
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2023 

Learning program semantics for vulnerability detection via Learning program semantics for vulnerability detection via 

vulnerability-specific inter-procedural slicing vulnerability-specific inter-procedural slicing 

Bozhi WU 

Shangqing LIU 

Xiao YANG 

Zhiming LI 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and the 

Theory and Algorithms Commons 

Citation Citation 
WU, Bozhi; LIU, Shangqing; YANG, Xiao; LI, Zhiming; SUN, Jun; and LIN, Shang-Wei. Learning program 
semantics for vulnerability detection via vulnerability-specific inter-procedural slicing. (2023). ESEC/FSE 
'23: Proceedings of ACM Joint European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering, San Francisco, December 3-9. 1371-1383. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8578 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Bozhi WU, Shangqing LIU, Xiao YANG, Zhiming LI, Jun SUN, and Shang-Wei LIN 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/8578 

https://ink.library.smu.edu.sg/sis_research/8578


Learning Program Semantics for Vulnerability Detection via
Vulnerability-Specific Inter-procedural Slicing

Bozhi Wu∗

Singapore Management University
Singapore

bozhiwu@smu.edu.sg

Shangqing Liu†

Nanyang Technological University
Singapore

shangqingliu666@gmail.com

Yang Xiao
Chinese Academy of Sciences

China
xiaoyang@iie.ac.cn

Zhiming Li
Nanyang Technological University

Singapore
ZHIMING001@e.ntu.edu.sg

Jun Sun
Singapore Management University

Singapore
JunSun@smu.edu.sg

Shang-Wei Lin
Nanyang Technological University

Singapore
shang-wei.lin@ntu.edu.sg

ABSTRACT

Learning-based approaches that learn code representations for soft-

ware vulnerability detection have been proven to produce inspiring

results. However, they still fail to capture complete and precise vul-

nerability semantics for code representations. To address the limita-

tions, in this work, we propose a learning-based approach namely

SnapVuln, which �rst utilizes multiple vulnerability-speci�c inter-

procedural slicing algorithms to capture vulnerability semantics

of various types and then employs a Gated Graph Neural Network

(GGNN) with an attention mechanism to learn vulnerability seman-

tics. We compare SnapVuln with state-of-the-art learning-based ap-

proaches on two public datasets, and con�rm that SnapVuln outper-

forms them. We further perform an ablation study and demonstrate

that the completeness and precision of vulnerability semantics cap-

tured by SnapVuln contribute to the performance improvement.

CCS CONCEPTS
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1 INTRODUCTION

Software security is crucial in practice and thus has attracted wide-

spread attention from academia and industry. Although various
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techniques including symbolic execution [7, 14, 53], data �ow anal-

ysis [5, 16, 23] and fuzz testing [29, 49, 57] have been proposed to

improve software security, it is still a far from being solved. Speci�-

cally, symbolic execution aims at traversing all execution paths to

�nd the vulnerabilities but su�ers from path explosion problems.

Static analysis such as data �ow analysis may result in excessive

false positives while fuzz testing will result in high false negatives.

Inspired by the great success of deep learning techniques, many

learning-based approaches [15, 17, 18, 37–40, 51, 68, 70] have been

proposed to build an automated vulnerability detection system and

achieve encouraging results. The main idea of learning-based ap-

proaches is to learn e�ective code representations from programs

that can reveal vulnerability patterns for vulnerability classi�ca-

tion. For example, Russell et al. [51] utilize Convolutional Neural

Network (CNN) and Gated Recurrent Unit (GRU) to learn vector

representations from lexical tokens of source code for vulnera-

bility detection. To obtain comprehensive code representations,

Devign [68] �rst extracts four kinds of graphs from the source

code, including Abstract Syntax Tree (AST), Control Flow Graph

(CFG), Data Flow Graph (DFG) and Natural Code Sequence (NCS),

and learn code representations from these graphs using graph neu-

ral network (GNN) for vulnerability detection. But the extracted

program semantics are not all about vulnerabilities. In order to cap-

ture the precise vulnerability patterns, VulDeePecker [40] applies

slicing techniques on Data Dependency Graph (DDG) to extract

program semantics of vulnerable parts, and leverage BLSTM to

generate the �nal code representations for vulnerability classi�ca-

tion. However, existing learning-based approaches still su�er from

the following two limitations, which prevent them from obtaining

precise program semantics of vulnerable parts for code representa-

tion generation. In this paper, we refer to the program semantics of

vulnerable parts as vulnerability semantics.

Limitation1: The extracted vulnerability semantics are

incomplete. Some works [15, 51, 68] utilize neural networks to

detect vulnerabilities for a single function. One well-received work

Devign [68] constructed a code property graph to extract program

structures and utilized graph neural networks (GNNs) to learn

program semantics for vulnerability detection. Although it pro-

duced inspiring results, it only focuses on single-function detection,

while the semantics of callee functions are missed because the im-

plementations of these callee functions are not considered in the

proposed approach. In practice, vulnerabilities may span across

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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multiple functions (i.e., between a function and its callee functions).

Hence, these techniques targeting single-function detection cannot

capture complete vulnerability semantics.

Limitation2: The extracted vulnerability semantics are

imprecise. Other works [17, 38–40] leverage program slicing al-

gorithms to extract vulnerability semantics starting from various

vulnerable program points (e.g., dangerous API calls or variables)

for code representation generation. However, these slicing algo-

rithms can not discriminate the sink or source, and every statement

that depends on the vulnerable program points will be included.

This problem has also been stated in previous research work [28].

Therefore, statements unrelated to vulnerabilities will be introduced

into the slice as noise, making the extracted vulnerability seman-

tics imprecise. Besides, these slicing algorithms perform slicing on

DDG or Program Dependence Graph (i.e., PDG), without consid-

ering CFG that reveals the program execution order. This would

lead to failure to catch the semantics of vulnerabilities caused by

incorrect execution order, such as “Use After Free”, which is trig-

gered when the operation “use” occurs after the operation “free”. In

summary, the program slicing algorithms used in previous learning-

based approaches are insu�cient to capture precise vulnerability

semantics.

To address the aforementioned limitations, in this work, we pro-

pose SnapVuln, a learning-based approach that applies multiple

vulnerability-speci�c inter-procedural algorithms that identify the

source and sink to capture precise program semantics of various vul-

nerability types for vulnerability detection. Speci�cally, we extract

the Inter-procedural Graph (IG) from the source code, which can

be regarded as a combination of PDG, CFG and Call Graphs (CG).

Then, we design multiple vulnerability-speci�c slicing algorithms

for di�erent vulnerability types to capture precise vulnerability se-

mantics, which identify source and sink and further operate on the

inter-procedural graph. In this work, we implement vulnerability-

speci�c slicing algorithms for six common vulnerability types in

C/C++. To learn better code representation for di�erent vulnerabil-

ity types, we employ a submodel for each vulnerability type, which

utilizes a Gated Graph Neural Network (GGNN) with an attention

mechanism, and a GNNmodel for vulnerabilities not covered by the

slicing algorithms. After that, we ensemble the submodels and GNN

model to predict vulnerabilities. For instance, given an example,

SnapVuln extracts six types of subgraphs from IG as potential vul-

nerability semantics according to the program slicing algorithms.

Each type of subgraph is then fed into the corresponding submodel,

which capture the structural semantics in the subgraphs and dynam-

ically learn di�erent weights for di�erent subgraphs to generate

better code representations. The IG is fed into the GNN model to

capture comprehensive program semantics. Finally, we ensemble

the output of the six submodels and the GNN model to obtain a

comprehensive prediction.

To demonstrate the e�ectiveness of SnapVuln, we conduct exten-

sive experiments on two public datasets and compare SnapVulnwith

seven state-of-the-art baselines. The experimental results show that

SnapVuln outperforms these baselines. We further perform an abla-

tion study to demonstrate that the completeness and precision of

our learned vulnerability semantics contribute to the improvement

of vulnerability detection. In summary, our main contributions are

as follows:

1 int SMB2_write(...){

2 ...

3 req->sync_hdr.ProcessId = cpu_to_le32(io_parms->pid);

4 ...

5 - cifs_small_buf_release(req);

6 ...

7 if (rc) {

8 trace_smb3_write_err(xid, req->PersistentFileId,

9 ...

10 }

11 + cifs_small_buf_release(req);

12 ...

13 }

14 void cifs_small_buf_release(void *buf_to_free){

15 ...

16 mempool_free(buf_to_free, cifs_sm_req_poolp);

17 ...

18 }

19 void mempool_free(void *element, mempool_t *pool){

20 ...

21 pool->free(element, pool->pool_data);

22 }

(a) “Use After Free” from commit 6a3eb33

1 int dtls1_buffer_message(SSL *s, int is_ccs){

2 hm_fragment *frag;

3 ...

4 frag = dtls1_hm_fragment_new(s->init_num, 0);

5 + if (!frag)

6 + return 0;

7 memcpy(frag->fragment, s->init_buf->data, s->init_num);

8 ...

9 frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;

10 frag->msg_header.seq = s->d1->w_msg_hdr.seq;

11 frag->msg_header.type = s->d1->w_msg_hdr.type;

12 ...

13 item = pitem_new(seq64be, frag);

14 if ( item == NULL){

15 dtls1_hm_fragment_free(frag);

16 return 0;

17 }

18 ...

19 }

(b) “Null Pointer Dereference” from commit 7a9d59c

Figure 1: Two Real-world Examples from GitHub Open-

source Projects. The lines starting with “-” indicates that

these lines of statements have security risks and they are

�xed by the statements marked with “+”.

• We propose dedicated slicing algorithms for six common vul-

nerability types in C/C++ to achieve precise vulnerability se-

mantics. To the best of our knowledge, we are the �rst to design

vulnerability-speci�c slicing algorithms to capture precise vulner-

ability semantics based on di�erent vulnerability characteristics.

• We incorporate the attention mechanism into the gated graph

neural network (GGNN) to ensure that the model can learn to

assign di�erent weights to subgraphs produced by slicing algo-

rithms, so as to help the model learn better representations for

vulnerability detection.

• We analyse the limitations of existing deep learning-based works

for vulnerability detection and show that the completeness and

precision of vulnerability semantics is vital for automated vul-

nerability detection by extensive experiments.

• We conduct extensive experiments to compare SnapVuln with

seven state-of-the-art baselines, including �ve learning-based

vulnerability detection baselines and two pre-trained approaches

on two public datasets. Experimental results show that SnapVuln

outperforms these baselines signi�cantly.We have made our code

and data public at our website [6] for reproduction.

2 MOTIVATION

The key to learning-based vulnerability detection is to learn better

code representations for the detection. To achieve this, program

semantics about vulnerable parts (here refer to vulnerability se-

mantics) should be well captured for representation. Therefore, in

order to investigate how well existing learning-based approaches

capture vulnerability semantics, we conduct an in-depth analy-

sis and discover two important aspects on which learning-based

approaches should improve.
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Figure 2: The overview of SnapVuln.

Table 1: Line number of statements captured by di�erent

slicing approaches for the example in Figure 1(b).

Line number Ground Truth VulDeePecker SySeVR DeepWukong SnapVuln

2 ! ! ! ! %

4 ! ! ! ! !

7 ! ! ! ! !

9 % ! ! ! %

10 % ! ! ! %

11 % ! ! ! %

13 % ! ! ! %

14 % % ! ! %

15 % ! ! ! %

16 % % ! ! %

Finding 1: Inter-procedural analysis should be introduced

to capture the complete vulnerability semantics. In the real

world, it is common for a vulnerability to span multiple functions.

For example, as shown in Figure1(a), the pointer “req” is used again

on line 8 after being freed on line 5, which triggers “Use After Free”

vulnerability. This vulnerability spans three functions. If only the

function “SMB2_write” is considered as input, the function “mem-

pool_free” that contains the important semantics of releasing mem-

ory will be lost, and consequently, the model will be unable to learn

code representation well for vulnerability detection. However, exist-

ing learning-based approaches such as Devign [68], REVEAL [15]

and Draper [51] detect vulnerabilities for a single function. There-

fore, an inter-procedural analysis should be introduced to capture

complete vulnerability semantics across multiple functions for code

representation generation.

Finding 2: Slicing algorithms should be designed to capture

precise vulnerability semantics. We investigate how existing

learning-based approaches obtain vulnerability semantics for code

representation generation, and discover that most of them can

not capture precise vulnerability semantics. Speci�cally, VulDeeP-

ecker [40] performed program slicing on DDG based on library/API

function calls, while SySeVR [39] and DeepWukong [17] performed

program slicing on PDGs. On one hand, these slicing algorithms

do not capture the control �ow information (i.e., CFG) in the code,

which makes them impossible to reveal some vulnerabilities caused

by wrong execution order, such as "Use After Free". On other hand,

these slicing algorithms may include statements that are not related

to vulnerabilities, since some statements that are not related to vul-

nerabilities may also depend on vulnerability-related statements.

We take the “Null Pointer Dereference” sample in Figure 1(b) as

an example, and follow the slicing algorithms in these approaches

to obtain the corresponding results shown in Table 1. We assume

that these approaches take line 4 as a slicing criterion, where the

function “dtls1_hm_fragment_new” is called. The results show that

they obtain 160% more statements than real vulnerability semantics,

which are imprecise. We can infer that slicing algorithms should

be improved to capture precise vulnerability semantics.

3 APPROACH

Motivated by the aforementioned �ndings, we propose a learning-

based approach namely SnapVuln. It applies vulnerability-speci�c

inter-procedural slicing algorithms to capture complete and precise

vulnerability semantics of various vulnerability types in C/C++

and leverages a GGNN with an attention mechanism to learn good

representations for vulnerability detection. We present the details

of SnapVuln below.

3.1 Overview

Figure 2 shows the overview of SnapVuln, which mainly consists of

three components: inter-procedural graph generation, vulnerability-

speci�c program slicing, and the well-designed models. In the �rst

component, we extract CFGs, PDGs and call graphs from each

sample, and utilize them to construct an inter-procedural graph to

represent the complete program semantics for each sample. The sec-

ond component utilizes the vulnerability-speci�c inter-procedural

slicing algorithms to extract the precise vulnerability semantics

from the complete program semantics. As a result, multiple sets

of subgraphs are extracted from the inter-procedural graph, each

containing the potential vulnerability semantics corresponding to

its speci�c type. The third component employs multiple submod-

els and a GNN model to individually capture the distinct types of

vulnerability semantics for vulnerability detection. Speci�cally, the

novel submodel that customizes a GGNN with an attention mecha-

nism is proposed to capture the vulnerability semantics of speci�c

type from the corresponding set of subgraphs individually. More-

over, to address vulnerabilities that are not covered by the slicing

algorithms, we utilize a GNN model to capture the comprehensive

program semantics of the sample from the inter-procedural graph.

This GNN model can be considered as a submodel without an atten-

tion mechanism, allowing it to identify and predict those unhandled

vulnerabilities by the slicing algorithms. Finally, the predictions

from the multiple submodels and the GNN model are ensembled to
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generate the �nal predictions. This ensemble approach combines

the outputs of each model, resulting in more accurate and reliable

predictions for vulnerability detection.

Process: In the training phase, SnapVuln constructs the inter-

procedural graphs for all training data and extracts six sets of

subgraphs for each sample. The six sets of subgraphs contain po-

tential vulnerability semantics of speci�c types. Since a sample

may generate an arbitrary number of subgraphs, we randomly

sample : subgraphs from each set to represent the vulnerability

semantics corresponding to its speci�c type, and de�ne them as

G = {61, ..., 6: }. After that, each set of subgraphs G, corresponding

to a speci�c vulnerability type, is individually fed into a submodel

for training. These submodels are designed to learn and capture the

speci�c vulnerability semantics associated with each vulnerability

type. Furthermore, the inter-procedural graphs are used to train

a GNN model, which aims to capture vulnerability semantics that

are not handled by the existing slicing algorithms. All these models

are trained independently. If a new slicing algorithm is introduced

for other vulnerability type, a new submodel can be added, and

the subgraphs extracted by the new slicing algorithm can be used

to train the submodel. This modular approach provides scalability

by allowing the incorporation of new slicing algorithms and the

expansion of the range of vulnerability types that can be detected.

In the testing phase, six sets of subgraphs and an inter-procedural

graph are extracted from each sample. For each set of subgraphs,

: subgraphs are sampled to represent the vulnerability semantics

of its speci�c type. After that, the six sets of subgraphs, along

with the inter-procedural graph, are then individually fed into the

corresponding well-trained submodels and GNN model. Finally,

SnapVuln ensembles the outputs of the submodels and GNN model

to make a �nal prediction for each sample.

3.2 Inter-procedural Graph Generation

In order to capture the complete vulnerability semantics, the inter-

procedural analysis should be utilized in the data preprocessing

stage. Therefore, we utilize the popular static analysis tool Jo-

ern [1] to extract code property graphs and further build an inter-

procedural graph for each sample.

De�nition. In this paper, an inter-procedural graph I� is a di-

rected graph consisting of a set of nodes and edges where each node

represents one statement in the sample and each edge represents

the relationship between two statements, including control �ow,

data/control dependency, and function call. The inter-procedural

graph I� is a combination of CFGs, PDGs and call graphs (i.e.,

CGs), which exposes a variety of program semantics for vulner-

ability detection. Speci�cally, PDGs reveal the data and control

dependency of the program, which can be utilized for detecting

some speci�c types of vulnerabilities. For example, with detailed

data dependencies on the target pointer and some control depen-

dencies, we can intuitively infer whether the program lacks the

operation of releasing memory or not. CFGs further supplement

some other types of vulnerabilities such as “Use After Free”, since

CFGs reveal the explicit execution order of statements, we can de-

tect whether the memory is used after free on CFGs. CGs can be

used to enrich inter-procedural graphs to allow for inter-procedural

analysis. Therefore, we extract the inter-procedural graph (IG) to

ensure that complete vulnerability semantics are captured.

CFG

DDG

CDG

CG

8

7

5

1

15

17 20

22

3

Figure 3: IG of Fig. 1(a).
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Figure 4: vulnerability semantics.

Generation process. To build inter-procedural graphs, we �rst

employ the popular static tool Joern [1] to extract CFGs, PDGs

and CGs from the source code, where PDG consists of data de-

pendencies (DDG) and control dependencies (CDG). Speci�cally,

through the call graphs generated by Joern, we identify the call

edge between caller function and callee function, so as to connect

CFGs and PDGs of di�erent functions and get the inter-procedural

graph for the sample. In this way, The inter-procedural graph con-

tains the complete program semantics and is able to support inter-

procedural analysis. We illustrate an inter-procedural graph for

the example of Figure 1(a) in Figure 3. Speci�cally, CFG, DDG

and CDG in the functions "SMB_write", "cifs_small_buf_release"

and "mempool_free" are extracted �rst. Then according to the call

graph, the function “cifs_small_buf_release” is called in statement

5 of the function “SMB_write”. Therefore, we establish a call edge

between statement 5 of the function “SMB_write” and the func-

tion “cifs_small_buf_release”. Similarly, a call edge is established

between the function "cifs_small_buf_release" and the statement

of line 15 in the function "mempool_free". Finally, we obtain the

inter-procedural graph in Figure 3.

3.3 Slicing Algorithms

By constructing the inter-procedural graph for each sample, we cap-

ture the complete program semantics. However, program semantics

are not equal to vulnerability semantics. As shown in Figure 4, vul-

nerability semantics are only a part of program semantics. There-

fore, we need to further extract precise vulnerability semantics

for code representation generation. Inspired by previous work on

slicing algorithms named Chopping [28], which identi�es the state-

ments that cause the de�nitions of the source to a�ect the uses of

the sink, we propose vulnerability-speci�c inter-procedural slicing

algorithms for various vulnerability types, which are well-designed

by identifying sources and sinks based on the characteristics of

each vulnerability type.

Key Idea. The key idea of vulnerability-speci�c inter-procedural

slicing algorithms is to locate the vulnerability-relevant part of

the whole inter-procedural graph and slice it out to represent the

vulnerability semantics. In detail, SnapVuln locates the source (i.e.,

where it comes from) and sink (i.e., where it ends) [64] of potential

vulnerability in the code, and takes the paths from source to sink to

construct a subgraph as a representation of vulnerability semantics.

Since di�erent vulnerability types have di�erent causes, leading to

di�erent sources and sinks, we propose speci�c slicing algorithms

according to the characteristics of di�erent vulnerability types to

capture precise vulnerability semantics. In this paper, we implement

slicing algorithms for six common vulnerability types in C/C++.

We illustrate the corresponding algorithms for each vulnerability

type in details.
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1 #define BUFSIZE 256

2 int main(int argc, char **argv) {

3 char *buf;

4 buf = (char *)malloc(sizeof(char)*BUFSIZE);

5 strcpy(buf, argv[1]);

6 }

(a) Bu�er Over�ow

1 char* getBlock(int fd) {

2 char* buf = (char*) malloc(BLOCK_SIZE);

3 if (read(fd, buf, BLK_SIZE)!= BLK_SIZE) {

4 return NULL; }

5 return buf;

6 }

(b) Memory Leak

1 void main(){

2 struct hostent *hp;

3 ...

4 hp = gethostbyaddr(addr, 10);

5 strcpy(hostname, hp->h_name);

6 }

(c) Null Pointer Dereference

1 int main(){

2 int c;

3 int a = 102410241024;

4 int b = 1024*1024;

5 c = a*b;

6 }

(d) Integer Over�ow

1 char* ptr = (char*)malloc (SIZE);

2 if (err) {

3 abrt = 1;

4 free(ptr);}

5 if (abrt) {

6 logError("operation aborted", ptr);}

(e) Use After Free

1 char* ptr = (char*)malloc (SIZE);

2 if (abrt) {

3 free(ptr);

4 }

5 ...

6 free(ptr);

(f) Double Free

Figure 5: Simple Examples of Six Vulnerability Types.

Type 1: Bu�er Over�ow (BO). A bu�er over�ow occurs when

the program copies an input bu�er to an output bu�er without

verifying that the size of the input bu�er is less than the size of the

output bu�er. An example is shown in Figure 5(a).

Source: In general, there are two types of bu�er over�ow, i.e., stack-

based and heap-based, where over�ow occurs on arrays (stack) and

pointers (heap) respectively. Therefore, we take the allocation of

arrays and pointers as potential sources. For example, line 4 in

Figure 5(a) is the source.

Sink: The sink of bu�er over�ow is a statement that invokes func-

tion calls or assignments to manipulate pointers or arrays. The

function call includes “strcpy”, “memcpy” and so on, while the as-

signment is various, where any statement that assigns value to

memory that pointer points to or array with index are all included.

For example, line 5 in Figure 5(a) is the sink.

Algorithm: SnapVuln takes sinks in the target program as the

slicing criterion and performs backward slicing on inter-procedural

PDG to obtain the statements that a�ect the sinks until all the

sources in the inter-procedural PDG are reached. Note that we do

not perform forward slicing by taking sources as a slicing criterion,

because it will include those statements that are a�ected by the

source but not related to the vulnerability. We present the details

in Algorithm 1.

Algorithm 1: Slicing for “bu�er over�ow”

Input : Inter-procedural PDG 8?36
Output :Vulnerability features E2

1 Retrieve all expression statements that write to arrays or pointers as sinks :B

2 Initialize E2 = ∅
3 for : ∈ :B do
4 B = backwardSlicing(:, 8?36)
5 6 = constructGraph(B, 8?36)
6 E2 = E2

⋃

6

7 return E2

Type 2: Memory Leak (ML). A memory leak occurs when the

program does not su�ciently track and release memory after it

has been used. It consumes the remaining memory. An example is

shown in Figure 5(b).

Source: The source of memory leak vulnerability is an assignment

statement that allocates memory space to a pointer. For example, in

the source code of Linux kernel, the programmay call standard func-

tion (i.e., “malloc”, “calloc”) directly, or call wrapper functions (i.e.,

“cifs_buf_get”, “AcquireQuantumInfo”). These wrapper functions

can be found by analyzing the call graph of the program. For ex-

ample, “cifs_buf_get” calls “mempool_alloc”, and “mempool_alloc”

calls “pool->alloc”, therefore, “cifs_buf_get” can be taken as source.

Sink: According to the characteristics of the memory leak, it will

be triggered if the memory has not been released until the end of

the program. Therefore, we take the end of the program as a sink if

there are no statements that free the memory.

Algorithm: SnapVuln takes the sources as a slicing criterion and

performs forward slicing on inter-procedural PDG to obtain the

statements that are a�ected by the sources until the end of the inter-

procedural PDG or free functions are found. The slicing process is

shown in Algorithm 2.

Algorithm 2: Slicing for “memory leak”

Input : Inter-procedural graph 8?36
Output :Vulnerability features E2

1 Retrieve all statements that assign to pointers and invoke function calls as sources 4B

2 Initialize E2 = ∅
3 for 4 ∈ es do
4 B = forwardSlicing(4, 8?36)
5 6 = constructGraph(B, 8?36)
6 E2 = E2

⋃

6

7 return E2

Type 3: Null Pointer Dereference (NP). A null pointer deref-

erence occurs when the program accesses a pointer that expects

to be valid but is NULL instead. Figure 5(c) shows an example of a

null pointer dereference.

Source: Similar to memory leak, the source of null pointer deref-

erence is also an assignment statement that invokes API function

calls such as “malloc” and “calloc” to allocate memory space for a

pointer.

Sink: According to the characteristics of null pointer dereference,

we conclude that it will be triggered when the null pointer is used

for the �rst time. Therefore, we take the �rst statement using the

pointer as the potential sink. For example, Line 7 in Figure 1(b) is a

sink, instead of line 9 to line 11.

Algorithm 3: Slicing for “null pointer”

Input : Inter-procedural graph 86
Output :Vulnerability features E2

1 Let 8?36 be the inter-procedural PDG in 86

2 Let 82 5 6 be the inter-procedural CFG in 86

3 Retrieve statements that assign the return value of function calls to pointers as sources 4B

4 Initialize E2 = ∅
5 for 4 ∈ 4B do
6 B3 = forwardSlicing(4, 8?36)
7 B2 = forwardSlicing(4, 82 5 6)
8 5 B = computeFirstStatement(4, B3, B2 )
9 Choose path from 4 to 5 B as slice B

10 6 = constructGraph(B, 8?36)
11 E2 = E2

⋃

6

12 return vc

Algorithm: For null pointer dereference, SnapVuln takes state-

ments that assign the return value of function calls to pointers as
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sources (i.e., slicing criterion). To locate the corresponding sinks

(i.e., the �rst statement using the pointers in sources), SnapVuln �rst

performs forward slicing starting from slicing criterion on the inter-

procedural graph and obtains all statements that are data-dependent

on the pointers according to PDG, as well as the execution order

according to CFG. With data dependencies between statements and

corresponding execution order, we can deduce the �rst statement

using the pointers in sources. After collecting the sources and sinks,

SnapVuln selects the path from sources to sinks as vulnerability

semantics. The process is presented in Algorithm 3.

Type 4: Integer Over�ow (IO). An integer over�ow occurs

when an integer value is incremented after calculation to a value

that is too large to store in the associated representation, as depicted

in the example of Figure 5(d).

Source: The source of integer over�ow is the statement that assigns

value to a variable, whose type may be int, long, short, and so on.

The type indicates the range of variables.

Sink: Based on the characteristics of integer over�ow, those state-

ments that perform arithmetic operations (e.g, +, *, ++) on the vari-

able may trigger integer over�ow vulnerability. Therefore, SnapVuln

takes such statements as sinks.

Algorithm 4: Slicing for “integer over�ow”

Input : Inter-procedural graph 8?36
Output :Vulnerability features E2

1 Retrieve all statements that contain arithmetic operators as sinks :B

2 Initialize E2 = ∅
3 for : ∈ :B do
4 B = backwardSlicing(:, 8?36)
5 6 = constructGraph(B, 8?36)
6 E2 = E2

⋃

6

7 return E2

Algorithm: SnapVuln performs backward slicing on inter-procedural

PDG by taking sinks as a slicing criterion until the source is reached.

Similar to the bu�er over�ow, SnapVuln does not perform forward

slicing by taking the sources as a slicing criterion, since it will also

include statements that depend on the sources but are not related

to the vulnerability. The detailed process is listed in Algorithm 4.

Type 5: Use After Free (UAF). Heap memory is explicitly al-

located to pointers through API function calls (such as “malloc”).

Once the heap memory is used again after release, a “use after free”

vulnerability occurs. Figure 5(e) displays an example of use after

free vulnerability.

Algorithm 5: Slicing for “use after free”

Input : Inter-procedural graph 86
Output :Vulnerability features E2

1 Let 8?36 be the inter-procedural PDG in 86

2 Let 82 5 6 be the inter-procedural CFG in 86

3 Retrieve all statements that assign to pointers and invoke function calls as sources 4B

4 Initialize E2 = ∅
5 for 4 ∈ 4B do
6 B3 = forwardSlicing(4, 8?36)
7 B2 = forwardSlicing(4, 82 5 6)
8 B; = computeLastStatement(4, B3, B2 )
9 Forward slice on 86 from 4 to ;B , and obtain slice B

10 6 = constructGraph(B, 86)
11 E2 = E2

⋃

6

12 return E2

Source: Similar to memory leak vulnerability, the source of use after

free vulnerability is also an assignment statement that allocates

heap memory space to a pointer, including standard functions and

wrapper functions.

Sink: Based on the characteristics, a use after free vulnerability will

be triggered when a program uses memory again after it has been

freed. Therefore, the sink should be the �rst statement that utilizes

the pointer after the free operation. However, determining which

statements perform the free operation can be challenging, since

theymay be wrapped within user-de�ned functions. To address this,

we propose capturing the sink by considering the last statement

that uses the pointer as the end of the slicing, which can ensure

that the sink and the free operation are included in the slice.

Algorithm: For use after free, the key is to locate the last statement

that uses the pointers in sources, which ensures the slice contains

the sink. To achieve this, SnapVuln �rst performs forward slicing

starting from the source on the inter-procedural graph and obtains

all statements that are data-dependent on the pointers according to

PDG, as well as the execution order according to CFG. With data

dependencies between statements and corresponding execution

order, we can deduce the last statement that uses the pointers. After

collecting the source and sink, SnapVuln performs forward slicing

from source to sink on the inter-procedural graph and gets the slice

as vulnerability semantics. The details of the slicing algorithm are

shown in Algorithm 5.

Type 6: Double Free (DF). If the same heap pointer is released

twice or more in a program, a double free vulnerability occurs, as

shown in the example of Figure 5(f).

Source: Similar to use after free vulnerability, the source of double

free vulnerability is an assignment statement that allocates heap

memory space to a pointer.

Sink: The sinks of double free are two or more free operations on

pointers in sources. Similar to use after free, identifying statements

used for free operations can be challenging. Therefore, we also take

the last statement that uses the pointers as the end of slicing.

Algorithm: Unlike use after free, double free is not related to

execution order. The vulnerability semantics of a double free issue

are associatedwith howmany times a pointer is freed. Therefore, we

perform forward slicing on inter-procedural PDG from the sources

to the last statement that uses the pointers of the sources. In this

way, we can track all statements that manipulate the pointers to

capture the vulnerability semantics. The process is similar to use

after free in Algotirhm 5. The only distinction is that in steps 9

and 10, the algorithm replaces 86 with 8?36 for double free analysis.

Consequently, we do not present the detailed algorithm.

3.4 Model Design

SnapVuln �rst employs six submodels and a GNNmodel to learn vul-

nerability semantics from six sets of subgraphs and inter-procedural

graph respectively, and then ensemble the outputs of these mod-

els to make a �nal prediction. In particular, the novel submodel

customizes a GGNN with an attention mechanism, which makes

it e�ectively capture the structural information within each sub-

graph and learn distinct weights for the subgraphs within each

set to generate representations. The six submodels are designed

to independently capture the vulnerability semantics associated

with a speci�c vulnerability type. For the GNN model, it can be

seen as a submodel without attention mechanism, aiming to learn

comprehensive program semantics from inter-procedural graph for

vulnerability detection. This enables SnapVuln to detect vulnerabil-

ities that are not covered by the slicing algorithms.
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Figure 6: An example of Figure 3 to illustrate the pipeline of the submodel.

3.4.1 Submodel. Each submodel learns vulnerability semantics

from a set of subgraphs G = {61, ..., 6: } per sample. The submodel

�rst transforms nodes and edges in each subgraph 68 into vector

representations, and then utilizes a GGNN to learn graph represen-

tation h68 for each subgraph. After that, the submodel leverages

the attention mechanism over the graph representations of a set

of subgraphs G so that it can learn to assign di�erent weights for

each subgraph and obtain the vector hG by the weighted summa-

tion of each graph representation h68 . Finally, we take hG with a

fully connected layer to generate the output of the submodel. We

describe each component in the submodel in details below, and use

an example in Figure 3 to illustrate the pipeline of the submodel, as

shown in Figure 6.

Node Initialization. For each subgraph 68 ∈ G, it can be rep-

resented as 68 = (V, E) where the node E ∈ V in 68 consists of a

code statement and the edge 4 ∈ E represents di�erent relations

between nodes including data/control dependencies, control �ow

and function calls. Since the node E consists of a code statement

(i.e., a sequence of multiple tokens), to obtain the node initial vector

representation, we sum up each token vector initialized by a learn-

able embedding matrix K ∈ R<×3 in the code statement, where<

is the length of the vocabulary set and 3 is the dimensional length.

The node initial vector representation can be expressed as h0E ∈ R3 .
Graph Embedding. For each subgraph68 ∈ G, we utilize GGNN

as the encoder to learn the graph representation h68 . Speci�cally, for

node E in 68 , we utilize a �xed number of hops (i.e.,) ) to propagate

the information along the edges. At each computation hop C , where

1 ≤ C ≤ ) , we utilize the summation function to aggregate the

neighboring node features computed from the previous hop and

this process can be expressed as follows:

hC
# (E) = SUM({hC−1D |∀D ∈ # (E) }) (1)

where # (E) is a set of neighborhood nodes that are connected to E .

Then a gated recurrent unit [19] is used to update the feature of E ,

which can be formulated as follows:

hCE = GRU(hC−1E ,hC# (E)
) (2)

After a �xed number of hops (i.e., ) ), we obtain the �nal node

representation h)E for the node E . We further apply the max-pooling

over all nodes (i.e., {h)E |∀E ∈ V}) of subgraph68 to obtain the graph
representation h68 as follows:

h68 = maxpool(FC({h)E |∀E ∈ V})) (3)

where FC(·) is a fully connected layer. For each subgraph 68 ∈ G,
we obtain its corresponding graph representation denoted as M =

{h61 , ...,h6: } where M ∈ R:×3 .

Attention.We further add an attention module to ensure that

the model learns to assign di�erent weights of subgraphs G for

the prediction. Speci�cally, we add an extra token “[CLS]” with

its initial vector hcls and concatenate it with M to obtain a new

representation M′
= {hcls,h61 , ...,h6: } where M′ ∈ R(:+1)×3 . In-

spired by self attention [54], we use scaled dot-product attention to

obtain di�erent weights for subgraphs G and it can be expressed

as follows:

G = so�max(WQ)

√
3

) hG =

:
∑

9=1

0 9h 9 (4)

where M′
= W = Q , a ∈ R:+1 is the vector of the index token

“[CLS]” in the matrix G ∈ R(:+1)×(:+1) , 0 9 is the value of the 9-th

index for the subgraph 6 9 in the vector a, h 9 ∈ R3 is the vector of

the index 9 in M′ ∈ R(:+1)×3 and 3 is the dimensional length. The

vector a is considered as the weighted vector learnt by the model

for di�erent subgraphs.

Prediction.We take the weighted representation hG followed

by a fully connected layer for the prediction:

psub = Sigmoid(FC(hG)) (5)

where psub denotes the probability computed by the activation

function Sigmoid.

3.4.2 GNN Model. The GNN model can be considered as a sub-

model without an attention mechanism, sharing the same GGNN

module as the submodel in Figure 6. By utilizing the GGNNmodule,

the GNN model converts the inter-procedural graph into a graph

representation denoted as hI� . Subsequently, we map the graph

representation hI� to the predicted probabilities in the prediction

module, described as follows:

pIG = Sigmoid(FC(hIG)) (6)

3.4.3 Ensemble Model. Through the above feature learning pro-

cess, we obtain predicated probabilities from the six submodels

and GNN model. The �nal step is to ensemble the learned results

from these models for the �nal prediction. There are multiple ways

to achieve this goal. In this work, we refer to a similar paper [69]

which ensembles two models to identify security-related patches,

and use a weighted combination of these models output as ensemble

model, which can be described as follows:

prob = U · (psub1 + psub2 + ... + psubi + pIG) (7)
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where 8 = 6 and U = 1/(8 + 1). The classi�cation result is 0 for prob

less than 0.5 and 1 for the others, as below:

prediction =

{

1, if prob ≥ 0.5

0, if prob < 0.5
(8)

4 EVALUATION

To demonstrate the e�ectiveness of SnapVuln, we conduct extensive

experiments to investigate the following four research questions.

• RQ1: Can SnapVuln outperform state-of-the-art baselines?

• RQ2: Can the completeness of the extracted vulnerability seman-

tics a�ect the performance in vulnerability detection?

• RQ3: Can the precision of the extracted vulnerability semantics

a�ect the performance of vulnerability detection?

• RQ4: What is the memory usage and execution time of SnapVuln

in detecting vulnerabilities compared to the baselines?

4.1 Evaluation Setup

4.1.1 Dataset. To study the above research questions, we should

choose a dataset containing multi-function samples for evaluation,

since the impact of vulnerability semantic completeness can be

revealed by comparing the vulnerability detection performance

on samples of the single-function version and the corresponding

multi-function version. We search the papers from 2018 to 2022 for

vulnerability datasets in C/C++, and �nd several public datasets

including Devign [68], Draper [51], Fan [20], D2A [66] and Juliet [2].

In the end, we choose a real-world vulnerability dataset D2A and

a widely used synthetic dataset Juliet as evaluation datasets since

they are datasets containing multi-function samples.

Preprocessing: We conduct the following steps to preprocess the

datasets for the evaluation:

1) We collect the samples of six common vulnerability types in

C/C++ from D2A and Juliet, and �lter out those samples that cannot

be parsed into code property graphs by Joern. Finally, we get the

�nal dataset for evaluation, as shown in Table 2. Since samples in

Juliet contains tokens with obvious vulnerability meanings such as

“sink”, “source”, “good” and “bad”, We normalize them to “norm”,

and map all user-de�ned function names to symbolic names (e.g.,

func0).

2) To support the study, we need to obtain the evaluation datasets

of the single-function version and the corresponding multi-function

version. Since the samples in the original datasets aremulti-function,

we only need to obtain the corresponding single-function version.

Speci�cally, given a multi-function vulnerability, we select the func-

tion that triggers the vulnerability as the corresponding single-

function version. For the example in Figure 1(a), “Use After Free” is

triggered at line 8 of function “SMB2_write”. Therefore, we choose

the function "SMB2_write" as the single-function version.

3) For model training and testing, we split the data of each vul-

nerability type with the ratio of 80%:10%:10%, and then fuse the

divided data of each vulnerability type as the train/validation/test

set for evaluation.

4.1.2 Baseline. To evaluate SnapVuln, we select �ve state-of-the-

art learning-based vulnerability detection approaches and two pop-

ular pre-trained approaches as baselines. Speci�cally, the existing

�ve vulnerability detection approaches can be divided into two

Table 2: The statistics of the used datasets.

Dataset

Juliet D2A

# Samples
LoC # Tokens

# Samples
LoC # Tokens

min max avg min max avg min max avg min max avg

BO 10074 8 63 21 53 349 128 2437 8 2156 328 62 9235 2140

IO 3744 8 34 17 34 172 71 10624 4 2303 270 28 8206 1755

NP 316 6 34 13 22 131 55 413 8 1027 125 73 4296 849

ML 1548 9 30 17 33 196 91 - - - - - - -

DF 880 8 25 15 25 154 66 - - - - - - -

UF 458 9 40 19 35 213 89 - - - - - - -

Non-Vuln 17002 6 63 13 23 339 111 13321 5 2807 258 39 9609 2107

Total 34022 6 63 16 22 349 110 26795 4 2807 267 28 9609 1951

categories: (1) function-level detection (i.e., detecting vulnerabili-

ties at function granularity), such as Devign [68] and REVEAL [15].

(2) multi-function-level detection (i.e., detecting vulnerabilities at

the granularity of multiple functions), such as VulDeePecker [40],

SySeVR [39], and DeepWukong [17]. Since the pre-trained mod-

els achieve promising results in many code-related tasks [48, 67],

we also compare SnapVuln with two popular pre-trained models

(i.e., CodeBERT [21] and Graphcodebert [25]). We use their imple-

mentation if available (i.e., REVEAL, SySeVR and DeepWukong,

CodeBERT, and Graphcodebert) and re-implement the approaches

otherwise according to their papers (i.e., Devign, VulDeePecker).

4.1.3 Metrics. Following previous works [17, 39, 68], we select

the widely used metrics of accuracy and F1-score to evaluate the

vulnerability detection performance of di�erent approaches. Accu-

racy is the ratio of the number of correct predictions to the total

number of input samples, which indicates the correctness of iden-

tifying both vulnerable and non-vulnerable samples. F1-score is

the harmonic mean between precision and recall and indicates the

balance between them, where precision implies the correctness of

predicted vulnerable samples and recall implies the e�ectiveness of

vulnerability prediction.

4.1.4 Model Se�ing. We set the embedding size of tokens to 128

and the batch size to 16 for training. The hop is set to 4. The number

of subgraphs : is set to 16 and 4 on D2A and Juliet respectively.

Note that we will introduce why and how we choose the number

of subgraphs in Section 4.2.4. We adopt the Adam optimizer with

a learning rate of 0.001 to train the model on NVIDIA RTX A6000

with 10-epoch patience for early stopping. The model settings are

validated to achieve the optimal performance via grid search.

4.1.5 Evaluation Procedure. For RQ1, we compare SnapVuln with

baselines on D2A and Juliet, respectively. For RQ2, to verify the

completeness of vulnerability semantics on the detection perfor-

mance, we conduct comparative experiments on the datasets of

the multi-function version and the corresponding single-function

version. For a fair comparison, we disable the slicing component

and just utilize interprocedural-graph to conduct experiments (i.e.,

SnapVuln_single/SnapVuln_multi). For RQ3, to evaluate the pre-

cision of extracted vulnerability semantics on the detection per-

formance, we �rst perform an ablation study on SnapVuln by dis-

abling the slicing component to verify the e�ectiveness of slicing

algorithms (i.e., SnapVuln_multi). Then we compare our proposed

slicing algorithms with three typical slicing algorithms respec-

tively proposed by VulDeePecker, SySeVR and DeepWukong for

further veri�cation (i.e., SnapVuln_vuldeepecker, SnapVuln_sysevr

and SnapVuln_deepwukong). Speci�cally, DeepWukong extracted

subgraphs from PDGs by taking API function calls or arithmetic

operations as a slicing criterion, while VulDeePecker and SySeVR

1378



Learning Program Semantics for Vulnerability Detection via Vulnerability-Specific Inter-procedural Slicing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: The evaluation results on two open-source datasets.

Approach

D2A Juliet

IO BO NP Overall IO BO NP ML DF UF Overall

Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R Acc F1 P R

Devign 67.2 67.6 66.8 68.4 66.1 65.9 66.2 65.6 61.8 56.7 65.5 50.0 67.0 67.1 66.8 67.4 61.7 53.5 68.0 44.1 65.8 65.7 65.8 65.6 58.9 53.1 61.9 46.4 64.2 64.9 63.6 66.2 62.5 62.3 62.6 62.0 75.0 73.2 78.9 68.2 64.6 58.7 70.6 50.2

REVEAL 67.5 68.3 66.8 69.7 63.6 64.5 62.9 66.2 62.5 57.7 66.1 51.2 67.1 69.1 65.1 73.6 62.6 61.3 63.4 59.3 67.8 67.9 67.7 68.2 62.5 64.1 61.5 66.8 64.8 66.9 63.2 71.0 65.7 68.1 63.6 73.3 68.7 69.9 67.4 72.6 66.8 68.0 65.5 70.6

VulDeePecker 67.4 66.7 68.1 65.3 67.5 66.7 68.3 65.1 61.0 57.8 63.0 53.4 67.3 66.5 68.2 64.8 76.0 78.5 71.1 87.7 66.6 66.8 66.4 67.2 77.8 80.5 71.7 91.7 69.9 71.4 68.0 75.2 53.9 46.1 55.5 39.5 57.9 57.7 57.9 57.4 69.0 71.1 66.6 76.2

SySeVR 68.0 67.1 69.1 65.3 69.2 68.3 70.4 66.4 64.0 62.1 65.6 58.8 68.1 67.2 69.1 65.4 84.8 85.0 84.1 85.9 67.7 61.0 76.8 50.6 83.3 83.3 83.3 83.3 75.9 74.6 79.0 70.7 60.1 49.0 67.8 38.3 66.7 62.9 70.9 56.5 71.2 68.6 75.2 63.1

DeepWukong 69.7 70.9 68.2 73.7 66.6 67.2 66.0 68.4 65.0 64.5 65.4 63.6 68.7 69.6 67.8 71.4 81.3 82.6 77.2 88.8 68.8 66.8 71.4 62.8 83.3 84.2 80.0 88.9 73.9 75.1 71.8 78.8 58.4 51.9 61.6 44.8 61.1 58.3 62.8 54.4 72.1 72.5 71.4 73.7

CodeBERT 74.8 77.1 70.7 84.7 75.2 77.1 71.5 83.6 73.2 71.8 74.7 69.1 74.3 76.6 70.2 84.3 93.3 93.0 96.6 89.7 82.2 79.2 95.0 67.9 92.2 92.3 90.8 93.9 81.8 78.6 85.1 73.0 75.6 69.5 92.4 55.7 63.0 45.2 79.8 31.5 83.7 81.4 90.6 73.9

Graphcodebert 76.1 77.2 73.8 81.0 75.0 75.7 73.6 77.8 70.7 69.2 72.0 66.7 75.6 76.7 73.4 80.2 94.8 94.9 92.6 97.3 79.6 77.1 88.1 68.5 82.8 83.1 81.8 84.3 77.0 74.4 83.7 66.9 86.9 86.9 87.5 86.3 71.7 66.7 81.3 56.5 83.1 81.7 89.0 75.5

SnapVuln 81.0 80.7 79.2 82.3 78.1 77.7 79.1 76.4 74.4 73.4 76.9 70.7 80.6 80.7 80.1 81.6 88.2 87.3 94.0 81.6 92.1 91.8 95.5 88.4 96.4 96.3 99.9 92.9 95.3 95.4 93.4 95.4 79.8 78.4 86.7 71.7 88.8 88.3 92.3 84.5 93.4 93.6 91.0 96.4

SnapVuln_single 68.7 69.2 68.2 70.2 66.1 66.5 65.6 67.4 64.5 62.0 66.7 57.9 68.6 69.0 68.2 69.8 65.0 66.1 64.1 68.2 66.4 60.8 73.0 52.1 69.6 70.2 69.0 71.5 64.9 59.1 70.8 50.7 64.1 55.4 73.2 44.6 75.3 74.9 76.1 73.8 65.8 66.0 65.6 66.3

SnapVuln_multi 71.4 70.9 72.3 69.6 72.0 67.6 78.9 58.5 66.1 68.8 63.8 74.6 71.1 70.2 72.5 68.0 74.2 78.0 68.1 91.2 70.8 73.5 67.2 81.1 76.8 81.2 70.5 95.0 69.9 72.5 66.8 79.1 66.9 67.7 66.0 69.6 78.4 81.2 71.9 93.2 72.1 74.9 68.1 83.2

SnapVuln_vuldeepecker 74.2 74.4 73.9 74.9 74.1 74.9 72.7 77.2 65.0 64.1 65.8 62.5 75.0 75.1 74.8 75.4 81.3 83.3 75.3 93.2 73.7 74.1 72.9 75.3 80.0 82.0 74.6 90.9 87.7 89.0 80.5 99.4 75.0 67.9 95.0 52.8 74.4 76.1 71.4 81.4 76.3 77.2 74.2 80.5

SnapVuln_sysevr 77.4 76.7 79.0 74.6 73.7 72.0 77.0 67.6 73.4 71.2 76.6 65.8 77.1 77.0 77.4 76.6 82.8 82.6 83.5 81.6 81.3 81.7 80.1 83.4 83.9 84.8 80.6 89.3 89.9 90.7 83.6 99.3 81.5 81.7 80.8 82.6 84.1 84.8 81.3 88.6 84.2 84.9 81.2 88.8

SnapVuln_deepwukong 76.2 76.2 76.1 76.3 73.7 73.5 74.2 72.8 67.5 68.3 66.7 70.0 76.7 76.5 77.3 75.7 79.6 72.6 95.8 58.4 81.5 79.6 88.6 72.3 84.0 84.2 83.3 85.1 93.2 93.2 92.3 94.2 80.3 73.2 96.4 59.0 81.5 79.6 88.6 72.3 85.0 84.8 86.3 83.3

sliced a sequence of code statements on DDGs and PDGs respec-

tively. Since SnapVuln takes graphs as input, we transform the code

statements extracted by VulDeePecker and SySeVR into graphs by

connecting the statements based on DDGs and PDGs. In this way,

we can compare the performance of slicing algorithms of di�erent

approaches with a uni�ed model SnapVuln.

4.2 Evaluation Results

4.2.1 Comparison with State-of-the-art Approaches (RQ1). The �rst

two rows of Table 3 present the results of baselines on D2A and

Juliet. We observe that SnapVuln outperforms baselines on the

overall testset of D2A and Juliet in terms of accuracy and F1.

As seen in Table 3, SnapVuln outperforms vulnerability detec-

tion baselines (�rst row) by at least 11% (absolute di�erences) and

surpasses pre-trained models (second row) by at least 4% in terms

of accuracy and F1 on the overall testset, which shows the e�ective-

ness of SnapVuln. Furthermore, for most types of vulnerabilities (i.e.,

“bu�er over�ow”, “memory leak” and “use after free”), SnapVuln

also has higher accuracy, except for “integer over�ow (IO)” and

“double free (DF)” on Juliet testset. For these cases, the pre-trained

models achieve higher accuracy. Since the samples from Juliet are

synthetic and simple, which leads to powerful pre-trained models

easily capture the inner features among the samples. In contrast,

SnapVuln outperforms the pre-trained models on D2A dataset, indi-

cating that SnapVuln is more e�ective for real-world vulnerabilities.

We attribute this to the vulnerability-speci�c inter-procedural slic-

ing algorithms that are designed to capture precise vulnerability

semantics.

Analysis. We conclude that in most cases, SnapVuln achieves

the best performance for vulnerability detection, especially on the

real-world D2A testset. It is attributed to the complete and precise

vulnerability semantics captured by the slicing algorithms and the

attention mechanism used in the model to dynamically assign dif-

ferent weights for subgraphs. The shortcomings of the baselines

are twofold. On one hand, the baselines such as Devign capture the

vulnerability semantics on the single function, which are incom-

plete for vulnerability detection. On other hand, some approaches

such as VulDeePecker, SySeVR, and DeepWukong propose the gen-

eral slicing algorithms without considering the characteristics of

di�erent vulnerability types for vulnerability detection, which are

imprecise. Furthermore, although the pre-trained approaches can

achieve better performance compared with the aforementioned

vulnerability detection baselines, they are limited by learning pre-

cise vulnerability semantics that SnapVuln does for vulnerability

detection.

Answer to RQ1: The overall performance of SnapVuln outper-

forms existing approaches on the real-world dataset D2A and the

synthetic dataset Juliet.

4.2.2 The Completeness of Vulnerability Semantics (RQ2). The re-

sults of SnapVuln_single and SnapVuln_multi are presented in Ta-

ble 3, we can observe that the overall detection performance on

multi-function datasets is better than single-function datasets in

terms of accuracy and F1 on D2A and Juliet.

In particular, the accuracy formulti-function version are 2.5% and

6.3% higher than that of single-function version on the overall test-

sets of D2A and Juliet. Furthermore, we �nd that the performance

of each vulnerability type is improved when using multi-function

datasets D2A and Juliet. In addition, the magnitude of the improve-

ment on D2A is smaller than Juliet. For example, the vulnerability

type “integer over�ow” on D2A increases by 2.7% in accuracy while

Juliet increases by 9.2%.

Analysis.We attribute the improvements to the version of the

multifunction dataset consisting of the complete vulnerability se-

mantics to help the model learn more vulnerability-related features

compared with the single function for vulnerability detection. How-

ever, we also need to point out that when introducingmulti-function

for detection, we also introduce substantial noise (i.e., vulnerability-

irrelevant semantic information) for the model, especially in the

real-world dataset D2A. In contrast, the Juliet dataset is a synthetic

dataset that contains fewer code statements unrelated to vulnera-

bilities. Hence, the irrelevant information is less than D2A on the

version of multi-function datasets, which provides more notice-

able improvements. It also indicates that the complete vulnerability

semantics are not su�cient for the model to obtain good perfor-

mance and some slicing algorithms are needed to extract precise

vulnerability semantics for the detection.

Answer to RQ2: The completeness of the extracted vulnerabil-

ity semantics a�ects the performance of vulnerability detection.

Although some vulnerability-irrelevant semantic information is

introduced at the same time, it can still improve detection perfor-

mance. It also indicates that precise slicing criteria are demanded

to reduce the noise and further improve the performance.

4.2.3 The Precision of Vulnerability Semantics (RQ3). The exper-

imental results of di�erent slicing algorithms that baselines used

are presented in the last row of Table 3. First, comparing the results

of SnapVuln with SnapVuln_multi, we can �nd that the improve-

ments are signi�cant, which demonstrates that slicing is an e�ec-

tive approach to remove vulnerability-irrelevant information for
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vulnerability detection. Furthermore, by comparing the results of

di�erent slicing algorithms with SnapVuln, we �nd that SnapVuln

achieves better performance in terms of vulnerability detection,

which demonstrates that our slicing algorithm is e�ective in ex-

tracting relevant vulnerability semantics.

Speci�cally, when using the slicing algorithms, the accuracy of

SnapVuln on the overall testset of D2A and Juliet increases by 9.5%

and 21.3% respectively. Furthermore, the accuracy of each type

of vulnerability on D2A and Juliet has also improved. In addition,

compared with other slicing algorithms, SnapVuln achieves 5.6%,

3.5%, 3.9% higher accuracy than VulDeePecker, SySeVR and Deep-

Wukong on the overall testset of D2A and 17.1%, 9.2%, and 8.4% on

Juliet.

Analysis. The improved performance by SnapVuln can be at-

tributed to the precise vulnerability semantics captured by the

proposed slicing algorithms for the six most dangerous vulnera-

bility types. Through the vulnerability-speci�c inter-procedural

slicing algorithms, SnapVuln is able to extract features containing

precise vulnerability semantics as the model input from samples,

thus improving the e�ectiveness and accuracy of SnapVuln. On the

contrary, the baselines either perform slicing on DDG to obtain

all statements that are data-dependent on API function calls (e.g.,

VulDeePecker) or slice on PDG to get related statements (e.g., Sy-

SeVR and DeepWukong) as vulnerability semantics, without consid-

ering the characteristics of di�erent vulnerability types. Therefore,

they inevitably introduce statements irrelevant to vulnerabilities

as model input, resulting in poor performance.

Answer to RQ3: The precision of the extracted vulnerability

semantics is vital to the performance of vulnerability detection.

Compared with other slicing approaches, we con�rm that our

slicing algorithms extract more precise vulnerability semantics.

4.2.4 Performance Analysis (RQ4). In this RQ, we �rst conduct

experiments to determine the optimal value of : that achieves the

best performance while keeping training feasible. Based on this

selected : , we further analyze SnapVuln and baselines with respect

to the time spent on constructing and analyzing a sample and

memory requirements for training and testing.

Choice of k. The value of : (i.e., the number of sampled subgraphs

per set in each sample) may a�ect the memory requirement and

vulnerability detection performance, since a larger : requires more

memory for model training and testing, while a smaller : value may

cause the loss of vulnerability semantics of large samples, resulting

in detection failure. We experiment with di�erent : to determine

the optimal value. As depicted in Figure 7(a) and Figure 7(b), we

observe that values below : = 16 and : = 4 show worse results in

D2A and Juliet, respectively. Additionally, increasing the values of

: does not result in consistent improvement. Hence, setting : to 16

for D2A and 4 for Juliet can be considered a reasonable sweet spot

between capturing su�cient information for vulnerability detection

and keeping training feasible in the GPU’s memory. Furthermore,

from the table in Figure 7(a) and Figure 7(b), we can �nd that

the average number of subgraphs per set is 54 and 5 in D2A and

Juliet, respectively. Setting : above 16 in D2A and above 4 in Juliet

may be bene�cial for some large samples. However, in most cases,

16 subgraphs in D2A and 4 subgraphs in Juliet contain su�cient

(a) D2A (b) Juliet

Figure 7: The impact of : on accuracy and F1.

Table 4: Time and memory spent on the two datasets.

Dataset

D2A Juliet

Time(s) Memory(GB) Time(s) Memory(GB)

constructing analyzing CPU GPU constructing analyzing CPU GPU

Devign 2.60 0.04 23.4 41.2 0.93 0.01 8.4 3.0

REVEAL 2.60 0.03 23.7 39.6 0.93 0.01 9.1 3.2

VulDeePecker 3.35 0.03 8.5 5.5 1.05 0.01 6.1 1.4

SySeVR 3.82 0.03 7.6 5.6 1.10 0.01 6.2 1.7

DeepWukong 3.90 0.05 24.2 10.6 1.08 0.01 6.4 1.6

CodeBERT - 0.03 5.8 14.2 - 0.01 5.6 14.2

Graphcodebert - 0.03 5.7 14.2 - 0.01 5.6 14.2

SnapVuln 4.68 0.19 29.0 43.3 1.22 0.10 9.7 3.5

information for vulnerability detection, which may be attributed

to the overlap between these subgraphs. For example, some small

subgraphs may be part of those larger subgraphs, since they may

be sliced from branches of those larger subgraphs. This may result

in these subgraphs containing duplicate vulnerability semantics.

Time and Memory. All approaches, with the exception of the pre-

trained models (i.e., CodeBERT and Graphcodebert), are required

to construct graphs for vulnerability detection. Considering the

various time required for graph construction and analysis across

di�erent samples, we calculate the average time across all samples

to represent the time spent by each approach. From the Table 4, we

can observe that SnapVuln spends more time than the baselines,

especially the time spent on constructing the graphs. That can be

attributed to the incorporation of inter-procedural graph construc-

tion and the execution of multiple slicing algorithms. However, in

practice, we reduce the time to less than 0.5 second per sample by

multiprocessing, making the time spent by SnapVuln acceptable.

Furthermore, regarding memory usage, we record the maximum

memory consumed by each approach. Since SnapVuln employs mul-

tiple independently trained submodels, we take the largest memory

consumed by these submodels as its �nal result. As can be seen

from Table 4, SnapVuln consumes more memory in CPU and GPU

compared to the baselines during model training (except for the

pre-trained models on Juliet), especially in the real-world dataset

D2A. However, compared to Devign using the same GGNN network,

the GPU memory usage of SnapVuln has only witnessed a minor

increase, with an additional 2.1 GB. This can be attributed to the

precise slicing algorithms, which greatly reduces the size of each

subgraph. As a result, despite the utilization of multiple subgraphs

per sample for vulnerability detection, the memory requirement

remains relatively stable and does not experience signi�cant in-

crease. Hence, SnapVuln proved to be acceptable in terms of time

and memory requirements.

Answer to RQ4: SnapVuln is optimal with : of 16 on D2A and 4

on Juliet. Although SnapVuln takes more time and memory than

baselines, it proved to be acceptable.
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5 DISCUSSION

When scaling SnapVuln to real-world industry databases, it may

encounter challenges of the diversity of vulnerability types and

sample size. (1) Vulnerability types. Vulnerabilities in real-world

codebases are diverse, and the slicing algorithms in SnapVuln may

not cover every single case. In this work, we employ multiple sub-

models and a GNN model to individually capture the distinct types

of vulnerability semantics for vulnerability detection. On one hand,

the GNN models can capture comprehensive program semantics

to detect those vulnerabilities that are not handled by slicing algo-

rithms. On the other hand, this modular approach enables SnapVuln

to easily accommodate other vulnerability types by simply adding

new slicing algorithms and submodels without the need to retrain

existing submodels. Furthermore, it helps prevent the aggregation

of all subgraphs into a single model, thereby mitigating the sub-

stantial increase in GPU memory requirements. (2) Sample size.

when dealing with large samples, such as entire programs that can

span thousands of lines of code, SnapVuln may face challenges in

processing and analyzing them e�ectively. To scale SnapVuln to

those samples with immense lines of code, we may increase the

value of : or employ methods to divide them into smaller pieces

for testing. For instance, the samples are constrained to functions

at the �le level or within the three call levels.

6 THREATS TO VALIDITY

Internal validity: (1) Some samples may be mislabled in the

datasets (i.e., D2A [66] and Juliet [2]). On one hand, we trust most

of their labeling results, since Juliet is maintained by the domain

experts in NIST, and D2A is collected through di�erential analysis

and enhanced with an industrial-strength static analysis tool. On

the other hand, we manually validate both datasets and remove

those mislabeled samples we found. (2) The tool “Joern” may fail

to generate the correct inter-procedural graphs for some samples.

To avoid this problem, we delete those samples that are incorrectly

parsed by “Joern”. (3) SnapVuln leverages a GGNN to capture vul-

nerability semantics for vulnerability detection. However, di�erent

models may be suitable for di�erent vulnerability types. For exam-

ple, GNNs, which can encode code structure information, may be

better suited for vulnerability types involving complex logic, while

pre-trained models may be better suited for small-sample or simple

vulnerability types, since they learn a lot of background knowledge

from a large code corpus with huge model parameters. More re-

search should be conducted to study how to choose appropriate

models for speci�c vulnerability types. (4) In RQ3, we re-implement

the slicing algorithms from the baselines in SnapVuln, by follow-

ing their provided implementation as outlined. The reproduced

algorithms may have some di�erence from the original ones.

External validity: SnapVuln is designed to detect vulnerabilities

in C/C++ program. To support other programming languages, it is

necessary to design slicing algorithms tailored to the vulnerabilities

speci�c to those languages. Furthermore, vulnerability datasets for

those languages are also required to retrain the models.

7 RELATED WORK

Program Slicing Techniques. Program slicing is a useful decom-

position technique for extracting program statements relevant to

some special computation, starting from a subset of program be-

haviour and slicing that program into a minimal form that still pro-

duces that behavior [63]. It was �rst proposed byWeiser [61] in 1979,

which supports intra-procedural program slicing. After that, many

studies related to program slicings are proposed, such as extensions

of the algorithm proposed by Horwitz [11, 12, 27, 35], computing

e�ciency [44, 45], and SDG construction [26, 34]. Program slicing

has been applied to many aspects of the software development life

cycle, including software maintenance [31–33, 65], software mea-

surement [9, 10, 30] and software debugging [13, 24, 28, 47, 50, 52].

It has also been used to capture program semantics to generate

code representations in learning-based vulnerability detection ap-

proaches [17, 38–40]. However, these program slicing algorithms

include vulnerability-unrelated statements for code representation

generation. In this paper, referring to the inter-procedural chop-

ping [50] which identi�es the statements that cause the de�nitions

of the source to a�ect the uses of the sink, we propose vulnerability-

speci�c inter-procedural slicing algorithms to capture precise vul-

nerability semantics for code representation generation.

GNNs for Software Engineering. Since graph neural networks

(GNN) can capture extensive structure information in code, it has

become increasingly popular for various tasks [4, 8, 36, 41–43, 46,

58, 59, 62] in software engineering. For example, for type inference

task, Allamanis et al. [3] propose modeling the type information

for optionally-typed languages by embedding an abstract syntax

tree and data �ow analysis based graph with a gated graph neural

network (GGNN); For code summarization task, attempts has been

made to incorporate synactical and sematic code information lever-

aging graph neural networks [22, 36, 41], which empirically demon-

strates superior performance than sequence-based models. For vul-

nerability detection, graph neural networks are widely used to

leverage structure information such as control �ow and program de-

pendency in the code to generate representations [15, 17, 37, 56, 68].

Therefore, in this paper we leverage graph neural network to cap-

ture vulnerability semantics in the code for vulnerability detection.

8 CONCLUSION

We propose SnapVuln, a novel learning-based approach, which

employs vulnerability-speci�c inter-procedural slicing algorithms

for di�erent vulnerability types in C/C++ to capture complete and

precise vulnerability semantics for code representation generation

and incorporates the attentionmechanism to the gated graph neural

network (GGNN) to ensure the model assign di�erent weights for

subgraphs to learn better representations. Extensive experiments

on two public datasets demonstrate that SnapVuln outperforms

seven state-of-the-art baselines. We also conduct an ablation study

to demonstrate that the completeness and accuracy of vulnerability

semantics contribute to the performance improvement.
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