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ABSTRACT
Conversational recommendation systems (CRS) aim to interactively
acquire user preferences and accordingly recommend items to users.
Accurately learning the dynamic user preferences is of crucial
importance for CRS. Previous works learn the user preferences
with pairwise relations from the interactive conversation and item
knowledge, while largely ignoring the fact that factors for a rela-
tionship in CRS are multiplex. Specifically, the user likes/dislikes
the items that satisfy some attributes (Like/Dislike view). Moreover
social influence is another important factor that affects user pref-
erence towards the item (Social view), while is largely ignored by
previous works in CRS. The user preferences from these three views
are inherently different but also correlated as a whole. The user
preferences from the same views should be more similar than that
from different views. The user preferences from Like View should
be similar to Social View while different from Dislike View. To this
end, we propose a novel model, namely Multi-view Hypergraph
Contrastive Policy Learning (MHCPL). Specifically, MHCPL timely
chooses useful social information according to the interactive his-
tory and builds a dynamic hypergraph with three types of multiplex
relations from different views. The multiplex relations in each view
are successively connected according to their generation order
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in the interactive conversation. A hierarchical hypergraph neural
network is proposed to learn user preferences by integrating infor-
mation of the graphical and sequential structure from the dynamic
hypergraph. A cross-view contrastive learning module is proposed
to maintain the inherent characteristics and the correlations of user
preferences from different views. Extensive experiments conducted
on benchmark datasets demonstrate that MHCPL outperforms the
state-of-the-art methods.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Conversational Recommendation, Reinforcement Learning, Graph
Representation Learning
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1 INTRODUCTION
Recommendation systems [12, 39, 41, 45, 50] are emerging as an
efficient tool to help users find items of potential interest. They
conventionally learn user preferences from their historical actions
[16, 32], while hardly acquiring dynamic user preferences which
often drift with time. To this end, conversational recommendation
systems (CRS) [23] are proposed to dynamically acquire user prefer-
ences and accordingly make recommendations through interactive
conversations. Different settings [6, 7, 34] of CRS are explored and
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is is

like like dislike dislike like like

friend

 I want electornics.

What kind of electronics ?

(A) Smartphone  (B) Computer 

(C) Others

(A): I want Smartphone.

Satisfying items:

...

For the Smartphone, 

I prefer:

Figure 1: Common types of multiplex user relations from
different views in the scenario of conversational recommen-
dation.

we focus on the Multi-Interest Multi-round Conversational Rec-
ommendation (MMCR) [49] in which users could accept multiple
items and CRS needs to strategically ask multi-choice questions
about user-preferred attributes and accordingly recommend items,
reaching success in the limited turns.

Learning the dynamic user preferences for the candidate at-
tributes and items accurately is of crucial importance for CRS. CRM
[34] and EAR [22] develop factorization-based methods to learn
user preferences from pairwise interactions, but they fail to cap-
ture multi-hop information from the connectivity graph. SCPR [24]
learns user preferences by reasoning the path on the user-item-
attribute graph. Unicorn [9] and MCMIPL [49] further apply graph
neural networks to learn user preferences from the graph structure
that captures rich correlations among different types of nodes (i.e.,
user, attribute, and item). Despite effectiveness, previous works
learn user preferences with pairwise relations from the interactive
conversation (i.e., user-item and user-attribute relations) and the
item knowledge (i.e., item-attribute relations), while largely ignor-
ing the fact that factors for a relationship in CRS are multiplex. For
the example in Fig.1, the user dislikes Switch because of its attribute
named "game console" rather than its other attributes like "elec-
tronics". Moreover, social influence is also an important factor that
affects user preferences towards the item, since people with social
connections will influence each other, leading to similar interests
[8, 13]. However, in the field of CRS, social information is seldom
explored. Inspired by the advantage of hypergraph [11, 46] in mod-
eling the multiplex relations (i.e., relations that connect more than
two nodes), we investigate the potential of hypergraph modeling
with the integration of interactive conversation, item knowledge,
and social influence for learning dynamic user preferences in CRS.

Actually, it’s non-trivial to build a hypergraph for learning dy-
namic user preferences in CRS, due to three challenges: 1) The
first challenge is the dynamic filtering and utilizing of social in-
formation. The social information conventionally contains all the
historical interactions of the user’s friends, which could be noisy
for the dynamic user preferences in the current conversation, since
only friend preferences that satisfy the current conversation are

helpful for dynamic user preferences learning. For the example in
Fig.1, only the friends’ preferences for "smartphone" are helpful
for learning the dynamic user preferences. 2) The second challenge
is hypergraph formulation. In the scenario of CRS (as illustrated
in Fig.1), there mainly remain three multiplex relation patterns,
that is, the user likes/dislikes the items that satisfy some attribute
(Like/Dislike view) and the user shares the preferences for items
with some friend (Social view). Each relation pattern corresponds to
a kind of hyperedges, which are successively generated during the
interactive conversation. 3) The third challenge is the aggregation
of user preferences learned from different views, which might ob-
scure the inherent characteristics of preference distributions from
different views and the correlation between them. Specifically, user
preferences from the same views should be more similar than user
preferences from different views. And the user preferences from
Like View should be similar to Social View while different from
Dislike View. Contrastive learning [15, 38, 42], one successful self-
supervised learning paradigm, which aims to learn discriminative
representations by contrasting positive and negative samples, paves
a way to maintain the inherent characteristics and the correlation
of user preferences learned from different views.

To this end, we propose a novel hypergraph-basedmodel, namely
Multi-viewHypergraph Contrastive Policy Learning (MHCPL). Spe-
cifically, MHCPL dynamically filters social information according
to the interactive conversation and builds a dynamic multi-view
hypergraph with three types of multiplex relations from different
views: the user likes/dislikes the items that satisfy some attribute
(Like/Dislike view) and the user shares the preferences for itemswith
some friend (Social view). The multiplex relations in each view are
successively connected according to their generation order in the
interactive conversation. A hierarchical hypergraph neural network
is proposed to learn user preferences by integrating information
of the graphical and sequential structure from the dynamic hyper-
graph. Furthermore, a cross-view contrastive learning module is
proposed with two terms to maintain the inherent characteristics
and the correlations of user preferences from different views. Ex-
tensive experiments conducted on Yelp and LastFM demonstrate
that MHCPL outperforms the state-of-the-art methods.

Our contributions of this work are summarized as follows:

• General Aspects:We emphasize the importance of multi-
plex relations and investigate three views to integrate inter-
active conversation, item knowledge, and social influence
for dynamic user preference learning in CRS.

• Novel Methodologies:We propose the model MHCPL to
timely filters social information according to the interactive
conversation and learns dynamic user preferences with three
types of multiplex relations from different views. Moreover,
a cross-view contrastive learning module is proposed to
maintain the inherent characteristics and the correlations of
user preferences from different views.

• Multifaceted Experiments: We conduct extensive experi-
ments on two benchmark datasets. The results demonstrate
the advantage of our MHCPL in better dynamic user prefer-
ence learning, which shows the effectiveness of our MHCPL
for conversational recommendation.
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2 RELATEDWORKS
2.1 Conversational Recommendation
Conversational recommendation systems (CRS) [23, 31, 47, 51] aim
to communicate with the user and recommend items based on the
attributes explicitly asked during the conversation. Due to its ability
to dynamically get the user’s feedback, CRS has become an effective
solution for capturing dynamic user preferences and solving the
explainability problem. Various efforts have been conducted to
explore the challenges in CRS which can mainly be categorized into
two tasks: dialogue-biased CRS studies the dialogue understanding
and generation [5, 19, 25, 26], and recommendation-biased CRS
explores the strategy to consult and recommend [6, 7, 22, 34]. This
work focuses on the recommendation-biased CRS.

Early works on the recommendation-biased CRS [6, 7, 34] only
consider the conversational recommendation under simplified set-
tings. For example, Christakopoulou et al. [7] consider the situation
that CRS only needs to recommend without asking the user about
his/her preferred attributes. The Q&A work [6] proposes to explore
the situation that CRS jointly asks attributes and recommends items,
but restricts the conversational recommendation to two turns: one
to ask attributes and the other to recommend items. To explore
a more realistic scenario of the recommendation-biased CRS, fur-
ther efforts [22, 24] based on the reinforcement learning (RL) are
conducted to explore the problem of multi-round conversational
recommendation (MCR) which aims to strategically ask users bi-
nary questions towards attributes and recommend items in multiple
rounds, achieving success in the limited turns. Zhang et al. [49] fur-
ther explore the setting of multi-interest MCR (MMCR) where users
have multiple interests in attribute combinations and allows CRS to
ask multi-choice questions towards the user-preferred attributes.

The main challenge of MCR is how to dynamically learn user
preferences, and accordingly choose actions that satisfy user pref-
erences. CRM [34] and EAR [22] learn user preferences with a
factorization-based method under the pairwise Bayesian Personal-
ized Ranking (BPR) framework [33]. SCPR [24] learns user prefer-
ences by reasoning the path on the user-item-attribute graph and
strictly chooses actions on the path. Unicorn [9] builds a weighted
graph to model the dynamic relationship between the user and
the candidate action space and proposes a graph-based Markov
Decision Process (MDP) environment to learn dynamic user prefer-
ences and choose actions from the candidate action space. MCMIPL
[49] further considers the multiple interests of the user and de-
velops a multi-interest policy learning module that combines the
graph-based MDP with the multi-attention mechanism. Despite
effectiveness, previous works model user preferences with binary
relations, while hardly capturing the multiplex relations and ig-
nore the influence of social relations on user preferences which are
important in modeling dynamic user preferences.

2.2 Social Recommendation
Social recommendation [13, 18, 20] aims to exploit social relations
to enhance the recommender system. According to the social sci-
ence theories [1, 3, 29], user decisions are influenced by their social
relations, leading to similar preferences among social neighbors.
Following this assumption, SoRec [28] jointly factorizes the user-
item matrix and the user-user social relation matrix by sharing the

same user preference latent factor. STE [27] learns user preferences
by linearly combing the preference latent factor of the user and
his/her social neighbors. SocialMF [17] forces the user preference
latent factor to be similar to that of his/her social neighbors by
adding regularization to the user-item matrix factorization. These
works only leverage first-order social neighbors for recommen-
dation and ignore the fact that the social influence could diffuse
recursively through social networks.

To model the high-order social influence, graph neural networks
(GNNs) [21] are introduced to social recommendation due to their
superiority in learning the graph structure. GraphRec [10] applies
GNNs to capture the heterogeneous graph information from the
user-item interactions and social relations. DiffNet [44] and its ex-
tension DiffNet++ [43] develop a layer-wise influence propagation
structure to model the recursive social diffusion in social recom-
mendation. These works model user preferences with pairwise
relations and fail to capture the complex multiplex user relation
patterns (i.e., user-friend-item). MHCN [48] constructs hypergraphs
by unifying nodes that form specific triangular relations and ap-
plies hypergraph neural network [11, 46] to model user preferences
with hypergraphs. Despite effectiveness, previous works treat so-
cial relations as static information, while ignoring the dynamic
characteristic of user preferences and failing to dynamically choose
helpful social information for the learning of user preferences.

3 DEFINITION AND PRELIMINARY
In this section, we formulate the problem of multi-interest Multi-
round Conversational Recommendation (MMCR) [49].

Specifically, we define the set of items V , attributes P, and
attributes types C. Each item 𝑣 ∈ V is associated with a set of
attributes P𝑣 ⊆ P and each attribute 𝑝 has its corresponding
type 𝑐𝑝 ∈ C. In each episode, there exists an item set V𝑢 that
is acceptable for the user. Then CRS screens out candidate items
V𝑐𝑎𝑛𝑑 ⊆ V that contains the user-preferred attribute 𝑝0 and can-
didate attributes P𝑐𝑎𝑛𝑑 ⊆ P that are associated to the candidate
items. Then in each turn 𝑡 (𝑡 = 1, 2, · · · ,𝑇 ; 𝑇 is the max turn of
the session), the CRS can either ask 𝐾𝑝 attribute P̃𝑐 ∈ P𝑐𝑎𝑛𝑑 cor-
responding to the same attribute type 𝑐 , or recommend 𝐾𝑣 items
Ṽ ∈ V𝑐𝑎𝑛𝑑 :

• If the CRS chooses to ask, the user gives feedback according
to whether P∗

𝑐 is associated with one of the items in the
target item set V𝑢 .

• If the CRS chooses to recommend, the user chooses to accept
or not according to whether one of the items in the target
item set V𝑢 is listed in the recommended items Ṽ .

The session of MMCR terminates if the user accepts the recom-
mended items or leaves impatiently when the max turn accesses.

4 FRAMEWORK
In this section, we propose a novel Multi-view Hypergraph Con-
trastive Policy Learning (MHCPL) illustrated in Figure 2 that learns
user preferences from the hypergraph integrating the interactive
conversation, item knowledge and social information, and accord-
ingly chooses actions. The Markov Decision Process (MDP) [35]
formulation of our framework contains four components: multi-
view user preference modeling, action, transition, and reward.
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4.1 Multi-view User Preference Modeling
We first encode the state 𝑠𝑡 , which contains the interactive conver-
sation information I𝑢 between the user and CRS, and the social
information F𝑢 that helps learn user preferences:

𝑠𝑡 = [I (𝑡 )
𝑢 , F (𝑡 )

𝑢 ], (1)

where I (𝑡 )
𝑢 = [P (𝑡 )

𝑎𝑐𝑐 ,P
(𝑡 )
𝑟𝑒 𝑗
,V (𝑡 )

𝑟𝑒 𝑗
,P (𝑡 )

𝑐𝑎𝑛𝑑
,V (𝑡 )

𝑐𝑎𝑛𝑑
] records the inter-

active history, and F (𝑡 )
𝑢 denotes user’s friends who have preferred

items satisfying the interactive history I (𝑡 )
𝑢 , which is updated by:

F (𝑡 )
𝑢 = {𝑓 | 𝑓 ∈ F𝑢 and V (𝑡 )

𝑓
≠ ∅}, (2)

where F𝑢 denotes the friends of the user,V (𝑡 )
𝑓

= V𝑓 ∩V (𝑡 )
𝑐𝑎𝑛𝑑

indi-
cates the set of items that are acceptable for the friend 𝑓 and satisfy
the interactive history. To this end, we build a dynamic hyper-
graph that integrates the interactive conversation, item knowledge,
and social information to learn the user preference representation.
Moreover, we develop a hypergraph-based state encoder to learn
user preferences with multiplex relations from different views.

4.2 Action
According to the state 𝑠𝑡 , the CRS agent chooses an action 𝑎𝑡 from
the action space A𝑡 . The action space A𝑡 contains candidate at-
tributes P (𝑡 )

𝑐𝑎𝑛𝑑
and candidate items V (𝑡 )

𝑐𝑎𝑛𝑑
, which are updated by:

V (𝑡 )
cand =

{
𝑣 | 𝑣 ∈ V𝑝0 −V (𝑡 )

𝑟𝑒 𝑗
and P𝑣 ∩ P (𝑡 )

𝑎𝑐𝑐 ≠ ∅

and P𝑣 ∩ P (𝑡 )
𝑟𝑒 𝑗

= ∅
}
,

(3)

P (𝑡 )
𝑐𝑎𝑛𝑑

= PV (𝑡 )
𝑐𝑎𝑛𝑑

− P (𝑡 )
𝑎𝑐𝑐 ∪ P (𝑡 )

𝑟𝑒 𝑗
, (4)

where V𝑝0 denotes the items that satisfy the initial attribute 𝑝0
of the user and PV (𝑡 )

𝑐𝑎𝑛𝑑

indicates attributes that belong to at least

one of the candidate items V (𝑡 )
𝑐𝑎𝑛𝑑

. When the CRS agent chooses to
recommend, the agent chooses the top-K items Ṽ (𝑡 ) from A𝑡 . If
the CRS agent decides to consult, the agent chooses 𝐾𝑎 attributes
P̃ (𝑡 )
𝑐 that belong to the same attribute type 𝑐 from A𝑡 .

4.3 Transition
After the CRS agent chooses the action 𝑎𝑡 , the state 𝑠𝑡 will transition
to the next state 𝑠𝑡+1. Specifically, if the agent chooses to consult,
the attribute the user accepts and rejects in the current turn can
be defined as P (𝑡 )

𝑐𝑢𝑟_𝑎𝑐𝑐 and P (𝑡 )
𝑐𝑢𝑟_𝑟𝑒 𝑗 . Then the state is updated by

P (𝑡+1)
𝑎𝑐𝑐 = P (𝑡 )

𝑎𝑐𝑐 ∪P (𝑡 )
𝑐𝑢𝑟_𝑎𝑐𝑐 and P

(𝑡+1)
𝑟𝑒 𝑗

= P (𝑡 )
𝑟𝑒 𝑗

∪P (𝑡 )
𝑐𝑢𝑟_𝑟𝑒 𝑗 . When the

agent chooses to recommend items Ṽ (𝑡 ) and the user rejects all the
items, the state is updated by V (𝑡+1)

𝑟𝑒 𝑗
= V (𝑡 )

𝑟𝑒 𝑗
∪ Ṽ (𝑡 ) . Otherwise,

this session ends with success.

4.4 Reward
In this work, we design five kinds of rewards following previous
works [49]: (1) 𝑟𝑟𝑒𝑐_𝑠𝑢𝑐 , a strong reward when recommending suc-
cessfully; (2) 𝑟𝑟𝑒𝑐_𝑓 𝑎𝑖𝑙 , a weak penalty when the user rejects the
recommended items; (3) 𝑟𝑎𝑠𝑘_𝑠𝑢𝑐 , a weak reward when the user
accepts the asked attributes; (4) 𝑟𝑎𝑠𝑘_𝑓 𝑎𝑖𝑙 , a weak penalty when the

user rejects the asked attributes; (5) 𝑟𝑞𝑢𝑖𝑡 , a strong penalty when
the session quits without success. The reward on the multi-choice
question is designed as 𝑟𝑡 =

∑
P (𝑡 )
𝑐𝑢𝑟−𝑎𝑐𝑐

𝑟𝑎𝑠𝑘−𝑠𝑢𝑐 +
∑

P (𝑡 )
𝑐𝑢𝑟𝑟 𝑒 𝑗

𝑟𝑎𝑠𝑘−𝑟𝑒 𝑗 .

5 MULTI-VIEW HYPERGRAPH CONTRASTIVE
POLICY LEARNING

In this section, we detail the design of the Multi-view Hypergraph
Contrastive Policy Learning (MHCPL) 2. To model the dynamic user
preferences, we build a hypergraph with three types of multiplex
relations from different views to integrate information from the in-
teractive conversation, item knowledge, and social information. To
comprehensively learn user preferences, we develop a hypergraph-
based state encoder, that captures the graphical and sequential
structure in the dynamic hypergraph and propose a cross-view
contrastive learning module to maintain the inherent characteris-
tics and the correlation of user preferences from different views.
Moreover, we develop an action decision policy to decide the next
action based on the learned dynamic user preferences.

5.1 Multi-view Hypergraph Construction
As illustrated in Figure 2, we model the user preference at timestep 𝑡
with a multi-view dynamic hypergraph which can be formulated as
G (𝑡 )
𝑢 = (N (𝑡 ) ,H (𝑡 ) ,A(𝑡 ) ), including: (1) a node set N (𝑡 ) = {𝑢} ∪

P (𝑡 )
𝑟𝑒 𝑗

∪P (𝑡 )
𝑎𝑐𝑐 ∪F (𝑡 )

𝑢 ∪V𝑝0 , whereV𝑝0 indicates the items satisfying

the initial attribute 𝑝0 of the user 𝑢, and F (𝑡 )
𝑢 denotes the filtered

friends that have preferring items that satisfy the interactive history
I (𝑡 )
𝑢 ; (2) a hyperedge set H (𝑡 ) = H (𝑡 )

𝑙𝑖𝑘𝑒
∪ H (𝑡 )

𝑑𝑖𝑠
∪ H (𝑡 )

𝑓
, where

H (𝑡 )
𝑙𝑖𝑘𝑒

denotes the user like items that satisfy the attribute (Like

View),H (𝑡 )
𝑑𝑖𝑠

indicates the user dislike items that satisfy the attribute

(Dislike View), and H (𝑡 )
𝑓

denotes the user shares preferences to the

items with the friend (Social View). Each hyperedge ℎ ∈ H (𝑡 ) is
corresponding to an attribute 𝑝ℎ or friend 𝑓ℎ ; (3) a |N (𝑡 ) | × |H (𝑡 ) |
adjacent matrix A(𝑡 ) which denotes the weighted edge between
each node and hyperedge, with entries denoted as:

𝐴
(𝑡 )
𝑖, 𝑗

=



1, if 𝑛𝑖 = 𝑢,ℎ 𝑗 ∈ H (𝑡 )
𝑙𝑖𝑘𝑒

∪H (𝑡 )
𝑓

−1, if 𝑛𝑖 = 𝑢,ℎ 𝑗 ∈ H (𝑡 )
𝑑𝑖𝑠

1
|V (𝑡 )

ℎ𝑗
|
, if 𝑛𝑖 ∈ V (𝑡 )

ℎ 𝑗
, ℎ 𝑗 ∈ H (𝑡 )

𝑙𝑖𝑘𝑒
∪H (𝑡 )

𝑑𝑖𝑠

1
|V (𝑡 )

ℎ𝑗
|
, if 𝑛𝑖 ∈ V (𝑡 )

ℎ 𝑗
, ℎ 𝑗 ∈ H (𝑡 )

𝑓

1, if ℎ 𝑗 ∈ H (𝑡 )
𝑙𝑖𝑘𝑒

∪H (𝑡 )
𝑑𝑖𝑠

, 𝑛𝑖 = 𝑝ℎ 𝑗

1, if ℎ 𝑗 ∈ H (𝑡 )
𝑓
, 𝑛𝑖 = 𝑓ℎ 𝑗

0, otherwise

, (5)

where V (𝑡 )
ℎ 𝑗

denotes items connected to the hyperedge ℎ 𝑗 . Specifi-

cally, when ℎ 𝑗 ∈ H (𝑡 )
𝑙𝑖𝑘𝑒

∪H (𝑡 )
𝑑𝑖𝑠

,V (𝑡 )
ℎ 𝑗

means items that satisfy the

corresponding attribute 𝑝ℎ 𝑗
. And when ℎ 𝑗 ∈ H (𝑡 )

𝑓
, it means the

friend 𝑓ℎ 𝑗
’s acceptable items that satisfy the interactive historyI (𝑡 )

𝑢 .
We filter out noises in friends’ acceptable items with the interactive
history to help learn the user’s current dynamic preferences.
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Figure 2: The overview of Multi-view Hypergraph Contrastive Policy Learning. It mainly contains four modules: (a) Multi-view
Hypergraph Construction, which dynamically captures multiplex relations from three views. (b) Hypergraph-based State
Encoder, which captures the graph structure and sequential modeling in the dynamic hypergraph. (c) Cross-view Contrastive
Learning, which maintains the inherent characteristics and correlations of user preferences from different views, and (d) Action
Decision Policy Learning to decide the next action based on the learned dynamic user preferences. (Best view in color.)

5.2 Hypergraph-based State Encoder
5.2.1 Hypergraph Message Passing Paradigm. Motivated by the
strength of hypergraph [11, 46] for generalizing the concept of
edge to connect more than two nodes, we endow our MHCPL to
capture multiplex relations under a hypergraph message passing
architecture, where the hyperedges are treated as intermediate
hubs for message passing across different nodes without the hop
limitation. The formal representation of our hypergraph message
passing is formulated as:

Γ = ReLU(A · H) = ReLU
(
A · A⊤ · E

)
, (6)

where E ∈ R |N (𝑡 ) |×𝑑 denotes the initial embedding of nodes N (𝑡 )

in the hypergraph, H ∈ R |H (𝑡 ) |×𝑑 indicates the hyperedge repre-
sentations aggregated from the node representations, and ReLU(·)
denotes the LeakyReLUmapping. Γ denotes the hyper embedding of
the nodes in the hypergraph representation space. With the help of
hypergraph message passing, our MHCPL is capable to capture the
multiplex collaborative relations that specify the attribute/friend
that motivates/discourages the user’s interest in the items.

5.2.2 Hierarchical Hypergraph State Encoder. During the conver-
sation, the hyperedges are successively generated when the user
accepts or rejects the asked attribute. Moreover, the higher-level
interactions between different hyperedges are also important in
learning user preferences. Although the aforementioned hyper-
graph message passing paradigm is capable to capture the multiplex
relations, it fails to model sequential information and hyperedge-
wise feature interactions. Inspired by the success of the Transformer
encoder [37] in capturing sequential information and feature inter-
actions, we employ the Transformer encoder to realize high-level
hyperedge-wise message passing. Specifically, with the represen-
tation of hyperedges 𝑯 that aggregate information from neigh-
bor nodes, higher-level hypergraph layers further pass messages
through the interactions between hyperedges under the same view:

H̄ = 𝜓 𝑙 (𝑯 ),𝑯 = A⊤E, (7)

where E ∈ R |N (𝑡 ) |×𝑑 denotes the initial embedding of nodes N (𝑡 )

in the hypergraph.𝜓 𝑙 (·) indicates the high-level hypergraph layers.
𝑙 denotes the layer number of high-level hypergraph layers. Hy-
peredgesH (𝑡 )

𝑜 of the same view 𝑜 ∈ {𝑙𝑖𝑘𝑒, 𝑑𝑖𝑠, 𝑓 } are successively
connected according to their generation order in the interactive
conversation. To realize this, we apply the Transformer encoder
𝑀𝐻𝑆𝐴𝑜 (·) on hyperedges H (𝑡 )

𝑜 of each view 𝑜 as:

𝜓 (𝑯 𝑙
𝑜 ) = MHSA𝑜 (𝑯 𝑙−1

𝑜 ,𝑯 𝑙−1
𝑜 ,𝑯 𝑙−1

𝑜 ) . (8)

After the high-level hyperedge message passing, we aggregate the
information from hyperedges to refine the node representations as:

Γ𝑙 = ReLU(A · H̄) = ReLU
(
H ·𝜓 𝑙

(
A⊤ · E

) )
, (9)

where 𝜓 𝑙 denotes 𝑙 high-level hypergraph layers. The hyper rep-
resentation from different layers of the user is summed to get the
representation of state 𝑠𝑡 :

q𝑡 =
∑︁
𝑙

Γ𝑙 (𝑢) (10)

5.3 Cross-view Contrastive Learning
Different types of multiplex relations present user preferences from
various views (i.e., Like View, Dislike View, Social View). Actually,
it is still non-trivial to sufficiently integrate user preferences from
different views, since it might obscure the inherent characteristics
of preference distributions from different views and the correlation
between them. Specifically, the user preferences from the same view
should be more similar than those from different views. Also, user
preferences from Like View should be similar to Social View while
different from Dislike View. To capture these two correlations and
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better integrate user preferences from different views, we develop
cross-view contrastive learning based on InfoNCE[30] as:

L𝑆𝑆𝐿 =

−∑
𝑜

∑
𝑖∈H𝑜

log

∑
𝑖+∈H𝑜

exp(s(H𝑖 ,H𝑖+ )/𝜏 )∑︁
𝑖+∈H𝑜

exp(s (H𝑖 ,H𝑖+ ) /𝜏)︸                           ︷︷                           ︸
positive pairs

+
∑︁

𝑖−∈H−H𝑜

exp(s (H𝑖 ,H𝑖− ) /𝜏)︸                                ︷︷                                ︸
negative pairs

−∑
𝑜

∑
𝑖∈H𝑜

log

∑
𝑖+∈H𝑜+

exp(s(H𝑖 ,H𝑖+ )/𝜏 )∑︁
𝑖+∈H𝑜+

exp(s (H𝑖 ,H𝑖+ ) /𝜏)︸                            ︷︷                            ︸
positive pairs

+
∑︁

𝑖−∈H𝑜−

exp(s (H𝑖 ,H𝑖− ) /𝜏)︸                             ︷︷                             ︸
negative pairs

,

(11)
where𝑜 ∈ {𝑙𝑖𝑘𝑒, 𝑑𝑖𝑠, 𝑓 } denotes three views,H = H𝑙𝑖𝑘𝑒∪H𝑑𝑖𝑠∪H𝑓

indicates the set of hyperedges, H denotes the representations of
hyperedges, and 𝑠 (·) is the cosine similarity function. In Eq.11, the
first term is designed to maintain the intrinsic characteristics of
user preferences from each view, which treats the hyperedges of the
same view as positive pairs, while the different-view hyperedges
as negative pairs. The second term of Eq.11 is designed to maintain
the correlation of user preferences from different views, where the
hyperedges in H𝑙𝑖𝑘𝑒 and H𝑓 are treated as positive pairs to each
other, while treated as negative pairs with the hyperedges in H𝑑𝑖𝑠 .

5.4 Action Decision Policy Learning
A large action search space reduces the efficiency of policy learn-
ing. Following [9, 49], we select top-K𝑣 candidate items and top-
K𝑝 candidate attributes to form the action space A𝑡 . To this end,
we develop a multi-view action selection strategy, which selects
items/attributes according to user preferences from three views.
Specifically, we rank them as:

𝑤
(𝑡 )
𝑣 = 𝜎

©«e𝑇𝑢 e𝑣 +
∑︁

𝑝∈P (𝑡 )
𝑎𝑐𝑐

e𝑇𝑣 e𝑝 +
∑︁

𝑓 ∈F (𝑡 )
𝑢

e𝑇𝑣 ẽ𝑓 −
∑︁

𝑝∈P′(𝑡 )
𝑟𝑒 𝑗

e𝑇𝑣 e𝑝
ª®®¬ ,
(12)

𝑤
(𝑡 )
𝑝 = 𝜎

©«e𝑇𝑢 e𝑝 +
∑︁

𝑝′∈P (𝑡 )
𝑎𝑐𝑐

e𝑇𝑝 e𝑝′ +
∑︁

𝑓 ∈F (𝑡 )
𝑢

e𝑇𝑝 ẽ𝑓 −
∑︁

𝑝′∈P′(𝑡 )
𝑟𝑒 𝑗

e𝑇𝑝 e𝑝′
ª®®¬ ,
(13)

where e𝑢 , e𝑣 , e𝑝 and e𝑓 are embeddings of the user, item, attribute,
and friend. ẽ𝑓 =

∑
𝑣′∈V (𝑡 )

𝑓

e𝑣 represents friend preferences that

satisfy the interactive history, 𝜎 (·) denotes the sigmoid function.
With the action space A𝑡 and the state representation q𝑡 , we

introduce the dueling Q-networks [40] to determine the next action
and calculate the Q-value as:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑓𝜃𝑉 (q𝑡 ) + 𝑓𝜃𝐴 (q𝑡 , 𝑎𝑡 ) , (14)

where the value function 𝑓𝜃𝑉 (·) and the advantage function 𝑓𝜃𝐴 (·)
are two separate multi-layer perceptions with 𝜃𝑉 and 𝜃𝐴 denote the
parameters, respectively. The optimal Q-function 𝑄∗ (·), which has
the maximum expected reward achievable by the optimal policy

𝜋∗, follows the Bellman equation [2] as:

𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1

[
𝑟𝑡 + 𝛾 max

𝑎𝑡+1∈A𝑡+1
𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1 | 𝑠𝑡 , 𝑎𝑡 )

]
, (15)

where 𝛾 denotes the discount factor for the delayed rewards.
In each turn, the CRS agent will get the reward 𝑟𝑡 , and we can

update the state 𝑠𝑡+1 and the action space A𝑡+1 according to the
user’s feedback. Following Deng et al. [9], we define a replay buffer
D to store the experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,A𝑡+1). For training of the
DQN, we sample mini-batches from the buffer and minimize the
following loss:

L𝐷𝑄𝑁 = E(𝑠𝑎,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1,A𝑡+1 )∼D
[ (
𝑦𝑡 −𝑄

(
𝑠𝑡 , 𝑎𝑡 ;𝜃𝑄 , 𝜃𝑆

) )2]
, (16)

where 𝜃𝑆 is the set of parameters in the module for hypergraph-
based representation learning, 𝜃𝑄 = {𝜃𝑉 , 𝜃𝐴}, and 𝑦𝑡 is the target
value based on the currently optimal 𝑄∗:

𝑦𝑡 = 𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈A𝑡+1

𝑄
(
𝑠𝑡+1, 𝑎𝑡+1;𝜃𝑄 , 𝜃𝑆

)
. (17)

To deal with the overestimation bias in the original DQN, we apply
the double DQN [36], which copies a target network 𝑄

′
as a peri-

odic from the online network to train the model. During training,
the action decision policy learning in Eq.16, and the cross-view
contrastive learning in Eq.11 are alternatively optimize.

6 EXPERIMENTS
To fully demonstrate the superiority of MHCPL, we conduct exper-
iments1 on two public datasets to explore the following questions:

• RQ1: How does MHCPL perform compared with the state-
of-the-art methods?

• RQ2: How do different components (social influence, hy-
pergraph based state encoder, and cross-view contrastive
learning) affect the results of MHCPL?

• RQ3: How do parameters (the layer number of Hypergraph
based State Encoder) influence the results of MHCPL?

• RQ4: Can our MHCPL effectively leverage the interactive
conversation, item knowledge, and social influence to learn
the dynamic user preferences?

6.1 Datasets
To evaluate the proposed method, we adapt two existing MCR
benchmark datasets, named Yelp and LastFM. The statistics of these
datasets are presented in Table 1.

• LastFM [22]: LastFM dataset is the music listening dataset
collected from Last.fm online music systems. As Zhang et
al. [49], We define the 33 coarse-grained groups as attribute
types for the 8,438 attributes.

• Yelp [22]: Yelp dataset is adopted from the 2018 edition of the
Yelp challenge. Following Zhang et al. [49], we define the 29
first-layer categories as attribute types, and 590 second-layer
categories as attributes.

Following Zhang et al. [49], we sample two items with partially
overlapped attributes as the user’s acceptable items for each con-
versation episode.

1https://github.com/Snnzhao/MHCPL
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Dataset Yelp LastFM
Users 27,675 1,801
Items 70,311 7,432

Attributes 590 8,438
Attribute types 29 34

User-Item 1,368,606 76,693
User-User 688,209 23,958

Item-Attribute 477,012 94,446

Table 1: Statistics of two utilized datasets

6.2 Experiments Setup
6.2.1 User Simulator. MMCR is a system that is trained and evalu-
ated based on interactive conversations with users. Following the
user simulator adopted in [49], we simulate a interactive session for
each user-item set interaction pair (𝑢,V𝑢 ). Each item in the item set
𝑣 ∈ V𝑢 is treated as an acceptable item for the user. Each session is
initialized with a user 𝑢 specifying an attribute 𝑝0 ∈ P𝑗𝑜𝑖𝑛𝑡 , where
P𝑗𝑜𝑖𝑛𝑡 is the set of attributes that are shared by the items in V𝑢 .
Then the session follows the process of "System Ask or Recommend,
User response" [49] as described in Section 3.

6.2.2 Baselines. To demonstrate the effectiveness of the proposed
MHCPL, the state-of-the-art methods are chosen for comparison :

• Max Entropy. This method employs a rule-based strategy
to ask and recommend. It chooses to select an attribute with
maximum entropy based on the current state, or recommends
the top-ranked item with certain probabilities [22].

• Greedy[7]. This method only makes item recommendations
and updates the model based on the feedback. It keeps rec-
ommending items until the successful recommendation is
made or the pre-defined round is reached.

• CRM[34]. A reinforcement learning-based method that
records the users’ preferences into a belief tracker and learns
the policy deciding when and which attributes to ask based
on the belief tracker.

• EAR[22]. This method proposes a three-stage solution to
enhance the interaction between the conversational compo-
nent and the recommendation component.

• SCPR[24]. This method learns user preferences by reason-
ing the path on the user-item-attribute graph via the user’s
feedback and accordingly chooses actions.

• UNICORN[9]. This work builds a weighted graph to model
dynamic relationships between the user and the candidate
action space, and proposes a graph-based Markov Decision
Process (MDP) environment to learn dynamic user prefer-
ences and chooses actions from the candidate action space.

• MCMIPL[49]. This approach proposes a multi-interest pol-
icy learning framework that captures the multiple interests
of the user to decide the next action.

• S*-UNICORN and S*-MCMIPL. For a more comprehen-
sive and fair performance comparison, we adapt UNICORN
and MCMIPL by timely selecting helpful social information
and incorporating it into the weighted graph of the model.
We name the two adapted methods S*-UNICORN and S*-
MCMIPL.

6.2.3 Parameters Setting. Following [49], we recommend top 𝐾 =

10 items or ask𝐾𝑎 = 2 attributes in each turn. We employ the Adam
optimizer with a learning rate of 1𝑒 − 4. Discount factor 𝛾 is set
to be 0.999. Following [9], we adopt TransE [4] via OpenKE [14]
to pretrain the node embeddings with 64 dimensions in the con-
structed KG with the training set. We make use of Nvidia Titan RTX
graphics cards equipped with AMD r9-5900x CPU (32GB Memory).
For the action space, we select 𝐾𝑝 = 10 attributes and 𝐾𝑣 = 10
items. To maintain a fair comparison, we adopt the same reward
settings as previous works [9, 22, 24, 49]: 𝑟𝑟𝑒𝑐_𝑠𝑢𝑐 = 1, 𝑟𝑟𝑒𝑐_𝑓 𝑎𝑖𝑙 =
−0.1, 𝑟𝑎𝑠𝑘_𝑠𝑢𝑐 = 0.01, 𝑟𝑎𝑠𝑘_𝑓 𝑎𝑖𝑙 = 0.1, 𝑟𝑞𝑢𝑖𝑡 = −0.3. For MHCPL, we
select the number of layers from 1, 2, 3, 4.

6.2.4 Evaluation Metrics. Following previous works [9, 22, 24], we
adopt success rate (SR@t) to measure the cumulative ratio of suc-
cessful recommendations by the turn t, average turns (AT) to evalu-
ate the average number of turns for all sessions, and hDCG@(T, K)
to additionally evaluate the ranking performance of recommenda-
tions. Therefore, the higher SR@t and hDCG@(T, K) indicate better
performance, while the lower AT means an higher efficiency.

6.3 Performance Comparison (RQ1)
6.3.1 Overall Performance. The comparison experimental results
of the baseline models and our models are shown in Table 2. We
can summarize our observations as follows:
• Our proposedMHCPL achieves the best performance.MHCPL
significantly outperforms all the baselines on the metrics of
SR@15, AT and hDCG by over 4.47%, 5.23% and 13.48%, respec-
tively. We attribute the improvements to the following reasons:
1) The proposed dynamic multi-view hypergraph could effec-
tively capture multiplex relations from three views. And the
proposed hierarchical hypergraph neural network is able to well
learn dynamic user preferences by integrating the information
of graph structure and sequential modeling from the dynamic
multi-view hypergraph; 2) MHCPL timely selects helpful social
information and effectively integrates the interactive conversa-
tion, item knowledge, and social influence for better dynamic user
preference learning; 3) MHCPL designs a cross-view contrastive
learning method to help maintain the inherent characteristics
and the correlations of user preferences from different views.

• The learning of the dynamic user preferences is crucial for
conversational recommendation. The graph-based methods
(MHCPL,MCMIPL, UNICORN, SCPR) outperforms the factorization-
based methods (EAR, CRM) since they learn user preferences
from the collaborative information in the graph.MCMIPL achieves
the best performance among the graph-base baselines since it
further considers the multiple interests of the user preferences.
Our proposed MHCPL further outperforms these methods since
we leverage multiplex relations to integrate interactive conver-
sation, item knowledge, and social influence to help learn the
dynamic user preferences.

• Social influence is effective in helping learn dynamic user
preferences for conversational recommendationwhenwell
filtered. The socially adapted methods (i.e., S*-UNICORN and
S*-MCMIPL) outperform their original versions in the final per-
formances. We attribute this to the reason that social influence
is an important factor that affects user preferences and could
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Models Yelp LastFM
SR@5 SR@10 SR@15 AT hDCG SR@5 SR@10 SR@15 AT hDCG

Abs Greedy 0.078 0.124 0.150 13.65 0.065 0.292 0.436 0.512 10.10 0.237
Max Entropy 0.046 0.200 0.390 12.97 0.117 0.280 0.560 0.680 9.34 0.263

CRM 0.026 0.100 0.188 13.99 0.059 0.092 0.240 0.372 12.56 0.130
EAR 0.120 0.198 0.240 12.91 0.094 0.298 0.436 0.508 10.08 0.237
SCPR 0.146 0.188 0.436 12.29 0.169 0.322 0.630 0.764 8.47 0.322

UNICORN 0.200 0.338 0.430 11.33 0.175 0.444 0.774 0.846 7.10 0.348
MCMIPL 0.162 0.366 0.522 11.25 0.184 0.448 0.809 0.884 6.87 0.353

S*-UNICORN 0.120 0.478 0.696 10.59 0.223 0.412 0.850 0.912 6.69 0.363
S*-MCMIPL 0.126 0.490 0.722 10.51 0.230 0.442 0.872 0.940 6.43 0.368

MHCPL 0.142 0.592 0.854 9.96 0.261 0.470 0.938 0.982 5.87 0.427
Improv. - 20.82% 18.28% 5.23% 13.48% 4.91% 7.57% 4.47% 8.71% 16.03%

Table 2: Performance comparison of different models on the two datasets. The bold number represents the improvement of our
model over baselines is statistically significant with p-value < 0.01. hDCG stands for hDCG@(15, 10).
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Figure 3: Comparisons at Different Conversation Turns.

help learn dynamic user preferences with friends’ preferences
that satisfy the interactive conversation. But the socially adapted
methods perform worse than their original version in the early
turns (e.g., SR@5). This happens because the information in the
interactive conversation is not sufficient to filter out the noise
from the social information in the early turn of the conversation.

6.3.2 Comparison at Different Conversation Turns. Besides the per-
formance in the final turn, we also present success rates at different
turns in Figure 3. In order to better observe the differences among
different models, we use the relative success rate compared with
the most competitive baseline S*-MCMIPL, where the blue line of
S*-MCMIPL is set to zero in the figures. From the Figure 3, we
following observations:
• The proposed MHCPL outperforms these baseline methods
across all the datasets and almost all the turns in the conver-
sational recommendation. This is because our proposed MHCPL
could better learn dynamic user preferences with multiplex re-
lations that integrate interactive conversation, item knowledge,
and social influence.

• The recommendation success rate of the proposed socially-aware
methods (i.e., MHCPL, S*-MCMIPL, and S*-UNICORN) could not
surpass all the baselines in the early turns of the conversational
recommendation, especially on the dataset Yelp with a larger
candidate space of items and attributes. This is because the infor-
mation in the interactive conversation is not sufficient to filter

Models Yelp LastFM
SR@15 AT hDCG SR@15 AT hDCG

Ours 0.854 9.96 0.261 0.982 5.87 0.427

-w/o social 0.592 10.80 0.208 0.908 6.63 0.365
-w/o hypergraph 0.726 10.68 0.346 0.938 6.58 0.382
-w/o contrastive 0.762 10.37 0.237 0.962 6.17 0.403

Table 3: Results of the Ablation Study.

out the noise from the social information at the early turn of
the conversation. Furthermore, socially-aware methods prefer to
ask rather than recommend in the early turns when the user’s
preference is not certain enough. This will effectively reduce the
action space and better learn user preferences, but lead to a lower
recommendation success rate in the early turns.

6.4 Ablation Studies (RQ2)
To investigate the underline mechanism of MHCPL, we conduct
ablation experiments on the Yelp and LastFM datasets with three
ablated methods including: MHCPLw / o 𝑠𝑜𝑐𝑖𝑎𝑙 that ablates the social
influence,MHCPLw / o ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑎𝑝ℎ that replaces the hypergraph neu-
ral networkswith graph neural networks, andMHCPLw / o 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒
that ablates the cross-view contrastive learning. From results shown
in Table 3, we have the following observations:

• MHCPLw / o 𝑠𝑜𝑐𝑖𝑎𝑙 is the least competitive. This demonstrates
the importance of social influence in alleviating the data spar-
sity problem and helping learn dynamic user preferences.
And it is effective to accordingly choose helpful social infor-
mation based on interactive conversation. MHCPLw / o 𝑠𝑜𝑐𝑖𝑎𝑙
still outperforms all the baselines that ignore the social infor-
mation in Table 2, which proves the effectiveness of MHCPL
in learning dynamic user preferences with multiplex rela-
tions.

• MHCPL outperforms MHCPLw / o ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑎𝑝ℎ . We contribute
this to the importance of multiplex relations in learning
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dynamic user preferences. This also proves the effectiveness
of our proposed multi-view hypergraph-based state encoder
in learning user preferences by integrating the information
of graph structure and sequential modeling from the dynamic
multi-view hypergraph.

• MHCPL outperforms MHCPLw / o 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 . This demon-
strates the effectiveness of the cross-view contrastive learn-
ing module in helping maintain the inherent characteristics
and correlations of user preferences from different views.
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Figure 4: Impact of Layer Number(L)

6.5 Hyper-parameter Sensitivity Analysis (RQ3)
6.5.1 Impact of Layer Number. The hypergraph-based state en-
coder learns dynamic user preferences from the multiplex relations
in the hypergraph. By stacking more layers, collaborative informa-
tion from multi-hop neighbors is distilled. We investigate how the
layer number 𝐿 influences the performance of MHCPL. Specifically,
we conduct experiments with 𝐿 in the range {1, 2, 3, 4}, and the
results are shown in Figure 4. There are some observations:

• Increasing the number of layers can improve the perfor-
mance of our model. MHCPL-2 highly outperforms MHCPL-
1. The reason is that MHCPL-1 only gains information from
the one-hop neighbors and neglects high-order collaborative
information.

• When increasing the layer of number, the performance does
not always improve. MHCPL-3 outperforms MHCPL-4 on
data LastFM. This can be attributed to the noise which in-
creases along with the hop of neighbors.

6.6 Case Study (RQ4)
To show the effectiveness of our proposed MHCPL in leverag-
ing multiplex relations to integrate interactive conversation, item
knowledge, and social influence to learn dynamic user preferences,
we present a case of conversational recommendation generated by
our framework in Figure 5. As illustrated in the figure, by integrat-
ing the information from the interactive conversation, item knowl-
edge, and social information with multiplex relations from different
views, MHCPL is able to effectively ask attributes and recommend
user-preferred items, reaching success in five turns. Furthermore,
the social information selected according to the interactive conver-
sation is helpful in learning dynamic user preferences. With the
help of selected social information, MHCPL could accurately select
the target item when the information from the interactive history
is limited in distinguishing user preferences towards the seventy
candidate items.

I am looking for a restaurant.

How many stars of restaurant do you need?

(A) three stars                       (B) four stars
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(A) nightlife                          (B) bars
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(A) music venues               (B) festivals                        

(C) Others

(A)&(B)
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(including item33510)
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Success@5!
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...
10 friends
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Item33510

Item67442

2 friends

I prefer: 

Item33510

Item63453

1 friends

Figure 5: A case of conversation recommendation generated
by our proposed MHCPL.

7 CONCLUSION
In this work, we explore multiplex relations to integrate interactive
conversation, item knowledge, and social influence in helping learn
the dynamic user preferences for conversational recommendation.
We propose a novel hypergraph-based model, namely Multi-view
Hypergraph Contrastive Policy Learning (MHCPL), which timely
selects useful social information according to the interactive history
and builds a dynamic hypergraph with three types of multiplex
relations from different views. A hierarchical hypergraph neural
network is proposed to learn user preferences by integrating infor-
mation of the graph structure and sequential modeling from the
dynamic multi-view hypergraph. Furthermore, a cross-view con-
trastive learning module is proposed with two terms to maintain
the inherent characteristics and the correlations of user preferences
from different views. Extensive experiments on two popular bench-
marks demonstrate the superiority of our proposed method, as
compared to the state-of-the-art baselines.
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