
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

On the usage of continual learning for out-of-distribution On the usage of continual learning for out-of-distribution

generalization in pre-trained language models of code generalization in pre-trained language models of code

Martin WEYSSOW

Xin ZHOU

Kisub KIM

David LO
Singapore Management University, davidlo@smu.edu.sg

Houari A. SAHRAOUI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
WEYSSOW, Martin; ZHOU, Xin; KIM, Kisub; LO, David; and SAHRAOUI, Houari A.. On the usage of continual
learning for out-of-distribution generalization in pre-trained language models of code. (2023). ESEC/FSE
'23: Proceedings of ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, San Francisco, December 3-9. 1470-1482.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8574

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

On the Usage of Continual Learning for Out-of-Distribution
Generalization in Pre-trained Language Models of Code

Martin Weyssow
DIRO, University of Montreal

Montreal, Canada
martin.weyssow@umontreal.ca

Xin Zhou
Singapore Management University

Singapore
xinzhou.2020@phdcs.smu.edu.sg

Kisub Kim∗

Singapore Management University
Singapore

kisubkim@smu.edu.sg

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Houari Sahraoui
DIRO, University of Montreal

Montreal, Canada
sahraouh@iro.umontreal.ca

ABSTRACT
Pre-trained language models (PLMs) have become a prevalent tech-
nique in deep learning for code, utilizing a two-stage pre-training
and fine-tuning procedure to acquire general knowledge about
code and specialize in a variety of downstream tasks. However,
the dynamic nature of software codebases poses a challenge to the
effectiveness and robustness of PLMs. In particular, world-realistic
scenarios potentially lead to significant differences between the
distribution of the pre-training and test data, i.e., distribution shift,
resulting in a degradation of the PLM’s performance on downstream
tasks. In this paper, we stress the need for adapting PLMs of code to
software data whose distribution changes over time, a crucial prob-
lem that has been overlooked in previous works. The motivation of
this work is to consider the PLM in a non-stationary environment,
where fine-tuning data evolves over time according to a software
evolution scenario. Specifically, we design a scenario where the
model needs to learn from a stream of programs containing new, un-
seen APIs over time. We study two widely used PLM architectures,
i.e., a GPT2 decoder and a RoBERTa encoder, on two downstream
tasks, API call and API usage prediction. We demonstrate that the
most commonly used fine-tuning technique from prior work is not
robust enough to handle the dynamic nature of APIs, leading to the
loss of previously acquired knowledge i.e., catastrophic forgetting.
To address these issues, we implement five continual learning ap-
proaches, including replay-based and regularization-based methods.
Our findings demonstrate that utilizing these straightforward meth-
ods effectively mitigates catastrophic forgetting in PLMs across
both downstream tasks while achieving comparable or superior
performance.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616244

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Natural language pro-
cessing.

KEYWORDS
deep learning for code, pre-trained language models, continual
learning, out-of-distribution generalization
ACM Reference Format:
Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui.
2023. On the Usage of Continual Learning for Out-of-Distribution Gen-
eralization in Pre-trained Language Models of Code. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE ’23), December
3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3611643.3616244

1 INTRODUCTION
Prior research [11, 19, 70] on code representation learning leverages
a ubiquitous two-stage procedure to effectively train and specialize
pre-trained language models (PLMs) for code-related downstream
tasks. The first stage, i.e., the pre-training, involves optimizing the
model using self-supervised learning on a large dataset to acquire
general knowledge about code. This pre-training phase allows the
model to adapt to downstream tasks in the second stage, i.e., the
fine-tuning. Previous studies [1, 19, 72] typically leverage classical
transfer learning methods, which consist of "transferring" the pre-
trained knowledge to the target task by fine-tuning the model
on a task-specific loss function and data. This approach has been
successful in the fields of natural language processing (NLP) [8, 16]
and deep learning for code [11, 19].

In this perspective, previous works [13, 63] have primarily fo-
cused on stationary settings, neglecting the practical need for mod-
els to adapt to changing environments and data over time. Most
prior research [1, 19, 22] has suggested using transfer learning to
fine-tune the model in static environments rather than addressing
the dynamic nature of real-world scenarios. In practice, program-
ming languages, software libraries and APIs are prone to change
and evolution [28, 46, 48], leading to shifts in the distribution of
the underlying software data over time, it is also known as con-
cept drift [40, 65]. By ignoring the actual evolution of software
codebases, existing studies [11, 63] have focused on fine-tuning

ar
X

iv
:2

30
5.

04
10

6v
2

 [
cs

.S
E

]
 2

2
A

ug
 2

02
3

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

Pre-training Continual �ne-tuning

OOD
Programs 1

OOD
Programs 2

. . .

Model Model Model

Programs

Fig. 1: Continual fine-tuning of a pre-trained language model
of code. After pre-training, the model needs to adapt to new
out-of-distribution (OOD) program data over time.

and testing pre-trained models of code using stationary datasets.
In practice, the software evolution potentially leads to a noticeable
difference between training and test data, i.e., distribution shift, that
is often not present in these stationary datasets. This phenomenon
also occurs when the model is put into production and has to deal
with real-world data [4, 26]. We argue that creating datasets that re-
flect real-world software evolution scenarios and distribution shifts
is crucial in order to properly evaluate the out-of-distribution
(OOD) generalization capability of code models [53]. The OOD
generalization measures a model’s ability to generalize to new,
unseen data with a significantly different distribution from the
training data. Therefore, evaluating how PLMs of code generalize
to OOD software data in software evolution scenarios appears as a
prime issue.

Existing works on OOD generalization designed the datasets
based on various distribution shifts in source code data [25, 30].
However, they did not address the problem of continually adapting
a pre-trained model of code to streams of OOD data. The prime
goal of our study is to explore methods for a model to better adapt
to software evolution scenarios. In this context, we ask: how to
effectively continually fine-tune a pre-trained model of code to adapt
to new data while still considering the past data? (see Fig. 1). Over
the past years, continual learning (CL) [47, 65] has emerged to
address this problem, which is relevant to a wide range of research
areas, including computer vision [6, 34, 38, 55] and NLP [7, 9, 56].
Although transfer learning methods are not tailored for continual
learning scenarios, they can still operate to fine-tune a model on
streams of data. However, these methods lack robustness, leading to
unwanted phenomena such as forgetting past information, known
as catastrophic forgetting [20, 43]. There exist other strategies, such
as retraining the model from scratch using new data, which are also
impractical due to the tremendous computational intensity in the
pre-training phase. Motivated by these issues of the existing models,
we attempt to investigate more robust and scalable fine-tuning
techniques. We hypothesize that continual learning techniques
may provide significant benefits over classical transfer learning in
this context.

In this paper, we delve into the behavior of PLMs of code in a
continual fine-tuning scenario, as depicted in Fig 1. Our objective
is twofold: (1) to assess the out-of-distribution generalization ca-
pability of PLMs of code and (2) to investigate effective continual
fine-tuning strategies to fine-tune the models in the presence of a
stream of OOD data. Specifically, we address these challenges in a
scenario reflecting how typical software codebases may evolve in

practice. To this end, we create five OOD domain datasets, each in-
troducing new, unseen APIs by the models during their pre-training
phase. These OOD datasets intend to simulate a stream of data for
continual fine-tuning, and each dataset entails a significant dis-
tribution shift with respect to the pre-training data. As such, our
setting establishes an OOD generalization problem. We consider
two widely used model architectures: a GPT2-like [49] decoder and
a RoBERTa-like [37] encoder pre-trained on code. To eliminate any
data leakage between the pre-training and fine-tuning data, we
decided to pre-train our models from scratch. We do not study the
popular existing PLMs like CodeBERT [19] or CodeT5 [62] because
they may be prone to potential data leakage, i.e., seeing the OOD
data in pre-training, that we cannot precisely control. We evaluate
the models on two downstream tasks: API call prediction and API
usage prediction. In the first task, the model attempts to predict API
calls resulting in a single code token, given code tokens appearing
before the call site. On the other hand, the second task involves
the generation of the whole API usage resulting in a sequence of
code tokens with the same input format as the prior task. Together,
these two tasks provide a comprehensive evaluation of the model’s
performance in different code generation scenarios.

We start by investigating the impact of OOD data on the per-
formance of the GPT2-like decoder on both downstream tasks in
a zero-shot setting, i.e., without fine-tuning the model on the new
OOD data. We find that the model consistently fails to generalize
to OOD data by highlighting significant gaps in performance com-
pared to in-distribution data across six evaluation metrics (e.g., up
to 75% drop in BLEU score). This finding strongly suggests that pre-
training itself is not sufficient and cannot solve OOD generalization
in PLMs of code. We then evaluate the models’ performance in
the continual fine-tuning scenario using classical transfer learning
and observe notable catastrophic forgetting. To address this issue,
we implement a straightforward yet computationally inefficient
cumulative fine-tuning approach by utilizing a replay buffer of
infinite size. The results show that the approach drastically miti-
gates forgetting. Finally, we compare the performance of classical
transfer learning to that of replay-based and regularization-based
continual learning methods. Replay methods are considered tough-
to-beat strategies for continual learning and consist of maintaining
a small replay buffer containing samples from previously seen data.
During fine-tuning, we use the replay buffer in conjunction with
the current OOD training set to fine-tune the PLM. We explore
regularization-based methods, including EWC [34], SI [71] and
RWalk [10], which add regularization terms to the loss function at
fine-tuning to prevent extensive changes in important parameters
of the PLM. We chose those methods as they are computationally
efficient, well-known, and considered strong baselines in the con-
tinual learning literature. We discover that those continual learning
methods significantly reduce forgetting while achieving similar or
superior effectiveness on both tasks.

To the best of our knowledge, this work constitutes the first
initiative to study continual fine-tuning for OOD generalization of
PLMs of code. We believe that the impact of continual learning in
this research area has the potential to be far-reaching, particularly
due to the inherent evolution of software data over time, and we
discuss this aspect in more detail in the discussion section of the

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

paper (see Section 5). Our contributions can be summarized as
follows:

(1) We demonstrate that PLMs of code fail to generalize to OOD
data and highlight the need for further investigation in this
area.

(2) We conduct a study on the behavior of two pre-trained model
architectures of code in a continuous learning environment,
showing that classical transfer learning lacks robustness and
is prone to catastrophic forgetting.

(3) We compare five continual learningmethods, including replay-
based and regularization-based approaches, in our continual
fine-tuning scenario. We show the superiority of continual
learning over classical transfer learning.

(4) We provide a large-scale dataset of Java code snippets and
their API usage sequences, including pre-training data and
a procedure for extracting OOD data.

Organization. In Section 2, we discuss preliminaries on continual
learning. In Section 3, we go through our experimental design. We
present the results of our experiments in Section 4. In Section 5, we
discuss the threats to the validity of our study, as well as potential
broader impact and future research directions. We introduce the
related work on out-of-distribution generalization and continual
learning for pre-trained language models in Section 6. Finally, we
discuss some future work and conclude this work in Section 7.

2 PRELIMINARIES ON CONTINUAL
LEARNING

Existing PLMs such as BERT [16] or GPT [8] typically operate in
transfer learning settings. By using a two-stage pre-training/fine-
tuning procedure, these models can be specialized for a wide range
of downstream tasks. However, in this setting, the data used for pre-
training or fine-tuning are often assumed to be stationary, which is
not reflective of real-world situations. In practice, transfer learning
methods can still be applied to non-stationary data, such as a stream
of data, but this technique is prone to catastrophic forgetting [20,
43].

To address the above issues, prior works [2, 20, 24, 34, 36, 59]
introduced the concept of continual learning and designed specific
techniques to mitigate catastrophic forgetting. The primary assump-
tion for continual learning is that the neural network should possess
the ability to adapt to new data or tasks while maintaining stability
on previous data or tasks, often referred to as the plasticity–stability
dilemma. Considering continual learning is particularly interesting
for OOD generalization problems, as continual learning methods
focus on a keeping good plasticity–stability trade-off. Altogether,
it has to potential to enhance the generalizability of PLMs to a
broader range of data. Continual learning methods often operate
in constrained scenarios, and Hadsell et al. [24] outline a compre-
hensive list of objectives to balance in continual learning scenarios.
There exist three main categories of methods for continual learning
as defined in a previous study [15]. Replay-based methods store
samples from previous experiences, i.e., previous stream of data,
in a replay buffer or use generative approaches to generate exam-
ples similar to those of previous experiences. The replay buffer is
used in conjunction with the current experience data to train the
model. Replay-based methods help the network gain stability by

Continual �ne-tuning

Pre-training

Dataset

. . .

Fig. 2: Procedure to extract the ID data used for model pre-
training, and the OOD data used for continual fine-tuning.

enabling the network to train on previous samples, i.e., stored in
the replay buffer while adapting to new data. Regularization-based
methods add a regularization term to the loss function to prevent
catastrophic forgetting by penalizing changes to important neural
network parameters. Examples of regularization-based methods in-
clude EWC [34], SI [71] and RWalk [10]. Finally, parameter isolation
methods use dynamic architectures to incorporate knowledge from
previous experiences to mitigate interference [52].

3 EXPERIMENTAL DESIGN
In this section, we describe the experimental setup of our study.
We carefully control our data and model setup to implement our
out-of-distribution scenario. We first outline the construction of our
dataset and the generation of OOD data for continual fine-tuning.
Next, we discuss the pre-training procedure of our models, the
target downstream tasks and evaluation metrics. We present the
results of our experiments in Section 4.

3.1 Dataset Construction
Pre-training language models from scratch require a large amount
of data for the loss of the model to converge. With that in mind, we
constructed our large dataset using programs crawled from GitHub
using Google BigQuery1. Specifically, we focused on Java programs
and began by collecting all java files stored in GitHub repositories.
Next, we used Groum [45] to extract all methods defined in the
java files along with their API usage sequences. We extracted
the API usage sequences to facilitate our data splitting and obtain
the position of each API site inside the methods to implement
our downstream tasks. Each sample consists of all the tokens of
a method. To avoid duplication bias in our experiments [3], we
deduplicated the dataset by comparing the hash of eachmethod. The
resulting dataset contains more than 68M Java methods. For our
experiments, we shuffled these 68Mmethods and randomly selected
10M methods to constitute our initial dataset. Fig. 2 illustrates how
we further split the data for our experiments. Because we chose
the pre-train PLMs from scratch, we have to split our data into in-
distribution (ID) data, used for model pre-training, and OOD data,
used for continual fine-tuning. We also need to properly extract
the OOD data to align with our scenario consisting of introducing
new, unseen APIs over time to the PLM during fine-tuning.

1https://cloud.google.com/bigquery

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

Table 1: Out-of-distribution dataset details.

Dataset Domain Package Interfaces # train # test

D1
𝑂𝑂𝐷

General

java.util.concurrent BlockingQueue, ThreadPoolExecutor

47,213 5,239
java.math BigInteger

java.util Base64, TreeSet

java.net ForkJoinPool, Proxy, ServerSocket, SocketAddress, URLEncoder

D2
𝑂𝑂𝐷

Security java.security Cipher, CodeSource, Identity, KeyFactory, KeyPair, MessageDigest, Policy,
Provider, Security, Timestamp

27,189 3,017

D3
𝑂𝑂𝐷

Android

android.view Display, InputEvent, Window

28,400 3,150
android.widget Checkbox, GridLayout

android.media AudioFormat, ImageReader

android.hardware Camera, Sensor

android.database DatabaseUtils

D4
𝑂𝑂𝐷

Web org.springframework CacheManager, ClassPathResource, DataBuffer, HttpMessage, HttpRe-
quest, JdbcTemplate, MessageChannel, MessageHandler, TaskExecutor

16,295 1,805

D5
𝑂𝑂𝐷

Guava

com.google.common.graph GraphBuilder, Network

13,448 1,489
com.google.common.io ByteSource, ByteStreams

com.google.common.cache CacheBuilder, LoadingCache

com.google.common.collect ListMultimap, Multimap

com.google.common.base CharMatcher, Splitter

Out-Of-Distribution Dataset – D𝑂𝑂𝐷 . We create five OOD
datasets, D1

𝑂𝑂𝐷
, ...,D5

𝑂𝑂𝐷
. Each OOD dataset represents a unique

domain that encompasses a high-level functionality of APIs. For
example, we have a domain Security that comprises APIs related
to programming security-related code and a domain Guava that
includes only APIs from the Guava2 library. To create each OOD
dataset, we randomly select 10 interfaces from packages/libraries
related to their domain. Finally, we associate to each domain dataset
all APIs within the selected interfaces, excluding class construction
methods. Table 1 summarizes the dataset D𝑂𝑂𝐷 , which contains
147,245 samples in total.

To form each OOD dataset, we select samples from the pool of 10
million Java methods that manipulate at least one of their associated
API. In our experiments, we perform continual fine-tuning on the
training sets associated with the OOD dataset D1

𝑂𝑂𝐷
, ...,D5

𝑂𝑂𝐷
se-

quentially. Therefore, to prevent data leakage, we exclude samples
that manipulate APIs from multiple domains. This elimination of
samples removes a significant threat to the validity of our OOD sce-
nario and ensures that APIs are introduced as intended during the
fine-tuning process. To obtain representative test sets, we randomly
select 10% of samples that manipulate each API within each OOD
dataset and used the selected samples to form the corresponding
domain test set.

In-Distribution Dataset – D𝐼𝐷 . We obtain D𝐼𝐷 by removing
the samples in D𝑂𝑂𝐷 from the initial data. Then, we shuffle D𝐼𝐷

and randomly select 50,000 samples for test (D𝐼𝐷_𝑡𝑒𝑠𝑡). D𝐼𝐷_𝑃𝑇
contains the remaining samples for pre-training, and we randomly
select 100,000 for model validation (D𝐼𝐷_𝑃𝑇 _𝑣𝑎𝑙𝑖𝑑). In particular,
those samples allow us to monitor the evolution of the loss of the
model on an independent validation set to avoid overfitting the pre-
training data. In total, the pre-training set D𝐼𝐷_𝑃𝑇 _𝑡𝑟𝑎𝑖𝑛 contains
more than 9M samples to pre-train the models.

2https://github.com/google/guava

3.2 Models and Tasks Setup
In this work, we consider two widely-used deep learning architec-
tures for code: a RoBERTa-like encoder [37] and a GPT2-like de-
coder [49]. We deliberately exclude the utilization of large language
models (LLMs) in our research due to the substantial computational
resources essential for their pre-training. To comprehensively ad-
dressour OOD scenario, it is imperative to pre-train a model from
scratch prior prior to continually fine-tune it on code containing
new, unseen APIs. Consequently, we opt to evaluate two smaller
models architectures, namely RoBERTa and GPT-2, which either
serve as foundational models for PLMs like CodeBERT [19] or to
generative models.

Decoder –M𝑑𝑒𝑐 . The decoder model is based on the GPT-2 archi-
tecture, with the same hyperparameters, and is pre-trained using a
causal language modeling objective, i.e., left-to-right next token pre-
diction. As we conducted our experiments under limited resources,
we implemented a small version of GPT-2 with 110 million trainable
parameters and pre-train the model for 100,000 steps. We use early
stopping to select the best model checkpoint, based on the loss on
the validation set D𝐼𝐷_𝑃𝑇 _𝑣𝑎𝑙𝑖𝑑 .

Encoder – M𝑒𝑛𝑐 . The encoder model is based on the RoBERTa
architecture, with the same hyperparameters, and is pre-trained us-
ing a masked language modeling objective. We implemented a base
version of RoBERTa. The model has 125 million trainable parame-
ters and is pre-trained similarly to the decoder model, with early
stopping used to select the best checkpoint. Note that conversely
toM𝑑𝑒𝑐 , the encoder’s architecture is not suitable for generation
tasks. Therefore, we add a randomly initialized language modeling
head on top of it for fine-tuning using the OOD datasets. As a result,
we expect M𝑒𝑛𝑐 to be less stable than M𝑑𝑒𝑐 and more prone to
catastrophic forgetting since the language modeling head is not
pre-trained. This comparison provides valuable insights into the
robustness of two different architectures.

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

public long skip(long n){

 n =
public long skip(long n){

 n = Math. ? ?

Math.min(n, left)[min, max, abs, ...]

API call prediction API usage prediction

Fig. 3: Overview of the downstream tasks. In the API call
prediction task, the model outputs a list of top-𝑘 candidates
to predict the API call token (i.e., min). In the API usage
prediction task, the model attempts to predict all the tokens
constituting the API usage (interface name, method name,
parameters and syntactical tokens). Themodels only leverage
left-context tokens to generate a prediction.

Downstream Tasks. We employ two downstream tasks to eval-
uate the ability of our PLMs of code to learn and adapt to new
software data that introduce new, unseen APIs over time. Fig. 3
illustrates both tasks. For API call prediction, the model takes as
input all the tokens of the method preceding the call site of the
API and generates top-𝑘 candidates. For API usage prediction, the
model takes as input the same tokens as for the API call predic-
tion task, but attempts to generate the whole API usage (interface
name, method name, parameters and syntactical tokens), which
constitutes a more challenging task. The rationale for evaluating
the PLMs on these two downstream tasks is to select tasks where
prior knowledge about the APIs seems decisive to effectively per-
form the task. Consequently, the choice for these two tasks is highly
relevant to our continual OOD scenario, and it allows us to directly
measure the impact of OOD APIs on the effectiveness of the PLMs.
In Section 5.2, we discuss the applicability of our methodology to
other code-related tasks.

Evaluation Metrics. We measure the performance of the models
on both downstream tasks with metrics used in prior works. For
API call prediction, we report the Exact Match@k (EM@k), which
gives the percentage of correct predictions when considering lists
of 𝑘 candidates. For API usage prediction, we report BLEU score,
Exact Match (EM), and CodeBLEU [50].

To measure how the models perform in a continual learning en-
vironment, we use two meta-metrics adapted from prior works [10,
32]: the Average (A) and Forgetting (F) metrics. We define the aver-
age 𝐴𝑀 of a metric𝑀 on a test dataset D𝑖

𝑂𝑂𝐷
as:

𝐴𝑀 =
1
𝑇

𝑇∑︁
𝑗=𝑖

𝑀𝑗 (D𝑖
𝑂𝑂𝐷) ,

where 𝑗 refers to the next incremental learning steps after the 𝑖-th
included.𝑀𝑗 denotes an evaluation metric, e.g., EM@k, computed
at time step 𝑗 on the test set and𝑇 denotes the maximum number of
fine-tuning steps, i.e., five in our case. The Averagemetric only gives
information on how accurate the model is but does not provide any
insight into its ability to mitigate catastrophic forgetting. We define

Table 2: API call prediction results in zero-shot usingM𝑑𝑒𝑐 .

Metrics
Dataset EM@1 EM@5 EM@10

D𝐼𝐷_𝑡𝑒𝑠𝑡 72.88 83.30 85.60

D𝑂𝑂𝐷 40.82 (44% ↓) 51.19 (38.5% ↓) 54.17 (36.7% ↓)
D1

𝑂𝑂𝐷
49.91 (31.6% ↓) 62.0 (25.6% ↓) 64.46 (24.6% ↓)

D2
𝑂𝑂𝐷

53.72 (26.3% ↓) 62.59 (24.8% ↓) 64.93 (24.2% ↓)
D3

𝑂𝑂𝐷
23.78 (67.4% ↓) 32.64 (60.8% ↓) 36.33 (57.6% ↓)

D4
𝑂𝑂𝐷

30.72 (57.9% ↓) 43.67 (47.3% ↓) 47.89 (44% ↓)
D5

𝑂𝑂𝐷
37.54 (48.6% ↓) 49.53 (40.6% ↓) 53.22 (47.9% ↓)

the forgetting 𝐹𝑘
𝑀

of a metric 𝑀 on a test dataset D𝑖
𝑂𝑂𝐷

at time
step 𝑘 as:

𝐹𝑘𝑀 = 𝑀𝑖 (D𝑖
𝑂𝑂𝐷) − 𝑀𝑘 (D𝑖

𝑂𝑂𝐷) , 𝑖 < 𝑘 .

This is the difference between the first time the metric is computed,
i.e., after fine-tuning the model on D𝑖

𝑂𝑂𝐷
at time step 𝑖 , and the

metric computed at time step 𝑘 . 𝐹𝑘
𝑀

gives information on the sta-
bility of the model, i.e., its capability to not forget from the past.
Therefore, the lower 𝐹𝑘

𝑀
, the better.

Implementation Details. To pre-train M𝑑𝑒𝑐 and M𝑒𝑛𝑐 , we used
four Tesla V100-SXM2-32GB GPUs. It took about 7 days to pre-
train M𝑑𝑒𝑐 , and 2 days to pre-train M𝑒𝑛𝑐 . For fine-tuning and
inference, we used a single Tesla V100-SXM2-32GB GPU. We used
Huggingface’s libraries [67] to implement the models and store
the datasets. To implement the continual learning approaches, we
used Avalanche [39]. We provide all the implementation details of
our experiments and release our data publicly in our replication
package (see Data Availability section).

4 EXPERIMENTAL RESULTS
4.1 How Does M𝑑𝑒𝑐 Generalize to ID and OOD

Data in Zero-Shot?
In this experiment, we evaluate the performance of the modelM𝑑𝑒𝑐

on the ID and OOD test data in a zero-shot setting for both down-
stream tasks. We do not experiment withM𝑒𝑛𝑐 as the model is not
capable of generating code before fine-tuning and, therefore, can-
not operate in a zero-shot setting. The purpose of this experiment
is twofold. First, it aims to validate the experimental setup of our
study. If we observe significant differences in the evaluation metrics
obtained on the ID and OOD datasets, it would suggest that our
OOD scenario is well-formed and reasonable. Secondly, significant
gaps between the ID and OOD test data imply that PLMs such as
M𝑑𝑒𝑐 still require the use of robust transfer learning or continual
learning techniques to generalize to new data without forgetting
about past data.

APICall Prediction. Table 2 reports the EM@1, EM@5 and EM@10
on the ID and OOD test datasets. The results show that the model
performs well on ID data, reaching almost 73% in EM@1. However,
when tested on OOD data, the performance drops significantly.
The decline in performance is less severe when considering more

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

Table 3: API usage prediction results in zero-shot usingM𝑑𝑒𝑐 .

Metrics
Dataset BLEU EM CodeBLEU

D𝐼𝐷_𝑡𝑒𝑠𝑡 21.19 51.54 29.94

D𝑂𝑂𝐷 8.57 (59.56% ↓) 33.74 (34.54% ↓) 20.03 (33.10% ↓)
D1

𝑂𝑂𝐷
5.94 (71.97% ↓) 34.29 (33.47% ↓) 15.71 (47.53% ↓)

D2
𝑂𝑂𝐷

11.81 (44.27% ↓) 40.46 (21.50% ↓) 25.64 (14.36% ↓)
D3

𝑂𝑂𝐷
7.26 (65.74% ↓) 28.01 (45.65% ↓) 16.49 (44,92% ↓)

D4
𝑂𝑂𝐷

15.55 (26.62% ↓) 29.39 (42.98% ↓) 19.72 (34.13% ↓)
D5

𝑂𝑂𝐷
5.11 (75.88% ↓) 30.71 (40.42% ↓) 25.81 (13.79% ↓)

API call candidates, but it remains a significant issue. Furthermore,
variations in the performance decline are observed across different
OOD datasets. For example, the model performs better on the Se-
curity domain (D2

𝑂𝑂𝐷
) than domains such as Android (D3

𝑂𝑂𝐷
) or

Web (D4
𝑂𝑂𝐷

), which likely contain more domain-specific API calls.

API Usage Prediction. Table 3 reports the BLEU score, EM and
CodeBLEU score on both ID and OOD test datasets. The results
indicate that themodel performs poorly onOOD data in comparison
to ID data, with significant decreases in all evaluation metrics.
Additionally, we notice that the EM and CodeBLEU metrics vary
similarly to the EM@k metrics on the API call prediction task.
The Android and Web domains experience the most severe drops,
whereas the Security domain experiences the least severe drop.

Our results demonstrate that the model M𝑑𝑒𝑐 (without fine-
tuning) is unable to generalize to OOD data while showing
strong performance on ID data. Our findings also support the
validity of our OOD dataset as a realistic and meaningful test
of the model’s ability to adapt to new data in a continuous
environment.

4.2 Do Models Forget About Past Data Using
Classical Transfer Learning?

In this section, we evaluate how classical transfer learning, i.e., us-
ing fine-tuning as in prior work, performs in the continual learning
scenario. We fine-tune the models M𝑑𝑒𝑐 and M𝑒𝑛𝑐 sequentially
on the stream of OOD datasets D1

𝑂𝑂𝐷
, ...,D5

𝑂𝑂𝐷
. We refer to this

approach as "naive fine-tuning", a common term used in the con-
tinual learning literature to refer to classical transfer learning, as
it does not utilize mechanisms to address catastrophic forgetting.
We report the results in terms of EM@1 for API call prediction
and EM for API usage prediction. Fig. 4 illustrates the evolution of
the EM@1 and EM metrics on the OOD test sets throughout the
fine-tuning steps for both models. Each column of a heatmap refers
to the evolution of the performance of the model on a particular test
set, and each row refers to a new incremental fine-tuning step. Note
that we do not compute the metric on a test set whose correspond-
ing training set has not been seen yet by the model. To quantify
catastrophic forgetting, we report the Forgetting (𝐹) metrics of the
EM@1 and EM metrics in Table 4. We do not report all the values

Table 4: Forgettingmetrics for the naive fine-tuning baseline.

Model Dataset 𝐹 5
EM@1 𝐹 5

EM

M𝑑𝑒𝑐

General (Δ𝑡 = 4) 5.64 13.00
Security (Δ𝑡 = 3) 6.71 13.55
Android (Δ𝑡 = 2) 6.77 10.68

Web (Δ𝑡 = 1) 1.80 5.09

M𝑒𝑛𝑐

General (Δ𝑡 = 4) 10.99 11.80
Security (Δ𝑡 = 3) 23.38 22.74
Android (Δ𝑡 = 2) 11.15 11.91

Web (Δ𝑡 = 1) 10.99 7.23

for every previously introduced metric as we have a strict page
limit, and report them in our replication package.

Fine-Tuning Details. At each time step 𝑡 , we fine-tune the models’
checkpoints from the previous time step on the dataset D𝑡

𝑂𝑂𝐷
. We

select 10% of the training samples from each OOD dataset as a
validation set. For each fine-tuning, we set the number of training
epochs to 10 and use early stopping by monitoring the evolution of
the validation loss with a patience of two epochs. We keep the best
checkpoints of the models at each fine-tuning step 𝑡 and compute
the task metrics on the previous and current test sets.

Performance ofM𝑑𝑒𝑐 andM𝑒𝑛𝑐 . In Fig. 4, each heatmap depicts
the evolution of a metric on the test sets for a single model on
one task. The diagonal values in the heatmaps indicate the metric
computed on the test set of the current OOD dataset. We observe
substantial catastrophic forgetting for both tasks and models and all
domains and metrics. That is, we observe a decline of the metrics in
all columns, indicating that the model forgets the previous domains
when fine-tuned on a new domain. For example, the EM@1 on
D1

𝑂𝑂𝐷
(General) drops from 57.37% to 51.73% forM𝑑𝑒𝑐 . Another

example, is the EM on D2
𝑂𝑂𝐷

(Security) dropping from 40.79% to
18.05% for the modelM𝑒𝑛𝑐 . A glance at the heatmaps suggests that
the forgetting is more severe for the encoder M𝑒𝑛𝑐 . Overall, as we
increase the number of fine-tuning steps, the forgetting further
intensifies in most cases. In addition, for the decoder, the decline in
the metrics after one fine-tuning step is less significant compared
to the encoder. For example, after one fine-tuning step, the EM@1
on D2

𝑂𝑂𝐷
drops from 60.93% to 57.66% (−3.27%) for the decoder.

Whereas it drops from 58.37% to 32.94% (−25.43%) for the encoder.
This means that more fine-tuning steps are required for the decoder
to forget about past data more severely, whereas, for the encoder,
one fine-tuning step is already enough to show a significant decline
in performance. This observation confirms our intuition expressed
in Section 3.2 thatM𝑒𝑛𝑐 may be less stable thanM𝑑𝑒𝑐 due to the
additional language modeling head randomly initialized.

Forgetting Metrics. In Table 4, we calculate the Forgetting metric
for the 𝐸𝑀@1 and 𝐸𝑀 metrics and for both models. Note that
we calculate the 𝐹 metric at the final time step of the continual
fine-tuning. According to the heatmaps of Fig. 4, the 𝐹 5 metric
of a domain is the difference between the first and last value of
its corresponding column. This difference represents the amount
of forgetting that has occurred on each OOD domain during fine-
tuning. The Δ𝑡 in the table indicates how recently the model was

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

General Security Android Web Guava

Ge
ne

ra
l

Se
cu

rit
y

An
dr

oi
d

W
eb

Gu
av

a

57.37

53.06 60.93

52.47 57.66 36.83

52.81 56.03 31.36 40.96

51.73 54.22 30.06 39.16 50.47
35

40

45

50

55

60

EM
@

1

(a) M𝑑𝑒𝑐 – API call prediction.

General Security Android Web Guava

Ge
ne

ra
l

Se
cu

rit
y

An
dr

oi
d

W
eb

Gu
av

a

48.27

40.61 58.37

34.46 32.94 30.39

33.26 35.66 22.40 35.54

37.28 34.99 19.24 24.55 38.85
20

25

30

35

40

45

50

55

EM
@

1

(b) M𝑒𝑛𝑐 – API call prediction.

General Security Android Web Guava

Ge
ne

ra
l

Se
cu

rit
y

An
dr

oi
d

W
eb

Gu
av

a

45.61

38.69 53.30

36.91 45.49 39.42

32.84 41.30 28.78 43.84

32.61 39.75 28.74 38.75 44.87
30

35

40

45

50

EM

(c) M𝑑𝑒𝑐 – API usage prediction.

General Security Android Web Guava

Ge
ne

ra
l

Se
cu

rit
y

An
dr

oi
d

W
eb

Gu
av

a

31.10

21.83 40.79

17.94 19.98 26.74

16.88 17.55 16.34 29.93

19.30 18.05 14.83 22.70 25.71
15

20

25

30

35

40

EM

(d) M𝑒𝑛𝑐 – API usage prediction.

Fig. 4: Naive fine-tuning approach results.

fine-tuned on a particular domain dataset. We notice that for the
decoder M𝑑𝑒𝑐 , the forgetting is less severe for the EM@1 (used
in the API call prediction) than for the EM (used in the API usage
prediction). The difference can be attributed to the fact that the
API call prediction task is substantially easier than the API usage
prediction task. In general, we observe more severe forgetting for
the encoder, which further confirms our intuition about the lack of
stability ofM𝑒𝑛𝑐 .

Our results and observations illustrate that the problem of for-
getting about past data is a major issue for both studied models
and significantly more severe for the model M𝑒𝑛𝑐 . Even with a
low number of fine-tuning steps, catastrophic forgetting is already
prominent. By considering more fine-tuning steps, we can expect
the problem to exacerbate.

We conclude that classical transfer learning, the most commonly
used fine-tuning method in prior work, is not sufficient and
robust enough to allow the model to adapt to new data while
retaining knowledge of past data.

4.3 How Do Continual Learning Approaches
Compare to Classical Transfer Learning?

To tackle the problem of catastrophic forgetting highlighted in our
previous experiments, we propose to leverage some commonly used
continual learning approaches from the literature. In this experi-
ment, the naive fine-tuning approach is the lower-bound baseline,
as it has no designed mechanism to mitigate catastrophic forgetting.
We begin by introducing an upper-bound approach, referred to as

���������������������������

���������������

��������������� ��������������������

��������������������

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Fig. 5: Comparison of naive and cumulative fine-tuning set-
tings for both models on API call prediction (EM@1).

"cumulative fine-tuning", which involves storing all training sam-
ples from each OOD training set cumulatively. With this approach,
we perform continual fine-tuning using all samples from previous
fine-tuning steps in addition to the current ones. This approach is
usually upper-bound in continual learning settings as by storing all
samples from previous data, the model can optimize its learning to
generalize better to the whole stream of data. However, the cumu-
lative fine-tuning approach is not usable in practice for a couple of
reasons: (1) we may not always have access to all previous data at
any given time, and (2) it requires storing all previous samples and
significantly more computations during fine-tuning. This upper-
bound approach aims to minimize forgetting while achieving the

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

���������������

��������������� ��������������������

��������������������

������������������������

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Fig. 6: Comparison of naive and cumulative fine-tuning set-
tings for both models on API usage prediction (EM).

best overall performance. We compare the cumulative and naive
approaches in Fig. 5 and Fig. 6. Next, we introduce additional CL
methods, including a replay-based method and three regularization-
based methods: EWC [34], SI [71], and RWalk [10]. One advantage
of these three methods over the replay method is that they do not
require storing samples from previous data while fine-tuning. We
report the Average (𝐴) and Forgetting (𝐹) metrics for both tasks
and models on the EM@1 and EM metrics in Table 5 and Table 6.
Note that there is no Forgetting metric for Guava as it is the last
domain the PLMs are fine-tuned on.

Fine-Tuning Details. We use the same fine-tuning procedure as in
the previous experiment. For the replay baseline, we set the buffer
size to 200, i.e., number of sampled stored from past OOD training
sets. We provide all our hyperparameters and further details about
the implementations in our replication package.

Cumulative Fine-Tuning. In Fig. 5, we compare the naive and
cumulative approaches for the API call prediction task (𝐸𝑀@1)
on both decoder and encoder models. Each curve illustrates the
evolution of the EM@1 on a particular OOD test set. The figure
further demonstrates how the naive approach (bottom-left part of
the figure) with the encoder leads to significantly more forgetting
than for the decoder, as previously discussed. At the left of Fig. 5,
we observe that the cumulative fine-tuning approach effectively
eliminates the catastrophic forgetting issue for both models. Specif-
ically, the EM@1 does not decrease over time and even increases
throughout the fine-tuning, indicating improvement during contin-
ual fine-tuning, also known as positive transfer. In Fig. 6, we make
the same observations for the API usage prediction task on the EM
metric.

Continual Learning Approaches. Table 5 reports the Average
and Forgetting metrics of the EM@1 on each OOD test set forM𝑑𝑒𝑐

and M𝑒𝑛𝑐 , with the naive fine-tuning approach as baseline. Sim-
ilarly to Section 4.2, we compute the 𝐹 metric at the end of the
continual fine-tuning. Firstly, we observe that for both models, the
cumulative fine-tuning approach is the best option to mitigate cat-
astrophic forgetting and generally leads to the best 𝐴𝐸𝑀@1. With
the cumulative approach, the 𝐹 5

𝐸𝑀@1 metric is always negative,

which indicates a positive transfer (an increase in the EM@1). For
instance, we get −8.02 in 𝐹 5

𝐸𝑀@1 for M𝑑𝑒𝑐 in the Security domain,
i.e., an increase of +8.02 in the metric through fine-tuning. How-
ever, we observe large gaps between the𝐴𝐸𝑀@1 obtained using the
cumulative approach and the naive approach on the Guava dataset
(last fine-tuning step). We hypothesize that with an ever-increasing
replay buffer, the models can no longer learn from new data and
thus lose their ability to adapt with time. In addition to being com-
putationally intensive, the cumulative fine-tuning approach is not
scalable and robust, as previously mentioned. Overall, all other CL
approaches, except EWC, greatly reduce forgetting and show a su-
perior average EM@1 compared to the naive approach. The Replay
approach generally produces the best or second best 𝐴𝐸𝑀@1. With-
out the cumulative approach, RWalk is the best method to mitigate
forgetting for M𝑑𝑒𝑐 , whereas SI is better for M𝑒𝑛𝑐 . In Table 6, we
report the results for the API usage prediction task. We observe
similar trends, except that the Replay approach is less effective
for both models. However, RWalk and SI are the best methods for
M𝑑𝑒𝑐 andM𝑒𝑛𝑐 , respectively.

In this final experiment, we demonstrate that continual learning
methods, including two replay-based methods (Replay and Cu-
mulative) and two regularization-based methods (SI and RWalk)
effectively reduces catastrophic forgetting while achieving simi-
lar or superior effectiveness compared to classical transfer learn-
ing on both tasks.

5 DISCUSSION
In this section, we address some threats to the validity of our study.
We then discuss the broader impact of our study and various op-
portunities for future work.

5.1 Threats to Validity
Threats to External Validity. We identified a main threat re-
garding the monolingual aspect of our dataset. Our OOD scenario
requires extracting API usage sequences from the source code.
Therefore, integrating more programming languages demands sub-
stantial additional effort, which we deliberately leave for future
work. In addition, the construction of our dataset does not include
any programming language-specific design and avoids any data
leakage between the ID and OOD data. Consequently, it is highly
likely that our results are not affected by the programming language
of the data.

Another threat related to the data is the choice of the OOD do-
mains and APIs. To mitigate this threat, we selected five domains
covering different types of programs. Specifically, we selected 10
random interfaces per domain. Our results show that catastrophic
forgetting is observed consistently for all domains, and the selec-
tion of different interfaces would result in different intensities in
forgetting. We leave the study of this qualitative aspect for future
work.

The choice of the downstream tasks presents another external
threat to validity of our study. We employed two generation tasks,
API call and API usage prediction. We focus on APIs-related tasks
because APIs are an important part of the distribution of code
tokens in programs and give lots of information about the semantics

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 5: Continual learning approaches results for API call prediction using the EM@1 metric.

General Security Android Web Guava
Model Method 𝐴EM@1 ↑ 𝐹 5EM@1 ↓ 𝐴EM@1 𝐹 5EM@1 𝐴EM@1 𝐹 5EM@1 𝐴EM@1 𝐹 5EM@1 𝐴EM@1 𝐹 5EM@1

M𝑑𝑒𝑐

Naive 53.49 5.64 57.21 6.71 32.75 6.77 40.06 1.80 50.47 –
EWC [34] 53.22 7.02 57.16 7.49 33.73 5.72 40.14 3.77 49.59 –
SI [71] 54.65 3.57 59.24 3.45 34.04 2.39 38.93 1.36 48.16 –
RWalk [10] 54.38 2.39 57.39 2.80 31.64 1.97 38.19 1.65 45.28 –
Replay 55.66 4.41 58.87 2.98 34.66 2.01 41.12 2.41 49.72 –
Cumulative 55.63 -0.51 58.44 -8.02 35.74 -0.73 32.99 -3.01 42.79 –

M𝑒𝑛𝑐

Naive 38.78 10.99 40.49 23.38 24.01 11.15 30.05 10.99 38.85 –
EWC [34] 39.38 9.84 44.10 22.15 23.93 10.58 29.22 7.53 40.66 –
SI [71] 44.29 5.94 50.05 8.10 21.39 4.02 27.79 2.56 35.67 –
RWalk [10] 43.42 6.07 48.05 14.74 22.23 7.10 29.75 4.37 36.10 –
Replay 45.15 5.48 51.56 10.56 24.31 8.27 32.53 3.92 40.22 –
Cumulative 48.06 -0.92 56.40 -3.15 29.59 -3.62 27.79 -1.65 33.10 –

Table 6: Continual learning approaches results for API usage prediction using the EM metric.

General Security Android Web Guava
Model Method 𝐴𝐸𝑀 ↑ 𝐹 5

𝐸𝑀
↓ 𝐴𝐸𝑀 𝐹 5

𝐸𝑀
𝐴𝐸𝑀 𝐹 5

𝐸𝑀
𝐴𝐸𝑀 𝐹 5

𝐸𝑀
𝐴𝐸𝑀 𝐹 5

𝐸𝑀

M𝑑𝑒𝑐

Naive 37.32 13.00 44.96 13.55 32.31 10.68 41.30 5.09 44.87 –
EWC [34] 36.88 12.95 44.84 13.08 33.92 9.46 39.00 6.73 45.71 –
SI [71] 40.36 8.26 49.58 6.89 30.01 3.24 36.95 1.65 43.14 –
RWalk [10] 40.43 6.23 47.11 4.04 33.34 2.63 36.54 2.13 41.22 –
Replay 39.49 11.11 46.88 8.21 33.39 7.63 39.49 6.08 43.65 –
Cumulative 43.29 2.02 47.26 -13.33 36.09 -2.28 27.92 -4.59 31.35 –

M𝑒𝑛𝑐

Naive 21.41 11.80 24.09 22.74 19.30 11.91 26.32 7.23 25.71 –
EWC [34] 21.32 11.53 26.36 21.02 19.43 11.96 25.74 8.38 28.74 –
SI [71] 27.22 5.03 30.85 8.23 18.57 2.20 23.03 1.65 21.26 –
RWalk [10] 25.21 8.80 29.25 12.23 19.10 7.62 25.00 4.28 24.23 –
Replay 23.48 13.54 29.94 13.96 18.09 11.88 24.51 5.92 26.48 –
Cumulative 30.50 3.05 35.89 -6.88 24.81 -4.88 21.88 -1.97 18.43 –

of programs. We observe significant catastrophic forgetting in these
two API-related tasks and hypothesize that catastrophic forgetting
could appear in other SE tasks because of the importance of APIs in
code. For instance, previous work found that APIs play important
roles in writing the summarization of code [31], detecting code
clones [44], retrieving code given a query [42], etc. We leave the
investigation of the OOD phenomenon in other tasks as future
work.

We identified an external threat to validity related to the limited
number of fine-tuning steps in our continual fine-tuning settings. In
practice, a PLM deployed to a real production environment would
potentially face a larger number of fine-tuning steps throughout its
lifetime. In this paper, we showed that both PLMs suffer from severe
catastrophic forgetting, although we only consider five fine-tuning
steps. We also demonstrated that more steps generally result in
more forgetting about past data.

Finally, the selection of the size of the PLMs, in terms of the
number of trainable parameters, constitutes a potential threat to
the validity of our study. While increasing the number of parame-
ters may still result in OOD generalization issues due to the design
of our datasets, it is uncertain whether catastrophic forgetting
would occur with the same magnitude for larger models. Our ex-
periments were performed under limited computational resources,
which required us to consider architectures with a limited number

of parameters. To mitigate this threat, we maximized the size of the
models considering our limited resources. We pre-train PLMs with
110M and 125M parameters which are within the range of PLMs
such as CodeBERT [19], CodeT5 [62] or CodeGPT [41].

Threats to Internal Validity. The hyperparameter choices for our
CL approaches constitute the main threat to internal validity. We
selected our hyperparameters based on values used in prior works
about continual learning [10, 32, 34, 71]. These hyperparameters
can be optimized for our scenario by using search methods, which
tend to have a high computational cost. However, this aspect is
not critical to the study as we have already shown the advantages
of incorporating continual learning techniques with reasonable
hyperparameter values.

Threats to Construct Validity. We identified one threat to con-
struct validity related to the choice of our evaluation metrics. We
mitigate this threat by selecting metrics widely used in prior works
to evaluate code generation tasks [50, 68]. Additionally, we adapted
continual learning metrics from prior works [10, 32] to evaluate
our continual fine-tuning scenario.

5.2 Broader Impact and Opportunities
Our study sheds light on the performance of PLMs of code in a
continual learning setting for out-of-distribution generalization.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

We believe that this initial exploration of continual learning for
code (CL4Code) will inspire further investigation in this important
area. Our findings highlight two potential areas for future research:
improving dataset and benchmark creation, and expanding the
application of CL4Code to a wider range of use cases.

Datasets and Benchmarks. Our findings in Section 4.1 highlight
a substantial disparity in the performance of a PLM between ID and
OOD data. Our results, along with a previous work [72], indicate
that evaluating PLMs on ID data often leads to inflated metrics and
results in overly optimistic conclusions in terms of the performance.
Therefore, it is crucial to develop OOD datasets for code in order to
evaluate the real-world generalizability of PLMs, as previously em-
phasized [69, 72]. Moreover, aligning dataset designs with continual
learning scenarios offers the potential to evaluate the PLM’s ability
to adapt to changing environments, which is crucial for practical
deployment.

Improving benchmarks for PLMs of code is another promising
direction for future research. Benchmarks such as CodeXGlue [41]
play a crucial role by providing standardized evaluations of models
of code and enabling reproducible experimental results. However,
as such researches progress at a rapid pace, widely used benchmarks
often become outdated quickly. In particular, Kiela et al. [33] showed
that benchmarks such as GLUE [60] in NLP saturate, meaning the
milestones set by the benchmark are reached. Thus, continued
efforts to enhance benchmarks in deep learning for code are vital
in establishing concrete goals and driving research to enhance
the performance of the models being evaluated. Recently, Yang et
al. [69] proposed GLUE-X, a comprehensive benchmark consisting
of 13 datasets to test PLMs on OOD data across eight NLP tasks.
The benchmark includes OOD datasets that are distinct from those
in the original GLUE benchmark. Developing OOD benchmarks
for code similar to GLUE-X [69] would greatly contribute to the
growth of research on OOD generalization for PLMs of code. One
potential approach is to compile a new set of OOD datasets that
are not included in the existing CodeXGlue benchmark, and use
them to test PLMs of code. Furthermore, exploring the design of
OOD scenarios specific to software changes, as demonstrated in the
present study, can provide a valuable foundation for future code
benchmark initiatives. Our dataset and methodology for extracting
OOD samples for API evolution scenarios can serve as a starting
point for these endeavors.

Continual Learning for Code. Our findings in Section 4.2 high-
light the challenge of catastrophic forgetting that PLMs of code
encounter in a continual fine-tuning scenario with OOD data. Our
study serves as a starting point for exploring the adaptability of
PLMs of code in a variety of continual learning scenarios. For in-
stance, these scenarios can be based on domain adaptation, where
PLMs must adapt to new kinds of data such as new, unseen pro-
gramming languages or code repositories as discussed in prior
studies [25, 30, 35]. Additionally, incorporating continual learning
into a multi-task learning framework is highly relevant to software
engineering, given the multitude of downstream tasks involved.

In Section 4.3, our results demonstrate the effectiveness of con-
tinual learning methods in mitigating catastrophic forgetting in
PLMs of code. We chose to explore these widely used methods as
a first step in the research on continual learning for code. In the

future, more sophisticated techniques from NLP, as discussed in
Section 6.2, can be evaluated. Furthermore, the creation of contin-
ual learning methods specifically tailored to source code has the
potential to further reduce catastrophic forgetting in PLMs of code.

Finally, we did not focus our study on large language models
(LLMs) as it would require a tremendous amount of available com-
putational resources to pre-train an LLM from scratch under our
OOD scenario. Nonetheless, we foresee that continuously adapt-
ing LLMs to new emerging datasets and benchmarks constitutes
an exciting avenue for future work. In this context, and as fully
fine-tuning LLMs is computationally costly, we believe that combin-
ing continual learning with parameter-efficient fine-tuning (PEFT)
techniques might be beneficial to further enhance the capabilities
of LLMs. These PEFT techniques have already shown promising
results in LLMs for code intelligence [12, 61, 64].

6 RELATEDWORK
6.1 Out-Of-Distribution Generalization
Natural Language Processing. Recent studies have revealed that
PLMs are susceptible to generating inaccurate predictions when
encountering OOD data [27, 54]. In NLP, this issue can manifest
itself in situations where the domain of the test data differs from the
pre-training data [23]. One approach to addressing this problem is
to fine-tune PLMs on domain-specific datasets using efficient trans-
fer learning techniques. For example, [29, 51] demonstrated that
such approaches help PLMs in learning domain-specific knowledge
and improve their generalization to unseen domains. Additionally,
new datasets and benchmarks allow for further research on PLM
domain adaptation. For instance, Williams et al. [66] introduced
the MultiNLI dataset, containing text data from a variety of do-
mains for PLM domain adaptation. Conneau et al. [14] proposed
a cross-lingual NLI dataset for evaluating the cross-lingual trans-
ferability of PLMs. Recently, Yang et al. [69] introduced GLUE-X, a
benchmark for evaluating PLMs’ ability to generalize to OOD data.

Deep Learning for Code. The study of OOD generalization of
PLMs of code is an emerging research area. Assessing their gen-
eralizability and designing efficient techniques to improve their
robustness to OOD scenarios is essential for the practical usability
of PLMs of code [72]. Previous work in this field has focused on
designing OOD datasets that simulate specific distribution shifts
of program data. Koh et al. [35] presented PY150-Wilds, a Python
dataset in which the test data consists of code repositories not ap-
pearing in the training data. The authors demonstrated performance
gaps between the model on ID and OOD data. However, it is impor-
tant to note that while the design choice is sound, it may not reflect
strong OOD phenomena as the distribution of code tokens across
different repositories may still be highly similar. More recently, Hu
et al. [30] proposed a benchmark to evaluate the performance of
code models under different distribution shift scenarios, including
programmer, time, or token distribution shifts. In their study, the
authors found that PLMs such as CodeBERT were robust against
distribution shifts. However, they demonstrated that on a simple
classification task with small datasets. In addition, the authors did
not control the pre-training data of the studied PLMs, which can
result in important data leakage between the pre-training and OOD

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

test data. This problem of data leakage is critical as some of the test
data may have been seen by the model during pre-training. Overall,
this is a prime threat to the validity of the OOD scenario that may
lead to obtaining inflated metrics on the OOD test data. Finally,
Hajipour et al. [25] analyzed the performance of PLMs of code on a
syntax-based, semantic-based and complexity-based OOD scenario
and highlighted that the models exhibit poor generalizability when
faced with OOD samples. However, it is important to point out
that the OOD scenarios used in this study may be too artificial.
For instance, in the syntax-based scenario, some language-specific
tokens are masked at training to study how the model generalizes
to unseen language tokens. Such a scenario is unrealistic as it does
not reflect the nature of OOD data that a PLM of code is likely
to encounter in the real world. Additionally, there is no practical
motivation for masking specific tokens while training the model.

In this study, we propose an OOD dataset that accurately repre-
sents the dynamic nature of software codebases in the real world.
Specifically, we focus on the scenario where a PLM must adapt
to new, unseen APIs over time, a well-established problem in the
literature [46, 48]. To ensure the validity of our experiments, we
thoroughly control our PLM setup to prevent any data leakage
between the pre-training, fine-tuning, and test data. This allows us
to create an OOD generalization scenario that is as close to reality
as possible, an aspect that has been overlooked in previous works.

6.2 Continual Learning for Pre-trained
Language Models

Continual learning has been studied to adapt pre-trained language
models based on the Transformer architecture [57] to new domains
or tasks in NLP. For example, Cao et al. [9] proposed a method to
continually learn from new classes of events in textual data to de-
tect them without degradation of the accuracy over time. Douillard
et al. [17] introduced DyTox, a method that utilizes an encoder-
decoder transformer for multiple tasks by expanding the network
with task-specific special tokens, allowing for continual learning of
new tasks with a low computational and memory footprint. Ermis
et al. [18] proposed a memory-efficient approach for transformers
to continually learn new tasks by sharing information across tasks
and expanding the network with task-specific modules. Similarly,
Vladymyrov et al. [58] proposed the HyperTransformer architec-
ture to continually learn new tasks by generating task-specific
convolutional neural network weights in a few-shot learning set-
ting and updating the task-specific weights to avoid catastrophic
forgetting. Lastly, Jie et al. [32] leverage continual learning to avoid
representational shifts in PLMs by proposing a new hierarchical
fine-tuning method that prevents excessive changes in the repre-
sentation spaces of the neural network in a continual fine-tuning
setting.

Recent advances in NLP highlight the crucial need for PLMs to
adapt to changing environments and maintain their performance
on new data and tasks. In the field of software engineering, the
application of continual learning to PLMs of code is essential for
developing methods that enable the model to robustly adapt to new
codebases and tasks over time. To the best of our knowledge, only a
couple of prior studies utilized continual learning in the context of

code intelligence. Baudry et al. [5] demonstrate the benefits of lever-
aging continual learning to fix bugs when considering a continuous
stream of code change with continuous integration development
platforms. The scope of our study differ from this prior work in
many aspects. First, contrary to this prior work, our study focuses
on PLM architectures which broadens the potential applicability
of our approach to a broader range of tasks. Secondly, we compare
numerous continual learning techniques in our OOD scenario with
PLMs, whereas this previous work only consider a continual learn-
ing scenario without leveraging continual learning techniques such
as replay buffer or EWC. More recently, Gao et al. [21] made similar
findings than ours by showing that PLMs suffer from catastrophic
forgetting in continual learning scenarios and that replay-based
approaches allow to effectively mitigate forgetting. We believe that
these prior works and our study break new ground by introducing
the first approaches on the utilization of continual learning for
PLMs of code.

7 CONCLUSION AND FUTUREWORK
Our study exposes the limitations of pre-trained language models of
code in handling out-of-distribution data in a continual fine-tuning
scenario. Our results reveal that OOD data significantly decreases
the PLMs’ effectiveness in two API-related downstream tasks com-
pared to ID data. Our findings indicate that classical transfer learn-
ing fails to adapt the PLMs to new, unseen APIs in this evolution
scenario. Additionally, we observe instances of catastrophic for-
getting, prompting us to explore methods that address this issue.
In our final experiments, we demonstrate that replay-based and
regularization-based continual learning techniques can effectively
mitigate catastrophic forgetting while retaining or enhancing the
performance of the PLMs in both downstream tasks. In future work,
we intend to explore more OOD scenarios to further evaluate the
generalizability of PLMs of code and develop relevant OOD gener-
alization benchmarks for code. Additionally, we plan to implement
more advanced continual learning methods tailored to source code
to enhance the adaptability of PLMs of code. Finally, we aim to
investigate OOD detection methods to automatically identify OOD
data in PLMs, thereby improving their performance.

DATA AVAILABILITY
We publicly release all the code, data and models to reproduce
the experiments of our study. The following repository contains
instructions on how to acquire the data and pre-train, fine-tune
and test the PLMs: https://github.com/martin-wey/cl-code-apis

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.
In Proceedings of the European conference on computer vision (ECCV). 139–154.

[3] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine
Learning Models of Code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Athens, Greece) (Onward! 2019). Association for Computing Machinery,
New York, NY, USA, 143–153. https://doi.org/10.1145/3359591.3359735

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Weyssow, et al.

[4] Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021. Learning Autocompletion
from Real-World Datasets. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). 131–139. https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00022

[5] Benoit Baudry, Zimin Chen, Khashayar Etemadi, Han Fu, Davide Ginelli, Steve
Kommrusch, Matias Martinez, Martin Monperrus, Javier Ron, He Ye, and Zhongx-
ing Yu. 2021. A Software-Repair Robot Based on Continual Learning. IEEE
Software 38, 4 (2021), 28–35. https://doi.org/10.1109/MS.2021.3070743

[6] Chaitanya Baweja, Ben Glocker, and Konstantinos Kamnitsas. 2018. Towards
continual learning in medical imaging. arXiv preprint arXiv:1811.02496 (2018).

[7] Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. 2020. Con-
tinual Lifelong Learning in Natural Language Processing: A Survey. In Proceedings
of the 28th International Conference on Computational Linguistics. International
Committee on Computational Linguistics, Barcelona, Spain (Online), 6523–6541.
https://doi.org/10.18653/v1/2020.coling-main.574

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. 2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang. 2020. Incremental Event
Detection via Knowledge Consolidation Networks. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Asso-
ciation for Computational Linguistics, Online, 707–717. https://doi.org/10.18653/
v1/2020.emnlp-main.52

[10] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Riemannian walk for incremental learning: Understanding forgetting
and intransigence. In Proceedings of the European Conference on Computer Vision
(ECCV). 532–547.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[12] YunSeok Choi and Jee-Hyong Lee. 2023. CodePrompt: Task-Agnostic Prefix
Tuning for Program and Language Generation. In Findings of the Association for
Computational Linguistics: ACL 2023. 5282–5297.

[13] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk, Mas-
similiano Di Penta, and Gabriele Bavota. 2021. An Empirical Study on the
Usage of BERT Models for Code Completion. In 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR). 108–119. https:
//doi.org/10.1109/MSR52588.2021.00024

[14] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R
Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. arXiv preprint arXiv:1809.05053 (2018).

[15] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2019. Continual learning:
A comparative study on how to defy forgetting in classification tasks. arXiv
preprint arXiv:1909.08383 2, 6 (2019), 2.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Arthur Douillard, Alexandre Ramé, Guillaume Couairon, andMatthieu Cord. 2022.
Dytox: Transformers for continual learning with dynamic token expansion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
9285–9295.

[18] Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric
Archambeau. 2022. Memory Efficient Continual Learning with Transformers.
In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 10629–10642. https://proceedings.neurips.cc/paper_files/paper/2022/file/
4522de4178bddb36b49aa26efad537cf-Paper-Conference.pdf

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[20] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[21] ShuzhengGao, Hongyu Zhang, CuiyunGao, and ChaozhengWang. 2023. Keeping
Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence
Models. arXiv preprint arXiv:2302.03482 (2023).

[22] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Computational Linguistics, Dublin,

Ireland, 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499
[23] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, and Noah A. Smith. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 8342–8360. https://doi.org/10.18653/v1/2020.acl-main.740

[24] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. 2020. Em-
bracing change: Continual learning in deep neural networks. Trends in cognitive
sciences 24, 12 (2020), 1028–1040. https://doi.org/10.1016/j.tics.2020.09.004

[25] Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario Fritz. 2022.
SimSCOOD: Systematic Analysis of Out-of-Distribution Behavior of Source Code
Models. arXiv preprint arXiv:2210.04802 (2022).

[26] Vincent J. Hellendoorn, Sebastian Proksch, Harald C. Gall, and Alberto Bacchelli.
2019. When Code Completion Fails: A Case Study on Real-World Completions.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
960–970. https://doi.org/10.1109/ICSE.2019.00101

[27] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan,
and Dawn Song. 2020. Pretrained Transformers Improve Out-of-Distribution
Robustness. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Online,
2744–2751. https://doi.org/10.18653/v1/2020.acl-main.244

[28] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 518–529.
https://doi.org/10.1145/3377811.3380361

[29] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Melbourne, Australia, 328–339. https://doi.org/
10.18653/v1/P18-1031

[30] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, and
Yves Le Traon. 2022. CodeS: A Distribution Shift Benchmark Dataset for Source
Code Learning. arXiv preprint arXiv:2206.05480 (2022).

[31] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (Stockholm, Sweden) (IJCAI’18).
AAAI Press, 2269–2275.

[32] S. Jie, Z. Deng, and Z. Li. 2022. Alleviating Representational Shift for Contin-
ual Fine-tuning. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE Computer Society, Los Alamitos, CA, USA,
3809–3818. https://doi.org/10.1109/CVPRW56347.2022.00426

[33] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengx-
uan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia,
et al. 2021. Dynabench: Rethinking benchmarking in NLP. arXiv preprint
arXiv:2104.14337 (2021).

[34] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526. https://doi.org/10.1073/pnas.1611835114

[35] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning. PMLR, 5637–5664.

[36] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE trans-
actions on pattern analysis and machine intelligence 40, 12 (2017), 2935–2947.
https://doi.org/10.1109/TPAMI.2017.2773081

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[38] Vincenzo Lomonaco and Davide Maltoni. 2017. CORe50: a New Dataset and
Benchmark for Continuous Object Recognition. In Proceedings of the 1st Annual
Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 78),
Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (Eds.). PMLR, 17–26. https:
//proceedings.mlr.press/v78/lomonaco17a.html

[39] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele
Graffieti, Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido
van de Ven, Martin Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Be-
louadah, Simone Calderara, German I. Parisi, Fabio Cuzzolin, Andreas Tolias,
Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher
Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni.
2021. Avalanche: an End-to-End Library for Continual Learning. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (2nd Continual
Learning in Computer Vision Workshop).

[40] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.
Learning under concept drift: A review. IEEE Transactions on Knowledge and

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models ... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Data Engineering 31, 12 (2018), 2346–2363.
[41] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-

sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[42] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. CodeHow: Effective Code Search Based on API Understanding
and Extended Boolean Model (E). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 260–270. https://doi.org/10.1109/ASE.
2015.42

[43] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem. Psychology of Learning
and Motivation, Vol. 24. Academic Press, 109–165. https://doi.org/10.1016/S0079-
7421(08)60536-8

[44] Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and
Kevin A. Schneider. 2019. CLCDSA: Cross Language Code Clone Detection
using Syntactical Features and API Documentation. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1026–1037.
https://doi.org/10.1109/ASE.2019.00099

[45] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-Based Mining of Multiple Object Usage Patterns. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(Amsterdam, The Netherlands) (ESEC/FSE ’09). Association for Computing Ma-
chinery, New York, NY, USA, 383–392. https://doi.org/10.1145/1595696.1595767

[46] Marius Nita and David Notkin. 2010. Using twinning to adapt programs to
alternative APIs. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, Vol. 1. IEEE, 205–214.

[47] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019), 54–71. https://doi.org/10.1016/j.neunet.2019.01.012

[48] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. 2016. Evaluating
the evaluations of code recommender systems: a reality check. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 111–121.

[49] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[50] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297 (2020).

[51] Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf.
2019. Transfer Learning in Natural Language Processing. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Tutorials. Association for Computational Linguistics, Minneapolis,
Minnesota, 15–18. https://doi.org/10.18653/v1/N19-5004

[52] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[53] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and
Peng Cui. 2021. Towards out-of-distribution generalization: A survey. arXiv
preprint arXiv:2108.13624 (2021).

[54] Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, and Amartya Sanyal. 2022.
How robust are pre-trained models to distribution shift?. In ICML 2022: Workshop
on Spurious Correlations, Invariance and Stability. https://openreview.net/forum?
id=zKDcZBVVEWm

[55] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and
Yihong Gong. 2020. Few-shot class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12183–12192.

[56] Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh, and Philipp
Koehn. 2019. Overcoming Catastrophic Forgetting During Domain Adapta-
tion of Neural Machine Translation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Association

for Computational Linguistics, Minneapolis, Minnesota, 2062–2068. https:
//doi.org/10.18653/v1/N19-1209

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[58] Max Vladymyrov, Andrey Zhmoginov, and Mark Sandler. 2023. Continual Few-
Shot Learning Using HyperTransformers. arXiv preprint arXiv:2301.04584 (2023).

[59] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. 2013. Reg-
ularization of Neural Networks Using Dropconnect. In Proceedings of the 30th
International Conference on International Conference onMachine Learning - Volume
28 (Atlanta, GA, USA) (ICML’13). JMLR.org, III–1058–III–1066.

[60] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[61] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 382–394.

[62] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[63] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. 2022. A systematic literature review on the use of deep learning in
software engineering research. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31, 2 (2022), 1–58. https://doi.org/10.1145/3485275

[64] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 2023.
Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with
Large Language Models. arXiv:2308.10462 [cs.SE]

[65] Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence of concept
drift and hidden contexts. Machine learning 23, 1 (1996), 69–101. https://doi.org/
10.1023/A:1018046501280

[66] Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426 (2017).

[67] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[68] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[69] Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu,
Jindong Wang, Xing Xie, and Yue Zhang. 2022. GLUE-X: Evaluating Natural
Language Understanding Models from an Out-of-distribution Generalization
Perspective. arXiv preprint arXiv:2211.08073 (2022).

[70] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program
understanding and generation. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 39–51. https://doi.org/10.
1145/3533767.3534390

[71] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning
through synaptic intelligence. In International Conference on Machine Learning.
PMLR, 3987–3995.

[72] Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing generalizability of
CodeBERT. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 425–436.

Received 2023-02-02; accepted 2023-07-27

	On the usage of continual learning for out-of-distribution generalization in pre-trained language models of code
	Citation

	tmp.1706173142.pdf.4cPCP

