Base32. Then, the data owner converts each
dimension ofoi.l as 5-bit binary vector {oi.lvj}1≤j≤8 to gener-
ate a (5× 8)-dimensional spatial vector oi.lv = {oi.lv1, . . . ,
oi.lv8}. For query request Q, the generation of query spatial
vector Q.lv is same as that of oi.lv. In the query process,
the cloud server determines whether the object oi is within the
query range by calculating the inner product of oi.lv and Q.lv.
However, LSKQ leads to false positives. For example, as shown
in Fig. 5, the Geohash code of o1 is “7777777” will be encoded as
o1.lv = (00111, 00111, 00111, 00111, 00111, 00111, 00111,
00111), and the Geohash code of o2 is “33333333” will be
converted as o2.lv = (00011, 00011, 00011, 00011, 00011,
00011, 00011, 00011). Suppose the Geohash code of query Q is
“333333”, it will be converted asQ.lv = (00011,00011, 00011,
00011, 00011, 00011, 00000, 00000), since o1.lv ·Q.lv =
o2.lv ·Q.lv, both o1 and o2 will be returned as the result, but
obviously o1 is not required by the data user.

To improve the accuracy of [14], we design a new index
structure to propose a Privacy-Preserving Spatial Data Query
(PSDQ) scheme, which will not cause false positives. Specif-
ically, in the data encryption phase, the data owner first maps
the geographic location oi.l = (xi, yi) of the object oi as an
8-character Geohash code by using Geohash algorithm and
encodes the Geohash code as an 8-dimensional order vec-
tor õi.l according to Base32. Then, the data owner converts
each dimension of õi.l as a 32-dimensional spatial vector
{oi.lvj}1≤j≤8 to generate a (32× 8)-dimensional spatial vec-
tor oi.lv = {oi.lv1, . . . ,oi.lv8}. And the data owner encodes
the keyword set oi.k of object oi as an m-dimensional textual
vector oi.kv. Thus, the data owner generates a data vector
oi.v = (oi.lv,oi.kv,−1) for each oi, and then uses EASPE
to encrypt it as Ci. In the trapdoor generation phase, for query
request Q = {R = (Q.l, r), Q.k}, the data user first maps Q.l
as t-character Geohash code according to r and converts it as
an t-dimensional order vector Q̃.l. Then, the data user encodes
each dimension of Q̃.l as 32-dimensional query spatial vectors
{Q.lvj}1≤j≤t. If t < 8, each dimension of remaining (8− t)
32-dimensional query spatial vectors is set as 0. Finally, the
data user converts R as a (32× 8)-dimensional vector Q.lv =
(Q.lv1, . . . ,Q.lv8). And the data user converts the query key-
word set Q.k as an m-dimensional vector Q.kv. Thus, the data
user generates a query vector Q.v = (Q.lv,Q.kv, t+ k), and
then uses EASPE to encrypt it as trapdoorTQ. In the query phase,
the cloud server can determine whether the object oi meets the
query conditions by calculating the inner product of each Ci and

Fig. 6. An example of converting spatial location as vectors.

TQ. However, PSDQ is linear and its query complexity is O(n),
which leads to huge computational overhead.

To improve the query efficiency of PSDQ, we use the proper-
ties of Geohash code and R-tree to design a Geohash-based
R-tree, called GR-tree. Then, we propose a more efficient
PSDQ scheme (PSDQ+) based on GR-tree, which achieves the
sublinear search complexity. The details about GR-tree will be
presented in Section V-C.

B. Privacy-Preserving Spatial Data Query (PSDQ)

We first design a new index structure by using Geohash al-
gorithm, then propose a Privacy-Preserving Spatial Data Query
(PSDQ) scheme.

Framework: PSDQ includes the following four phases:
KeyGeneration, DataEncryption, TrapdoorGeneration and
Query. In KeyGeneration phase, the data owner generates en-
cryption key. In DataEncryption phase, the data owner encodes
each spatial data object oi as an index vector oi.v and en-
crypts oi.v as Ci, then outsources Ci to the cloud server. In
TrapdoorGeneration, the data user encodes the query request Q
as vectorQ.v and encrypts it as a trapdoor TQ, then submits it to
the cloud server. In Query phase, the cloud server calculates the
inner product of the encrypted index Ci and trapdoor TQ, then
returns the spatial data object whose inner product value is equal
to 0 to the data user. The specific construction is as follows.

Let W = {w1, w2, . . . , wm} be a total keyword set and D =
{o1, o2, . . . , on} be a spatial dataset. Each object oi has a unique
identity idi and can be represented as tuple (oi.l, oi.k), where
oi.l = (xi, yi) represents spatial geographic location, oi.k =
{w1, w2, . . . , wg} ⊆ W represents a set of keywords owned by
the object oi.
KeyGeneration. The data owner generates a encryption key

SK by calling EASPE.KeyGen, where s is a random (260 +
m)-dimensional binary vector, M1 and M2 are two random
(260 +m)× (260 +m) invertible matrices.

DataEncryption. The details are shown in Algorithm 1. For
each object oi in D, the data owner first maps oi.l as an
8-character Geohash code by using Geohash algorithm and
encodes the Geohash code as an 8-dimensional order vector õi.l
according to Base32. Then, the data owner converts each dimen-
sion of õi.l as a 32-dimensional spatial vector {oi.lvj}1≤j≤8.
The specific process of spatial vectors is shown in Fig. 6.
Given a point o.l = (8, 13), the data owner first encodes it as



Algorithm 1: Data Encryption.

a Geohash code “s33jxb67”, then generates the order vector
(24, 3, 3, 17, 29, 10, 6, 7). For example, the order of character
‘s’ in Base32 is 24, ‘3’ is 3. Finally, each dimension of the order
vector is converted as a spatial vector. For example, 24 is denoted
as (0, ..., 1, ..., 0), where only the 24-th position is set as 1.

Finally, the data owner converts spatial location oi.l of object
oi as a (32× 8)-dimensional spatial vector by (6)

oi.lv = (oi.lv1,oi.lv2, . . . ,oi.lv8). (6)

For the keyword set oi.k owned by the object oi, the data
owner converts oi.k as an m-dimensional vector oi.kv by (7)

oi.kv = (λ1, λ2, . . . , λm), (7)

where m is the size of W , and if wζ ∈ W is in oi.k, λζ = 1;
otherwise, λζ = 0. For example, given a total keyword set W =
{w1, w2, w3, w4, w5} and a keyword set o.k = {w2, w3, w5}
owned by object o, we can obtain o.kv = (0, 1, 1, 0, 1).

Then, the data owner generates a (32 ∗ 8 +m+ 1)-
dimensional data vector oi.v for each object oi by (8)

oi.v = (oi.lv,oi.kv,−1). (8)

Finally, the data owner encrypts spatial dataset D as
Enc(D) = {Ci|1 ≤ i ≤ n} by calling EASPE.Enc and out-
sources Enc(D) to the cloud server.

TrapdoorGeneration. The details are shown in Algorithm
2. Given a query request Q = {R,Q.k}, where R = (Q.l, r)
represents the query range consisting of a coordinate Q.l and
a number r, and Q.k = {w′

1, w
′
2, . . . , w

′
k} ⊆ W represents a

set of query keywords, the data user first encodes Q.l as a
Geohash code with a length of t-character according to r, and
converts it as an t-dimensional order vector Q̃.l according
to Base32. Then, the data user encodes each dimension of
Q̃.l as 32-dimensional query spatial vectors {Q.lvj}1≤j≤t.
If t < 8, each dimension of remaining (8− t) 32-dimensional
query spatial vectors is set as 0. The specific process of query
spatial vectors is shown in Fig. 7. Given a point Q.l = (8, 13)
and r = 600 m, the data user first encodes Q.l as Geohash

Fig. 7. An example of converting the query range as vectors.

Algorithm 2: Trapdoor Generation.

code “s33jxb” and converts it as an 6-dimensional order vec-
tor (24, 3, 3, 17, 29, 10) according to Base32. Then, the data
user converts Q.l as six 32-dimensional query spatial vectors
{Q.lv1,Q.lv2, . . .,Q.lv6}, and generates two other vectors
Q.lv7 = (0, . . . , 0) and Q.lv8 = (0, . . . , 0).

Finally, the data user converts query range R as a (32× 8)-
dimensional query vector by (9)

Q.lv = (Q.lv1,Q.lv2, . . . ,Q.lv8). (9)

For query keyword set Q.k, the data user converts Q.k as an
m-dimensional vector Q.kv by (10)

Q.kv = (λ′
1, λ

′
2, . . . , λ

′
m), (10)

where m is the size of W , and if wζ ∈ W is in Q.k, λ′
ζ = 1;

otherwise, λ′
ζ = 0. For example, given a total keyword set W =

{w1, w2, w3, w4, w5} and a query keyword setQ.k = {w2, w5},
we can obtain Q.kv = (0, 1, 0, 0, 1).

Then, the data user generates a (32 ∗ 8 +m+ 1)-dimensional
query vector Q.v by (11)

Q.v = (Q.lv,Q.kv, t+ k), (11)

where k is the number of query keywords.
Finally, the data user encrypts query Q as a trapdoor TQ by

calling EASPE.TrapGen and outsources TQ to the cloud server.
Query. The cloud server calculates the inner product of Ci

and TQ, then returns the identity id of object that meets the
query requirement to the data user. The details are shown in
Algorithm 3.



Algorithm 3: Query.

Correctness: For each oi ∈ D, the cloud server calculates
CT

i · TQ = 0 as (12) by calling EASPE.Query

CT
i · TQ = (oi.lv,oi.kv,−1)T · (Q.lv,Q.kv, t+ k). (12)

If (oi.lv ·Q.lv)− t = 0, it indicates that oi.l and Q.l have t
same Geohash prefixes, that is, oi is within the query range.
If (oi.kv ·Q.kv)− k = 0, it indicates that oi.k contains all
query keywords. CT

i · TQ = 0 indicates that oi is within the
query range and contains all query keywords, that is, oi meets
query requirements.

Remark: Compared with our conference version [14], the
way in which PSDQ builds indexes for spatial data objects and
queries does not lead to false positives. In the query phase,
the cloud server needs to calculate the inner product of each
encrypted spatial data index and trapdoor, PSDQ has linear query
complexity O(n). Therefore, we need to improve the scheme to
greatly improve its query efficiency.

C. Efficient Privacy-Preserving Spatial Data Query (PSDQ+)

PSDQ is a linear search scheme, which is difficult to meet
the needs of large-scale databases. Therefore, we first design a
Geohash-basedR-tree structure, calledGR-tree, and then devise
a pruning strategy based on both spatial range and keywords.
Based on these two techniques, we finally propose an efficient
Privacy-preserving Spatial Data Query (PSDQ+) scheme to
greatly improve the query efficiency of PSDQ.

Construction of GR-tree: According to the Gehash algorithm
in Section III, we can know that the Geoash codes of the points
located in the same range have the same prefix, so we can build
a GR-tree based on Geohash code and R-tree. Each Geohash
code has 8 dimensions in total, note that each dimension has
32 possible characters, and each character represents a unique
range. The first dimension of Geohash code represents the largest
spatial range, and the range represented by each dimension
decreases in turn. Therefore, the maximum depth of GR-tree is
9 layers, where the nodes of the first 8 layers are internal nodes,
and the nodes of the 9-th layer are leaf nodes. In particular, each
node of the GR-tree contains spatial information and keywords.
For each internal node S = (S.l, S.k), S.l and S.k contain the
location and keywords of all spatial data objects within this
range respectively. Each leaf node represents a unique spatial
data object oi. If the data owner builds GR-tree as a binary tree
(resp. quad-tree), he/she randomly selects 16 (resp. 8) characters
from 32 possible characters and assigns them to internal nodes

to divide the range in turn. Randomly dividing the range can
prevent the cloud server from guessing the data user’s query
range based on the traversal path of the tree. Therefore, each
internal node S only needs to represent the 16 (resp. 8) spatial
ranges corresponding to the 16 (resp. 8) characters contained in
S.l.

Fig. 8 shows an example of GR-tree, we only give a binary
tree with 4 layers due to space limitations. In the query phase,
the cloud server just compares whether each dimension of the
query Geohash code belongs to the Geohash code of the internal
node in turn, and checks whether the internal node contains all
the query keywords. Suppose the Geohash code of the query
range is “s33jxb” and the query keyword isQ.k = w4, the cloud
server traverses the internal nodes of the tree from top to bottom.
When the cloud server traverses the first layer, S2.l contains “s”
andQ.k ∈ S2.k, so it continues to traverse the child nodes ofS2.
Specifically, when it traverses the second layer,S6.l contains “3”
andQ.k ∈ S6.k, so it continues to traverse the child points ofS6.
Then, the cloud server traverses the remaining internal nodes in
turn to find the internal node with the deepest intersection, and
compares the query request with all leaf nodes of the internal
node in turn, and finally returns the leaf nodes that meet the
requirements.

It is worth noting that the range of each node in the GR-tree is
independent and GR-tree avoids the range intersection problem
between non-leaf nodes in R-tree. Then, we encode the spatial
information and keywords of each node inGR-tree into a unified
index vector. The spatial data can be filtered according to the
spatial information and keywords at the same time by calculating
the inner product of the unified index, so as to achieve spatial
keyword query with sub-linear search complexity.

Framework: With the above GR-tree, we construct
PSDQ+ which also consists of four phases: KeyGeneration,
DataEncryption, TrapdoorGeneration and Query. Unlike
PDSQ, in the DataEncryption phase, the data owner needs to
encrypt the entire tree index. The specific construction is as
follows.
KeyGeneration. The data owner generates a encryption key

SK by calling EASPE.KeyGen, where s is a random (260 +
m)-dimensional binary vector, M1 and M2 are two random
(260 +m)× (260 +m) invertible matrices.

DataEncryption. The details are shown in Algorithm 4. For
each internal node S in the first layer of GR-tree, the data owner
first encodes its owning character S.l as an 8-dimensional order
vector S̃.l according to Base32, and then encodes S̃.l as a
32-dimensional vector S.lv1. Note that, the data owner sets
the corresponding position of S.lv1 as 1 according to each
dimension of S̃.l, and sets other positions as 0. For example, in
Fig. 8, S1.lv1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0). In particular, the data owner
sets each dimension of remaining 32-dimensional vectors
{S.lvj |j = 2, 3, . . . , 8} as 1. Finally, the data owner converts
S.l as a (32× 8)-dimensional vector S.lv = (S.lv1,
. . . ,S.lv8). And the data owner encodes the keywords
S.k owned by S as m-dimensional vector S.kv by using
(7). Finally, the data owner encodes each internal node as



Fig. 8. An example of GR-tree.

Algorithm 4: Data Encryption.

(32 ∗ 8 +m+ 1)-dimensional vector S.v by (13)

S.v = (S.lv,S.kv,−1). (13)

The generation method of the index vectors S.v of inter-
nal nodes of other layers in GR-tree is the same as (13),
except that the construction method of S.lv is different. For
example, for each internal node in the second layer of GR-
tree, its owning characters are encoded as a 32-dimensional
vector S.lv2, the remaining {S.lvj |j = 1, 3, . . . , 8} are all
32-dimensional vectors in which all elements are 1. For each
internal node in the third layer of GR-tree, its owning characters
are encoded as a 32-dimensional vector S.lv3, the remaining
{S.lvj |j = 1, 2, 4, . . . , 8} are all 32-dimensional vectors in

which all elements are 1. And so on, the data owner encodes
all internal nodes in GR-tree.

The index vectors of leaf nodes are generated in the same way
as (8). Finally, the data owner encrypts the index vectors of the
internal nodes and leaf nodes in generated GR-tree as Enc(S)
and Ci by calling EASPE.Enc, respectively.
TrapdoorGeneration. This process is the same as that of

PSDQ. The details are shown in Algorithm 2.
Query. Unlike PSDQ, the cloud server needs to perform the

following two phases to find objects that meet query require-
ments. The details are shown in Algorithm 5.

1) Filtration phase: This phase first calculates the inner prod-
uct of the trapdoor and the internal node, i.e., Enc(S)T ·
TQ. If Enc(S)T · TQ = 0, it means that the internal node
intersects the query range and contains all query keywords.
Then, this phase continues to traverse the child nodes of
the internal node until the deepest internal node (i.e. the
internal node of layer 8) is found. If there exist deepest
intersecting internal nodes, it adds all leaf nodes of the
internal nodes to the candidate set and moves to the next
step; otherwise, it returns null.

2) Verification phase: For all leaf nodes in the candidate set,
this phase calculates the inner product of the trapdoor and
leaf nodes, i.e.,CT

i · TQ. IfCT
i · TQ = 0, it means that the

leaf node meets the query requirements. Then, this phase
returns the leaf node to the data user; otherwise, it returns
null.

It should be noted that, since the number of layers of GR-tree
is determined by the dimension of the Geohash code and each
dimension of the Geohash code represents a fixed range, the
cloud server can infer the data user’s query range based on the
number of layers traversing GR-tree. Thus, if the dimension of
Geohash code of the query is less than 8, the cloud server still
needs to traverse all the layers (i.e., 8 layers) of the GR-tree.

Remark: PSDQ+ is based on GR-tree, which can greatly
improve the query efficiency and its query complexity is only
O(log n). However, PSDQ+ also has some shortcomings, i.e.,
it cannot guarantee access pattern privacy, which may lead to
data leakage. And the same query will traverse the same path of
the index to find the same query result, the cloud server can link



Algorithm 5: Query.

trapdoors with the same query results to the same query due to
access pattern leakage. Fortunately, some existing hidden access
pattern solutions can be better integrated into our solutions.
For example, Zhang et al. [42] first proposed a privacy notion
called access pattern unlinkability to better balance security and
performance requirements, and then used Private Information
Retrieval (PIR) and oblivious shuffling as building blocks of
hidden access pattern to design a secure data retrieval structure
that can provide access pattern unlinkability. Therefore, we will
draw on the experience of [42] in future work to redesign a new
index structure and algorithms to protect access pattern privacy.

VI. SECURITY ANALYSIS

In this section, we analyze the security of our schemes under
the threat models defined in Section IV. The results show that our
schemes make the cloud server unable to learn any critical in-
formation except encrypted objects and trapdoors. As described
in the threat models, the adversary who conducts CPA has more
information than the adversary launching COA, so the adversary
launching CPA is more powerful. Therefore, we directly prove
that our two schemes are secure against IND-CPA. And because
the two schemes use the same encryption method, we take PSDQ
as a representative for detailed proof.

ASPE has been proven unable to resist the Known-Plaintext
Attack (KPA) as shown in [12]. Specifically, in [12], given d
d-dimensional plaintext vectors {p1, . . . , pd} and correspond-
ing ciphertexts {C1, . . . , Cd}, a d-dimensional query vector
q and corresponding trapdoor TQ, the adversary calculates
CT

1 · TQ = p1 · q, . . . , CT
d · TQ = pd · q. Since this is a d linear

equation system with d unknown variables in q, which has a
unique solution for q, the adversary can infer the d-dimensional

plaintext q. Once the adversary finds the d linearly independent
trapdoors, he can infer the whole plaintext dataset. Therefore, we
confuse index vectors by adding random numbers and random
permutations before encryption. According to the above attack,
the attacker can only obtain q̂v , he cannot speculate the q, thereby
not recovering the spatial dataset. We will prove that our schemes
are secure against IND-CPA. Since CPA is stronger than KPA,
our solutions can also resist KPA.

A. Data Encryption

We will first simulate the security game played between an
adversary A and a challenger C in chosen-plaintext attack.
� Given a security parameter λ, the adversary A gener-

ates two datasets D0 = (d0,1, d0,2, . . . , d0,n) and D1 =
(d1,1, d1,2, . . . , d1,n) with the same dimension to C, where
di,j is a spatio-textual data, i ∈ {0, 1}, j ∈ {1, n}.

� The challengerC runsKeyGeneration to generate the secret
key.

� Phase 1: A submits di,j to C, i ∈ {0, 1}, j ∈ {1, n}.
Then, C responses with a ciphertext Ci,j through Data
Encryption.

� WithD0,D1, C chooses a uniform bit b ∈ {0, 1} and calcu-
lates the ciphertext Cb,j of db,j through Data Encryption.
After that, C returns Cb,j to A.

� Phase2: A selects a number of messages and submits them
to C.

� The adversary A takes a guess b′ of b.
Definition 2: PSDQ achieves IND-CPA security in the data

encryption phase if for any polynomial time adversary A, it has
at most a negligible advantage negl(λ), such that

AdvIND−CPA
PSDQ,A (1λ) =

∣∣∣∣Pr(b′ = b)− 1

2

∣∣∣∣ ≤ negl(λ),

where negl(λ) represents a negligible function.
Theorem 1: PSDQ achieves IND-CPA security in the data

encryption phase under the CPA security game.
Proof: According to the above analysis, we should prove

that A cannot distinguish C0,j from C1,j , even if the adversary
A has oracle access to DataEncryption. Assume that one of
the messages in Di is di,j = (di,j .l, di,j .k). According to the
process of DataEncryption, di,j is extended to a (260 +m)-
dimensional vector di,j.v = (di,j.lv,di,j.kv,−1, r1, r2, r3),
where r1, r2, r3 are random numbers. Then, di,j.v is permuted

as ̂di,j.v = π(di,j.v) by the random permutation π and en-

crypted to Ci,j = (MT
1
̂di,j.v

′, MT
2
̂di,j.v

′′) by the random
binary vector s and the matricesM1,M2. In Phase 1 and Phase
2 of the game, A can choose different di,j each time and observe

its corresponding ciphertext Ci,j . However, since ̂di,j.v is a
random vector determined by C, r1, r2, r3 are random numbers,
π is a random permutation, s is a random binary vector, andM1

and M2 are two random invertible matrices, the ciphertext Ci,j

is random to A. In other words, for any message selected by
A and its corresponding ciphertext, A cannot distinguish which
messages are actually encrypted. Therefore, even if A has the
ability to access DataEncryption, b′ can only be obtained by



random guessing. So we have

AdvIND−CPA
PSDQ,A (1λ) =

∣∣∣∣Pr(b′ = b)− 1

2

∣∣∣∣ ≤ negl(λ).

Thus, the Data Encryption phase of the PSDQ scheme is also
secure against IND-CPA.

B. Trapdoor Generation

We first simulate the security game played between an adver-
sary A and a challenger C in chosen-plaintext attack.
� Given a security parameter λ, the adversary A generates

two different query requests Q0 = (q0.l, q0.k, R0) and
Q1 = (q1.l, q1.k, R1)with the same dimension to C, where
i ∈ {0, 1}.

� The challengerC runsKeyGeneration to generate the secret
key.

� Phase 1: A submits Qi to C, i ∈ {0, 1}. Then, C responses
with a trapdoor TQi

through TrapdoorGeneration.
� With Q0 and Q1, C chooses a uniform bit b ∈
{0, 1} and calculates the trapdoor TQi

of Qi through
TrapdoorGeneration. After that, C returns TQi

to A.
� Phase2: A selects a number of messages and submits them

to C.
� The adversary A takes a guess b′ of b.
Definition 3: PSDQ achieves IND-CPA security in the trap-

door generation phase if for any polynomial time adversary A,
it has at most a negligible advantage negl(λ), such that

AdvIND−CPA
PSDQ,A (1λ) =

∣∣∣∣Pr(b′ = b)− 1

2

∣∣∣∣ ≤ negl(λ),

where negl(λ) represents a negligible function.
Theorem 2: PSDQ achieves IND-CPA security in the trap-

door generation phase under the CPA security game.
Proof: According to the above analysis, we should prove

that A cannot distinguish Q0 and Q1, even if the adversary
A has oracle access to TrapdoorGeneration. According to the
process of TrapdoorGeneration, Q0 is extended to a (260 +
m)-dimensional vectorqi.v = (qi.lv, qi.kv, t+ k, r1, r2, r3),
where r1, r2, r3 are random numbers. Then, qi.v is permuted
as q̂i.v = π(qi.v) by the random permutation π and encrypted
to TQi

= (MT
1 q̂i.v

′, MT
2 q̂i.v

′′) by the random binary vector
s and the matrices M1, M2. Since A has no idea about the
random value r1, r2, r3, the random permutation π, the split
vector s, and two invertible matrix M1 and M2, he cannot
recover ciphertexts TQi

.
In Phase 1 and Phase 2 of the game, A can observe Qi

corresponding trapdoor TQi
. However, since q̂i.v is a random

vector determined by C, r1, r2, r3, π, s, M1 and M2 are all
random, the ciphertext TQi

is random to A. Therefore, even if
A has the ability to access TrapdoorGeneration, b′ can only be
obtained by random guessing. So we have

AdvIND−CPA
PSDQ,A (1λ) = Pr(b′ = b)− 1

2

∣∣∣∣ ≤ negl(λ).

�
Thus, according to the above specific analysis, the

TrapdoorGeneration phase of the PSDQ scheme is IND-CPA.

C. Query

The cloud server has all spatial data ciphertexts Ci =
(MT

1 ôi.v
′,MT

2 ôi.v
′′) and the trapdoor TQ = (M−1

1 Q̂.v′,
M−1

2 Q̂.v′′). Since M1, M2 are random matrices, s is a
random binary vector and π is a random permutation, the cloud
server cannot obtain oi.v and Q.v. Thus, the cloud server
cannot know the original dataset and the data user’s query
information. Then, the cloud server calculates CT

i · TQ =

oi.v
T ·Q.v = ôi.v

T · Q̂.v = (oi.lv,oi.kv,−1, r1, r2, r3) ·
(Q.lv,Q.kv, t+ k, r4, r5, r6) = 0 and checks whether CT

i ·
TQ = 0. Because r1, r2, r3, r4, r5, r6 are unknown random
numbers, so even if the cloud server can judge whether
CT

i · TQ = 0, it does not know whether (oi.lv ·Q.lv)− t = 0
and (oi.kv ·Q.kv)− k = 0. So the cloud server cannot infer
the original data according to the calculation results, thereby
protecting the privacy and security of the data.

VII. PERFORMANCE ANALYSIS

In this section, we conduct a detailed theoretical analysis,
and extensive performance tests on the processes of Data
Encryption, TrapdoorGeneration and Query. The whole ex-
periments were carried out by using Python 3.9 programming
language on 64-bit Windows 10 system and completed on
Intel(R) Core(TM) i5-8300 h CPU @2.30 GHz server.

A. Theoretical Analysis

We analyze the theoretical complexity of the PSDQ, PSDQ+,
SKQ [14], LSKQ [14] and TSKS [34] in terms of computational
and storage overheads ofDataEncryption,TrapdoorGeneration
and Query. Table III gives the detailed comparison results of the
five schemes.

PSDQ uses EASPE to encrypt data with encryption key
is SK = {M1, M2}, where M1 and M2 are two random
(260 +m)× (260 +m) invertible matrices. Without losing
generality, we assume that the size of each ciphertext is |X|.
In DataEncryption phase, the data owner needs to encrypt all
objects in the dataset, the total time complexity of the process
is O(2n(260 +m)2), and corresponding storage overhead is
n|X|. In TrapdoorGeneration phase, the total time complexity
of the process is O(2(260 +m)2), and corresponding storage
cost is |X|. In Query phase, the total time complexity of the
process is O(2n(260 +m)).

PSDQ+ constructs a tree index structure based on PSDQ.
We take a binary tree with 9 layers as an example, in which
additional 510 internal nodes are generated. Therefore, in
DataEncryption phase, the total time complexity of the pro-
cess is O(2(n+ 510)(260 +m)2), and corresponding storage
overhead is (n+ 510)|X|. In TrapdoorGeneration phase, the
computational and storage overheads of this process is the same
as that of PSDQ. In Query phase, the total time complexity of
the process is O(2(260 +m) log n).

SKQ uses EASPE to encrypt data with encryption key is
SK = {M1, M2}, where M1 and M2 are two random
(36 +m)× (36 +m) invertible matrices. Without losing gen-
erality, we assume that the size of each ciphertext is |U |. In
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Fig. 9. Overhead of DataEncryption. (a) Computational overhead varying with n; (b) Storage overhead varying with n; (c) Computational overhead varying
with m; (d) Storage overhead varying with m.

Fig. 10. Overhead of TrapdoorGeneration. (a) Computational overhead varying with k; (b) Storage overhead varying with k; (c) Computational overhead
varying with m; (d) Storage overhead varying with m.

DataEncryption phase, the data owner needs to encrypt all
objects in the dataset, and each encrypted object contains 8
ciphertexts. Therefore, the total time complexity of the process
is O(16n(36 +m)2), and corresponding storage overhead is
8n|U |. In TrapdoorGeneration phase, the data user needs to
generate 8 ciphertexts for query request, so the total time com-
plexity of the process is O(16(36 +m)2), and corresponding
storage cost is 8|U |. In Query phase, the cloud server needs to
calculate the product of each encrypted object and the trapdoor,
where they all contain 8 ciphertexts, so the total time complexity
of the process is O(16n(36 +m)).

LSKQ is similar to SKQ, but the LSKQ only needs to generate
one ciphertext for each object or query by using encryption
key is SK = {M1, M2}, where M1 and M2 are two ran-
dom (44 +m)× (44 +m) invertible matrices. Without losing
generality, we assume that the size of each ciphertext is |V |. In
DataEncryption phase, the total time complexity of the process
is O(2n(44 +m)2), and corresponding storage overhead is
n|V |. In TrapdoorGeneration phase, the total time complexity
of the process is O(2(44 +m)2)), and corresponding storage
cost is |V |. In Query phase, the total time complexity of the
process is O(2n(44 +m)).

TSKS uses polynomial fitting technology to fit the query
range and uses randomizable matrix multiplication technol-
ogy to encrypt data, in which the encryption key includes six
(η +m+ 3)× (η +m+ 3) random invertible matrices. With-
out losing generality, we assume that the degree of polynomial
fit is η, the ciphertext size of each ciphertext is |Z|. In the
DataEncryption phase, the total time complexity of the process
is O(4n(η +m+ 3)3), and corresponding storage overhead is
n|Z|. In the TrapdoorGeneration phase, the total time com-
plexity of the process is O(8(η +m+ 3)3), and corresponding
storage cost is 2|Z|. In Query phase, the total time complexity
of the process is O(2n(η +m+ 3)3).

B. Performance Evaluation

We use the real dataset (Yelp dataset 1) to conduct sufficient
experiments to perform performance testing and specific anal-
ysis on the Data Encryption, TrapdoorGeneration and Query
processes of the PSDQ, PSDQ+, SKQ [14], LSKQ [14] and
TSKS [34].

1https://www.yelp.com/dataset



TABLE IV
COMPARISON OF COMPUTATION OVERHEAD

DataEncryption. For PSDQ and PSDQ+, the factors that
affect the computational costs are the dimension of the vector and
the size of the datasetn (i.e. the number of objects in the dataset),
and the dimension of the vector is only determined by the size
of the keyword set W (i.e. m). And we take a 9 layers binary
tree as an example for PSDQ+. Therefore, (1) let m = 200, we
test the computational and storage overheads of the five schemes
by varying n from 1000 to 10000. The test results are shown in
Fig. 9(a), (b); (2) let n = 5000, we test the computational and
storage overheads of the five schemes by varying m from 100
to 300. The test results are shown in Fig. 9(c), (d).

TrapdoorGeneration. Since the TrapdoorGeneration phases
of PSDQ and PSDQ+ are same, only PSDQ+ is used as a
representative. This process is similar to the data encryption
process, which is one-time encryption of the data user’s query
content. Therefore, (1) let m = 200, we test the computational
and storage overheads of the five schemes by changing the
number of query keywords (i.e. k). The test results are shown
in Fig. 10(a), (b); (2) let k = 5, we test the computational and
storage overheads of the five schemes by varying m from 100
to 300. The test results are shown in Fig. 10(c), (d).

Query. At this phase, the cloud server needs to calculate the
product of each encrypted index and trapdoor. Therefore, the
factors that affect the computational costs are the size of the
dataset n and the dimension of the index vector. Therefore, (1)
Let m = 200, we test the computational overhead of the five
schemes by varying n from 1000 to 10000. The test results are
shown in Fig. 11(a). (2) Let n= 5000, we test the computational
overheads of the five schemes by varying m from 100 to 300.
The test results are shown in Fig. 11(b).

Table IV shows the comprehensive comparison of the com-
putational overhead of PSDQ, PSDQ+, SKQ [14], LSKQ [14]
and TSKS [34] under different variables in theData Encryption,
TrapdoorGeneration and Query phases. It can be seen from the
extensive specific experimental results that the PSDQ+ scheme
is very efficient in practice.

Because the size of the keyword set has a great impact on
the costs of our schemes, we let n = 5000 and test PSDQ,

Fig. 11. Overhead of Query. (a) Computational overhead varying with n; (b)
Computational overhead varying with m.

TABLE V
COMPARISON OF COMPUTATION OVERHEAD BY VARYING m

PSDQ+, SKQ [14], LSKQ [14] and TSKS [34] by increasing
the size of m. Consist with the experimental settings in most
papers [31], [35], m = 2000 is a large enough value to repre-
sent the total number of different keywords in the corpus. The
experimental results are shown in Table V. The results show
that PSDQ+ is still very efficient for users and the costs of the
TrapdoorGeneration andQuery are still at the millisecond level.
For example, when m = 2000, the trapdoor generation time and
the query time are only 9.937 ms and 43.5 ms, respectively.

VIII. CONCLUSION

In this article, we improve our conference version [14].
Specifically, to avoid false positives of [14] and improve query
efficiency, we first propose a linear Privacy-preserving Spatial
Data Query (PSDQ) scheme by designing a new unified index



structure, which does not cause any loss of accuracy. Then, we
propose a more efficient PSDQ scheme (PSDQ+) by designing a
Geohash-based R-tree structure (called GR-tree) and a pruning
strategy based on both spatial range and keywords, such that
the search complexity is sublinear. Finally, We give the formal
security analysis to prove that our schemes are secure against
IND-CPA, and conduct extensive experiments to demonstrate
that our schemes are efficient in practice. As part of our future
work, we will attempt to protect access pattern to further reduce
privacy disclosure and improve the security of the scheme.
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