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From Asset Flow to Status, Action, and Intention Discovery:

Early Malice Detection in Cryptocurrency

LING CHENG, FEIDA ZHU, and YONG WANG, Singapore Management University, Singapore

RUICHENG LIANG, Hefei University of Technology, China

HUIWEN LIU, Singapore Management University, Singapore

Cryptocurrency has been subject to illicit activities probably more often than traditional financial assets due

to the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve

all three critical properties of early detection, good interpretability, and versatility for various illicit activities.

However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep learning

without interpretability and are only available for retrospective analysis of a specific illicit type. To tackle all

these challenges, we propose Intention Monitor for early malice detection in Bitcoin, where the on-chain

record data for a certain address are much scarcer than other cryptocurrency platforms.

We first define asset transfer paths with the Decision Tree based feature Selection and Complement to build

different feature sets for different malice types. Then, the Status/Action Proposal module and the Intention-

VAE module generate the status, action, intent-snippet, and hidden intent-snippet embedding. With all these

modules, our model is highly interpretable and can detect various illegal activities. Moreover, well-designed

loss functions further enhance the prediction speed and the model’s interpretability. Extensive experiments on

three real-world datasets demonstrate that our proposed algorithm outperforms the state-of-the-art methods.

Furthermore, additional case studies justify that our model not only explains existing illicit patterns but also

can find new suspicious characters.
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1 INTRODUCTION

Cryptocurrency has emerged as a new financial asset class with ever-increasing market capital and
importance. Together with the growing popularity comes a wide range of cybercrimes [8, 18, 38] in-
cluding hacking, extortion [2, 15], and money laundering [7, 16, 37, 42]. Customary in this domain,
these criminal behaviors are referred to as malicious behaviors, and the addresses committing these
behaviors are referred to as malicious addresses since each transacting entity in cryptocurrencies
is represented as an anonymous address instead of an account bound with a verified identity. The
detection and diagnosis of malicious addresses in cryptocurrency transactions present greater chal-
lenges than fraud detection in the traditional financial world for the following three distinguishing
characteristics of cryptocurrency:

• Early detection is all that matters. Unlike all other traditional financial assets, cryptocurren-
cies are traded at a 24/7, never-sleeping pace. Most malicious behaviors last for a short du-
ration, measured only by hours, and will have already inflicted the damage before the asso-
ciated malicious addresses are forever abandoned if they are not detected in the early stage.
Moreover, due to the decentralized nature of cryptocurrency’s peer-to-peer transactions,
retrospective analysis and identification provide little value as financial losses are almost
impossible to be held back and recover once the perpetration is complete. This challenges
most existing graph-based methods as transaction graphs [10, 19, 28] needed by these meth-
ods must be sufficiently large to provide useful structural information [1]. In most cases, the
time it takes to form such a transaction graph is much too long to respond effectively to ma-
licious behaviors in action. Besides, these methods are usually computationally expensive
and time consuming for early-stage detection.
• Type-specific features are not versatile enough for malicious behavior detection. The types of

malicious behaviors in cryptocurrencies are increasingly diverse, complex, and constantly
evolving, ranging from Bitcoin (BTC)-based scams to darknet markets and modus operandi
hacking attacks [14]. The characteristics of malicious behaviors also vary a lot across differ-
ent types. Manually engineered features from specific malicious behaviors cannot be gen-
eralized to other types and unknown ones, let alone apply to other cryptocurrencies with
a complex heterogeneous relationship in general [23, 48]. Although some studies [39] can
detect categories of malicious activities, they are still only available for post-hoc analysis
and invariably require a full-history feature observation, which is consequentially scarce at
the early stage of these fraud activities. Thus, they cannot be directly deployed to detect
illicit activities at the early stage. A more general class of features that capture more fun-
damental characteristics of malicious behaviors across different types is required to achieve
the desired versatility.
• Interpretability is essential. Many malicious behaviors among the cryptocurrency platforms

are packaged as commercial projects to lure victims into investing. Investors must be able to
investigate and tell real creditable projects from fraudulent ones. However, most detection
methods today hardly offer insights into the model’s predictions [24]. In particular, most
models tend to improve recall for better safety and work appropriately for the surveillance
department. However, it may increase the risk of missing investment opportunities for com-
mon investors. From the perspectives of regulators and investors, model interpretability that
offers a deeper understanding of the underlying intention behind malicious behaviors is cru-
cial for correctly assessing and identifying malicious behaviors.

Moreover, among all cryptocurrency platforms, BTC has the largest volume, whereas the on-
chain record data for a certain address are much scarcer than other popular platforms (e.g., ETH,
EOS with smart contracts). Thus, methods proposed on BTC are compatible with those on other
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Fig. 1. An overview of our Intention Monitor. After extracting address and path features, the model will

select and complement the most significant features. Then, a dynamical segmentation module splits the

observation period into several coherent segments and maps the segments and their differentiation to a set

of global statuses and actions through clustering. Finally, the Intention-VAE module weights the contribution

of status/action and then fine-tunes the weighted summation of two XGB models’ predictions.

cryptocurrency platforms. To address the preceding challenges in cryptocurrency platforms, we
propose Intention Monitor on BTC, an early malice detection system based on the notion of asset

transition paths. The essential idea is based on the fact that, no matter which malicious behavior,
the ultimate motivation and damage are reflected in the significant asset transition between in-
nocent addresses and malicious ones. Patterns extracted from significant asset transition would
therefore reveal the intention of malicious behavior across different types. Due to the generality
of our asset transition paths, our Intention Monitor is potentially applicable and compatible with
domain-specific techniques in other cryptocurrencies. On a high level, our solution progresses in
the following four stages:
(I) Feature formation: As shown in Figure 1, first, Long-Term (LT) and Short-Term (ST) transition
paths, the features of the greatest descriptive power and versatility for early-stage malice, would
be generated to capture the transaction patterns for both LT and ST transition structures.
(II) Feature selection and complement: Second, a Decision-Tree based Feature Selection and

Complement (DT-SC) module would identify features of the best discriminative power for dif-
ferent malicious behavior types.
(III) Temporal assembly and semantic mapping: The Status/Action Proposal Module (S/A-PM)

dynamically assembles the observation period into several temporally coherent segments. It then
maps all temporally coherent feature segments to a global status set through clustering. In addition,
the differentiations between consecutive segments are mapped to global action clusters. These
statuses and actions constitute the semantic units, and a status-action tuple (status, action) is used
to denote the corresponding intent-snippet at the same timestep.
(IV) Model training with intention motif as prediction witness: Status-based and action-based XGB
models are trained to give backbone predictions. The hidden intent-snippet embedding will be
proposed by the Intention-VAE module to weight the contribution of the two backbone predictions.
Furthermore, these hidden snippet embeddings are used to fine-tune the predictions with a survival
module and sequence into intention motifs which serve as a witness to the prediction result.

To summarize, the key contributions of this work are as follows:

• We propose a novel definition of asset transfer path, which is effective in capturing BTC
transaction patterns for early malice detection and applicable to other cryptocurrencies
potentially, making the versatility of the model across different malicious behavior types
possible.
• We provide good interpretability for our malice detection result with intention motif as pre-

diction witness, which is unachievable by those entire deep learning models. This is achieved
by a combination of (1) our DT-SC module to select features and S/A-PM to assemble the

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 3, Article 50. Publication date: December 2023.
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observation period and propose statuses, actions, and intent-snippets; (2) an Intention-VAE
module that encodes intent-snippet into hidden embeddings to weight the contribution of
different information dynamically; and (3) the survival module of Intention-VAE to fine-
tune the backbone predictions and group intent-snippets into the sequence of intention
motif.
• We conduct extensive evaluation and perform substantially better on three malicious

datasets than the state of the art. Furthermore, we present a deep-dive case study on the
2017 Binance hack incident to illustrate the corroborating transaction patterns and unex-
pected hidden insights for early-stage malice detection that are otherwise unattainable.

2 RELATED WORK

There are many crimes involving many addresses on cryptocurrency trading platforms. There-
fore, detecting the identity information of the address is of great significance to the event’s post-
analysis and early prediction. Based on the types of features, we divide the existing malicious
address detection methods into three categories: case-related features, general address features,
and network-based features.

2.1 Case-Related Features

Case-related features model the addresses and activities in a specific event. These detailed anal-
yses are based on the IP addresses of object nodes, public data from exchanges, and labels from
related forums. Concretely, some victims provided the criminals’ addresses and the detail of the
criminal cases they experienced. Except for those detailed data, the time difference between illegal
transactions and the sub-structure in criminal cases is also helpful in malice-case analysis. Reid
and Harrigan [44] combined these topological structures with external IP address information to
investigate an alleged theft of BTC. To extract information from social media, a transaction-graph-
annotation system [17] is presented. It matched users with transactions in darknet organizations’
activities. Similarly, by exploiting public social media profile information, in the work of Al Jawa-
heri et al. [3], they linked 125 unique users to 20 hidden services, including Pirate Bay and Silk
Road. Vasek and Moore [50] presented an empirical analysis of BTC-based scams. By amalgamat-
ing reports in online forums, they identified 192 scams and categorized them. Instead of direct
numerical analysis, other prior studies [34, 35] detected three anomalous “worm” structures as-
sociated with spam transactions by visualizing the transaction data. The case-related features are
often helpful in specific case studies. However, most insights are only available in particular cases
and cannot be generalized to other issues. Thus, we put forward the asset transition paths, which
are general in all event analyses.

2.2 General Address Features

The case-dependent criminal knowledge should be generalized to criminal patterns for a more
general detection system. Many works resort to machine learning for malicious activities and il-
legal address detection. The first step for a machine learning model is a feature proposal module
[36]. Since the transaction is the only possible action for a BTC address, commonly used address
features majorly describe related transactions, revealing behavior preferences for the given ad-
dress. Androulaki et al. [4] proved that transaction patterns such as transaction time, the index
of senders and receivers, and the amount value of transactions can help reveal addresses’ iden-
tity. Zola et al. [58] proposed a method for entity classification in BTC. By performing a temporal
dissection on BTC, they investigated whether some patterns are repeating in different batches of
BTC transaction data. On ETH, Chen et al. [11, 12] extracted features from user accounts and oper-
ation codes of the smart contracts to detect latent Ponzi schemes implemented as smart contracts.
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Considering the intrinsic characteristics of a Ponzi scheme, the extracted features mainly describe
the transaction amount, time, and count in a specific period. Yin and Vatrapu [55] applied super-
vised learning to classify entities that might be involved in cybercriminal activities. Akcora et al.
[2] applied the topological data analysis (TDA) approach to generate the BTC address graph for
ransomware payment address detection. Shao et al. [45] embedded the transaction history into a
lower-dimensional feature for entity recognition. Nerurkar et al. [39] used nine features to train
the model for segregating 28 different licit-illicit categories of users.

The proposal of the address feature has significantly improved the model’s generality. However,
address features are challenging to characterize the behavioral characteristics of addresses imme-
diately. Some particular patterns of capital inflow and outflow are difficult to be reflected in these
characteristics (e.g., the pyramid structure in the Ponzi scheme and the peeling chain in money
laundering). Moreover, the discriminative features are various from type to type. The redundant
features are essential noise for detection. Therefore, based on the asset transition path, we propose
forward and backward concepts to describe the inflow and outflow of the asset. Furthermore, our
DT-SC can propose the best feature sets for different types of activities.

2.3 Network-Based Features

Cryptocurrency inherently provides a transaction network between addresses. Besides focusing
on address-level information, network-based features aim to characterize abnormal addresses from
network interaction behaviors. By building an address or transaction network, graph metrics are
proven powerful in detecting malicious activities. By taking advantage of the power degree laws
and local outlier factor methods on two BTC transaction graphs, Pham and Lee [41] detected the
most suspicious 30 users, including a justified theft. Ranshous et al. [43] analyzed the transac-
tion patterns centered around exchanges. Their study introduces various motifs in directed hyper-
graphs, especially a 2-motif as a potential laundering pattern. Wu et al. [52] proposed two kinds
of heterogeneous temporal motifs in the BTC transaction network and applied them to detect
mixing service addresses. EdgeProp [49], a GCN-based model, was proposed to learn the repre-
sentations of nodes and edges in large-scale transaction networks. Lin et al. [29] analyzed two
kinds of random walk based embedding methods that can encode some specific network features.
Weber et al. [51] encoded address transaction graph with GCN, Skip-GCN, and Evolve-GCN. Chen
et al. [9] proposed E-GCN for phishing node detection on the ETH platform. By changing the sam-
pling strategy in Node2Vec, Wu et al. [53] proposed the Trans2Vec model, which can consider the
temporal information. Li et al. [25] used TTAGN to model the temporal information of historical
transactions for phishing detection.

Network-based methods perform well for retrospect analysis, as they encode the structural in-
formation of transaction graphs. However, in the early stages, to hide their identities, malicious
addresses often transfer their asset with a chain-like structure. Moreover, the trading network is
often too small to form a discriminative topological structure. In addition, these methods may lead
to over-smoothing issues and the dilution of the minority class [33] under the data-unbalanced
setting.

3 PROBLEM FORMULATION

3.1 Problem Definition

In examining each BTC transaction, denoted as tx , we break down its input transaction set I =
{i1, i2, . . . , i |I | } and output transaction set J = {j1, j2, . . . , j | J | }. The transaction tx accounts for the
redistribution of tokens between sets I and J . To visualize it, think of incoming tokens pouring into
a reservoir before being allocated to the outgoing transactions based on predetermined ratios. As

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 3, Article 50. Publication date: December 2023.
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Fig. 2. A BTC transaction example. The strings on the red boxes stand for five input transactions and two

output transactions.

shown in Figure 2, there are five input transactions and two output transactions in this example.1

However, there is no explicit record of the number of tokens moving from an input i to an output
j. This necessitates the creation of a complete transaction bipartite graph for this tx , ultimately
leading to the generation of |I | × |J | transaction pairs. Put simply, a single transaction houses
|I | × |J | transaction pairs within it.

By the tm-th timestep, let Dtm
= {di

tm
}Ni=1 = {(l i ,T i

in,tm
,T i

out,tm
)}Ni=1, where l i ∈ {0, 1} is the

label of address i , and 0 and 1 stand for regular and malicious addresses, respectively. T i
in,tm

=

[tx i
in,1, tx

i
in,2, . . . tx

i
Nin,tm

] are transactions where address i acts as the input address, and T i
out,tm

is the transaction set where address i acts as the output address by the tm-th timestep. For ease of
understanding, we denote these two transaction sets as the receive set and spend set, respectively.

Early Malicious Address Detection. Given a set of addresses A, and Dtm
at the tm-th timestep,

the problem is to find a binary classifier F such that

F (di
tm

) =
⎧⎪⎨⎪⎩

1 if address i is illicit

0 Otherwise
. (1)

In the early detection task, we require the prediction to be consistent and predict the correct label
as early as possible. We denote the confident time as tc , where all the classifier’s predictions F
after tc are consistent. The smallest tc is denoted as tf .c . We aim to train a classifier to predict the
correct address’s label with the smallest tf .c .

3.2 Solution Overview

Inspired by prior research on illegal activity intention encoding [31, 32], we develop a novel solu-
tion, Intention Monitor, for the early detection of malicious addresses.

In particular, as shown in Figure 3, we propose asset transfer paths to describe the transition
patterns. These asset transfer paths can essentially capture the transaction characteristics and
address intentions by tracing the source and destination of every related transaction.

Next, we put forward a DT-SC model where a decision tree model is deployed to filter and
complement the most significant features for different types of malicious behaviors. Based on
the features selected by DT-SC, the S/A-PM divides the observation period into several segments
dynamically. Then, S/A-PM clusters all the addresses’ segment representations and presents a set of
global status representations. The global action representations are proposed similarly based on the

1https://www.walletexplorer.com/txid/e56b528559b3ca7e14fcd15bb0185466b8ad3e831a2e4c009ebb7be6d5c902fa
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Fig. 3. (a) Address transaction flow and asset transfer paths. Numbers are the amount proportions to the

destination/source node. LT , ST , FR, and BK are long-term, short-term, forward, and backward, respectively.

(b) Evolution of the asset transfer path. New asset transfer paths are generated if the address participates in

new transactions. Forward paths can be extended if the asset continues to flow in the next period.

differentiation between two consecutive segment representations. Each segment now has global
status, action, and the corresponding intent-snippet, which can explain the behavioral intention
of a given address. Based on the status and action vectors, the status and action XGB models are
trained to predict status-based and action-based predictions.

Finally, we build Intention-VAE, an efficient early malicious address detection framework. The
framework can (1) comprehensively encode the relationship between status and action to generate
the hidden intent-snippet embedding, (2) dynamically weight the contribution between the status
and action XGB models, and (3) fine-tune the weighted backbone predictions and group intent-
snippets into the sequence of intention motifs. In the subsequent sections, we introduce asset
transfer path, DT-SC with S/A-PM, and Intention-VAE in Sections 4, 5, and 6, respectively.

4 ASSET TRANSFER PATH

At the early stage of malicious behaviors, the address-based network has not grown to the size
for a credible prediction. Instead, the transaction flow can provide critical information during this
period. We design asset transfer paths that consist of significant transactions for the early malicious
address detection task.

As mentioned in Section 3, there are |I | × |J | transaction pairs in one BTC transaction. However,
not all transaction pairs are helpful for malicious address detection. Those important transactions
typically constitute a significant portion of the entire transaction amount. We call such transac-
tions significant transactions. As illustrated in Figure 3, each node represents a transaction. The
nodes inside the dashed gray box stand for transactions that the given address participates in. The
left node is the address’s receive transaction, where the address receives tokens from other transac-
tions. In this single transaction example, there are three inputs, contributing 5%, 70%, and 25% to
the total transaction amount. Similarly, the right node is the address’s spend transaction, where the
address transfers its tokens to the outputs. This transaction involves multiple outputs (with a dis-
tribution of 20%, 70%, and 10% as in this example). We then propose influence and trust transaction
pairs.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 3, Article 50. Publication date: December 2023.
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ALGORITHM 1: Backward Path Preparation

input : Initial Output Tx jo , Threshold θ , Time Span TSpan .

output : Backward Path Set P .

1 Initialize Backward Path Set: P ← {[−, 1, jo]};
2 Initialize Previous hop recorder: Ppr e ← {[−, 1, jo]};
3 Initialize Ending Flag: Fend ← False;

4 jo ’s Time: Tjo ← Time of jo ;

5 while Fend � True do

6 Current hop recorder Pnow ← {};
7 Fend ← True;

8 for p in Ppr e do

9 j ← Output Tx p[2];

10 I ← Input Tx Set of j;

11 for i in I do

12 Propi ← Amti/AmtI ;

13 Scorei ← Propi ∗ p[1];

14 Ti ← time of i;

15 if (Scorei ≥ θ and Tjo −Ti ≤ TSpan ) then

16 Append [j, Scorei , i] to Pnow ;

17 Fend ← Fend && False;

18 Ppr e ← Pnow ;

19 P ← P ∪ Ppr e ;

20 return P

4.1 Influence Transaction Pair

Given an input set I = {i1, i2, . . . i |I | } to an output j and the transaction pair set is {I → j} (i.e.,
{I → j} = {(i1, j ), (i2, j ), . . . , (i |I |, j )}), we define influence transaction pair as follows: given an influ-
ence activation threshold θ , (ik , j ) is called an influence transaction pair for transaction j, if there
exists a k (1 ≤ k ≤ |I |) such that the amount of transaction pair (ik , j ) contributes to at least a

certain proportion of the input amount of transaction j—that is, Â(ik , j ) ≥ θ × Â({I → j}), where

Â(·) denotes the amount of a transaction pair or the sum of all transaction pairs.
Given an influence transaction pair (ik , j ), we can conclude that output j obtains at least a signif-

icant amount (based on the threshold) of the asset in this transaction from input ik . Accordingly,
given an receive transaction j for the given address, to trace back to the source of the asset, we pro-
posed backward path based on influence transaction pair. Algorithm 1 gives the detail to prepare
backward paths that reveal where j obtains the asset.

4.2 Trust Transaction Pair

In addition to tracing back to the asset source, we need to investigate where the asset flows to (i.e.,
the destination of the asset transfer). To that end, we define trust transaction pair as follows: given
a set of outputs J = {j1, j2, . . . j | J | }, an input i , and the set of all transaction pairs {i → J }, for an
output jk (1 ≤ k ≤ |J |), if the input i transfers at least a certain proportion of its output amount
to it, this transaction pair is called a trust transaction pair for input i . It indicates a specific form of
trust from i to jk in an asset transfer.

Given a trust transaction pair (i, jk ), we can conclude that input i sends a certain degree of
the asset to output jk . To trace the destinations of input i , we also define forward paths based on

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 3, Article 50. Publication date: December 2023.
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Fig. 4. An overview of DT-SC and S/A-PM. After extracting address and path features, The DT-SC will filter

and complement the most significant features. Then, the S/A-PM splits the observation period into several

coherent segments and maps the segments and their differentiation to a set of global statuses and actions

through clustering.

trust transaction pair. The pipeline to construct forward path is similar to backward path. The only
difference is the tracing direction.

4.3 Long-Term and Short-Term Path

For brevity, we would refer to both the backward path (BK) and forward path (FR) as asset transfer

paths and the activation threshold in both directions as activation threshold. To delineate the trans-
action patterns of an address at both macro and micro levels for both backward path and forward

path, we define two kinds of time spans: LT and ST.
LT asset transfer paths have a larger maximum observation period and higher activation thresh-

old, as they are designed to find the transaction’s major asset source. ST asset transfer paths have
a shorter observation period and lower activation threshold. They describe the transition pattern
and structure (e.g., pyramid shaped, pulse shaped, and spindle shaped) within a short period.

5 FEATURE SELECTION AND COMPLEMENT AND STATUS PROPOSAL MODULE

In this section, we describe the process of DT-SC and S/A-PM. We first introduce the address and
asset transfer path features. Then, we elaborate on DT-SC that filters and complements the features
for different malicious activities. The status and action sequences are necessary to understand the
address’s intention. To fetch these sequences, we deploy S/A-PM to split the observation period
into segments and cluster them to generate global status and actions. An overview of DT-SC and
S/A-PM is shown in Figure 4.

5.1 Address and Transaction Features

Following other works [5, 6, 39], we also use the address features to characterize the address’s
behaviors. As shown in Table 1, we extracted 16 address features that characterize an address
from six perspectives. Moreover, the asset path can provide critical information. For a specific
path set, we selected 13 path features from five perspectives. In addition, an address has four path
sets (LT-BK, ST-BK, LT-FR, ST-FR), a path set has multiple paths, and every path has these 13
path features. To characterize the overall properties of each path set, we calculated the maximum
(max), minimum (min), average (avg), and standard deviation (std) values of every feature except
the path number. Thus, there are 12*4 + 1 = 49 path features for a single path set. Since we have
four path sets (LT-F, LT-B, ST-F, ST-B) (see Figure 3), there are 49*4 = 196 path features in total. We
can characterize the early behavior of different types of addresses through these address and path
features.
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Table 1. Feature Counting and Explanation

Feature Type Aspect Feature No. Complement

Address

Balance Balance 1 None

Tx Count
Number of spend (receive) tx (by now/recent 1 hour) 4 None
Ratio of spend tx to receive tx (by now/recent 1 hour) 2 None

Tx Frequency Max spend (receive) tx number per hour 2 None

Abnormal Tx Number of spend (receive) tx with 0 amount 2 None

Temporal Info
Time of max hourly spend (receive) tx number 2 None

Time difference between max hourly spend and receive 1 None

Activity Active hour number and active rate 2 None

Path

Path-Count Path number 1 None

Path-Length Hop (height)-length 2 Min,Max,Std

(LT/ST)-(BK/FR)
Tx Amount Max (min) input (output) amount 4 Min,Max,Std

Tx Structure Max (min) input (output) tx number 4 Min,Max,Std

Connectivity Path’s max (min) activation score 2 Min,Max,Std

We believe that hundreds of extracted address and path features can summarize addresses’ early
behaviors from several perspectives. But for a specific type of activity, not all features are equally
helpful, and the introduction of irrelevant features can affect the model’s performance (this will
be justified in Section 7.3). Therefore, we need to select the most discriminative features from all
these features.

5.2 Decision Tree Based Feature Selection and Complement

Decision trees can partition the data based on the features that best separate the classes or target
variables. During the tree-building process, features that are more informative or discriminatory
tend to be selected earlier as splitting criteria. This means that important features are prioritized
in the decision tree construction and thus have higher importance scores.

We develop a DT-SC module. In this module, we have three sets: complement list, reserve list,
and deletion list. This module complements features in the complement list, retains features in the
reserve list, and deletes features in the deletion list.

In the initial round, address features and all path features’ mean values are set as seed features.
So the seed feature number is 13*4 + 16 = 68. We feed these 68 features into the decision tree model
and select the best-performing (the performing score will be elaborated in Section 7.2) model from
10 independent training models. We sort the model’s feature importance scores and denote the
maximum importance score as sM

imp . Given a feature j with an importance score simp, j , if simp, j ≥
θ*sM

imp , we append it into the complement list and complement it in the next round of training. θ

is the complement threshold. If 0 < simp, j < θ*sM
imp , we append it into the reserve list, and we will

retain it without complement in the following round. If simp, j = 0, we append it into the deletion
list, and we will delete this feature in the subsequent training process.

In the second round of training, we first complement the features in the complement list. Here,
by complement, we mean not only using the feature’s mean value but also including its maximum,
minimum, and standard deviation (only path features are available for complement). Through com-
plement, we provide the model with more details about the complement feature. Then, we append
reserve features to the input feature list without changing them. Finally, we delete features in the
delete list. Algorithm 2 shows the details of DT-SC.
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ALGORITHM 2: Decision Tree Based Feature Selection and Complement

input : Initial feature list F i , Threshold θ .

output : Complement, Reserve, and Delete lists FC , FR , FD .

1 Complement and Delete feature list: FC , FD ← {};
2 Reserve feature list: FR ← F i ;

3 Average performance score: sA
p ← 0;

4 Best average performance score: sB,A
p ← 0;

5 while sA
p ≥ sB,A

p do

6 sB,A
p ← sA

p ;

7 F
tmp
C
, F

tmp
R
, F

tmp
D

← FC , FR , FD ;

8 Average performance score sA
p ← 0;

9 Best performance score sB
p ← 0;

10 for idx ← 1 to 10 do

11 DTidx , sp,idx ← Train&Test DT(FC , FR , FD );

12 sA
p += sp,idx /10;

13 if sp,idx > SB
p then

14 Update(F
tmp
C
, F

tmp
R
, F

tmp
D

);

15 if (sA
p ≥ sB,A

p ) then

16 FC , FR , FD ← F
tmp
C
, F

tmp
R
, F

tmp
D

;

17 return FC , FR , FD

5.3 Status/Action Proposal Module

The status and action sequences can depict the intention of the given address [31], which is of great
importance to the model’s interpretability. However, if we analyze each address independently, it
is difficult for the model to obtain a generalizable intention module, and the model’s ability and
interpretability will be reduced when predicting newly emerging malicious behaviors. To solve
these problems, we propose the S/A-PM.
Dynamical Segmentation. By definition, status is to describe a certain stable state. To charac-
terize the statuses and their evolution, we need to split the entire observation time window into
several “state” segments dynamically. In every segment, we require all addresses’ features to be
stable enough. Therefore, at the J -th timestep, we first normalize all addresses’ feature sequences
along the timeline. Taking address i as example, the feature list is [f1,i , . . . , fj,i , . . . f J ,i ],where fj,i

is the feature vector at the j-th timestep of address i . And for each timestep j, we then calculate
the change ratio Cj :

Cj =

∑N
i=1

∑M
m=1 ( f m

j,i − f m
j−1,i )/( f m

j−1,i + δ )

M ∗ N , (2)

where N is the data size, M is the feature dimension, and delta is a small number in case of the
divisor equals 0. By the J -th time step, the highest and current change ratio is denoted as CH and
C J . If C J > θ ∗ CH , we think the addresses’ statuses change and add J to the segmentation point
list. In this manner, we can guarantee the stability of each segment. Notice that, to build a more
general segmentation strategy, the segmentation point list is shared by all addresses.
Segment Representation. Then, to build a generalizable intention module, we need to find and
represent the common ground of these segments across all addresses. Therefore, for the j-th seg-
ment of address i , we first define its segment representation. The segment’s beginning and end
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time points are denoted as bj and ej , respectively, and the corresponding feature sequence is
[fbj ,i , fbj+1,i , . . . , fej−1,i , fej ,i ]. Then, the segment vector дj,i is calculated as the average of the
feature sequence over the timeline. Naturally, the change between дj−1,i and дj,i is redeemed as
segment differentiationdj,i . Specially, we defineд0,i as a full-zero vector. Thus, for address i , we get
a sequence of segment representations [д1,i , . . . ,дk,i , . . . ,дK,i ], and a sequence of differentiation
representations [d1,i , . . . ,dk,i , . . . ,dK,i ], where K is the segmentation number.
Status and Action Clustering. Addresses with the same type may have similar purposes. For
example, after the ransomware addresses are activated, most will wait for the victims to pay the
ransom in a segment and transfer out quickly in another segment. We can call these two segments
the waiting segment and the transfer segment, respectively. These semantic meanings are beneficial
for understanding and interpreting the address’s intention, and we will justify this in Section 7.6.

To obtain global semantic representations such as “waiting” or “transfer,” we cluster these N ∗K
addresses’ segment representations through the agglomerative clustering algorithm, a hierarchical
clustering method. The hierarchical structure provides better interpretability in further analysis.
Similarly, we cluster these N ∗K addresses’ segment differentiations to describe the general actions
to obtain action clusters. We denote each status and action cluster’s centers as the status and action
vectors. Finally, for each address, we have five sequences: feature, status (vector and cluster index),
and action (vector and cluster index). Notice that the action is calculated from the current status
and previous status.

6 INTENTION-VAE

As mentioned in Section 2, tree-based machine learning algorithms have been proven powerful
in related tasks about malice detection. However, they are difficult to utilize temporal patterns,
which is extremely useful for depicting the address’s intention, especially during the early stage
with severe data scarcity. Besides, as there is no early stopping mechanism in the decision tree
group, subsequent redundant noise will trigger the issue of inconsistent prediction. Thus, on top
of tree-based algorithms (XGB as the backbone), we introduce the Intention-VAE module, which
can encode such temporal patterns and prevent noise with survival analysis.

6.1 Intention Proposal

By understanding an address’s status and action, we can discern its intention. Furthermore, when
an address is under a certain status, and its intention is known, we can forecast its subsequent
action. Thus, to depict this relationship, we deploy a VAE module to generate the hidden intent-
snippets embeddings with the corresponding statuses and actions. As shown in Figure 5, for ad-
dress i at timestep j, we have the corresponding status index S idx

i, j and action index Aidx
i, j . We trans-

form them into learnable embedding vectors as follows:

SE
i, j = EmbS (S idx

i, j ),

AE
i, j = EmbA (Aidx

i, j ).
(3)

After getting the embedding of status and action, the sampled bottleneck vector of our Intention-
VAE module is regarded as the hidden intent-snippet. Through Intention-VAE, we can preserve the
most critical information of status and action. Moreover, the nonlinear transformation in the mod-
ule can generate a more expressive representation. Another crucial point is that Intention-VAE
can guarantee that the intention space has the properties of continuity and completeness [22].
Specifically, continuity requires that two close intention points in the latent space do not give
two completely different contents. As for completeness, it requires an intention point to give
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Fig. 5. An overview of Intention-VAE. Two XGB models are trained with status and action, respectively. At

each timestep, the Intention-VAE module generates hidden intent-snippet embeddings to weight the predic-

tion of two XGB models and fine-tunes the weighted prediction.

meaningful content once decoded. The intention representation is calculated as follows:

xi, j = VAE-Encoder([SE
i, j | |AE

i, j ]),

μi, j =Wx μxi, j + bμ ,

σi, j =Wxσxi, j + bσ ,

zi, j = μi, j + exp(σi, j ) 	 e, e ∼ N (0, I ),

x̂i, j = VAE-Decoder(zi, j ),

(4)

where [.| |.] stands for concatenation, x̂i, j ∈ Rdz is the output of the VAE encoder, and dz is the
dimension of the intent-snippet. zi, j is the bottleneck vector of our Intention-VAE, also denoted as
the hidden intent-snippet embedding. Instead of decoding the interval vector directly, VAE encodes
inputs as distributions. Thus, the model proposes the mean value μi, j and stand deviation σi, j . Our
hidden intent-snippet embedding is sampled from the distribution of N (μi, j ,σi, j ). However, due
to the gradient descent issue of the sampling process, the module uses a reparameterization trick
to sample e from N (0,I) instead of sampling z directly. x̂i, j is the reconstruction of input data.

6.2 Intention-Based Survival Analysis

To enable the model to encode temporal patterns, we introduced Intention-Based Survival Analysis
to Intention-VAE. This module can accelerate the prediction speed and improve the consistency of
the prediction by cutting off continuous noise.

The survival function S (j ) represents the probability of an event that has not occurred timestep
j, where an event here represents “the given address labeled as malicious.” Every timestep, the
model should give lower S (j ) to malicious addresses and higher S (j ) to legal addresses. The hazard
function λj is the instantaneous event occurrence rate at time j given that the event does not occur
before time j. Note that the observation time is discrete in our case. The relationship between S (j ),
λj and probability density function fj can be described as:

S (j ) = P (T ≥ j ) =
∞∑

k=j

fk ,

λj = P (T = j |T ≥ j ) = fj/S (j ),

S (j ) = exp �
�
−

j∑
k=1

λk
�
	
.

(5)
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To enable the model to encode temporal patterns, we first update each input with corresponding
LSTM modules as follows:

hF
i, j , c

F
i, j = LSTMF ([zi, j | | fi, j ],hF

i, j−1, c
F
i, j−1),

hS
i, j , c

S
i, j = LSTMS ([zi, j | |Svec

i, j ],hS
i, j−1, c

S
i, j−1),

hA
i, j , c

S
i, j = LSTMA ([zi, j | |Avec

i, j ],hA
i, j−1, c

A
i, j−1).

(6)

Then, the hazard rate λj and intention-based prediction in our Intention-AVE are given as
follows:

λj =
∑

t ∈{F ,S,A}
ln(1 + exp (Wih

t
i, j ))),

P I
i, j =

⎡⎢⎢⎢⎢⎣
exp �

�
−

j∑
k=1

λk
�
	
, 1 − exp �

�
−

j∑
k=1

λk
�
	

⎤⎥⎥⎥⎥⎦
.

(7)

6.3 Intention Augmented Prediction Fusion

Despite the difficulty in utilizing temporal patterns, tree-based models can provide better stability
under label unbalance settings. To incorporate these benefits, we build an Intention Augmented
module upon the tree-based models.

First, we train two XGB models with status and action representations, namely Status-XGB and
Action-XGB. For address i at timestep j, based on the status vector Svec

i, j and action vector Avec
i, j ,

we first get predictions PS
i, j , P

A
i, j ∈ R2 from these two models as the backbone predictions. Each

dimension represents the probability of the corresponding class (0-normal, 1-malicious).
Both status and action can provide critical information for prediction, but their contributions

may change dynamically. Therefore, the weights assigned in the two decision trees should also
change dynamically. To this end, we use the Intention Attention module to assign the prediction
weights of the two decision trees:

aS
i, j =W

atanh(W f ,S [fi, j | |Svec
i, j ]),

aA
i, j =W

atanh(W f ,A[fi, j | |Avec
i, j ]),

aI
i, j =W

atanh(W f , I [fi, j | |zi, j ]),

α (S,A, I )
i, j = exp(at

i, j )/
{S,A, I }∑

t

exp(at
i, j ).

(8)

With the acceleration of the Intention-Based Survival Analysis, the final prediction P̂i, j for ad-
dress i at timestep j is given by

Pi, j =

{S,A, I }∑
t

P t
i, j ∗ at

i, j ,

P̂i, j = S (j ) ∗ Pi, j + (1 − S (j )) ∗ P̂i, j−1.

(9)

The introduction of survival prediction analysis can correct the prediction errors caused by the lack
of temporal information and group statuses into an intention sequence. We denote the timestep
when the survival probability equals 0 as tdie , where the model has collected enough information
to predict the malicious address’s label. In other words, the model has figured out the address
is malicious. Since VAE makes the distribution of each z’s dimension close to N (0, I ), and the
intention latent space is continuous and complete, we can binarize each dimension to index each
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address’s intent-snippet as I idx
i, j (e.g., as shown in Figure 5, z’s dimension dz is 3, and we can get

eight intention indices: 1(+,+,+), 2(-,+,+), . . . , 7(+,-,-), 8(-,-,-)). Thus, we call the intent-snippet index

sequence {I idx
i, j }

tdie

j=1 as the intention motif of address i . In addition, this intent-snippet motif can be

interpreted by the corresponding status and action sequences.

6.4 Loss Function

Classification Loss. For address i at the j-th timestep, the early detection likelihood that this
address is malicious and the negative logarithm prediction lossP are defined next:

ŷi, j = Pi, j [1],

likelihood = (1 − ŷi, j )
li (ŷi, j )

1−li ,

lossP
i, j = (li − 1) ∗ log(ŷi, j ) − li ∗ log(1 − ŷi, j ).

(10)

Intention-VAE Loss. VAE is trained by maximizing the log-likelihood as follows:

logP ([SE
i, j | |AE

i, j ]) =

∫
z

(q(z |[SE
i, j | |AE

i, j ])logP ([SE
i, j | |AE

i, j ]))dz,

=

∫
z

q(z |[SE
i, j | |AE

i, j ])log �
�
P (z, [SE

i, j | |AE
i, j ])

q(z |[SE
i, j | |AE

i, j ])
�
	
dz

+

∫
z

q(z |[SE
i, j | |AE

i, j ])log �
�
q(z |[SE

i, j | |AE
i, j ])

P (z |[SE
i, j | |AE

i, j ])
�
	
dz,

≥
∫

z

q(z |[SE
i, j | |AE

i, j ])log �
�
P ([SE

i, j | |AE
i, j ]|z)P (z)

q(z |[SE
i, j | |AE

i, j ])
�
	
dz,

(11)

where z ∼ N (0, I ) is an intermediate random variable and
∫

z
q(z |[SE

i, j | |AE
i, j ])log(

q (z |[S E
i, j | |AE

i, j ])

P (z |[S E
i, j | |AE

i, j ])
)dz

equals KL(q(z |[SE
i, j | |AE

i, j ]) | |P (z |[SE
i, j | |AE

i, j ])), which is guaranteed to be positive. Thus, we only

need to maximize the lower bound lbi, j (i.e., the last term in the preceding equation). lbi, j can
be reformalized as follows:

lbi, j =

∫
z

(q(z |[SE
i, j | |AE

i, j ])log �
�

P (z)

q(z |[SE
i, j | |AE

i, j ])
�
	
dz +

∫
z

(q(z |[SE
i, j | |AE

i, j ])log(P ([SE
i, j | |AE

i, j ]|z))dz,

(12)
where the first term equals to −KL(q(z |[SE

i, j | |AE
i, j ]) | |P (z)). To minimize this KL divergence, we

need q(z |[SE
i, j | |AE

i, j ])) close to N (0, I ). The second term equals the negative reconstruction error

in Autoencoder. Finally, the VAE loss lossV
i, j can be represented as

∑dz

d=1
(exp (σd

i, j )−(1+σd
i, j )+(μd

i, j )
2)

as indicated by Kingma and Welling [22].
Consistent and Early Boost Loss. An accurate and reliable model should provide a consistent
prediction. For an ideal model, the current prediction should be consistent with the previous pre-
diction every timestep. Thus, we introduce the consistency loss lossC to improve the predictions’
conformity:

lossC
i, j =

⎧⎪⎨⎪⎩
0 siдn((ŷ j

i − 0.5) ∗ (ŷ j−1
i − 0.5)) >= 0,

1 else,
(13)

where 0.5 is the decision boundary of positive (malicious) and negative (regular).
To accelerate the prediction speed, we need to decrease the survival probability as soon as possi-

ble. Thus, we introduced an earliness loss lossE . Every timestep, the survival probability for positive
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Table 2. Dataset Statistics

Type Positive Negative Pos./Neg. Ratio Segment

Hack 341 79,765 0.46% 10

Ransomware 1,903 50,617 3.76% 17

Darknet 7,696 89318 8.62% 18

samples should be as small as possible. The negative samples’ survival probabilities should be as
large as possible. For address i at time split t , lossE is defined as

lossE
i,t =

⎧⎪⎨⎪⎩
Si (t ) l i = 1,

−Si (t ) l i = 0,
(14)

where l i is the label of address i .
However, it is hard for the model to predict the correct labels at the early stage due to data

insufficiency. The model can be perturbed by the wrong predictions in the early period. Thus, all

the loss items are weighted by
√
t . The overall loss function is defined as

L =

tM∑
t=1

N∑
i=1

√
t (lossP

i,t + γ1loss
V
i,t + γ2loss

C
i,t + γ3loss

E
i,t ), (15)

where γ1 to γ3 are coefficients to control the contribution between lossP , lb , lossC , and lossE . tM is
the time span of training data, and N is the training address number.

7 EXPERIMENT AND ANALYSIS

7.1 Data Preparation

Raw Data and Label Collection. For higher high credibility, we only select data verified by many
participants. Thus, we obtained all the data from the 1st block to the 610,637th block (the first block
of 2020). To get the labels for three different types of malicious addresses, namely hack (hack
exchanges and steal tokens), ransomware (encrypt victims’ data and demand ransoms in BTC),
and darknet (commercial website’s address operates via darknets such as I2P), we performed a
manual search on public forums, datasets, and prior studies [26, 40, 52]. For regular addresses, we
collected four types of addresses as “negative samples,” namely exchange, mining, merchant, and
gambling. The negative dataset is also augmented as prior studies [21, 30, 52, 54]. The numbers of
positive, negative, positive/negative ratios, and dynamic segmentation numbers (within 1 day) for
each malicious type are shown in Table 2.

7.2 Settings and Metrics

Generally, according to public reports, relevant agencies can detect most malicious behaviors
within a day, such as hacking or malicious attacks. Therefore, the model should be able to give
an early warning within the first day. In our experiment, we use the first 24 hours of data with a
1 hour interval to train and evaluate our model. The max time spans for the LT and ST paths are
1 week and 1 day, respectively. Notice that the real timespan for a forward path is the smaller one
between observing timestep and the predefined max timespan, as we cannot foresee future data.
We set 0.5 and 0.01 as the thresholds for LT and ST paths, respectively, as LT paths aim to find the
most critical transaction pairs, and ST paths aim to encode more transaction structure information.

We average the metrics along the timeline to evaluate the performance. The selected metrics
are accuracy (Acc.), precision (Prec.), and recall (Rec.). Besides, the model should predict correct
labels fast to prevent economic loss earlier. In addition, due to data insufficiency, the model may
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predict conflict labels at different timesteps, thus confusing users. Thus, we require the predictions
to be consistent. To evaluate the earliness and the consistency of the prediction, we introduce the
early-weighted F1 score F1E and consistency-weighted score F1C as follows:

F1E =

∑N
i=1 F1i/

√
i∑N

i=1 1/
√
i
,

F1C =

∑N−1
i=1

√
i × F1i × 1yc

(yi )∑N−1
i=1

√
i

,

(16)

where i is the time split index and yc is the prediction set where current prediction yi is consistent
with the next prediction yi+1. The indicator function 1yc

(yi ) = 1 when yi ∈ yc . F1i is the F1 score
of the prediction at the i-th time split.

7.3 Comparison with State-of-the-Art Models

To demonstrate the validity of the temporal information, we compare decision tree models, namely
Decision Tree (DT ) [27], Random Forest (RF ) [39], and XGB [20]. Then we compare the address
graph-based models to justify the ineffectiveness of most existing graph-based models for early
detection, namely, GCN, Skip-GCN, and Evolve-GCN in the work of Weber et al. [51]. To ver-
ify the validity of our prediction model, we compare four sequential-based models applied in the
“Early Rumor Detection” task, namely GRU [13], M-LSTM [56], SAFE [57], CED [47], and Trans-
former [46]. For our Intention Monitor, +Idx means we replace zi, j with [zi, j | |EmbI (I idx

i, j )] in Al-

gorithm 6 and Algorithm 8. Emb I is the learnable embedding layer for intention index I idx
i, j as

mentioned in Section 6.3.
First, as shown in Table 3, our Inten-M model achieves the best performances across all three

datasets. The great improvements come from the effective features and our Intention-VAE module.
All these compared models also achieve far better performance with our path features and DT-SC
module, which will be discussed later.

For all traditional decision tree algorithms, they do not perform well on the three datasets. Be-
cause these algorithms are difficult to encode temporal information, it is difficult for decision tree
based machine learning algorithms to consider shifts in the feature decision boundary. In addition,
the address features cannot provide efficient information for more accurate prediction, thus even
using decision trees as the backbone, our model still improves F1E and F1C significantly compared
to the best decision tree based model. For address graph methods, as the work of Liu et al. [33] im-
plies, the Address-GCN may lead to over-smoothing issues and the dilution of the minority class.
In our cases, most neighbors of malicious nodes are victims or shadow addresses. In addition, since
the transaction network is usually small in the early stage of the address, there are many shadow
addresses in this network, which makes the Address-GCN models challenging to obtain valuable
transaction pattern information. Thus, the models do not perform well.

Rather than focusing on the address transaction graph’s structure, sequential models encode the
temporal pattern more directly. As shown in Table 3, compared to the best Address-GCN model,
they have an average improvement of 9.76% and 15.78% in F1E and F1C on the three datasets.
This improvement verifies the effectiveness of temporal patterns. However, malicious behavior
generally involves many transactions, which are often not directly related to the target address.
For example, the malicious address will use many shadow addresses for transit. Therefore, the
address feature cannot reflect the actual attributes of the address in time, whereas our backward
path feature can describe how the funds flow into the address. Similarly, the malicious address may
also transfer funds in a certain way. The most common method is the peeling chain. Our forward
path feature can provide relevant information, which is a challenging task for address features. As
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Table 3. Scores of the Different Prediction Models

Dataset Group Model Accur acy Pr ecision Recall F 1E F 1C

Hack

Decision Tree
DT 0.996 0.247 0.051 0.084 0.084
RF 0.996 0.718 0.134 0.238 0.205

XGB 0.992 0.081 0.044 0.049 0.048

Address Graph
GCN 0.736 0.106 0.282 0.163 0.104

Skip-GCN 0.651 0.143 0.524 0.226 0.125
Evo-GCN 0.760 0.145 0.335 0.196 0.146

Sequential Model

GRU 0.970 0.090 0.499 0.133 0.152
M-LSTM 0.977 0.113 0.445 0.152 0.183

CED 0.980 0.115 0.401 0.154 0.181
SAFE 0.974 0.076 0.394 0.133 0.119

Transformer 0.971 0.094 0.464 0.132 0.157

Intention Monitor

Status-XGB 0.996 1.000 0.257 0.372 0.390
Action-XGB 0.996 1.000 0.233 0.370 0.387

Inten-M 0.996 1.000 0.274 0.412 0.440
Inten-M(+Idx) 0.997 1.000 0.298 0.436 0.470

Ransomware

Decision Tree
DT 0.964 0.073 0.014 0.025 0.019
RF 0.964 0.004 0.000 0.000 0.000

XGB 0.968 0.455 0.421 0.437 0.415

Address Graph
GCN 0.878 0.223 0.923 0.360 0.359

Skip-GCN 0.881 0.226 0.910 0.364 0.361
Evo-GCN 0.866 0.200 0.871 0.322 0.326

Sequential Model

GRU 0.901 0.280 0.856 0.389 0.355
M-LSTM 0.919 0.332 0.870 0.443 0.418

CED 0.921 0.329 0.846 0.442 0.415
SAFE 0.885 0.246 0.856 0.382 0.294

Transformer 0.928 0.358 0.853 0.467 0.446

Intention Monitor

Status-XGB 0.987 0.906 0.724 0.790 0.790
Action-XGB 0.987 0.910 0.719 0.791 0.780

Inten-M 0.986 0.930 0.770 0.797 0.801
Inten-M(+Idx) 0.988 0.889 0.793 0.820 0.824

Darknet

Decision Tree
DT 0.908 0.183 0.012 0.020 0.018
RF 0.909 0.468 0.013 0.015 0.016

XGB 0.913 0.571 0.203 0.291 0.278

Address Graph
GCN 0.841 0.322 0.813 0.463 0.465

Skip-GCN 0.780 0.260 0.889 0.400 0.404
Evo-GCN 0.737 0.216 0.822 0.342 0.343

Sequential Model

GRU 0.874 0.518 0.819 0.601 0.438
M-LSTM 0.880 0.528 0.822 0.612 0.449

CED 0.861 0.490 0.835 0.582 0.414
SAFE 0.828 0.418 0.865 0.557 0.343

Transformer 0.876 0.515 0.856 0.615 0.438

Intention Monitor

Status-XGB 0.940 0.796 0.694 0.720 0.608
Action-XGB 0.941 0.797 0.710 0.727 0.615

Inten-M 0.945 0.851 0.689 0.736 0.624
Inten-M(+Idx) 0.945 0.794 0.766 0.762 0.631

Inten-M(+Idx) is our Intention Monitor with the intention index embedding. An underline stands for the best

score in the group, and bold stands for the best score in this dataset.

shown in Table 3, with the Intention Attention module, the model can fine-tune the predictions of
Status-XGB and Action-XGB, thus achieving better performance across all three datasets. Com-
pared to the best sequential model, our Inten-M model can achieve an average improvement of
93.68% and 94.04% on F1C and F1E , proving the great effectiveness of our path feature and cor-
responding feature selection. In addition, the encoding of the binarized intention index improves
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Table 4. Scores of Different Features (Address Feature (AF ), LT Path Features (+LT ),

ST Path Features (+ST ), and Selection Schemes (trimming/complement scheme (T/C))

Dataset Model Accur acy Pr ecision Recall F 1E F 1C

Hack

DT(AF) 0.996 0.247 0.051 0.084 0.084
DT(+LT) 0.995 0.221 0.053 0.079 0.092
DT(+ST) 0.996 0.882 0.116 0.249 0.278
DT(+T/C) 0.996 0.821 0.155 0.259 0.277

RF(Δ) +0.000 +0.282 +0.053 +0.095 +0.093
XGB(Δ) +0.004 +0.919 +0.181 +0.291 +0.333
GRU(Δ) +0.018 +0.103 −0.134 +0.089 +0.105

M-LSTM(Δ) +0.014 +0.184 −0.116 +0.114 +0.134
CED(Δ) +0.006 +0.044 −0.050 +0.037 +0.040
SAFE(Δ) +0.006 +0.025 +0.004 +0.034 +0.034

Transf.(Δ) +0.018 +0.089 −0.176 +0.067 +0.070

Ransomware

DT(AF) 0.964 0.073 0.014 0.025 0.019
DT(+LT) 0.965 0.313 0.090 0.125 0.126
DT(+ST) 0.967 0.592 0.270 0.354 0.330
DT(+T/C) 0.968 0.616 0.399 0.463 0.417

RF(Δ) +0.005 +0.926 +0.269 +0.394 +0.425
XGB(Δ) +0.014 +0.334 +0.283 +0.295 +0.313
GRU(Δ) +0.047 +0.169 −0.027 +0.146 +0.186

M-LSTM(Δ) +0.027 +0.109 −0.038 +0.087 +0.113
CED(Δ) +0.022 +0.092 −0.026 +0.070 +0.095
SAFE(Δ) +0.030 +0.065 −0.020 +0.076 +0.073

Transf.(Δ) +0.023 +0.102 −0.091 +0.067 +0.089

Darknet

DT(AF) 0.908 0.183 0.012 0.020 0.018
DT(+LT) 0.911 0.593 0.099 0.143 0.140
DT(+ST) 0.921 0.609 0.404 0.484 0.452
DT(+T/C) 0.922 0.618 0.446 0.517 0.461

RF(Δ) +0.006 +0.324 +0.428 +0.503 +0.499
XGB(Δ) +0.036 +0.206 +0.417 +0.380 +0.349
GRU(Δ) +0.041 +0.112 +0.032 +0.091 +0.094

M-LSTM(Δ) +0.036 +0.106 +0.036 +0.084 +0.085
CED(Δ) +0.053 +0.138 +0.002 +0.104 +0.118
SAFE(Δ) +0.046 +0.087 −0.030 +0.060 +0.081

Transf.(Δ) +0.035 +0.101 +0.001 +0.071 +0.084

Δ stands for performance differentiation after applying path features and selection schemes.

the model’s performance one step further, which justifies that the boundary in the Intention-VAE
module is useful for prediction.

7.4 Feature Combination and Selection

In this subsection, we evaluate the effectiveness of our path features and feature selection scheme.
We also justify the generality with compatible models.
Feature Combination. To verify the effectiveness of path features, we compare three decision
tree models, namely the address feature (AF ) model, the LT path features (+LT ) model, and the ST
path features (+ST ) model. +X means add feature X to the previous model. As shown in Table 4,
AF performed poorly on the three datasets. Path features significantly improve the performance
for all metrics. We speculate that most malicious addresses require victims to transfer money once
they are created. It makes them similar to exchange or financial service addresses in the early
stage. For example, exchange or merchant services will also create new addresses for security. As
a result, the AF model can only find those extremely abnormal addresses, which results in poor
performance.
Feature Selection. Feature selection is crucial for the model’s generalization ability. To justify the
effectiveness of our feature selection scheme, we also compare the T/C model with the one without
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Fig. 6. F1E and F1C of different status and action cluster number.

a selection scheme +ST. Trimming scheme (T ) stands for trimming off features in the deletion list,
Complement scheme (C) stands for complement features in the complement list. As shown in
Table 4, feature selection significantly improves the performances of decision trees across all the
datasets. The F1C and F1E are enhanced by an average of 13.88% and 9.33%, respectively. The
major improvement comes from the recall score. Since malicious activities behave abnormally in
various aspects, their most significant features are also different. Through our automatic feature
selection method, models can fully use the powerful path features. In addition, they can adapt to
different malicious activities easily, mitigate input noise, and significantly reduce the workload of
manual selection.

Since our feature selection scheme is based on the decision tree model, we implement it on other
compatible models to verify the generalization of path features and the feature selection scheme.
As shown in Table 4, our path feature and feature selection scheme improve the performance for
all models. Especially for the decision tree model, the augmented XGB model even outperforms
most sequential models.

7.5 Effect of Status&Action Cluster Number

The cluster numbers of status and action represent the granularity of address status and behavior.
If the cluster number is too small, it will limit the model’s ability to distinguish and extract ade-
quate information. On the contrary, if the cluster number is too large, it will introduce outliers
and deteriorate the model’s interpretability. To this end, we analyze the effect of cluster number
on model performance. We test five cluster numbers (4,8,16,32,64), and the results are shown in
Figure 6.

As expected, models with larger cluster numbers can distinguish more states at the beginning
and perform better. However, when the cluster number increases, the model may introduce more
redundant noise, leading to poor performance. This phenomenon is particularly evident in the
hack dataset. This is because compared to other malicious types, hack addresses tend to have fewer
actions, so the diversity of their states and actions will be less. Therefore, the best cluster number
is 16, and the performance gradually deteriorates afterward. Moreover, because ransomware and
darknet have more operations or requirements for users, the optimal cluster number will be larger.
For ransomware, the best cluster number is 32 because it performs best. For darknet, we also choose
32 as the best cluster number because the performance difference between 32 and 64 is marginal.
In addition, the model with a smaller cluster number has better interpretability.

7.6 Status Actions and Intention

Differentiation Analysis. We select the top six with the largest differences between malicious
and regular addresses. As shown in Figure 7, the x-axis represents the cluster index of status and
action. The y-axis is the discrimination score (the proportion difference between the positive and
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Fig. 7. Top six differentiated status and action. Labels on the x-axis stand for the index of status and action.

The value above each bar is the corresponding discrimination score.

negative samples divided by the sum of the proportion). A higher score means the cluster appears
more in a specific class.

We can see that some status and action clusters can be used as effective discriminant indicators
for hack and ransomware addresses. Especially for status 29 in the ransomware dataset, the dis-
crimination score is 1. In other words, as long as status 29 appears in the address status sequence,
the model can confidently determine the address’s label.

As for the darknet address, since its operation method is similar to the typical trading platform,
the cluster discrimination ability is not as strong as the other two datasets. However, when we
analyze 2-gram and 3-gram (a contiguous sequence of two and three cluster indices), we found
that the order in which each cluster appears in status and action can give a higher discrimination
score for darknet addresses. On the one hand, this justifies the importance of temporal information.
On the other hand, it shows that our status and action can be well combined with timing analysis
to achieve better results.
Case Study. We use the infamous hack incident of the Binance crypto exchange on May 7, 2019,2

in which hackers stole more than 7,000 BTCs worth 40 million, as a case study to illustrate our
model’s capability to interpret the prediction result and offer valuable insights into the malicious
behavior.

As shown in Figure 8(a), our method successfully detects the five sample hacker addresses in-
volved by the end of the first 9 hours since its creation, which is 12 hours before the stolen BTCs

were transferred away. We quote from a Binance statement that “It was unfortunate that we were
not able to block this withdrawal before it was executed.” This was an inevitable tragedy with only
retrospective analysis but totally preventable with our early detection.

To interpret our prediction result, we first zoom into one of the hacker’s addresses bc1***6xp.3

The prediction result can be easily interpreted by examining the semantics behind the status
and action that form the intention motif. By the 16th hour, the corresponding status and action
sequences are [1–9–9–9–9–9–9–9–9–9–9–9–9–9–9–14] and [8–8–8–8–8–8–8–8–8–8–8–8–4–8–
8–13]. To interpret the semantic meaning of status and action, we build corresponding status
and action decision trees. Take status as an example. After obtaining all the status vectors via

2https://www.cnbc.com/2019/05/08/binance-bitcoin-hack-over-40-million-of-cryptocurrency-stolen.html
3bc1qp6k6tux6g3gr3sxw94g9tx4l0cjtu2pt65r6xp.
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Fig. 8. (a) Survival probability evolution of example hack addresses. (b) Status and action decision tree for

the example hack address.

clustering, we categorize all the statuses using the decision tree (the number of statuses is equal to
the number of categories). Each status can be interpreted by trailing the corresponding decision
tree from the root to the leaf, as shown in Figure 8(b).

Regarding feature 2, the status decision tree judges “when the input volume of each ST-BK
path is not very large, whether the balance can reach a certain amount.” In other words, is it
in a state of “remitting funds through multiple channels and having enough balance”? Status 1

essentially indicates that the initial balance is very high, and the asset comes from lots of ST-BK
paths. Status 9 mainly determines whether the address has transferred out the asset. As shown in
Figure 7, there is already a relatively high discrimination score for statuses 1 and 9. Our model
can give the correct prediction before the end of status 9, which justifies the effectiveness of our
status proposer. Furthermore, at the 16th hour, the address status is 14. Status 14 implies that the
funds come through multiple ST-BK paths, but the balance is insufficient. The low balance may be
because the volumes of ST-BK paths are insufficient or the address transferred out its tokens with
short LT-FR paths.

As for action clusters, Action 8 is a waiting action, which is used to describe that the features
of the address are relatively stable without much change. We can also see from the figure that all
features on the decision path will not have too large or too small values. Action 4 is similar to action
8. The main difference is that the address introduces a small amount of ST-BK path, which leads
to a significant decrease in the overall corresponding feature value. Action 13 mainly describes the
property change in the ST-FR path. As shown in Figure 8(b), this action describes that the address
introduces the ST-FR path, most of which are single chains, and the transfer amount is relatively
large.

In reality, this malicious address received a transfer of 555.997 BTCs at creation through 71 input
transitions, with no output transactions. The status sequence can also be observed in the related
transaction,4 in which the hacker manipulated Binance’s address and divided it into 71 inputs,
each containing 100 BTCs. This justifies the “Multi ST-BK Paths” property of statuses 1 and 9. The
pattern can be seen in Figure 9. The black edges are the ST-BK paths related to the first input
transfer. Besides, the “waiting period” is represented by action 8.

4e8b406091959700dbffcff30a60b190133721e5c39e89bb5fe23c5a554ab05ea.
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Fig. 9. ST-BK paths for the instance address in the first 24 hours (gray and green edges stand for ST-BK paths

of the address’s first and second incoming transactions.). The numbers stand for the transaction volumes.

The pink nodes are instance-related transactions.

By the end of the 13th hour, it received another transfer of about 0.00008631 BTC. This tiny
transaction will not change the address’s status, but it can be reflected by action 4 as this tiny
transaction introduces an ST-BK path. After a transaction with a small amount, there is a bulk
transfer of all this address’s BTC at the 16-th hour. Analyzing the LT-FR paths at the 16-th hour,
we found the path hop lengths are also lower than 2. In addition, the introduced LT-FR paths shown
in the figure can be reflected by action 13. The evolution justifies the consistency between status
and the address’s real state.

Moreover, valuable insights can be acquired from our Intention Monitor. For example, the ex-
tremely tiny amount of 0.00008642 BTC received by the malicious address by the end of the 13th
hour is highly likely the corroborating evidence that it is a trial transfer to test whether the trans-
fer operation is successful, as a specific signal transaction to coordinate and synchronize multiple
addresses’ hacking operations automatically. This was also validated by Binance’s statement in
which they pointed out that “The hackers had the patience to wait and execute well-orchestrated
actions through multiple seemingly independent accounts at the most opportune time.”

As another example, although our model has already given the prediction in the 9th hour, com-
bined with the subsequent status of our proposed ST-BK path, we can even identify potentially a
group of hackers for this hacking incident. As shown in Figure 9, the green edge is a signal trans-
action after 13 hours, and the amount on it is tiny but introduces one LT-BK path and two ST-BK
paths. These two ST-BK paths merged into a single track before importing to the hack address.

We back-tracked the source of the ST-BK path of the signal transaction. We found that the 21
hack addresses that participated in this hacking incident were linked through the signal trans-
actions. Even more surprisingly, they have the same source coming from the address.5 Our belief
that multiple addresses launched this hacking and synchronized among themselves through signal
transactions again echoes the collaborative schemes claimed in the Binance statement.

7.7 Scalability Analysis

Generally speaking, users only want to monitor the new and large-volume addresses that have
transactions with them. Those addresses are likely to participate in dangerous activities. Our
system will dynamically monitor and update their transaction features every hour, as shown in
Figure 3(b). Then, the model proposes segments according to the default position and prepares
the segment and status representations. In this way, our Intention Monitor can predict the labels
dynamically.

51GrdXZpyBfiNSVereX5t5UQRHfeh192Cc6.
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Table 5. Time Cost of Different Input Data, Including Block Number, Transaction Number,

Address Number, Address Feature, LT Transfer Path, and ST Transfer Path

Block Number Transaction Number Address Number Address Feature LT Path ST Path

1,000 (Single-Process) 299,767 181,221 0.51 h 72.53 h 130.33 h
1,000 (Multi-Process) 299,767 181,221 0.03 h 3.82 h 6.86 h

Avg (Multi-Process) 300 181 0.11 s 13.75 s 24.70 s

In addition, to verify the model’s scalability, we randomly selected 1,000 blocks (from the first
block of 2020 to the first block of 2022) and collected the daily BTC price during this period. We
filter out transactions lower than $10,000 and retrieve addresses with a lifespan smaller than 1
week. We got 299,767 transactions and 181,221 addresses (Table 5). To get stronger proof of the
model’s scalability, we fetch the data of the early 200 hours (larger than 1 week) with a 1-hour
interval. The time costs under single-process and multi-process (acceleration by 20 processes) are
illustrated as follows.

On average, for the early 200 hours, preparing an address feature takes 0.11seconds. The LT and
ST path feature take 13.75 and 24.70 seconds, respectively. So we only need 2.42 seconds to prepare
data in every 1-hour interval.

8 CONCLUSION

This article presented Intention Monitor, a novel framework for the early detection of malicious
addresses on BTC. After proposing two kinds of asset transfer paths, we selected, complemented,
and split the feature sequence for different malicious activities with a decision tree based strategy.
In particular, we proposed status and action vectors to describe the temporal behaviors and global
semantic status and action. We built Intention-VAE to propose intent-snippets and weight the
contribution of status and action backbone predictions dynamically. A survival module based on
Intention-VAE fine-tuned the weighted predictions and grouped intent-snippets into the sequence
of intention motif. We quantitatively and qualitatively evaluated the model on three malicious
address datasets. Extensive ablation studies were conducted to determine the mechanisms behind
the model’s effectiveness. The experimental results showed that the proposed method outperforms
the state-of-the-art baseline approaches on all three datasets. Furthermore, a detailed case study
on Binance Hack justified that our model not only explains suspicious transaction patterns but
also can find hidden abnormal signals.
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