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Heterogeneous Graph Neural Network With
Multi-View Representation Learning

Zezhi Shao , Yongjun Xu , Wei Wei , Fei Wang , Zhao Zhang , and Feida Zhu

Abstract—In recent years, graph neural networks (GNNs)-based methods have been widely adopted for heterogeneous graph (HG)

embedding, due to their power in effectively encoding rich information from a HG into the low-dimensional node embeddings. However,

previous works usually easily fail to fully leverage the inherent heterogeneity and rich semantics contained in the complex local

structures of HGs. On the one hand, most of the existing methods either inadequately model the local structure under specific

semantics, or neglect the heterogeneity when aggregating information from the local structure. On the other hand, representations

from multiple semantics are not comprehensively integrated to obtain node embeddings with versatility. To address the problem, we

propose a Heterogeneous Graph Neural Network for HG embedding within a Multi-View representation learning framework (named

MV-HetGNN), which consists of a view-specific ego graph encoder and auto multi-view fusion layer. MV-HetGNN thoroughly learns

complex heterogeneity and semantics in the local structure to generate comprehensive and versatile node representations for HGs.

Extensive experiments on three real-world HG datasets demonstrate the significant superiority of our proposed MV-HetGNN compared

to the state-of-the-art baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.

Index Terms—Heterogeneous graphs, graph neural networks, graph embedding

Ç

1 INTRODUCTION

GRAPH structured data is ubiquitous in the real world, such
as social networks [1], [2], [3], [4] and citation networks [5],

[6]. In recent years, graph neural networks (GNNs) have become
one of the standard paradigms for analyzing graph structured
data. The core idea of GNNs is to explore the multi-hop local
structure of the target node, i.e., the ego network or ego graph [7],
by stacking multiple layers. As a basic graph structure, homo-
geneous graphs consist of only one type of nodes and edges,
and the ego graph in it has a clear definition and intuition [8],
e.g., first-order or second-order structure. Therefore, GNNs
have achieved great success on homogeneous graphs [5], [6].

However, traditional GNN-based approaches cannot be
directly applied to heterogeneous graphs (HGs) because of two

essential properties of HGs: heterogeneity and semantics. An
example of an ego graph depicting the complex local structure
in HGs is shown in Fig. 1a. First, the ego graph of HGs is
equippedwithmultiple types of nodes and relations, i.e., hetero-
geneity. The features of different types of nodes fall in different
feature spaces, hindering the aggregation operation of GNNs.
For example, theAuthor nodes need to be projected into the fea-
ture space of the Paper nodes through theWrite relation so as to
aggregatewith otherPapernodes. Second, manymeaningful and
complex semantic information implicitly exists in the ego graph
ofHGs, i.e., semantics. These implicit but important relationships
are captured by high-order relations, i.e., metapaths. Different
metapaths reveal different semantics, which can be regarded as
a view to observe the target node’s local structure. For example,
as shown in Fig. 1b,Author-Paper-Author (APA) indicates the co-
author relationship while the Author-Paper-Conference-Paper-
Author (APCPA) indicates the co-conference relationship.

In order to apply GNNs on HGs, a number of works have
emerged recently. Considering the two properties mentioned
above, we divide related works into two categories. The first
category mainly focuses on heterogeneity. These works model
type-specific mapping functions to project heterogeneous
nodes to the same feature space to eliminate heterogeneity.
Then, they apply GNNs and stack multiple layers to catch
high-order information [11], [12], [13], [14]. However, these
methods do not explicitly make use of semantics. Moreover,
simply stackingmultiple layers to catch high-order information
causes lower-order semantic information to suffer from over-
smooth due to the different lengths of semantics in HGs.
Instead, the second category explicitly utilizes metapaths as
semantics1 to guide information aggregation. First, they
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1. Following [9], [10], we use semantic and metapath interchange-
ably in this paper.
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decompose the multi-hop local structure of HGs, which con-
tains complex semantic information, into multiple local
structures under different semantics. Then, the node repre-
sentations under different semantics are extracted by aggre-
gating the local structure. Finally, representations under
different semantics are fused together. Benefiting from
modeling the heterogeneity and semantics simultaneously,
these methods are effective and popular [9], [10], [15], [16],
[17], [18], [19].

Despite the encouraging results, previous works still fail
to fully leverage the inherent heterogeneity and rich seman-
tics contained in the complex local structures of HGs. Spe-
cifically, they still suffer from at least one of the following
limitations. (1) The modeling of local structures under each
semantics is inadequately [9], [10], [19]. For example, as
shown in Fig. 1c, HAN [9] aggregates information from
metapath-based neighborhoods, discarding the intermedi-
ate nodes. MAGNN [10] aggregates information at the
metapath instance level (i.e., sequence level), and neglects
the overall graph structure of the local structure, which
causes information loss and inflexibility in the aggregation
process. (2) The modeling of the mapping function between
heterogeneous nodes is neglected when aggregating the
local structures under each semantics [17], [18]. That is, the
heterogeneity of HGs is not fully explored. Most of these
works only project the feature of heterogeneous nodes to
the same dimension[9], [19], [20] and aggregate features
directly, neglecting the mapping relation between them. (3)
The representations from multiple semantics are not com-
prehensively utilized to obtain versatile node representa-
tions. Most methods use simple concatenation or the
attention mechanism to fuse representations from different
semantics [9], [10], [15], [20]. However, the simple concate-
nation preserves redundant information among multiple
semantics, leading to poor performance. Meanwhile, the
attention mechanism can not theoretically guarantee versa-
tile node embeddings, i.e., superior to any single view
representation. Moreover, our experiments in Section 5
demonstrate that the attention mechanism can not consis-
tently outperform the simple mean average or single view.

To tackle these issues, we model the HG embedding from
the perspective of Multi-view Representation Learning (MvRL).
The intuitive idea of introducing MvRL is that the semantic
property of HGs conforms to the idea of MvRL, i.e., each

semantics can be regarded as a view to observe the target
node’s local structure. Different from existing works, the
MvRL idea specifically requires adequate modeling of the
structure and heterogeneity under each view, and comprehen-
sive integration of representations frommultiple views. On the
one hand, within each view, it requires adequately aggregating
local structures and modeling heterogeneity to obtain view-
specific representations. On the other hand, among multiple
views, it requires comprehensively integrating representations
from multiple views into a latent representation with theoreti-
cal guarantees of versatility (i.e., superior to any single view)
and better performance in downstream tasks. Based on the
above motivation, we propose a Heterogeneous Graph Neural
Network for HG embedding within a Multi-View representation
learning framework (namedMV-HetGNN).MV-HetGNNsolves
the above problems with two key components, the view-spe-
cific ego graph encoder and auto multi-view fusion layer. On
the one hand,MV-HetGNNfirst decomposes the original com-
plete ego graph in HGs into a set of view-specific ego graphs,
which preserve complete local structures under each seman-
tics. Then, the view-specific ego graph encoder leverages
TransE [21] to learn the representations of relations in HGs, so
as to model the mapping function between heterogeneous
nodes and aggregate information at the graph level in a bot-
tom-upmanner. On the other hand, the automulti-view fusion
layer aims to integrate the embeddings from different views
comprehensively. There are twomain challenges. First, there is
much redundant information among multi-view representa-
tions [22], i.e., the overlap of representations. Second, the fused
representations require a theoretical guarantee of versatil-
ity [23], i.e., performing at least as good as any single-view
representation. Auto multi-view fusion layer overcomes both
challenges by using hierarchical autoencoders with orthogonal
regularization. In general, our method solves many issues and
extends the second category by introducing the idea of MvRL.
In summary, thisworkmakes severalmajor contributions:

� We model the local structure under each semantics
as view-specific ego graphs and propose a novel
view-specific ego graph encoder module. It learns
the representations of relations to model the map-
ping function between heterogeneous nodes to
address heterogeneity and aggregates information
comprehensively.

� We propose a novel auto multi-view fusion layer to
comprehensively integrate the embeddings from
different semantics. It utilizes hierarchical autoen-
coders with orthogonal regularization to remove the
redundant information cross multiple views and
obtain versatile node embeddings with theoretical
guarantees.

� We conduct extensive experiments on three public
real-world HG datasets with three different tasks.
The experimental results demonstrate the superior-
ity of MV-HetGNN over seven state-of-the-art
models.

The paper is organized as follows. Section 2 covers
related work, and Section 3 presents preliminaries and the
problem definition. In Section 4, we present the MV-
HetGNNmodel in detail. In Section 5, we conduct extensive
experiments and visualizations to evaluate the effectiveness

Fig. 1. An illustrative example of heterogeneous graph (DBLP) and some
key concepts. (a) The local structure of node A1 in the heterogeneous
graph DBLP. (b) Two metapaths in DBLP. (c) Three types of metapath-
based local structures of author node A1 (based on metapath APA) pro-
posed by HAN[9], MAGNN[10], and our MV-HetGNN.

SHAO ETAL.: HETEROGENEOUS GRAPH NEURAL NETWORKWITH MULTI-VIEW REPRESENTATION LEARNING 11477



of MV-HetGNN. In particular, Section 5.2 compares the per-
formance of MV-HetGNN with other baselines. Section 5.3
compares our view-specific ego graph encoder with existing
approaches [9], [10], and Section 5.4 compares our auto
multi-view fusion layer with other popular approaches in
detail. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) are proposed to apply deep
neural networks to deal with graph-structured data. GNNs
can be divided into two categories: spectral-based and spa-
tial-based methods. Spectral-based GNNs define convolu-
tion operations in the Fourier domain by computing the
eigendecomposition of graph Laplacian [6], [24], [25]. There-
fore, these models usually require an entire graph as input,
and the eigendecomposition is computationally expensive,
making them inefficient and lacking generalization ability.

Spatial-based GNNs [5], [26] define convolution operations
directly in the graph domain by aggregating the information
from the target nodes’ local structures [27], i.e., ego graph [7].
For example, GAT [26] aggregates information according to
the importance score of neighborhoods assigned by a masked
self-attention layer [28]. Recently, many new powerful GNN
models and theories [29], [30], [31] have been proposed, which
improve the representation power of GNNs. In order to exceed
the expressive power of the 1-WL test, ID-GNN [7] assigns dif-
ferent message-passing parameters to the central node and
other nodeswhen aggregating information from the ego graph.
Due to their high efficiency, strong performance, and generali-
zation ability, spatial GNNs have become mainstream. How-
ever, these powerful models and theories are built for
homogeneous graphs, in which the local structure is well
defined and has good intuition, e.g., first-order, second-
order [8]. The unique properties of HGs, heterogeneity and
semantics, are not considered. Hence, they cannot be directly
adapted toHGs.

2.2 Heterogeneous Graph Neural Networks

Heterogeneous GNN models [9], [10], [11], [14], [20], [32],
[33], [34], [35], [36], [37], [38] extend GNN techniques on
HGs to fully use the rich node features and semantic infor-
mation. According to the two basic properties of HGs,
GNNs can be divided into two categories.

The first category focuses onmodelling the heterogeneity of
the ego graph. Thesemodels eliminate heterogeneity bymodel-
ling mapping functions to project heterogeneous nodes to the
same feature space to apply GNNs. For example, HGT [14]
introduces the node- and edge-type dependent attentionmech-
anism to handle graph heterogeneity. HetSANN [38] uses
edge-type specific transformation operations to project the hid-
den state in the space of source node type to the hidden space
of the target node type. CompGCN [39] uses composition oper-
ations, such as TransE [21] or DistMult [40], to model the map-
ping function efficiently by learning edge representation
vectors. Although they try to thoroughly model the heteroge-
neity to apply GNNs, the semantics property of HGs are not
fully utilized. Moreover, since the order of semantic informa-
tion is inconsistent, e.g., APA and APCPA in the DBLP dataset,
simply stacking multiple layers to catch high-order semantic

information will cause lower-order semantic information to
face the over-smooth problem.

The second category focuses on semantics. These models
explicitly utilize semantic information (captured by meta-
paths) to analyze the ego graph. Specifically, these methods
are generally divided into two steps. First, the ego graph is
decomposed by multiple metapaths to get local structures,
which are further encoded to get node representations under
each semantics. For example, as shown in Fig. 1c HAN [9]
andHGSRec [19]model the local structure under each seman-
tics as metapath-based neighbours. However, they discard all
intermediate nodes along metapath. MAGNN [10] fixes that
by aggregating information at the metapath instance level,
i.e., sequence level. However, the graph structure of local
structures is neglected, which causes information loss and
inflexibility in the aggregation process. Similar to our model,
several works leverage graph-like structures to model the
local structure under each semantics, such as MEIRec [17],
RecoGCN [18], T-GCN[20]. However, MEIRec neglects the
feature information of intermediate and target nodes. In addi-
tion, they all ignore the modelling of mapping functions
between heterogeneous nodes. Second, diverse semantics
need to be exploited to get superior representations. Atten-
tion-based methods are widely used in these models [9], [10],
[18], [19], [20] to softly select the most meaningful metapath
and fuse the representations under different semantics. How-
ever, the final representations cannot be guaranteed theoreti-
cally superior to any single semantic representation.

In general, although the heterogeneous graph neural net-
works havemadenotable progress, these problems still hinders
the performance of heterogeneous graph neural networks, and
there is still much room for improvement by solving these
problems.

3 PROBLEM DEFINITION

In this section, we define some important concepts, includ-
ing the heterogeneous graph, metapath, and metapath-
based ego graph. Then, we define the heterogeneous graph
embedding problem and the versatility of multi-view repre-
sentations. Frequently used notations are summarized in
Table 1.

Definition 1. Heterogeneous Graph. A heterogeneous graph
G ¼ ðV; E;f;vÞ is composed of a vertex set V and an edge set E,
along with object type mapping function f : V ! A and edge
type mapping function v : E ! R. A and R denote the prede-
fined sets of object types and edge types, respectively, where
jAj þ jRj > 2. R could be further split into two subsets: Rþ

andR�. Note that self loop relation can be randomly included
in one of the two categories. An example is given in Fig. 1a.

Definition 2. Metapath. Consider Ai 2 A and Ri 2 R denote a
node type and an edge type, respectively, a metapath P is
defined as a path in the form of A1 �!R1

A2 �!R2 � � � �!Rl
Alþ1,

which describes a composite relation R ¼ R1 �R2 � � � � �Rl

between object types A1 and Alþ1, where � denotes the composi-
tion operator over relations. Examples are given in Fig. 1b.

Definition 3. Metapath Based Ego Graph. Given a metapath
P : A1 ! A2 ! ::: ! AN and a target node v with type AN ,
the ego graph (EGP

v ) is a directed graph induced by the
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metapath-based neighborhoods and intermediate nodes along
metapaths as well as v itself. An example is shown in Fig. 1c.

Definition 4. Heterogeneous Graph Embedding.Heteroge-
neous graph embedding aims to learn a function that embeds
the nodes in G ¼ ðV; E;f;vÞ into a d-dimensional euclidean
space where d � jVj.

Definition 5. Versatility of Multi-View Representations. [23]
Given representations h1; . . . ;hV from V views, the multi-view
representation h is of versatility if 8 v and 8 mapping ’ð�Þ with
yv ¼ ’ðhvÞ, there exists a mapping cð�Þ satisfying yv ¼ cðhÞ.

4 THE PROPOSED FRAMEWORK

In this section, we present the MV-HetGNN, which suffi-
ciently models the heterogeneity and semantics in the

complex local structure in HGs from the perspective of
multi-view representation learning. As shown in Fig. 2,
MV-HetGNN contains three primary steps. First, since dif-
ferent node types are associated with features of different
dimensions, the node feature transformation converts them
into features of the same dimension. Second, we treat each
semantic (captured by the metapaths) P as the view to
observe target nodes’ local structure and conduct view-spe-
cific ego graph encoder to obtain the node embeddings
under each view. Finally, the auto multi-view fusion layer
comprehensively integrates the embeddings from different
views to obtain versatile node embeddings.

4.1 Node Feature Transformation

Feature vectors with different dimensions are troublesome
when aggregating information in subsequent modules. To
address this issue, we apply node-type specific transforma-
tions to convert heterogeneous feature vectors into features
of the same dimension. Given any node type Ai 2 A, the
node feature transformation layer can be shown as follows:

H0
Ai

¼ sðXAi
WAi

Þ; (1)

where H0
Ai

2 RjVAi
j�d0 is the transformed latent vectors of

nodes of Ai type. XAi
2 RjVAi

j�dAi is the original feature vec-
tor of all Ai nodes. WAi

2 RdAi
�d0 is the type-specific param-

eters, and d0 is the unified dimension. s means the
activation function, such as ReLU [41].

The node feature transformation unifies the feature
dimensions and facilitates the usage of subsequent modules.
However, it should be noted that the heterogeneity has not
been resolved. Although the dimensions of the feature vector
of all nodes are the same, they still lie in different embedding
spaces, so they should not be aggregated directly.

4.2 View-Specific Ego Graph Encoder

Considering the heterogeneity and semantics of HGs, the local
structure of the target node in HGs is rather complex. This

Fig. 2. The overall architecture of MV-HetGNN. (a) Node feature transformation projects the feature vectors of all types of nodes to the same dimen-
sion. (b) View-specific ego graph encoder generates embedding for a target node under each view, such as A1 in the picture above. (c) Auto multi-
view fusion layer integrates multi-view embeddings by hierarchical autoencoders to obtain more versatile node embeddings.

TABLE 1
Important Notations Used in This Paper

Notations Definitions

V The set of nodes in a graph
A The set of node types
E The set of edges in a graph
R The set of edge types, i.e., relations
G A graph G ¼ fV; Eg
P Ametapath
P The set of metapaths
v A node v 2 V
r A kind of relation r 2 R
N v The set of neighbors of node v
EGP

v The ego graph of node v under metapath P
hv Hidden state of node v
hr Hidden state of relation r
H Hidden states of nodes with the same node type
� The hadamard product
j � j The cardinality of a set
jj � jjF Frobenius norm of a matrix
jj � jj1 L1 norm of a matrix

SHAO ETAL.: HETEROGENEOUS GRAPH NEURAL NETWORKWITH MULTI-VIEW REPRESENTATION LEARNING 11479



module aims to model the local structure under each seman-
tics adequately and aggregate information with addressing
the heterogeneity.

Specifically, we treat each semantic P as the view to
observe the target node’s local structure. Specifically, the
original complete ego graph is decomposed into multi-
ple view-specific ego graphs. The advantage of this oper-
ation is that multiple semantics can be decoupled.
Furthermore, compared to metapath-based neighbor-
hoods [9] and metapath instances [10], the view-specific
ego graph preserves more complete local structure
under each semantics. Another benefit is that the view-
specific ego graph has better characteristics: there is only
one type of node in the same order, and there is only one
type of relation between different orders. Given a meta-
path P ¼ A1 �!R1

A2 �!R2 � � � �!RN�1
AN and a target node v

with fðvÞ ¼ AN , the view-specific ego graph EGP
v pre-

serves the original and complete multi-hop structure
under semantic P , where the nodes of the ith hop have
the same node type AN�i and the relation between the ith
hop and the ði� 1Þth hop (i 	 1) is RN�i. An example is
shown in Fig. 1c.

Further, in order to handle the heterogeneity and encode
the structural and feature information adequately from the
ego graph, we develop an ego graph encoder, which has
two advantages. First, it can aggregate node features guided
by the structure of the view-specific ego graph. Second,
it handles the heterogeneity in the ego graph by modeling
the representations of relations and the mapping function
between heterogeneous nodes. Two example of view-spe-
cific ego graph encoder is illustrated in Fig. 2b. Assuming
that level 1 is the bottom level and level K is the top level,
ego graph encoder aggregates information from level 1 to
K, updating the representation h

ðlÞ
i 2 Rd0 of each node i at

level l. The aggregation process (blue region in Fig. 2b)
between any intermediate two levels is illustrated in Fig. 3.
Specifically, we set the hidden state of node i at level 1 as
h
ð1Þ
i ¼ h0

i, which is generated by the node feature transfor-
mation module. For any specific node i at level l (l 6¼ 1), we
first aggregate its neighborhood information and then apply
an activation function. Combined with its own features, the
encoded feature is calculated as

h
ðlÞ
i ¼ oðh0

i þ sðAggðfhðl�1Þ
j ; vj 2 N ðl�1Þ

i g;hl
rÞÞÞ; (2)

where h
ðlÞ
i 2 Rd0 is the encoded hidden vector of node i at

level l, and h0
i 2 Rd0 is its initial state generated by the

component of node content transformation. N ðl�1Þ
i is the

neighborhood set of node i at level ðl� 1Þ, hðl�1Þ
j 2 Rd0 is the

encoded hidden vector of node j at level ðl� 1Þ, hl
r is the

representation of the relation r between level l and ðl� 1Þ.
sð�Þ is the ReLU activation function. Note that the represen-
tation is randomly initialized and optimized jointly with the
network parameters. o is the dropout layer. Aggð�Þ is an
aggregate function to capture 1-hop neighborhoods infor-
mation and relation representation:

Aggðfhðl�1Þ
j ; vj 2 N ðl�1Þ

i g;hl
rÞ

¼ 1
Ci

P
vj2N ðl�1Þ

i

W�ðrÞFðhðl�1Þ
j ;hl

rÞ;
(3)

where Fð�; �Þ is the mapping function for handling the hetero-
geneity,W�ðrÞ 2 Rd0�d0 is the relation-specific message passing
parameter, Ci is the normalization term. For simplicity, we set
Ci ¼ jN ðl�1Þ

i j, i.e., mean average, in our method. Kindly note
that with the benefit of the graph structure, we can further
improve the performance by setting Ci to be learnable, e.g.,
through attention mechanisms. Related experiments can be
found in Section 5.3.

For one thing , benefiting from the unified dimensions of
all types of nodes, we can model the relations hðlÞ

r asRd0 vec-
tors and use the knowledge graph embedding approach to
model the mapping function between the feature vectors of
different types of nodes. Many functions can be adopted
here and we apply TransE [21], which gains an impressive
performance and efficiency in our experiments. In
TransE [21], for a relation triplet ðs; r; tÞ, there will be sþ r 

t. Therefore:

Fðhs;hrÞ ¼ hs þ hr: (4)

For another thing, the message passing parameter W�ðrÞ
would suffer from the over-parameterization problem with
the growth of the number of relations, since each relation r
is associated with a matrix W�ðrÞ. Inspired by [39], [42], we
simplify it to a direction-specific matrix, i.e., �ðrÞ ¼ dirðrÞ,
which is defined as follows:

W�ðrÞ ¼ WdirðrÞ ¼ WO; r 2 Rþ

WI ; r 2 R� s

�
; (5)

where Rþ and R� are opposite sets of two relations. For
example, Rþ ¼ fwrite; publishg and R� ¼ fwritten� by;
published� ing. Note that the self loop relation can be ran-
domly included in one of the two categories.

After K � 1 times of calculation on ego graph EGP
v , the

representation of the target node v is hðKÞ
v . Note that the

lengths of the metapaths are inconsistent, which results in
different times of aggregation of Eq. (2).

hP
v ¼ hðKÞ

v

depthðEGP
v Þ

(6)

where depthðEGP
v Þ is the depth of the view-specific ego

graph, which equals to the length of P .
In summary, given the features generated by the

node feature transformation and the view set PAi
¼

fP1; . . . ; PjPAi
jg where the metapath start or end with the

node type Ai 2 A, the view-specific ego graph encoder will

Fig. 3. Information aggregation for node P5 at level l. The Author node’s
feature vector (hs), relation vector (hðlÞ

r ), and P5’s feature vector (hi) are
aggregated to obtain new encoded feature vector for P5.
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generate a set of representations under each view for node

v 2 Ai, denoted as fhP1
v ;hP2

v ; . . . ;h
PjPAi

j
v g.

4.3 Auto Multi-View Fusion Layer

In this section, we aim to fuse diverse representations from
multiple views. There are two key challenges. First, the
fused representation requires a theoretical guarantee of a
crucial characteristic, versatility [23] (Definition 5), which
means the fused representation can perform at least as good
as any single-view representation. Popular approaches in
existing HG embedding works, such as attention-based
approaches [9], [10], [15], [16], can not hold the versatility.
Second, there is much redundant information among multi-
view representations, which must be removed in the fusion
process [22]. The simple concatenation operation preserves
the redundant information, leading to poor performance,
even if it holds the versatility intuitively. The auto multi-
view fusion layer addresses these two challenges through
hierarchical autoencoders and orthogonal regularization.

4.3.1 Hierarhical Autoencoders

Given a metapath Pj in view set PAi
, we denote the embed-

dings of all nodes generated by view-specific ego graph

encoder asHPj ¼ ½hPj
1 ;h

Pj
2 ; � � � ;hPj

jVAi
j�T 2 RjVAi

j�d0 . The repre-

sentations from all views fHP1 ;HP2 ; � � � ;HPjPAi
j g need be

encoded into versatile representations H. In order to do
that, hierarchical autoencoders are used to preserve intra-
view information and encode inter-view information simul-
taneously. We first demonstrate a standard autoencoder as
AEðX;QÞ, where X is the input of autoencoder and Q ¼
fWðmÞ

ae ;bðmÞ
ae gjMm¼1 is the network parameters with M being

the number of layers. The first M
2 layers are the encoder net-

work, and the last M
2 layers are the decoder network. Let

Zð0Þ ¼ X, then the output of themth layer is:

ZðmÞ ¼ sðZðm�1ÞWðmÞ
ae þ bðmÞ

ae Þ; (7)

where ZðmÞ 2 R��dm . dm is the output dimension of m-th
layer. WðmÞ

ae 2 Rdm�1�dm and bðmÞ
ae 2 Rdm denote the weights

and bias of the mth layer, respectively. sð�Þ is the non-linear
activation, such as ReLU [41]. For simplicity, we denote
fð�;QeÞ as the encoder network where parameters Qe ¼
fWðmÞ

ae ;bðmÞ
ae gj

M
2
m¼1 and fð�;QdÞ as the decoder network, where

parameters Qd ¼ fWðmÞ
ae ;bðmÞ

ae gjMm¼M
2
. fð�Þ denotes general the

multilayer perceptron architecture.
First, in intra-view, we use view-specific autoencoders to

further compress the representations of each view to be
more compact. Assuming the autoencoder under view Pj is
AEðHPj ;QPjÞ, then the compressed representations, i.e., the
output of the encoder network is:

ZðM2 ;PjÞ ¼ fðHPj ;Q
Pj
e Þ: (8)

The reconstruction of the decoder network is:

ZðM;PjÞ ¼ fðZðM2 ;PjÞ; ;Q
Pj
d Þ: (9)

Therefore, the reconstruction loss for all view-specific
autoencoders is:

Lintra
re ¼ 1

2

X
Pj

jjHPj � ZðM;PjÞjj2F : (10)

Second, in inter-view, we use a 2-layer supervised autoen-
coder [43] to encode all information into a latent representation
comprehensively. We first concatenate the compressed
representations from all views, denoted as Z

M
2 ¼

½ZðM2 ;P1Þ; . . . ;ZðM2 ;PAi
Þ�. Assuming the supervised autoencoder

network is AEðZM
2 ;QsÞ, where Qs ¼ fW1

s;W
2
s;b

1
s; ;b

2
sg and

W1
s 2 Rðd

M
2 �jPAi

jÞ�d and W2
s 2 Rd�ðd

M
2 �jPAi

jÞ and b1
s 2 Rd and

b2
s 2 Rd

M
2 �jPAi

j, then the output of the encoder network is:

H ¼ fðZM
2 ;Qs

eÞ ¼ sðZM
2 W1

s þ b1
sÞ: (11)

The reconstruction of the decoder network is:

Z
M
2
re ¼ fðH;Qs

dÞ ¼ sðHW2
s þ b2

sÞ: (12)

Therefore, the reconstruction loss for the supervised autoen-
coders is:

Linter
re ¼ 1

2
jjZ

M
2
re � Z

M
2 jj2F : (13)

The supervised information is the downstream task loss and
will be discussed in Section 4.4.

Ideally, minimizing Eq. (10) and Eq. (13) will offer versa-
tility to the multi-view representations H 2 RjVAi

j�d, i.e., the
final representations of all nodes of type Ai. Here we give a
brief theoretical proof:

Proposition 1. (Versatility of the Multi-View Representa-
tion H) There exists a solution to Eq. (13) and Eq. (10) which
holds the versatility.

Proof. First, we partition the weight parameter matrix of the
decoder of the 2-layer supervised autoencoder as:

W2
s ¼ ½ðW2

sÞP1 ; � � � ; ðW2
sÞ

PjPAi
j �; (14)

where ðW2
sÞPj 2 RjVAi

j�d
M
2
. According to Eq. (13), it is easy

to show that there exists ZðM2 ;PjÞ ¼ sðHðW2
sÞPj þ b2

sÞ ¼
fðH;Q

ðs;PjÞ
d Þ, where fð�;Qðs;PjÞ

d Þ is the mapping from the

multi-view representation H to the compressed single
view representation ZðM2 ;PjÞ. Further, according to

Eq. (10), there exists HPj ¼ fðZðM2 ;PjÞ;Q
Pj
d Þ. Consequently,

there exists:

HPj ¼ fðfðH;Q
ðs;PjÞ
d Þ;QPj

d gÞ ¼ fðH; fQðs;PjÞ
d ;Q

Pj
d gÞ; (15)

where fð�; fQðs;PjÞ
d ;Q

Pj
d gÞ is the mapping from H to HPj .

Hence, 8 ’ð�Þ with YPj ¼ ’ðHPjÞ, there exists a mapping

cð�Þ satisfying YPj ¼ cðHÞ by defining cð�Þ ¼
’ðfð�; fQðs;PjÞ

d ;Q
Pj
d gÞÞ. tu

4.3.2 Orthogonal Regularization

There exist two issues when applying hierarchical autoen-
coders. First, the representations from different views con-
tain much redundant information as mentioned before.
For example, the Co-author view and Co-conference view may
share many paper and author nodes. Second, the
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autoencoders may suffer from the over-parameterization
problem. Since the graph datasets are often semi-supervised
where only a few labels can be accessed, the optimization of
autoencoders might be problematic. In order to address
these issues, we introduce orthogonal regularization to the
encoder network of each autoencoder. On the one hand, the
orthogonal column vectors can be regarded as orthogonal
bases, ensuring each encoded dimension represents a
unique meaning, i.e., independent of the other dimen-
sions [44]. On the other hand, due to the orthogonality con-
straint, only informative weights are non-zero.

Specifically, considering all the first M
2 layers of all

autoencoders ae, the orthogonal loss is:

Lortho ¼
X
ae

XM2
m

jjðWm
aeÞT ðWm

aeÞ � ð1dm � IdmÞjj1; (16)

where � refers to the element-wise product. We do not set
orthogonal constraints on the decoder networks because the
decoder needs to reconstruct the original hidden state that
may contain many redundant features.

4.4 Optimization

In MV-HetGNN, we adopt a task-guided training strategy
to optimize the network parameters. There are several strat-
egies to optimize MV-HetGNN. For example, optimize
view-specific ego graph encoder and auto multi-view fusion
layer sequentially according to the downstream tasks. How-
ever, for the scalability and flexibility of the model, we opti-
mize the MV-HetGNN in an end-to-end paradigm.

Algorithm 1. The Overall Learning Algorithm of MV-
HetGNN

Input: The graph G ¼ ðV; EÞ, the node features fHAi
; 8Ai 2

Ag, the view (metapath) set P, the ego graphs EGP
v of each node

v under each view P .
Output: The node EmbeddingsH.
1 for node type Ai 2 A do
2 Node feature transformation:H0

Ai
¼ sðXAi

WAi
Þ;

3 end
4 for metapath Pj in P do
5 for node v 2 V do
6 Given EGPj

v , calculate the view-specific representation h
Pj
v

by the view-specific ego graph encoder;
7 end
8 end
9 Calculate multi-view representationH by Eq. (8, 11);
10 Calculate the reconstruction loss by Eq. (10, 13);
11 Calculate the orthogonal regularization loss by Eq. (16);
12 Backpropagation and update parameters according to

Eq. (19);

Specifically, according to the node labels’ availability of
downstream tasks, we divide the them into two categories:
semi-supervised and unsupervised downstream tasks. For
semi-supervised learning (e.g., node classification and node
clustering), we first define the labeled node set as YL and
the the downstream classifier as WC 2 RC�d, where C is the
number of classes. Then the downstream loss is:

Lds ¼ �
X
v2YL

yv lnðWCh
T
v Þ; (17)

where the hv 2 R1�d and yv 2 R1�C is the embedding vector
and one-hot label vector of labeled node v. For unsuper-
vised learning (e.g., link prediction), we design the loss
function of preserving the graph structure, i.e., the adja-
cency relationship of nodes. We optimize the model param-
eters by minimizing the following loss function through
negative sampling [45]:

Lds ¼ �
X

ðu;vÞ2V
log sðhT

u � hvÞ �
X

ðu0;v0Þ2V�
log sð�hT

u0 � hv0 Þ;

(18)

where sð�Þ is the sigmoid function, V is the set of positive
node pairs, and V� is the sampled set of negative node pairs
sampled from all unobserved node pairs.

Therefore, the complete loss function of MV-HetGNN is:

L ¼ Lds þ �ðLintra
re þLinter

re Þ þ Lortho; (19)

where � is a critical hyper-parameter that controls the
degree of versatility. It is often a relatively small number,
such as 0.1, 0.05. This is mainly because: i) At the beginning
of training, the representation of each view is initialized
almost randomly, so the reconstruction loss (i.e., loss of gen-
erality) is meaningless. Therefore, in order to optimize the
network parameter in the right direction, the downstream
task loss needs to play a major role. ii) In practical cases, it is
usually difficult to guarantee the exact versatility. More-
over, exactly versatile multi-view representation will loss
flexibility for various datasets and downstream tasks.

We optimize the model parameters by minimizing L via
backpropagation and gradient descent. The overall learning
algorithm is shown in Algorithm 1.

5 EXPERIMENTS

5.1 Experimental Setup

Dataset. As shown in Table 2, three heterogeneous graph
datasets from different domains are used to evaluate the
performance of MV-HetGNN. Following [9], [10], we use
three widely used evaluation tasks: node classification,
node clustering, and link prediction.

� DBLP 2: We adopt a subset of DBLP extracted by [46].
The authors are divided into four areas. DBLP is used
for node classification andnode clusteringwithdata par-
tition of 400 (9.86%), 400 (9.86%), and 3257 (80.28%) for
training, validation, and testing.

� IMDb 3: We adopt a subset of IMDb extracted by [10].
Each movie is labeled as one of three classes. IMDb is
used for both node classification and node clustering
with data partition of 400 (9.35%), 400 (9.35%), and
3478 (81.30%) nodes for training, validation, and testing,
respectively.

� Last.fm 4: We adopt a subset of Last.fm released by [47].
No label or features are included. Last.fm dataset is used
for the link prediction task. All links are divided into
training, validation, and testing set with data partition of
18567 (20%), 9283 (10%), and 64984 (70%), respectively.

2. https://dblp.uni-trier.de/
3. https://www.imdb.com/
4. https://www.last.fm/
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Baselines. We compare MV-HetGNN with the following
baselines:

� Metapath2vec [48] uses metapath-guided random
walks and skip-gram model [49] to generates node
embeddings. We test Metapath2vec++ [48] on all
metapaths separately and report the best results.

� HERec [50] appliesDeepWalk [51] onmultiplemetapath-
based homogeneous graphs, and proposes an fusion
algorithm for rating prediction. For node classification/
clustering,we report the best result of allmetapaths.

� GCN [6] performs convolutional operations in the
graph Fourier domain.

� GAT [26] conducts convolutional operations in the
spatial domain with the attention mechanism. We
test GCN and GAT on metapath-based homoge-
neous graphs and report the best results.

� HAN [9] learns node embeddings from different
metapath-based homogeneous graphs and leverages
the attention mechanism to combine them into one
vector for each node.

� HGT [14] designs node- and edge-type dependent
parameters to characterize the heterogeneous atten-
tion over each edge to model heterogeneity.

� MAGNN [10] uses intra-metapath aggregation and
inter-metapath aggregation to encode metapath
instances, and learn the importance of different
metapaths by an attention mechanism.

The above baselines can be divided into four categories.
Metapath2vec and HERec are the shallow heterogeneous
graphs embedding models. GCN and GAT are conventional
GNNs designed for homogeneous graphs. HGT is the first
category of heterogeneous graph neural networks (as
described in Section 2.2). HAN and MAGNN are the second
category of heterogeneous graph neural networks.

Implementation. For Metapath2vec and HERec, we set the
window size to 5, walk length to 100, walks per node to 40,
and the number of negative samples to 5. For all GNNs, we
set the dropout rate to 0.5 as default. For HAN, MAGNN,
and HGT, we follow the original setting reported in these
papers. For MV-HetGNN, we employ the Adam optimizer,
and set the learning rate to 0.005, 0.001, 0.001 for DBLP and
IMDb and Last.fm dataset, respectively. We set the number
of layers of view-specific auto encoderM as 2. For the dimen-
sion hyper-parameters d0 (output feature dimension of node
feature transformation), d

M
2 (the output dimension of the

encoder of view-specific autoencoder) and d (the dimension
of multi-view representations), we set d0 ¼ 2d

M
2 ¼ 2d for

DBLP, and d0 ¼ d
M
2 ¼ d for IMDb and d0 ¼ d

M
2 ¼ d for Last.fm

datasets, respectively.

5.2 Experimental Results

Node Classification. We conduct node classification experi-
ments [9], [10] on the DBLP and IMDb datasets, with about
10% data used for training. After obtaining embeddings of
labeled data by each model, we feed the testing nodes into a
linear support vector machine (SVM) classifier with varying
training proportions. Since the variance of graph-structured
data can be relatively high, we repeat it ten times and report
the averagedMacro-F1 andMicro-F1 in Table 3.

As shown in the table, the bold and underlined numbers
indicate the best and runner-up results in the row, respectively.

TABLE 3
Results (%) on the DBLP and IMDb Datasets for Node Classification Task

Dataset Metrics Train% Unsupervised Semi-supervised

Metapath2vec HERec GCN GAT HAN HGT MAGNN MV-HetGNN

IMDb

Macro-F1 20% 45.94 45.31 53.63 54.74 57.52 59.38 59.48 61.33
40% 47.41 46.63 53.86 56.27 57.81 59.91 59.79 61.43
60% 48.23 47.07 54.22 56.97 58.28 60.32 60.02 61.39
80% 50.34 48.02 54.77 57.43 58.69 60.38 60.20 61.89

Micro-F1 20% 47.47 46.19 53.61 54.56 57.79 59.42 59.27 61.31
40% 48.69 48.03 53.88 56.17 58.77 60.08 59.92 61.43
60% 49.54 48.41 54.19 56.89 59.11 60.27 60.14 61.36
80% 50.47 49.57 54.12 57.48 59.57 60.44 60.21 61.89

DBLP

Macro-F1 20% 89.39 90.31 90.00 91.37 91.87 92.05 93.01 95.23
40% 89.99 91.15 90.11 91.70 92.36 92.57 93.24 95.31
60% 90.31 92.01 90.12 91.76 92.80 92.90 93.52 95.34
80% 90.94 92.37 91.07 93.81 93.01 93.40 93.79 95.44

Micro-F1 20% 90.43 91.49 90.03 91.89 92.48 92.55 93.51 95.52
40% 90.99 92.05 90.31 92.17 92.90 93.08 93.74 95.64
60% 91.33 92.66 90.31 92.32 93.35 93.38 94.01 95.56
80% 91.61 92.78 90.40 92.36 93.53 93.46 94.17 95.80

TABLE 2
Statistics of Datasets
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MV-HetGNN consistently achieves the best performance. The
shallow models (Metapath2vec and HERec) perform worse
than GCN or GAT, since they do not leverage node content fea-
tures. HAN obtains better performance than GAT and GCN
because it exploits multiple metapaths to explore various
semantics. HGT and MAGNN are able to outperform HAN
because they can utilize more node features by stacking multi-
layer or metapath encoder, respectively. MV-HetGNN consis-
tently outperforms HGT, which stacks multiple layers to catch
high-order semantics. In contrast, MV-HetGNN employs the
view-specific ego graph encoder to utilize higher-order infor-
mation effectively.MV-HetGNNalso obtains better results than
MAGNN. There are two main reasons. For one thing, MV-
HetGNNmodel the metapath-based local structure more com-
prehensively than MAGNN. For another thing, MV-HetGNN
can comprehensively integrate the embeddings from different
views to obtainmore versatile embeddings thanMAGNN.

Node Clustering. We conduct node clustering experiments
on the DBLP and IMDb datasets, using the same setting as [9],
[10]. We feed the embeddings of labeled nodes to a K-Means
algorithm. The number of cluster K is set to 3 for IMDb and 4
forDBLP. Since the clustering result of theK-Means algorithm
is highly dependent on the initialization of the centroids, we
repeat K-Means 10 times and report the averaged normalized
mutual information (NMI) and adjusted Rand index (ARI).

The results are reported in Table 4. Overall, the relative
performance of node clustering task is similar to the node
classification task. MV-HetGNN significantly performs
much better than all baselines consistently. The experimen-
tal results demonstrate that MV-HetGNN is able to learn
more effective representation for the nodes of heteroge-
neous graphs. We note that the performance of all evaluated
models on IMDb is much worse than on DBLP because
every movie node has multiple genres in the original IMDb
dataset, but only the first one is chosen as its class label.

Link Prediction. We evaluate the performance of link pre-
diction task on Last.fm, following the MAGNN model [10].
Compared to MAGNN [10], we adopt a lower training ratio
(only 20% links are used for training), which is a more chal-
lenging setting. The connected user-artist pairs are treated
as positive links, while unconnected user-artist pairs are
regarded as negative links.

We add the same number of randomly sampled nega-
tive node pairs to the validation and testing sets. The
GNNs are then optimized by minimizing Equation 18.
Given the user embedding hu and the artist embedding
ha generated by the trained model, the linking probability
of u and a is calculated by Probua ¼ sðhT

u � haÞ, where s is
the commonly used sigmoid function. The embedding
models are evaluated by the area under the ROC curve

(AUC) and average precision (AP) scores. In Table 5, we
report the averaged results of 10 runs of each embedding
model. MV-HetGNN outperforms all baseline models,
indicating the superiority of MV-HetGNN. Compared
with other methods, MV-HetGNN can effectively obtain
high-order information, and comprehensively use the fea-
tures and semantic information.

5.3 Study on View-Specific Ego Graph Encoder

In this section, we conduct extensive experiments to evaluate
the effectiveness of view-specific ego graph encoder. First of
all, we compare the view-specific ego graph encoderwith other
local structure encoding methods, including metapath-based
neighborhoods encoder used in HAN [9] and metapath
instance encoder used inMAGNN [10]. Specifically,we replace
the view-specific ego graph encoder with the two approaches
mentioned above, resulting in two variants, MV-HetGNNHAN

and MV-HetGNNMAGNN. Second, we evaluate the impact of
modeling the representations of relations and the mapping
function between heterogeneous nodes by a variant MV-
HetGNNw/o TransE, which removes the TransE mapping func-
tion and aggregates information directly. Finally, benefiting
from modeling the local structure under each semantics as
graph structure, we can further improve the performance of
view-specific ego graph encoder by setting 1

Ci
in Eq. (3) learn-

able. Specifically, we learn 1
Ci

by graph attention mecha-
nism [26], resulting in a variant MV-HetGNNGAT. Due to
space limitations, we omit the details of these variants. Inter-
ested readers can refer to their original papers [9], [10], [26].

The results are shown in Table 6. MV-HetGNN consistently
outperforms MV-HetGNNHAN and MV-HetGNNMAGNN, vali-
dating the superiority of the view-specific ego graph encoder.
Furthermore, the results of MV-HetGNNw/o TransE indicate that
modeling the mapping function plays a positive role in HGs
embedding. Last but not least, MV-HetGNNGAT outperforms
MV-HetGNN in node classification and link prediction tasks,
which indicates that the view-specific graph modeling pro-
vides uswithmore flexibility to designmodels.

5.4 Study on Auto Multi-View Fusion Layer

In this section, we aim to evaluate the effectiveness of the auto
multi-view fusion layer. First of all, we replace it with other
popular metapath fusion methods, including simple concate-
nation, mean pooling, and the attention mechanism [9], [10],
[15], [16], [20], resulting in three variants, MV-HetGNNconcat,
MV-HetGNNmean, and MV-HetGNNattn. Specifically, the MV-
HetGNNconcat simply concatenates the representations from
multiple views without any transformation, the MV-
HetGNNmean conducts mean pooling on these representations,

TABLE 4
Results (%) on the DBLP and IMDb Datasets for Node Clustering Task

Dataset Metrics Unsupervised Semi-supervised

metapath2vec HERec GCN GAT HAN HGT MAGNN MV-HetGNN

IMDb NMI 0.93 0.41 8.10 9.98 12.46 14.50 14.41 16.04
ARI 0.32 0.17 6.62 9.02 11.21 15.92 15.22 17.67

DBLP NMI 74.09 69.31 72.75 75.03 77.86 77.47 80.52 84.23
ARI 78.32 72.71 73.13 81.73 83.23 81.84 85.68 89.05
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and the attention mechanism adopts the implementation in
MAGNN [10]. Second, we conduct ablation studies by two
variants, MV-HetGNNw/o ae and MV-HetGNNw/o reg, which
remove the hierarchical autoencoder (replaced with a linear
layer) and orthogonal regularization, respectively.

The results are shown in Table 6. MV-HetGNN consis-
tently outperforms MV-HetGNNconcat, MV-HetGNNmean,
and MV-HetGNNattn, indicating auto multi-view fusion
layer’s effectiveness. Compared with other approaches,
MV-HetGNNconcat performs worst. Although it preserves
all information from multiple views intuitively, there is
much redundant information as discussed in Section 4.3.2,
which significantly hinders the performance in downstream
tasks. Furthermore, the MV-HetGNNattn can not consis-
tently outperform MV-HetGNNmean, especially on the
IMDb dataset. Similar results can also be found in a recent
work GIAM [52], which further shows that the main reason
for this phenomenon is overfitting. In addition, the results
of MV-HetGNNw/o ae and MV-HetGNNw/o reg indicate that
both hierarchical autoencoders and orthogonal regulariza-
tion are critical. The orthogonal regularization is essential
for the success of network optimization, while the auto
encoders can further strengthen the performance.

5.5 Impact of the Length and Number of MetaPaths

In this section, we experiment with the DBLP dataset to
evaluate the impact of the length and number of metapaths.

First, we compare the performance on three metapaths
(APA, APCPA, and APTPA) individually to evaluate the
impact of the length of metapaths. Specifically, we remove
the auto multi-view fusion layer and train MV-HetGNN
solely on one of the metapaths. Second, we compare the per-
formance on different numbers of metapaths to evaluate the
impact of the number of metapaths. Specifically, we experi-
ment on three groups of metapaths, APA, APA+APTPA, and

APA+APTPA+APCPA. We report the average Macro-F1,
average Micro-F1, NMI, and ARI.

From Fig. 4a, we have two observations. First, the per-
formance on metapaths APTPA and APCPA outperforms
APA, indicating that the performance of view-specific
ego graph encoder does not get worse with the increase
of metapath length. Second, although the lengths of
metapath APCPA and APTPA are the same, their perfor-
mance is quite different. Therefore, compared with the
length of metapaths, the semantics behind them are
more crucial factors affecting the performance in down-
stream tasks. In addition, some related works [53], [54]
that can automatically learn metapaths also show that
refined metapaths (e.g., 2�4 order) are generally better.

TABLE 5
Results (%) on the Last.fm Datasets for Link Prediction Task

Dataset Metrics metapath2vec HERec GCN GAT HAN HGT MAGNN MV-HetGNN

Last.fm AUC 74.32 73.98 76.59 80.03 81.00 86.53 87.68 92.80
AP 74.11 72.53 75.51 81.44 82.03 88.77 89.25 94.03

TABLE 6
Results (%) of the Study on View-Specific Ego Graph Encoder and Auto Multi-View Fusion Layer on Three Datasets

Variants IMDb DBLP Last.fm

Macro-F1 Micro-F1 NMI ARI Macro-F1 Micro-F1 NMI ARI AUC AP

MV-HetGNN 61.51 61.50 16.04 17.67 95.33 95.63 84.23 89.05 92.80 94.03
MV-HetGNNHAN 59.32 59.57 14.04 14.01 93.34 93.80 79.91 85.16 80.06 83.60
MV-HetGNNMAGNN 60.48 60.47 14.21 15.27 94.37 94.66 81.85 86.83 92.69 94.31
MV-HetGNNw/o TransE 60.80 60.83 13.44 14.32 95.17 95.38 83.09 87.93 92.56 93.37
MV-HetGNNGAT 61.87 61.90 15.89 16.93 95.65 95.93 83.83 88.68 93.31 95.74
MV-HetGNNconcat 54.47 55.14 9.72 10.01 94.54 94.96 80.08 85.94 81.40 85.27
MV-HetGNNmean 60.43 60.35 15.18 16.10 94.27 94.70 81.77 86.95 82.23 85.95
MV-HetGNNattn 60.11 60.28 12.45 14.66 94.42 94.83 81.54 86.41 92.59 93.28
MV-HetGNNw/o ae 61.08 61.15 15.33 16.28 94.82 95.09 82.17 86.59 83.35 86.02
MV-HetGNNw/o reg 60.47 60.43 11.16 13.24 93.58 94.26 80.22 85.83 79.84 83.10

Fig. 4. Study on the impact of the length and number of metapaths.
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Local structures under a too-short metapath cannot
include enough structural and feature information, while
local structures under a too-long metapath introduce too
much noise, and they both cannot be used to produce
better node embeddings.

As shown in Fig. 4b, benefiting from automulti-view fusion
layer, the performance of MV-HetGNN increases consistently
with the number ofmetapaths and is at least as good as any sin-
gle metapath. Moreover, we find that view-specific ego graph
encoder based on a single metapath APCPA (Fig. 4a) outper-
forms theMV-HetGNNattn (Table 6), which integrates all three
metapaths by the attentionmechanismused inmanyworks [9],
[10]. This phenomenon again validates the superiority of our
method.

5.6 Parameter Sensitivity

In this section, we conduct experiments to analyze the
impacts of two critical hyper-parameters.

In Fig. 5, we present the results of NMI in node clustering
and Macro-F1 in node classification on the IMDb dataset
with different parameters.

First, we test sensitivity of the representation feature
dimension d of H. According to the setting in Section 5.1,
we additionally set d0 ¼ d

M
2 ¼ d. Note that we only set it

for the convenience of the parameter sensitivity test. The
effect of dimension d of the final embedding H is shown
in Fig. 5a. As the embedding dimension increases, the
performance will gradually rise to the highest point and
then drop slowly. This is because the smaller dimension
is not enough to encode the heterogeneous feature infor-
mation and semantic information, while the larger dimen-
sions may introduce redundancy, hindering the model
optimization.

Second, we test the sensitivity of � in Eq. (19). Fig. 5b
reports the effect of �. As discussed in the Section 4.4,
considering various data sets and downstream tasks, too
strong versatility constraints (higher �) can harm
the model performance. A relatively small value will
improve the performance of MV-HetGNN. For example,
assuming that complementary metapaths that are mean-
ingful to downstream tasks coexist with meaningless
metapaths, it is beneficial to integrate all the information
from the complementary metapaths, but it is harmful to
forcibly contain information from the meaningless
metapaths.

5.7 Visualization

In this part, we conduct the task of visualization to intui-
tively compare the embedding results on a low dimensional
space. First, we get the embeddings of the nodes in the

testing set and then project them into a 2-dimensional space
through t-SNE [55]. We present a visualization of author
node embeddings in DBLP and color the nodes based on
their labels. As shown in Fig. 6, GAT performs worst, where
nodes of the same type are not closely distributed, and
nodes with different types are mixed. Benefiting from the
use of multiple metapaths to explore comprehensive seman-
tic information, the visualization of HAN performs better
than Metapath2vec and GAT. Further, MV-HetGNN
achieves the best visualization performance. The nodes of
the same type are located close to each other, and the nodes
from different types are well separated.

6 CONCLUSION

In this paper, we introduce the idea of multi-view represen-
tation learning to HGs embedding and propose a Heteroge-
neous Graph Neural Network with multi-view representation
learning (MV-HetGNN). The complex ego graph in HGs is
decomposed into multiple view-specific ego graphs based
on different semantics. Then, we employ the view-specific
ego graph encoder to obtain node representation under
each view. In this process, heterogeneity is addressed by
learning the representation of relations and modeling
the mapping relation between heterogeneous nodes. Then
the auto multi-view fusion layer is developed to integrate
the embeddings from diverse views. Versatile node embed-
dings with a theoretical guarantee are learned in this mod-
ule. We conduct extensive experiments on three real-world
datasets, and the results show that the proposed MV-
HetGNN significantly outperforms all the baselines on vari-
ous tasks.
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