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Abstract

With the proliferation of dialogic data across the Internet,
the Dialogue Commonsense Multi-choice Question Answer-
ing (DC-MCQ) task has emerged as a response to the chal-
lenge of comprehending user queries and intentions. Al-
though prevailing methodologies exhibit effectiveness in ad-
dressing single-choice questions, they encounter difficulties
in handling multi-choice queries due to the heightened in-
tricacy and informational density. In this paper, inspired by
the human cognitive process of progressively excluding op-
tions, we propose a three-step Reverse Exclusion Graph-of-
Thought (ReX-GoT) framework, including Option Exclu-
sion, Error Analysis, and Combine Information. Specifically,
our ReX-GoT mimics human reasoning by gradually ex-
cluding irrelevant options and learning the reasons for op-
tion errors to choose the optimal path of the GoT and ul-
timately infer the correct answer. By progressively integrat-
ing intricate clues, our method effectively reduces the diffi-
culty of multi-choice reasoning and provides a novel solu-
tion for DC-MCQ. Extensive experiments on the CICERO
and CICEROv2 datasets validate the significant improve-
ment of our approach on DC-MCQ task. On zero-shot set-
ting, our model outperform the best baseline by 17.67% in
terms of F1 score for the multi-choice task. Most strikingly,
our GPT3.5-based ReX-GoT framework achieves a remark-
able 39.44% increase in F1 score. Our code is available at:
https://github.com/ZhengL00/ReX-GoT.

1 Introduction
Commonsense knowledge is crucial for human cognition
and natural human-computer interactions, which encom-
passes our intuitive understanding of the world and ability to
reason. With the growth of social networks, commonsense
inference (Arabshahi et al. 2021; Liu et al. 2022; Kuo and
Chen 2023) in dialogue has garnered noteworthy attention
as a burgeoning research domain in natural language pro-
cessing (NLP). However, accurately understanding and in-
terpreting speaker questions and intentions in dialogue poses
an essential challenge. To this end, the Dialogue Common-
sense Multi-choice Question Answering task (Ghosal et al.
2022b) was proposed, defined as to select logical answers
from preset options based on dialogue’s history and context.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Why didn‘t you come to the cinema last night?
I waited for you for a long time.

I'm sorry, but I had something more important to do

yesterday evening, so I wasn't able to come. 

But why not tell me?

I did. I called you many times, but you had your mo-

bile phone power off.

Oh, I didn't bring it with me because I left it

recharging at home.

I'm really sorry to have missed the film.

Alice

Bob

Target: I'm sorry, but I had something more important to do yesterday
evening, so I wasn't able to come.

What is or could be the cause of target ?

The speaker didn't go to the listener in the film because he
got a call from his office and needed to get some work done.

The listener's family member died.

The listener went to feed turtles.

The listener enjoyed watching television more.

The listener had to send someone to the hospital.

A

not an important thing

not need a long time

B

C
D

E

Figure 1: An example from the CICEROv2 dataset about di-
alogue commonsense reasoning.

DC-MCQ task involve both single-choice and multi-
choice questions. While existing works (Wang et al. 2018;
Zhang et al. 2020; Ju et al. 2021) achieved promising results
in single-choice task, the performance in multi-choice task
remains unsatisfactory. Due to the intricate nature of multi-
choice task, the challenges of Option Saturation and Clue
Labyrinth burden current models. The option saturation
challenge refers to the uncertainty of the number of options,
which increases the difficulty of inference for the model. On
a parallel note, the clue labyrinth challenge involves ana-
lyzing the combination of different complex clues, which
includes intricate hidden information woven throughout the
question stem and answer options, and different clues of pre-
dicted information, just like the complexity of the labyrinth.
It demands enhanced information integration comprehen-
sion by the model. Hence, multi-choice questions are sig-
nificantly more challenging than single-choice ones. As in-
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dicated by Ghosal et al. (2022a), the community recognizes
that attaining high accuracy with such questions is a poten-
tially insurmountable task.

Existing methods for multi-choice questions, as high-
lighted by Ghosal et al. (2022b) and Shen et al. (2022),
predominantly rely on forward reasoning. This typically as-
sesses each option in isolation, which falters in accurately
identifying the right answers due to intricate interrelations
and uncertainties among choices. Motivated by human cog-
nitive patterns of option exclusion, we employ a similar tac-
tic to progressively narrow down potential answers. As ex-
emplified in Figure 1, depending on the context, we exclude
certain options such as D and C, obtaining clues that Bob
had something more important to do and the correct option
must being important as well as taking a long time. Con-
tinuing reasoning based on the context and the clues we
have, we determine that options A, B, and E are correct.
This exclusion-centric approach enhances reasoning, uncov-
ers obscured insights from incorrect options, and greatly
eases the prediction challenge in multi-answer scenarios.

On the other hand, the context of each option in the multi-
choice task is broad enough to go beyond the scope of
the given dialogue. Models based on direct answer selec-
tion struggle to fully comprehend the multi-dimensional and
complex relationships between the question and the options,
which can lead to model reasoning overload affecting accu-
racy. With the widespread use of Large Language Models
(LLMs) in NLP tasks, researchers (Wei et al. 2022; Fei et al.
2023; Jin and Lu 2023; Zhang et al. 2023) have identified
the capacity of Chain-of-Thought (CoT) to help LLMs with
complex reasoning tasks by generating intermediate steps.
However, the existing CoT reasoning of LLMs is limited to
performing linear reasoning, and is unable to utilize poten-
tial multi-clue reasoning in a multi-dimensional manner to
solve the clue labyrinth chanllenge. Moreover, the existing
CoT methods only superficially exploit the contextual infor-
mation and overlook the utilization of the exclusion method
to harness the hidden information within the options.

In this paper, based on the above observations, we
design a three-step Reverse Exclusion Graph-of-Thought
(ReX-GoT) framework, including Option Exclusion, Er-
ror Analysis, and Combine Information. ReX-GoT mim-
ics human exclusion and selection methods by generat-
ing reverse exclusion graph-of-thought prompts. Concretely,
leveraging LLMs as our basis, as shown in Figure 2, we
initially prompt the model to discern irrational options and
their underlying reasons. Subsequently, we utilize the in-
sights gained in the first step for error analysis and option
comparison to further guide the model to determine the ra-
tionality of each option and justifying its choice. Finally,
we combine the different reasons extracted in the first two
steps as different paths and select the best path through a
voting mechanism to arrive at the final multiple choice an-
swer. This distinctive amalgamation of backward exclusion
and forward reasoning systematically excludes irrelevant al-
ternatives and comprehends errors, thereby alleviating the
complexity of predicting multiple correct responses.

To verify the effectiveness of our model, we conduct
experiments on two widely-used datasets for DC-MCQ,

namely CICERO (Ghosal et al. 2022b) and CICEROv2

(Shen et al. 2022). On zero-shot setting, the experiment on
the CICEROv2 dataset show that the F1 score of our ReX-
GoT is 17.67% higher than the best baseline. Most strik-
ingly, our GPT3.5-based ReX-GoT with 175B parameters
boosts the baseline to a high-to 39.44% increase of F1 score.

Our main contributions are summarized as follows:

• We first propose an reverse exclusion method that is con-
sistent with human cognition, which effectively solves
the challenge of option saturation by repeatedly exclud-
ing incongruous options and gradually revealing the hid-
den context of the correct option.

• We design a brand-new GoT framework to productively
address the clue labyrinth challenge. In this framework,
different inference paths are set according to different
analyses of the options, and the optimal path is finally
selected to derive the correct answer.

• Our extensive experimental results on CICERO and CIC-
EROv2 datasets demonstrate that our scheme achieves
state-of-the-art performance on the DC-MCQ task.

2 Related Work
2.1 Commonsense Question Answering
The domain of commonsense question answering has gar-
nered substantial attention within the realm of NLP. Exist-
ing models (Chen et al. 2023; Dou and Peng 2022; Ma et al.
2021) have demonstrated remarkable capabilities in under-
standing and reasoning about common knowledge. Previous
approaches such as prompt techniques (Ma et al. 2023; Zeng
et al. 2023; Paranjape et al. 2021) were proposed to im-
prove the performance of language models in commonsense
question answering task. Additionally, graph-based frame-
works (Zhao et al. 2023; Zheng et al. 2023b; Bosselut, Bras,
and Choi 2021), including knowledge graphs and concept
graphs, were also employed to enhance the representation
and utilization of commonsense knowledge.

2.2 Commonsense Inference in Dialogues
Recently, there has been a growing interest in developing
dialogue commonsense inference models (Arabshahi et al.
2021; Ghosal et al. 2021; Richardson and Heck 2023). Sev-
eral studies have been conducted on this topic: Qin et al.
(2021) investigated pre-trained language models for their
temporal reasoning capabilities in dialogues. Furthermore,
Ghosal et al. (2022b) introduced a dialogue commonsense
inference dataset CICERO that enables models to make ed-
ucated guesses by considering the context when the answer
is not obvious. Shortly after, Shen et al. (2022) proposed
the CICEROv2 dataset, which provides more diverse op-
tions than CICERO. Based on the two datasets, a recent
study (Ghosal et al. 2022a) transformed the task of select-
ing answers to a binary classification problem. However, de-
spite achieving certain results via direct classification, this
approach overlooks the importance of step-by-step reason-
ing, which can significantly impact the analysis of results.



2.3 LLM Reasoning with Chain-of-Thought
The tremendous success of LLMs (Brown et al. 2020; Wu
et al. 2023) has propelled the development of various down-
stream applications, such as mathematical reasoning (Yao
et al. 2023; Imani, Du, and Shrivastava 2023), sentiment
analysis (Fei et al. 2023; Zheng et al. 2023a), and chat-
bot (Ouyang et al. 2022; Deng et al. 2023). To exploit the
reasoning ability in LLMs, recent works (Wei et al. 2022;
Wang et al. 2023b; Jin and Lu 2023) started to explore the
use of CoT in LLMs to enhance performance in complex
tasks. CoT prompting is an innovative gradient-free tech-
nique that guides LLMs to produce intermediate reasoning
steps, ultimately leading to the derivation of the final answer.
Specifically, Fei et al. (2023) introduce CoT into LLMs for
implicit sentiment analysis. Trivedi et al. (2023) interleave
retrieval with steps in a CoT to improve question-answering
performance. More recently, Wang et al. (2023a) propose
plan-and-solve prompting strategies to solve zero-shot CoT
pitfalls. Despite these recent advancements, LLMs with CoT
have not been explored in dialogue commonsense inference.

3 Methodology
3.1 Task Definition
The task of Dialogue Commonsense Multi-Choice Question
Answering (DC-MCQ) is defined as: given a dialogue D =
{u1, ..., un}, the target utterance ut, for the target utterance
commonsense question Q and the candidate options Ft =
{ft1 , ..., ftm}, a model selects all correct options y in Ft.

3.2 Preliminary
Standard Prompting Standard prompting methods have
been widely used in previous works (Ma et al. 2023; Paran-
jape et al. 2021). Through crafting specific prompts, LLMs
can be fine-tuned to handle diverse tasks by simply changing
the prompts In this task, we construct the following prompt
template as inputs for LLMs:

Given the context T, which options
are correct?

where T = [D;ut;Q;Ft], which includes dialogue, target
utterance, question, and candidate options.

However, the prompting method has certain limitations.
Firstly, it fails to account for option relationships, poten-
tially resulting in erroneous predictions. Secondly, the lack
of explicit guidance for the LLMs to engage in a step-by-step
reasoning process diminishes the interpretability of their an-
swers. As a result, comprehending the underlying logic be-
hind a LLM’s response becomes challenging.

Vanilla CoT Prompting To enhance the standard prompt-
ing method, chain-of-thought (CoT) prompting has been in-
vestigated, which advances in not only producing the an-
swer, but eliciting LLMs to give the reasoning/rationale be-
hind the answer. For this task, we construct the following
prompt template as inputs to LLMs:

Given the context T, let’s think
step-by-step, which options are
correct and why?

Nevertheless, the vanilla CoT merely directly prompts the
model to generate intermediate inference processes and fi-
nal results. While the existing CoT methods demonstrate
some inference capabilities, they are limited to performing
linear inference and fail to multidimensionally utilize mul-
tiple clues to reason about multiple options. In addition,
the vanilla CoT methods all direct the model to infer di-
rectly towards the answer in a forward manner, which easily
overlook some of the correct options in cases with multi-
ple valid answers, resulting in a performance decrease. This
approach does not align with the way humans typically ap-
proach multi-choice questions, which involves a combina-
tion of exclusion and forward reasoning.

3.3 ReX-GoT Prompting

Neither the aforementioned standard prompting nor the
vanilla CoT approach can solve the option saturation and
clue labyrinth challenges in DC-MCQ, so we propose a new
approach called ReX-GoT, which stands for Reverse Exclu-
sion with Graph-of-Thought. Our method leverages valuable
information to guide the model to integrate clues for step-
by-step reasoning in a reverse exclusion manner and in con-
junction with a well designed GoT. By doing so, our method
effectively excludes incorrect options, narrows down the an-
swer range, clarifies intricate clues, and improves the ef-
ficiency and accuracy of problem-solving. Moreover, our
method considers the logical relationships between the op-
tions and the context, which contrasts with existing methods
that solely rely on the contextual semantic information.

As depicted in Figure 2, our ReX-GoT method consists of
three steps. In the first step, the model makes an initial judg-
ment based on the context information to exclude unreason-
able options and provide the reasons for the exclusion. In
the second step, the model conducts a detailed analysis of
each option, taking into account the contextual information
and the excluded options and their corresponding reasons.
In the final step, the model synthesizes the valuable infor-
mation from the first two steps for integrated reasoning and
selects the optimal path for the GoT to determine the final
multi-choice answer. The specific steps are as follows.

Step I. Option Exclusion. In this step, our approach in-
volves an initial exclusion process to effectively narrow
down the range of potential answers. Subsequently, we pro-
vide the model with crucial information regarding the rea-
sons behind the exclusion of certain options, corresponding
to the “Step1” and purple arrows in Figure 2. This infor-
mation serves as valuable contextual input that aids the sub-
sequent reasoning process. Furthermore, our approach goes
beyond mere exclusion by providing the model with explicit
justifications for why specific options are deemed incorrect.
By incorporating these detailed explanations into the reason-
ing process, we equip the model with a more comprehensive
understanding of the context and enable it to engage in more
informed and accurate reasoning. Specifically, we devise the
following template to consider which options are implausi-
ble and their reasons based on the given context.



A:An important thing could be work-

related obligations or other pressing

matters that needed attention.

D: Enjoying watching tv is 

not an important thing.

B: An important thing 

could be dealing with the

loss of a family member.

E: An important thing could be 

that the speaker had to take a

loved one to the hospital.

C: Feeding turtles is not an activity

that usually takes a long time.

EB

Graph-of-ThoughtTraditional Prompting

T

Which options are correct?

A is correct.

Chain-of-Thought

T

A is the most likely reason why Bob had

something more important to do and

missed the cinema. B,C,D,E are incorrect,

because there is no information in the

dialogue to support these reason.

A B C D E

Step1: Option Exclusion

Step2: Error Analysis

Step3: Combine Information

The Reason Process

T
Dialogue +Target utterance + 

Question + Candidate Answers
A E~ Option and New Information

T

C D

T

C D

A

T

C D

A

Reasoning Step

Figure 2: The overview of the prompt-based, CoT-based, and our ReX-GoT method. In our method, the purple arrows repre-
sent the first option exclusion step, i.e., leveraging the reverse exclusion method to effectively solve the option saturation
challenge. The orange and green arrows represent the second error analysis step and the third combine information step, i.e.,
integrating information according to the GoT we design and choosing the optimal path to solve the clue labyrinth challenge.
And the blue arrows represent the updating of information at each step. The highlighted text indicates the available information.

Given the context T, based on
common sense, which options of ut
are unreasonable and why?

This step can be formulated as:

A1 ← argmax
θ̂

p(A1 | T ) (1)

where A1 is the text that explicitly mentions the incorrect
options and their reasons, θ̂ means the fixed parameter of
the model, as there are no gold labels in the intermediate
step. This step crucially refines the model’s problem under-
standing, guiding subsequent reasoning by highlighting pit-
falls. By enabling the model to recognize and comprehend
excluded option reasons, it gains the ability for informed and
reliable conclusions.

Step II. Error Analysis. In this step, we construct a graph-
of-thought to perform error analysis and comparative analy-
sis between options based on the known information to fur-
ther aid model reasoning. Specifically, we first create a cen-
tral node that represents the main stem of the problem. Then,
we create nodes for each answer option and their reasoning
process. For each option, we analyze the provided informa-
tion and determine if it matches the main stem of the prob-
lem. If it does, we mark it as a possible correct option. If
not, we mark it as a possible incorrect option. Next, we cre-
ate a set of branch nodes for the possible correct options and
analyze each branch node in more detail. We compare the
information provided in each option with the existing infor-
mation and exclude any mismatched options. Finally, we ar-

rive at the correct answer by excluding the possible incorrect
options and confirming that the remaining options match the
provided information.

And we ask the LLM to provide detailed answers to
whether each option is correct and the specific reasons, tak-
ing into account the contextual information and the unrea-
sonable options and their corresponding reasons (just like
the orange arrows and “Step2” in Figure 2). The template
can be viewed as follows:

Given T1 = [T,A1], analysis based on
the incorrect options, if the answer
is fti, is it reasonable and why?

This step can be formulated as:

A2 ← argmax
θ̂

p(A2 | T1, fti) (2)

where A2 is the text and answer regarding whether each op-
tion is reasonable, θ̂ refers to the fixed parameters. Through
this step, we provide the model with the hidden informa-
tion covered by the previous options and integrate the clues
through the GoT for step-by-step reasoning, allowing for
broader and clearer information to address the clue labyrinth
challenge.
Step III. Combine Information. In this step, as the “Step3”
and green arrows in Figure 2 show, we leverage the valuable
insights gathered from the preceding two steps and employ
the GoT to further advance our reasoning process. Specif-
ically, in inference steps I and II, we set the LLM decoder
to generate multiple answers as different paths through the



Models CICERO CICEROv2 CICERO-Multi

F1 EM F1 EM F1 EM

• SoTA baselines

T5+CCID(780M) 81.96 75.89 86.37 70.14 68.03 19.95
T5+MCCI(780M) 82.64 76.11 87.22 71.09 68.89 26.84
T5+TEAM(780M) 82.73 76.28 87.31 71.23 69.16 27.07
Flan-T5+TEAM(3B) 84.46 76.68 89.54 72.91 70.82 37.24
Flan-T5+TEAM(11B) 86.62 77.89 91.53 75.97 73.51 45.78

• Prompt-based methods
Flan-T5+Prompt (780M) 82.18 75.74 86.45 70.21 68.78 26.71
Flan-T5+Prompt (3B) 84.34 76.61 89.23 72.62 70.71 36.12
Flan-T5+Prompt (11B) 86.43 77.46 91.41 75.86 73.45 45.29

• CoT-based methods
Flan-T5+GoT (780M) 84.47 76.72 87.54 71.37 69.83 32.94
Flan-T5+CoT (3B) 86.52 77.66 90.63 74.76 72.59 40.87
Flan-T5+CoT (11B) 87.98 78.53 92.32 77.14 75.69 47.26

• ReX-GoT (Ours)
Flan-T5+ReX-GoT (780M) 85.21 76.87 89.56 73.26 71.44 37.63
Flan-T5+ReX-GoT (3B) 87.45 78.44 91.58 76.15 74.58 45.81
Flan-T5+ReX-GoT (11B) 89.52 80.63 93.87 78.46 78.51 53.08

Table 1: Comparison of our method with baselines on CICERO, CICEROv2 and CICERO-Multi datasets. CICERO-Multi
datasets is a subdataset within the CICERO dataset that only contained questions with multiple correct answer choices.

GoT, each of which give a different prediction for each op-
tion. The final multi-choice answer is determined by select-
ing the optimal path through a voting mechanism. With the
aid of GoT, we delve into the intricate nuances of the more
complex and challenging options, persisting until a compre-
hensive evaluation of all options are achieved. This diligent
examination ultimately culminates in the determination of
the final multi-choice answer ŷ. The template can be viewed
as follows:

Given T2 = [T1, A2], analysis based on
the previous steps, which options of
ut are reasonable?

This step can be formulated as:

ŷ ← argmax
θ

p(y | T2) (3)

where θ can be fine-tuned during training with the gold task
annotations.

Each step considers new information and validates the
previous reasoning to arrive at the correct answer. By uti-
lizing GOT, we visually represent the reasoning process
and enable our method to integrate sophisticated reasoning
clues. In conclusion, our ReX-GoT takes into account the
subtle details and intricate dependencies in the given con-
text and options. It combines multiple predictive informa-
tion and guides the model to reason step-by-step through
the GoT in a reverse exclusion manner. This approach ef-
fectively addresses the challenges of option saturation and
clue labyrinth in DC-MCQ.

4 Experiments
4.1 Implementation Details
Datasets. We assess the efficacy of models on two
benchmark datasets, CICERO (Ghosal et al. 2022b) and
CICEROv2 (Shen et al. 2022). CICERO is a binary di-
alogue dataset featuring five types of dialogue-level in-
ferences: causality, consequence, premise, motivation, and
emotional reaction. The dataset comprises 53,105 inferences

from 5,672 dialogues. CICEROv2 is built upon the origi-
nal CICERO dataset, where only 15% of the inferences in
CICERO are multi-choice, whereas all 8,351 inferences in
CICEROv2 are multi-choice. The dataset consists of 2,379
dialogues.
Evaluation Metrics. We use macro-F1 and Exact Match as
evaluation metrics for our models. Macro-F1 considers pre-
cision and recall across multiple classes and provides an av-
erage score. Exact Match measures the percentage of correct
predictions that exactly match the expected answers. All our
scores are the average over 5 runnings with random seeds.
Settings. Due to the outstanding performance of Flan-T5,
a encoder-decoder style language model, we utilize it as
the backbone LLM for our method. We also test with
GPT3.5. We use four versions of Flan-T5: 250M (base),
780M (large), 3B (xl), and 11B (11B). Our experiments are
conducted using NVIDIA A100 GPUs.
Baseline Systems. We compare our method with the state-
of-the-art (SoTA) baselines, including

• CCID: Ghosal et al. (2022b) computed a match by com-
paring each generated answer to a candidate selection.

• MCCI: Shen et al. (2022) proposed a pre-trained trans-
former DIALeCT for dialogue commonsense inference.

• TEAM: Ghosal et al. (2022a) simply refactored the
multi-choice question answering task into a series of bi-
nary classifications.

4.2 Overall Results
We first comprehensively evaluate our ReX-GoT’s superi-
ority in dialogue commonsense inference using F1 and EM
metrics. We compare against SoTA baselines (CCID, MCCI,
TEAM), Prompt-based, and CoT-based methods across CI-
CERO, CICEROv2, and CICERO-Multi datasets. Table 1
highlights ReX-GoT’s advantage over SoTA baselines. Flan-
T5-large exhibits notable improvement with ReX-GoT. Fur-
ther, with an 11B-parameter LLM, ReX-GoT outperforms
the best baseline TEAM, e.g., on CICERO, by 2.9% in F1
score and 2.74% in EM score. On CICEROv2, ReX-GoT
surpasses the SoTA baseline TEAM by 2.34% in F1 score



CICERO CICEROv2

F1 EM F1 EM
• SoTA baselines
Flan-T5+TEAM(3B) 47.95 42.11 48.79 40.64
Flan-T5+TEAM(11B) 51.21 45.53 51.68 42.75
• Prompt-based methods
Flan-T5+Prompt (3B) 48.34 42.53 49.28 41.67
Flan-T5+Prompt (11B) 51.67 45.82 52.34 43.29
• CoT-based methods
Flan-T5+CoT (3B) 54.48 47.64 55.69 44.72
Flan-T5+CoT (11B) 58.83 49.77 60.22 47.26
• ReX-GoT (Ours)
Flan-T5+ReX-GoT (3B) 63.59 52.84 64.38 49.64
Flan-T5+ReX-GoT (11B) 67.73 55.39 69.35 53.33
GPT3.5+ReX-GoT 86.04 77.17 91.12 75.73

Table 2: Experimental results on zero-shot setting.

and 2.49% in EM score. Moreover, our ReX-GoT exhibits
a remarkable enhancement compared to vanilla prompting
and CoT methods, particularly on the CICERO dataset with
multiple correct answer options, where the EM scores of our
model improve by 5.82% and 7.79%, respectively. These
findings suggest that our ReX-GoT can make use of the hid-
den information between options to enhance reasoning and
make answers more explanatory than vanilla prompting and
CoT methods. Notably, our ReX-GoT effectively addresses
the option saturation and clue labyrinth challenges in dia-
logue commonsense inference.

4.3 Results on Zero-shot Inference
We conduct a comprehensive comparison of our proposed
ReX-GoT with SoTA approaches, Prompt-based, and CoT-
based methods under zero-shot conditions. The results in Ta-
ble 2 demonstrate our method’s supremacy across all met-
rics. Prompt-based and CoT-based techniques exhibit sub-
stantial improvements over the current SoTA baseline. How-
ever, our ReX-GoT approach stands out with even more
substantial advancements in dialogue commonsense infer-
ence. As an example, on the CICEROv2 dataset, when us-
ing Flan-T5-11B, our ReX-GoT approach demonstrates a re-
markable improvement in F1 score of 17.67% over the best-
performing baseline TEAM. Our ReX-GoT approach out-
performs the prompt-based approach by a margin of 17.01%
in F1 score and the CoT-based approach by a margin of
9.13% in F1 score. Remarkably, when integrated into an
ultra-large LLM like GPT3.5-175B, ReX-GoT achieves re-
markable improvements, enhancing the SoTA’s F1 score by
34.83% on CICERO and 39.44% on CICEROv2. These re-
sults highlight the effectiveness of our ReX-GoT approach
in improving the performance of large language models on
dialogue commonsense inference.

4.4 Ablation Study
We conduct ablation experiments to evaluate the contribu-
tion of each component in our model. As depicted in Table 3,
no variant matches the full model’s performance, highlight-
ing the indispensability of each component. Specifically, the

CICERO CICERO-Multi

F1 EM F1 EM
ReX-GoT 89.52 80.63 78.51 53.08
w/o CI 88.39(-1.13) 79.41(-1.22) 77.71(-0.8) 51.66(-1.42)
w/o ReX 88.02(-1.50) 78.97(-1.66) 77.54(-0.97) 51.39(-1.69)
w/o GoT 87.25(-2.27) 78.17(-2.46) 76.33(-2.18) 49.43(-3.65)

Table 3: Ablation results on DC-MCQ task. CI means the
combined information step, ReX means the reverse exclu-
sion step. In the brackets are the drops than ReX-GoT.
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Figure 3: Comparison with different models on dialogue
commonsense inference. “All” and “Multi” mean that the re-
sults are calculated on the complete CICERO dataset and a
subset of CICERO containing only multiple correct options.

F1 score drops most severely when the graph-of-thought are
not used, which suggests that guiding the model to reason
step-by-step and considering hidden information among op-
tions is crucial. To verify the necessity and effectiveness
of exclusion, we remove the exclusion step, and the sharp
drop in the results demonstrates its unignorable effect on di-
alogue commonsense inference. This finding suggests that
combining exclusion with forward reasoning is essential for
improving the performance of our model. In addition, re-
moving combine information step leads to a marked drop in
performance, indicating the importance of combining intri-
cate clues in our ReX-GoT method.

4.5 Analyses and Discussions
To further investigate the effectiveness of ReX-GoT, we con-
duct in-depth analyses to answer the following questions,
with the aim to reveal how our proposed methods advance.

How multi-choice inference affect model performance?
We are curious about the impact of multi-choice inference
on model performance in an unsupervised setting. In Fig-
ure 3, we compare our model with the best baseline mod-
els on the Multi and All datasets, as well as models based
on vanilla prompting and CoT. Our findings show that our
model consistently outperforms these models in dialogue
commonsense inference, regardless of whether the single-
choice or multi-choice questions. Furthermore, the perfor-
mance gaps are further enlarged when considering multi-
choice inference, indicating the effectiveness of our method
for this task. Overall, our results highlight the potential of
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Figure 4: Influence of correct number of options.
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Figure 5: Influence of different prompting.

our method for multi-choice inference in unsupervised con-
ditions. By effectively integrating available clues from an-
swer options, our approach surpass existing baseline models,
even in challenging scenarios with multiple correct answer
options.

How the number of correct options affect model perfor-
mance? We investigate the effect of the correct number of
options on our model’s performance in dialogue common-
sense inference. As shown in Figure 4, we observe that the
model’s performance varies with the number of correct op-
tions. Our ReX-GoT method performs worst on questions
with two correct options, followed by questions with four,
three, and performs best on questions with one correct op-
tion. On the other hand, vanilla prompting and CoT methods
show a decline in performance as the number of correct op-
tions increases. ReX-GoT effectively utilizes option infor-
mation, capturing the relationship between options and con-
text to differentiate between correct and incorrect options.
This advantage is particularly prominent in questions with
multiple correct options, where option information plays a
crucial role. In contrast, vanilla methods rely only on con-
text, neglects the integration of hidden clues and underuti-
lizes the additional information in the options.

What are the advantages of ReX-GoT over forward rea-
soning and backward exclusion? We conduct experi-
ments to compare our ReX-GoT approach with forward
reasoning and backward exclusion. The results in Figure 5
show that ReX-GoT outperforms the two single methods
on both datasets. Forward reasoning involves selecting the
most plausible option at each step until no correct option
is left. Backward exclusion, on the other hand, involves se-
lecting the most incorrect option at each step until no in-
correct options remain. Interestingly, the performance of the
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Figure 6: Influences of LLM scales.

individual methods reverses between the datasets. In the
CICERO dataset, forward reasoning is superior, while in
the CICEROv2 dataset, backward exclusion performs better.
This reversal is attributed to the majority of single-choice
questions in the CICERO dataset, where inadequate exclu-
sion during backward exclusion leads to decreased perfor-
mance. Conversely, the CICEROv2 dataset consists exclu-
sively of multi-choice questions, making forward reason-
ing more challenging and resulting in poorer performance
compared to backward exclusion and ReX-GoT. These find-
ings further support the necessity of designing ReX-GoT for
multi-choice task as it effectively combines the two single
approaches and integrates valuable clues to address chal-
lenges and improve overall performance.

How LLMs scales affect model performance? We study
the effect of different LLMs scales and provide the exper-
imental results in Figure 6. We observe that both prompt-
based and ReX-GoT methods show notable performance en-
hancement as the model size increases, particularly from
Flan-T5-3B to Flan-T5-11B, where our ReX-GoT approach
achieves an increase of 4.97% in F1 score and 3.69% in
EM score on the CICEROv2 dataset. Our results are con-
sistent with existing findings about the effectiveness of CoT
prompts, indicating that larger LLMs can bring remarkable
improvements. This is because larger LLMs have stronger
abilities to capture and model complex patterns and relation-
ships in the data. Overall, our results emphasize the impor-
tance of considering LLMs size when designing models for
dialogue commonsense inference. These findings demon-
strate the potential of using LLMs for this task.

5 Conclusion
In this paper, we address the pressing option saturation
and clue labyrinth challenges in the Dialogue Common-
sense Multi-choice Question Answering task. We propose
ReX-GoT, a novel three-step Reverse Exclusion Graph-
of-Thought framework including Option Exclusion, Error
Analysis, and Combine Information to mimic human rea-
soning. Through the gradual exclusion of irrelevant op-
tions and the incorporation of human-like reasoning, the
final answer is obtained by constructing a GoT and se-
lecting its optimal path. Our extensive experimental results
on CICERO and CICEROv2 datasets demonstrate that our
scheme achieves SoTA performance on both single-choice
and multi-choice dialogue commonsense inference.
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