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ABSTRACT
Recent studies have proposed the use of Text-To-Speech (TTS)
systems to automatically synthesise speech test cases on a scale
and uncover a large number of failures in ASR systems. However,
the failures uncovered by synthetic test cases may not reflect the
actual performance of an ASR system when it transcribes human
audio, which we refer to as false alarms. Given a failed test case
synthesised from TTS systems, which consists of TTS-generated
audio and the corresponding ground truth text, we feed the human
audio stating the same text to an ASR system. If human audio can
be correctly transcribed, an instance of a false alarm is detected.

‡Zhou Yang is the corresponding author.
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In this study, we investigate false alarm occurrences in five popu-
lar ASR systems using synthetic audio generated from four TTS sys-
tems and human audio obtained from two commonly used datasets.
Our results show that the least number of false alarms is identified
when testing Deepspeech, and the number of false alarms is the
highest when testingWav2vec2. On average, false alarm rates range
from 21% to 34% in all five ASR systems. Among the TTS systems
used, Google TTS produces the least number of false alarms (17%),
and Espeak TTS produces the highest number of false alarms (32%)
among the four TTS systems. Additionally, we build a false alarm
estimator that flags potential false alarms, which achieves promis-
ing results: a precision of 98.3%, a recall of 96.4%, an accuracy of
98.5%, and an F1 score of 97.3%. Our study provides insight into
the appropriate selection of TTS systems to generate high-quality
speech to test ASR systems. Additionally, a false alarm estimator
can be a way to minimise the impact of false alarms and help de-
velopers choose suitable test inputs when evaluating ASR systems.
The source code used in this paper is publicly available on GitHub
at https://github.com/julianyonghao/FAinASRtest.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Automatic Speech Recognition (ASR) allows users to interact with
devices using their voices. ASR systems are prevalent in our daily
lives [51]. Popular applications of ASR systems include mobile
virtual assistants such as Siri1 and Alexa.2 As ASR systems become
increasingly popular, it is crucial to ensure that ASR systems are
capable of correctly recognising speech. To test an ASR system, an
audio input and its corresponding transcription are required, which
we call a speech test case. Collecting speech test cases manually,
where recording and transcribing audio inputs are largely human-
based, is rather laborious and costly. As a result, it is critical to
automate the process of generating speech test cases on a scale [24].

Recent studies propose automated testing methods for ASR sys-
tems by using Text-To-Speech (TTS) systems, such as CrossASR [3].
TTS is a technology that accepts text as input and produces audio as
output [31]. Advances in deep neural networks have made TTS sys-
tems more powerful, accessible, and inexpensive to use. CrossASR
uses TTS systems to automatically generate test cases for ASR sys-
tems. Instead of manually recording and transcribing audio, a text
(ground truth) is fed into the TTS to produce TTS-generated audio,
which in return is used to test the ASR system. Without the need
to manually record and transcribe audio, ASR system developers
can quickly scale up and automate the testing process by feeding a
large text corpus into the TTS to produce test cases.

However, ASR systems aremainly trained and tested to recognise
human audio in practical environments. One question of using TTS-
generated audio to test ASR systems naturally arises: Do failed test
cases uncovered by TTS-generated audio reveal real faults when the
ASR system transcribes human audio? An ASR system may fail to
transcribe TTS-generated audio, but can correctly transcribe human
audio stating the same text. Such a synthetic failed test case does
not suggest an issue with the ASR as it is able to correctly recognise
human audio. Instead, it suggests an issue with test case generation
using TTS, which we refer to as false alarms.

False alarms can have a significant impact on the evaluation
and improvement of ASR systems. During the testing process of
a software system, it is usually indicative of a code defect when a
test case fails. However, not all test failures imply that there are
code defects; the failure may be due to faulty test cases [18]. Similar
cases can occur when testing ASR systems with TTS-generated
audio. When false alarms occur, developers need to troubleshoot
the ASR systems to identify the issue, not knowing that the issue is
actually caused by the test case using TTS-generated audio. Such
false alarms provide less information on the improvement of ASR

1https://www.apple.com/siri/
2https://developer.amazon.com/en-GB/alexa

systems and impede the testing process. Although some tools have
been proposed to identify false alarms in conventional software
testing [16, 26, 28, 50], there is still a gap in false alarm identification
for ASR testing as many of these tools target false alarms caused
by static analysis tools, which are used to identify potential bugs
and security vulnerabilities in source codes.

There are a variety of factors that can cause false alarms. One
of the factors is that, since the main function of an ASR system
is to transcribe human audio in operational environments, many
state-of-the-art ASR systems are trained with human audio rather
than TTS-generated audio. For example, Deepspeech [17] is trained
with 5,000 hours of audio by 9,600 speakers. Deepspeech2 [2] is also
trained with large amounts of labelled data consisting of human
audio with the corresponding transcriptions. Although modern
TTS systems try to mimic human speech, they can potentially lack
certain aspects of human speech, e.g., variations in pitch, intensity,
duration, and speech sections [40]. Additionally, TTS-generated
audio generally lacks natural phonetic variability [36] and lacks
redundant acoustic cues present in natural speech [43]. The above
factors make the TTS-generated audio follow a data distribution
that is different from that of an ASR system’s training data. Deep
neural network (DNN)-based systems are known to perform poorly
in out-of-distribution data. Thus, the failure identified using TTS-
generated audio may not reflect the actual performance of an ASR
system.

The primary objective of this research is to perform an empirical
assessment of false alarms in automated speech recognition (ASR)
testing and develop a false alarm estimator. The estimator serves as
a tool to anticipate potential false alarms. To achieve this, we con-
ducted experiments using five distinct ASR systems and four TTS
systems. The ASR systems are Deepspeech [17], Deepspeech2 [2],
Vosk [8], Wav2letter++ [9], and Wav2vec2 [7]. The TTS systems in-
clude Google TTS [11], Espeak [13], Festival [41],and GlowTTS [29].
We use the LJ Speech Dataset [22] and the LibriSpeech Dataset [32],
which consist of 9,925 and 12,000 pairs of text and human audio,
respectively.

Of all test cases synthesised using TTS systems, 20.79%, 32.25%,
12.71%, 25.82%, and 34.16% of failed test cases are identified as
false alarms when tested with Deepspeech, Deepspeech2, Vosk,
Wav2letter, and Wav2vec2, respectively. While Vosk has produced
the least number of false alarms, its performance differs when tested
on different datasets. On the LJ Speech Dataset, Vosk achieves a
low Word Error Rate (WER) value of 0.1 when transcribing human
audio. However, Vosk performs poorly on the human audio from
the LibriSpeech Dataset, which indicates that the ASR performs in
an inconsistent manner. DeepSpeech, on the other hand, performs
consistently on both LJ Speech and LibriSpeech Datasets and yields
a reasonably low number of false alarms. The highest number of
false alarms is identified with the use of Wav2vec2.

Among all the Text-To-Speech (TTS) systems assessed, it is ob-
served that the ASR systems that use Google TTS and GlowTTS
exhibit the fewest instances of false alarms. This finding suggests
that both TTS systems are proficient at generating superior quality
speech test cases. When manually reviewing false alarms, we find
that a substantial number of them are attributed to the generation
of unclear speech audio by the TTS systems. Moreover, the false
alarm estimator we propose, based on Recurrent Neural Networks
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(RNN), is capable of estimating the potential occurrences of false
alarms.

The contributions of our paper are as follows:
• We have evaluated the performance difference in ASR systems
when transcribing TTS-generated audio and human audio and
showed that ASR systems are generally better in transcribing
human audio.

• We identify a large number of false alarms when testing ASR sys-
tems with TTS-generated audio, raising awareness to developers
who use TTS systems to test ASR systems.

• Among all the TTS systems used, the ASR systems can effectively
transcribe audio generated using Google TTS and GlowTTS. De-
velopers can consider selecting Google TTS and GlowTTS to
generate high-quality speech test cases to test ASR systems.

• We propose a false alarm estimator that flags possible false alarms
when ASR is tested with TTS-generated audio.

Paper Structure: Section 2 provides an overview of ASR systems,
ASR testing, and CrossASR. In Section 3, we present our approach
to identify false alarms and train a false alarm estimator. Section
4 outlines our datasets and experimental settings. Our research
questions and results are addressed in Section 5, followed by a
discussion of the findings in Section 6. Additionally, we explore
related work in Section 7, address threats to validity in Section 8,
and conclude our work and discuss future research in Section 9.

2 BACKGROUND
2.1 Automated Speech Recognition Systems
Automated Speech Recognition (ASR) systems convert audio (input)
into text to obtain textual information on the given speech [25, 51].
The underlying architecture of an ASR primarily involves the pro-
cess of accepting an input speech sequence 𝑆 = {𝑠1, 𝑠2, ...., 𝑠𝑁 } and
recognising them as textual token sequence 𝑇 = {𝑡1, 𝑡2, ...., 𝑡𝑀 },
which usually is in the form of phonemes, grapheme or word
pieces [25]. The following equation demonstrates the goal of an
ASR system, which is to find the best textual token sequence 𝑇 .
This is done by selecting a𝑇 from a collection of all tokens,𝑉 , with
the highest probability given a speech sequence 𝑆 .

𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡 ∈𝑉

𝑝 (𝑇 | 𝑆) (1)

2.2 ASR Testing
Researchers have proposed different methods for ASR testing, such
as CrossASR [3], ASRTest [25], and PROPHET [46]. CrossASR [3]
uses differential testing and does not require manual labelling of
data. CrossASR uses TTS systems to automatically generate test
cases for ASR systems to efficiently build test cases to uncover
erroneous behaviour in ASR systems. ASRTest [25] is an automated
testing approach built on metamorphic testing theory. The primary
objective of ASRTest is to enhance the robustness of ASR systems.
It emphasises the importance of ASR systems capable of accurately
transcribing speech audio under diverse conditions, encompass-
ing variations in characteristics, background noise, and acoustic
distortions originating from the environment. ASRTest achieves
this goal by incorporating various speech transformation operators
designed to assess the robustness of ASR systems. These operators

Figure 1: The Architecture of CrossASR [3]. It accepts a cor-
pus of texts (Text Collection) as input. Each Text is fed into
the Text-To-Speech System to generate TTS-generated audio.
The audio is then processed by ASR system(s), producing
ASR-Transcribed Texts. These texts are compared with the
input Text to identify failed test cases.

include the mutation of speech characteristics, noise injection, and
simulation of reverberation. Apart from that, PROPHET is a tool
that predicts word errors in ASR systems to prioritise test cases
that are most likely to be incorrect in order to efficiently uncover
more errors for the improvement of ASR systems.

Given our objective of evaluating false alarms in the context
of synthetic test cases, we choose CrossASR [3] as the tool in our
experiment. CrossASR’s ability to generate test cases using TTS sys-
tems aligns well with our research focus, enabling us to thoroughly
assess and analyse false alarms in ASR systems testing.

2.3 CrossASR
CrossASR serves the purpose of automating the generation of test
cases for ASR systems without the need for manually labelled data.
This is achieved by using Text-to-Speech (TTS) systems within the
CrossASR framework. By providing a text input, CrossASR utilises
TTS systems to synthesise speech, creating TTS-generated audio
for testing. One of the key techniques employed by CrossASR is
differential testing. This approach involves comparing and contrast-
ing the outputs of multiple ASR systems when presented with the
same input. By analysing and identifying inconsistencies or incor-
rect behaviours among the outputs of the ASR system, CrossASR
effectively detects and highlights areas where ASR systems may be
functioning improperly.

Figure 1 shows the architecture of CrossASR. A batch of texts
called Text Batch is first selected from the text collection via the test
selection engine. The text batch contains a number of texts. Then,
each text in text batch is fed into Text-To-Speech system, which
produces a TTS-generated audio of the text. The TTS-generated
audio is then fed into the ASR systems. ASR systems then transcribe
TTS-generated audio, producing ASR-transcribed texts. The ASR-
transcribed texts are then compared with the input text to identify
failed test cases. If the ASR-transcribed text produced by the ASR
under test matches the text, CrossASR determines it as a successful
test case. If the ASR-transcribed text produced by the ASR under test
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Figure 2: The overview of our proposed methodology to un-
cover false alarms.

does not match the input Text but there is no other ASR-transcribed
text that matches the input Text, CrossASR considers this a failed
test case. If all the ASR-transcribed texts are incorrect, CrossASR
considers this as an indeterminable case, as there could be an issue
with the TTS.

3 METHODOLOGY
In this section, we present an overview of our preprocessing steps,
the methodology used to identify false alarms, and the training
process of our false alarm estimator.

3.1 False Alarm Identification
In our research, a false alarm refers to a specific situation where
an Automatic Speech Recognition (ASR) system exhibits a failure
in transcribing audio that is generated using Text-to-Speech (TTS),
while it can accurately transcribe the same content when presented
with human audio. The inclusion of human audio as a reference is
crucial to validate the existence of false alarms when TTS-generated
audio is incorrectly transcribed by the ASR system.

Figure 2 shows the overview of our approach to identify false
alarms. The input text is fed into Text-To-Speech systems to produce
TTS-generated audio. The TTS-generated audio is fed into automatic
speech recognition systems to produce ASR-transcribed texts. We
then provide human audio into automatic speech recognition en-
gines to produce another set of ASR transcribed texts. Among the
ASR systems used, we specifically choose one for testing purposes,
known as the "ASR under test" (as indicated in Figure 2). The ASR-
transcribed texts of human audio and the TTS-generated audio will
then be compared with the input Text to determine whether the test
case is a false alarm. A test case is deemed a potential false alarm
only if the ASR under test accurately transcribes human audio but
incorrectly transcribes TTS-generated audio. If the ASR under test
flags the test case as a potential false alarm, we will cross-reference
with other ASR systems (that is, 𝐴𝑆𝑅2, 𝐴𝑆𝑅𝑚 in Figure 2) to verify
the flagged false alarm. It is considered a true false alarm only if
the ASR under test and at least one other ASR fail to correctly
transcribe TTS-generated audio. In this study, we assume that the
false alarm may be due to TTS-generated audio when more than
one ASR fails to transcribe the TTS-generated audio.

In our evaluation process, we use the Word Error Rate (WER) to
measure the performance of ASR systems. WER is a widely used
metric that quantifies the accuracy of ASR by indicating the propor-
tion of incorrectly transcribed words. As described by Kepuška et
al. [27], the WER value is proportional to the number of words tran-
scribed erroneously by the ASR system. The WER is determined
by calculating the number of word errors, which encompasses the
combined sum of insertions (I), deletions (D) and substitutions (S)
of words made by the ASR system compared to the reference tran-
scription. This sum is then divided by the total number of words in
the reference transcription (N), as represented by Equation (2).

𝑊𝐸𝑅 =
𝐼 + 𝐷 + 𝑆

𝑁
(2)

A higher WER value indicates a larger number of incorrectly tran-
scribed words by the ASR system, reflecting a decrease in overall
transcription accuracy. By employing theWERmetric, we can effec-
tively assess and compare the performance of different ASR systems
in terms of their transcription accuracy.

3.2 Text and Audio Processing
Text Processing. Prior to being input into the Text-to-Speech (TTS)
system, a text is subjected to a preprocessing stage. The objective
of this step is to facilitate accurate pronunciation by standardising
the text format. Similarly, text processing is performed on ASR-
transcribed texts before false alarm identification to standardise the
transcriptions. This standardisation allows for accurate compar-
isons when identifying false alarms. Since different ASR systems
may transcribe audio in varying ways, slight formatting differences
can occur between the text and the ASR-transcribed texts. These dis-
crepancies should not be misconstrued as instances of false alarms,
as the intrinsic content remains consistent. For instance, an ASR
system might interpret the spoken word "one" as the numerical rep-
resentation "1," but such a difference in form should not be classified
as a false alarm, as the inherent meaning is the same. Specifically,
the text processing steps are as follows:
• Converting all characters to lowercase.
• Remove all types of punctuation, except apostrophes.
• Resolving abbreviations by expanding them to their full form
(e.g., “Mr” to “Mister”).

• Changing numerals to words (e.g. "1" to "one").
Audio Processing. Before the audio is fed into the ASR systems for
transcription, it undergoes a transformation process. The original
audio file is converted to a . wav format, using a sampling rate of 16
kHz and a bit depth of 8. This configuration is widely acknowledged
as the optimal setting for ensuring maximum speech intelligibility
throughout the transcription process [39].

3.3 False Alarm Estimator
The motivation behind developing a false alarm estimator can be
understood through the following scenarios. First, the existence of
false alarms in the ASR performance evaluation can lead testers
to draw incorrect conclusions about the actual performance of the
system. It also highlights the inefficiency in the testing process,
as the resources allocated to identifying these false alarms could
have been better used to uncover genuine errors. Second, in the
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development life cycle of an ASR system, failed test cases are anal-
ysed and used to improve the ASR system (e.g., by fine-tuning or
retraining). However, false alarms do not produce further improve-
ments. Therefore, integrating an estimator in this scenario allows
users to identify potential occurrences of false alarm from the test
inputs, help increase the testing efficiency, and facilitate better data
collection to improve ASR systems.

Next, we discuss the components of the proposed false alarm
estimator. We use the false alarm results produced from our pro-
posed approach presented in Figure 2 as the training dataset and
leverage a supervised learning approach to train a text-based false
alarm estimator model. The false alarm estimator aims to estimate
whether a false alarm will arise when a word or sentence is pro-
vided as input. There are two main reasons for our decision to train
a text-based estimator instead of an audio-based one.

One consideration is the simplicity of processing the data. Audio
data are typically represented as continuous, time-varying signals,
with multiple data points, multiple channels, and variations of am-
plitude. It is much more complex than text data, which can be
represented as a sequence of words. Apart from that, processing
audio often requires complex signal processing such as Fourier anal-
ysis or spectral analysis. Text data, in comparison, can be processed
using simpler techniques such as tokenization or word embedding.

Another consideration is efficiency. Themultidimensional nature
and complex temporal structure of audio data require larger and
more sophisticated classifiers. As a result, audio-based classifiers
usually take longer to train and infer [38]. The text-based model
proposed in our study can demonstrate better efficiency, allowing
us to apply the estimator to large-scale settings.

In this experiment, we used 20 sets of false alarm results obtained
from conducting our experiments with four TTS systems (Google,
Festival, Espeak, and GlowTTS) and five ASR systems (DeepSpeech,
DeepSpeech2, Vosk, Wav2letter++, and Wav2vec2). Each text in
a dataset is used to generate 20 synthetic test cases, which can
potentially be false alarms.We count the occurrences of false alarms
of each text and rank them according to their total number of
occurrences. We use the middle number (i.e., 10) as the threshold
to prepare examples to train and evaluate our estimator. More
specifically, if a text yields more than 10 false alarms, it is assigned
label 1. Otherwise, a text has the label 0. The label quantifies the
probability that a text leads to more false alarms when used to
generate TTS-generated audio for test ASR systems. The words in
each text in the resulting labelled dataset are then used to build
a vocabulary dictionary using the TensorFlow Tokenizer [1]. The
tokenizer assigns an index to each word present in the dataset. The
vocabulary dictionary is sorted by frequency of words. Words that
have a lower index mean that they appear more frequently in the
dataset. An example is shown below:

An example of vocabulary dictionary

[("the", 1), ("of", 2), ("and", 3), ("to", 4), ("in", 5), ("a", 6), ("was", 7), ("that",
8), ("he", 9), ("his", 10)] The word "the" has the lowest index, indicating
that it appears the most in the dataset.

With the vocabulary dictionary ready, each sentence in the
dataset is assigned to its numerical form, and each integer repre-
sents the index of the word in the vocabulary dictionary. Zeros are

padded at the end of each sentence to make all numerical sentence
representations of equal length. The following shows an example
where each word in the sentence is mapped to its index: "the" is
mapped to 1 and "green" is mapped to 614. The dataset with all the
numerical representations of the sentences along with their labels
is divided into 60% for model training and 30% for model testing.
10% of the training set is treated as the training validation set.

An example of output

Input: the green plant owes its power to absorb the energy of sunlight
Mapped output: [1 614 615 7293 55 369 2 4279 1 673 2 2219 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A Recurrent Neural Network (RNN) model is built with two
layers of Long-Short-TermMemory Units (LSTM) [19]. Binary cross-
entropy is set as the loss function, and Adam3 as the optimiser for
model training.We train themodel for 20 epochs. Finally, the testing
dataset is used as unseen data to evaluate model performance.

4 EXPERIMENTS
4.1 Datasets
The datasets used in this paper are open-source speech datasets,
namely the LJ Speech Dataset [22] and the LibriSpeech Dataset [32].
These datasets are selected due to their wide usage and popularity
in numerous previous studies [30, 33, 34]. LJ Speech Dataset is a
collection of short audio clips of a single speaker reading passages
from a number of books. It comprises a total of 13,100 English audio
recordings, with each recording being no longer than 10 seconds. In
total, the dataset provides approximately 24 hours of audio content.
Each of these recordings, which were recorded from 2016 to 2017
by the LibriVox4 project, is accompanied by their corresponding
transcriptions. After dropping the unusable recordings (e.g. audio
without transcription, unclear audio, mismatch between the au-
dio and the corresponding transcription), the LJ Speech Dataset
is reduced to 9,925 recordings that are deemed suitable for use in
our research. LibriSpeech Dataset is part of the LibriVox project
consisting of approximately 1,000 hours of audiobook recordings
from Project Gutenberg,5 a library of free eBooks. Due to hardware
and constraints related to computing resources, we have randomly
chosen 12,000 recordings with a total duration of approximately 50
hours from the LibriSpeech Dataset for this research.

4.2 ASR and TTS Systems
The ASR systems chosen for this study are: Deepspeech [17], Deep-
speech2 [2], Vosk [8], Wav2letter++ [9], and Wav2vec2 [7]. Our
experiment uses these four ASRs because they are popular and
widely used in many studies [2, 7, 9, 17]. Deepspeech2, developed
by Baidu, is widely recognised and used in various related prod-
ucts from Baidu [7, 25]. Additionally, we select Vosk to represent

3Adam is an optimiser algorithm [53] based on stochastic gradient descent that aims
to adjust the learning rate to different parameters.
4https://librivox.org/
5http://www.gutenberg.org
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lightweight models due to its widespread adoption in portable de-
vices. Vosk offers speech recognition capabilities for more than 20
languages and has 5.2k stars on GitHub.

The investigated TTS systems are Google TTS [11], Espeak [13],
Festival [41], and GlowTTS [29]. In our experiment, we include the
first three TTS systems because CrossASR uses them in their study.
Additionally, GlowTTS is also introduced into our study to act as a
control because it was not originally included in CrossASR.

5 RESULTS
RQ1: How notable is the performance difference between
ASR systems when transcribing human audio and
TTS-generated audio?

In this research question, our aim is to evaluate the performance
variation in each ASRwhen transcribing TTS-generated and human
audio. To achieve this, we run our approach on both the LJ Speech
Dataset and the LibriSpeech Dataset. We apply our approach to
all possible combinations of ASR and TTS systems. Following this,
we calculate the average Word Error Rate (WER) to quantify the
discrepancies in performance across different scenarios.

The average WER for each ASR generated using human audio
and TTS-generated audio for each combination of TTS and ASR
systems is shown in Figure 3. The graph is divided into two sec-
tions: the top section represents results from the LJ Speech Dataset,
while the bottom section corresponds to the LibriSpeech Dataset.
The vertical axis denotes the average WER and the horizontal axis
indicates the different ASR systems. In each section, there are five
graphs where every graph corresponds to a different audio type:
human audio and audio generated by the different TTS systems.

Overall, in both datasets, ASR systems have delivered lowerWER
values when transcribing human audio than TTS-generated audio.
As shown in Figure 3, most ASR systems produce a lower WER
when transcribing human audio. On the contrary, these ASR sys-
tems exhibit higherWER values when working with TTS-generated
audio. This implies that ASR systems generally are better at tran-
scribing human audio than TTS-generated audio. On average, ASR
systems produce an average WER value of 0.27 when transcribing
TTS-generated audio and an averageWER value of 0.10 with human
audio. There are some cases where an ASR is able to achieve similar
low WER results with both TTS-generated audio and human audio.
One such example is Wav2Vec2, where it has yielded a WER value
of 0.08 and 0.078 on Google-generated audio and human audio,
respectively, in the LJ Speech Dataset.

However, there is an exception to this common pattern. Unlike
the result in the LJ Speech Dataset shown in Figure 3, Vosk performs
better on TTS-generated audio than human audio in the LibriSpeech
Dataset. This anomaly may arise from the characteristics of Vosk
as a lightweight model. It suggests a possible compromise between
the model’s accuracy and its adaptability for use on lightweight
devices, which might be the reason for Vosk’s lower accuracy. Even
with its relatively lower accuracy, we decided to include Vosk in
our study due to its wide adoption in mobile applications.

In addition to that, there is a clear difference in performance
between the ASR systems when transcribing audio produced by dif-
ferent TTS systems. ASR systems have produced high averageWER
values when transcribing the audio produced by the Espeak TTS

system. Most ASR systems have generated low WER values when
transcribing GlowTTS-generated audio and Google-generated au-
dio. After manually reviewing the audio produced by the TTS sys-
tems, we find that both GlowTTS and Google TTS consistently
generate the clearest human-like audio. This is based on the man-
ual evaluation by the authors of this work, where we manually
sampled 10 audio files generated by each of the TTS systems. Five
of the authors evaluated the quality of the sample audio files on a
scale of 1 to 5, with 1 being the poorest quality and 5 being the best
quality. The average scores given to Espeak, Festival, Google TTS,
and Glow TTS are 1.6, 2.2, 4.6, and 4.6 respectively. This shows
that Google TTS and GlowTTS tend to produce clear human-like
audio files compared to the other TTS systems. As a result, theWER
values tend to be lower (better) for both TTS systems. This suggests
that the quality of the TTS has an impact on the performance of
the ASR.

Answers for RQ1: There are notable differences in the performance of
ASR systems when transcribing human audio and TTS-generated audio.
For LJ Speech Dataset, the average WER for human and TTS-generated
audio are 0.102 and 0.254 respectively, while for LibriSpeech Dataset,
the average WER are 0.099 and 0.282 respectively.

RQ2: How prevalent are false alarms when using
TTS-generated audio to test ASR systems?

In this research question, we investigate the frequency of false
alarms when TTS-generated audio is used to test ASR systems. To
do this, we run our proposed pipeline shown in Figure 2 for each
combination of ASR and TTS systems and observe the number of
test cases that are flagged as false alarms. The results are shown
in Figure 4, Table 1 and Table 2. Figure 4 shows a detailed com-
parison of the percentages of false alarms from test cases for each
combination of ASR and TTS systems with the LJ Speech Dataset
and the LibriSpeech Dataset. Table 1 and Table 2 show the total
number of false alarms generated for all combinations of TTS and
ASR systems with the LJ Speech Dataset and LibriSpeech Dataset
respectively. The number of false alarms illustrates the limitations
of using TTS-generated audio to test ASR systems. The more false
alarms are produced, the more unreliable the TTS-generated audio
is for testing ASR systems.

In the LJ Speech Dataset, the number of false alarms for Deep-
speech, Deepspeech2, Vosk, Wav2letter++ and Wav2vec2 is 4,386,
8,323, 8,351, 7,397 and 9,110 respectively, as shown in Table 1. Deep-
speech produces the least number of false alarms with all TTS
systems, as shown in Figure 4 whereas Wav2vec2 produces the
most false alarms with most TTS systems.

In the LibriSpeech Dataset, the number of false alarms for Deep-
speech, Deepspeech2, Vosk, Wav2letter++ andWav2vec2 are 13,844,
19,961, 2,795, 15,244, and 20,852, respectively, as shown in Table
2. Although Vosk has produced the lowest false alarms with Lib-
riSpeech, it cannot be taken into account due to the result inconsis-
tency shown in Figure 3. In Figure 3, when tested on the LibriSpeech
Dataset, Vosk is shown to have produced a higher WER when tran-
scribing human audio than the audio generated by some of the TTS
systems. This means that Vosk is unable to transcribe human audio
in LibriSpeech Dataset, and there are a lot of failed test cases for
human audio. With Vosk struggling to transcribe human audio from
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Figure 3: Average WER for each combination of TTS and ASR systems with human audio and TTS-generated audio.

LibriSpeech Dataset, we are unable to validate the occurrences of
false alarms with Vosk and thus Vosk is omitted for analysis. With
Vosk excluded, we can observe that Deepspeech produces the least
number of false alarms, and Wav2vec2 yields the most false alarms,
which is similar to the results from the LJ Speech Dataset. Thus, we
can consider Deepspeech as the best ASR in terms of false alarm
occurrences. Due to the large amounts of test cases required to test
a software system, even a small percentage of false alarms will cost
developers a lot of time and effort to resolve. Developers have the
expectation that a testing tool should produce fewer than 10% false
alarms to avoid fixing non-existent issues [37], indicating that 10%
should be the threshold of acceptable false alarm rate. Therefore,
looking at our results in Figure 4, many of the false alarm rates have
exceeded 10%, which means that false alarms are prevalent when
using TTS-generated audio to test state-of-the-art ASR systems.

In Research Question 1 and in Figure 3, we note that the qual-
ity of TTS affects the performance of ASR, with Google TTS and
GlowTTS being the best quality among the other TTS systems. In
Figure 4, we also observe that there is a correlation between the
quality of TTS systems and the number of false alarms. ASR systems
have generated the lowest false alarms with Google TTS and the
second lowest with GlowTTS. In contrast, all chosen ASR systems
produce the most false alarms when transcribing Espeak-generated

Table 1: LJ Speech - Number of False Alarms

DS DS2 VK W2L W2V2 Total

Google 627 1,223 1,211 703 850 4,614
Festival 1,274 2,368 2,309 2,235 2,960 11,146
Espeak 1,469 2,897 3,048 2,906 3,000 13,320
GlowTTS 1,016 1,835 1,783 1,553 2,300 8,487

Total 4,386 8,323 8,351 7,397 9,110 37,567
DS: Deepspeech, DS2: Deepspeech2, VK: Vosk, W2L: Wav2letter++, W2V2: Wav2vec2

Table 2: LibriSpeech - Number of False Alarms
DS DS2 VK W2L W2V2 Total

Google 2,998 4,110 541 2,617 3,470 13,736
Festival 3,707 5,377 725 4,325 5,900 20,034
Espeak 3,805 5,631 851 4,694 6,236 21,217
GlowTTS 3,334 4,843 678 3,608 5,246 17,709

Total 13,844 19,961 2,795 15,244 20,852 72,696
DS: Deepspeech, DS2: Deepspeech2, VK: Vosk, W2L: Wav2letter++, W2V2: Wav2vec2

audio. This is consistent with the WER results in Figure 3, and this
observation suggests that the quality of the TTS-generated audio
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Figure 4: Percentage of false alarms out of all the test cases for each combination of TTS and ASR systems

plays a crucial role in the occurrence of false alarms. Therefore,
using a higher quality TTS will result in a lower WER value, and
thus fewer false alarms. The lower the percentage of false alarm
occurrence, the more preferable the TTS is for automated testing
of ASR systems.

Answers for RQ2: The occurrence of false alarms is prevalent when
using TTS-generated audio to test ASR systems. When evaluated on
LJ Speech Dataset, only experiments conducted using Google TTS are
found with fewer than 10% false alarms. For all other ASR and TTS
systems, on average false alarm cases are found to exceed 15%. The
results also suggest that the prevalence of false alarms depends on the
audio quality of TTS-generated audio.

RQ3: How to estimate the potential occurrences of false
alarms when testing ASR systems?

We use the results obtained in RQ2 to train a Recurrent Neural
Network (RNN) classifier to estimate whether a test case is likely
to lead to false alarms. Training and test data are pre-processed
as discussed in Section 3.3 to transform the results into a suitable
input format for the RNN. The dataset containing 4,769 positive and
17,156 negative examples, is randomly shuffled and split into 60%
for model training, 10% as a validation dataset, and 30% for model
testing, resulting in 13,156, 2,192 and 6,577 cases, respectively. The

model is trained with 20 epochs. Binary cross entropy is used as a
loss function for model fitting.

We use precision, recall, accuracy, and the F1 score for model
performance evaluation. On the unseen test set, the model achieves
a high precision of 98.3%. This indicates that 98.3% of the estimated
positive instances are actual false alarms, showing that there is a
low false positive rate. The recall is 0.964, indicating that our model
correctly estimates 96. 4% of the actual false alarms in the test data
set. The F1 score for our model is 97.3%, demonstrating its ability
to estimate true positives (false alarms).

By observing the results estimated by the false alarm estimator,
we aim to gain insight into the specific words or linguistic features
that could be contributing to the occurrence of false alarms. These
words exhibited distinctive properties that can challenge TTS sys-
tems in synthesising clearly and misleading ASR systems, resulting
in false alarms. A prime example of such words are homophones.
Further elaboration on this finding can be found in Section 6.1.

Answers for RQ3: The evaluation results show that our proposed RNN
model is capable of automatically estimating potential false alarms. Our
model has shown a precision of 98.3%, a recall of 96.4%, an accuracy of
98.5%, and an F1 score of 97.3%. The ability to estimate potential occur-
rences of false alarms can be leveraged as a complementary mechanism
to carefully choose test inputs for testing ASR systems.
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6 DISCUSSION
6.1 Manual Analysis of False Alarms
We present examples of false alarms and their patterns observed
by manual analysis. The analysis procedure is as follows:

Data filtering. For results of each ASR-TTS combination, we com-
pile a list of words that ASR systems incorrectly transcribe when
processing TTS-generated audio. Then, we focus on the top 10
words that are most frequently incorrectly transcribed. From there,
we select false alarms where at least half of the cross-reference ASR
systems have flagged those cases as false alarms. This is done to
ensure that the cases that we analyse affect the majority of ASR sys-
tems, and we can compare the incorrect transcriptions to observe a
pattern. Given time constraints and labour intensiveness of manual
inspection, we analyse a sample size of 500 false alarms, which is
larger than the statistically representative sample size computed
with a confidence level of 95% and a confidence interval of 5.

Pattern finding. To ensure consistency and reliability in our find-
ings while observing patterns, the manual analysis is conducted by
five authors of this paper in the following manner.

(1) The audio files of the chosen false alarm cases (TTS-generated
audio) are listened to manually.

(2) Each author compares the false alarm audio files with the
ASR-transcribed texts.

(3) Each author compares the false alarm audio files with the
ground truth.

(4) Each author compares the patterns they have observed and
eliminates infrequent patterns, that is, patterns that occur
less than three times.

From these patterns, we can observe certain characteristics of a
TTS and limitations in ASR that can result in incorrect transcrip-
tions, and thus leading to false alarms. As such, we have identified
the following characteristics and limitations.

6.1.1 TTS System’s Pronunciation. In our analysis, we frequently
find that pronunciation is a major contributing factor to incorrect
transcriptions by ASR systems. The following are the most common
pronunciation problems:

TTS cannot pronounce consonants prominently
One of the common pronunciation problems observed in TTS-
generated audio is the vague pronunciation of consonants, which
often leads to inconsistent transcriptions by ASR systems. For exam-
ple, some TTS systems fail to pronounce the word "r" prominently.
An example of this is "officers". When the "r" in "officers" is not
pronounced clearly, it will be transcribed as "offices" by the ASR
systems.

Original Text:
committee of cabinet officers as our government has become more
complex

ASR Transcribed Text using TTS-generated audio:
committee of cabinet offices as our government has become more
complex

TTS cannot pronounce suffixes clearly
Another issue with TTS is their inability to clearly pronounce
suffixes, leading to incorrect transcriptions. Some common exam-
ples of suffixes that are mistranscribed by ASR systems are "-ing"
and "-ed"/"-d". For example, the "-ed" in "asked" is not pronounced
prominently by the TTS, and hence the ASR transcribes it as "ask".

Original Text:
we asked the nation to turn over all its privately held gold dollars for
dollars to the government of the united states

ASR Transcribed Text using TTS-generated audio:
we ask the nation to turn over all its privately held gold dollars for
dollar to the government of the United States

TTS cannot pronounce grammatical words
Grammatical words consist of words such as articles, conjunctions,
and pronouns. Several of them are spelt and pronounced quite
similarly to each other. If a TTS fails to pronounce these words
clearly, the words in the ground truth texts can be mistaken for
other grammatical words by ASR systems. An example of this is
the word "as"; if the "a" in "as" is not pronounced prominently, it
can lead to the word sounding like "is".

Original Text:
she identified lee harvey oswald as the man who shot the policeman

ASR Transcribed Text using TTS-generated audio:
she identified lee havey oswald is the man who shot the policeman

6.1.2 ASR Systems Fail to Transcribe Homophones. Homophones
are words that are pronounced similarly but have different defi-
nitions and spellings. To illustrate, "brake" and "break" are homo-
phones. This is still an open challenge in ASR systems that have
difficulty differentiating between homophones. For instance, "toll"
and "tole" are homophones used in the example shown below, where
both pronunciations sound similar but the ASR is unable to deter-
mine the ground truth. Therefore, further investigation is needed
to improve the ability of ASR systems to transcribing homophones.

Original Text:
and no doubt made the meat also pay toll

ASR Transcribed Text using TTS-generated audio:
and no doubt made the meat also pay tole

6.1.3 ASR Systems Fail to Transcribe Words with Multiple Pronunci-
ations. Some words may have different pronunciations depending
on the speaker’s accent. This raises an issue where the ASR cannot
transcribe the word appropriately due to the difference in pronunci-
ation. As an example, the name "marley" is pronounced "mar-lei" in
human audio, whereas in the TTS it pronounces "Marley" as "mar-
li", leading the ASR to transcribe it as "marly". Therefore, further
improvements can be made to the ASR’s capability to handle words
with multiple pronunciations.
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Original Text:
robert marley at the time of his arrest called himself a surgical instru-
ment maker

ASR Transcribed Text using TTS-generated audio:
robert marly at the time of his arrest called himself a surgical instru-
ment maker

7 RELATEDWORK
7.1 Testing ASR Systems
Researchers have proposed a series of works to evaluate different
properties (e.g. robustness [14, 44], ethics [6, 42], security [48]) of
various AI systems (e.g., code models [47, 49], reinforcement learn-
ing [15], image recognition [45]). Researchers have also recently
proposed various methods to evaluate the quality of ASR systems
from various aspects. In this section, we present previous studies
on the testing of ASR systems.

Iwama and Fukuda [23] evaluate the basic recognition capabil-
ity of ASR systems. They use a language model to generate test
sentences and use an audio converter (i.e. TTS systems) to gener-
ate various audio data. However, the audio generated using TTS
systems may be invalid. To address this concern, Asyrofi et al. [3]
propose the use of differential testing (CrossASR) to filter poten-
tially invalid failed test cases by cross-referencing the output of
different ASR systems. The intuition is that if none of the ASR sys-
tems can correctly recognise TTS-generated audio, it may be due to
the reason that this TTS-generated audio itself is of low quality. On
top of CrossASR [3], Asyrofi et al. further propose CrossASR++ [4],
which incorporates more ASR and TTS systems. Yuen et al. [52] ap-
ply various text transformations to generate more failed test cases.
Recent studies also show that synthesised speech data can also be
used to improve the performance of ASR systems [5, 12, 21, 54]. To
better improve find the valuable test cases that can improve ASR
systems, Yang et al. [46] design Prophet to prioritise speech test
cases using a BERT-based language model.

There is also a line of work on applying transformations to
audio to evaluate the robustness of ASR systems. Du et al. [10]
propose DeepCruiser, whose main objective is to create an au-
tomated testing framework for ASR systems based on recurrent
neural networks (RNN). DeepCruiser can be applied to RNN-based
ASR systems, while it is not applicable to ASR systems that use the
latest transformer-based architecture (e.g., HuBERT [20]). Deep-
Cruiser incorporates eight metamorphic transformations, such as
audio speed variation, into the original audio input to generate
new audio test inputs. Wu and Rajan [44] use frequency masking
to transform audio to change the output of ASR systems (i.e., ro-
bustness evaluation). Ji et al. [25] propose ASRTest, a tool that uses
the metamorphic testing theory. They implement three families of
transformation operators that can simulate practical application
scenarios to generate speeches. Rajan et al. [35] design aequevox
to test the fairness of ASR systems. They found that ASR systems
are more robust in the audio spoken by men when noise is added
to the audio.

7.2 Detecting False Alarms in Software Systems
Researchers in software engineering have proposed to detect false
alarms in various systems. Herzig and Nagappan [18] propose a
classification model that uses association mining rules to discover
patterns between false alarms. The association rules are then used
to estimate and classify failed test cases as false test alarms. The
rationale is that false alarms exhibit specific patterns that can be
used to identify false alarms. The features used for their model
are the unique identifiers of the test case executions, the unique
identifiers of the test case, the identifier of the executed test step,
and a binary field that indicates whether the test step passed or
failed. Another study presented by Yoon et al. [50] proposes a
machine learning-based approach to reduce the number of false
alarms for automated static analysis tools. Similarly, false alarm
patterns are used to train the support vector machine (SVM) model
and to classify false alarms using tree-based abstract syntax feature
vectors. Although many tools have been proposed to estimate false
alarms, those tools mainly focus on software testing, and there
is still a gap in the false alarm estimator for ASR testing. In our
approach, we have taken inspiration from Herzig and Nagappan"s
study [18] where the training features we used are an array or field
of values where each element represents an index of a word based
on a vocabulary dictionary. The word comes from the transcription
of both successful and false alarm test cases. We have also taken
inspiration from the study by Yoon, Jin, and Jung [50] to adopt
supervised machine learning for our false alarm estimator. One
difference is that we chose to use RNN instead of SVM.

8 THREATS TO VALIDITY
Internal Validity. When the ASR under test flags a test case as a
false alarm, it may not be a true false alarm, as it can occur due to
the limitations of the ASR itself. To mitigate this threat, we cross-
reference with other ASR systems to verify the false alarm in the
false alarm identification step of our approach. As we have a small
number of ASR systems, we consider it a true false alarm only when
the ASR under test and another ASR in the pool flag the test case
as a false alarm. However, having at least one other ASR failing the
test case may not be enough to fully validate the false alarm. Given
a scenario in which most cross-referenced ASR systems fail in the
test case, we still consider that test case as a false alarm. This would
indicate that the false alarm is valid only for the ASR under test
and for the minority of cross-referenced ASR systems. Therefore,
the false alarm data collected are not fully representative of all ASR
systems. Apart from that, for the proposed false alarm estimator, we
set a threshold such that if a text yields more than 10 false alarms, it
is assigned with the label 1 (flagged as false alarm). This assumption
might not hold when the estimator is evaluated with significantly
more ASR and TTS. As such, the reported findings for our proposed
false alarm estimator can only be confined to the chosen ASR and
TTS used in this paper. In the future, especially for research that
involves a larger number of ASR systems, this should be mitigated
by only considering the false alarm as valid should the majority or
at least half of the total cross-referenced ASR systems flag the test
case as a false alarm.

External Validity. The results for RQ1 and RQ2 depend on the
datasets selected for our experiment. As many of our selected ASR
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systems have been trained with the LibriSpeech dataset [2, 7, 9], it
can introduce bias where these ASR systems may perform better
with said dataset. Despite this, the results observed from these ASR
systems do not show consistent high performance. This empha-
sises the necessity of evaluating these ASRs using the LibriSpeech
Dataset to better understand their limitations and strengths. On
the other hand, by employing a dataset that contains texts already
familiar to the ASR systems, we can more confidently attribute
false alarms to synthesised audio from the text (i.e., the quality of
the TTS systems). As a step to mitigate bias, we also incorporate
the LJSpeech Dataset in our experiments, which is unseen by the
ASR systems. The selection of ASR and TTS systems is crucial in
our experiment. The TTS quality and ASR’s ability in transcribing
TTS-generated audio impact the number of false alarms generated
in our experiment. To minimise the potential bias that comes from
this, we used five ASR systems and four TTS systems.

9 CONCLUSION AND FUTUREWORK
We analyse the difference in performance between ASR systems
when transcribing human audio and TTS-generated audio, while
also evaluating the prevalence of false alarms in ASR systems tested
with TTS-generated audio. We also developed a false alarm esti-
mator to help estimate false alarms. This tool allows developers to
efficiently estimate the possible occurrences of false alarms with-
out the need for manual verification of all failed test cases. The
trained estimator has a precision of 98.3% and a recall of 96.4% when
tested with the LJ Speech Dataset and the LibriSpeech Dataset,
showing good signs of possible future adoption for efficient ASR
testing. Although TTS-generated audio presents opportunities for
cost-effective and time-effective ASR testing, false alarms remain
a limitation. Our study highlights the reasons behind false alarms
and discusses strategies for addressing this issue, including develop-
ing a false alarm estimator to help developers identify false alarms
efficiently. We propose to augment CrossASR with the false alarm
estimator to identify potential cases of false alarm test cases. Fur-
thermore, the use of high-quality TTS systems can improve the
usability of CrossASR and further optimise ASR testing procedures,
eliminating the need for manual verification and the creation of
test cases.

In the future, we plan to evaluate our false alarm estimator using
other datasets. Our false alarm estimator is primarily trained and
tested with results obtained from the LJ Speech Dataset and the
LibriSpeech Dataset. This suggests that its effectiveness may vary
when applied to different datasets. To achieve an estimator model
that is applicable across different datasets, we believe cross-dataset
testing and further fine-tuning must be carried out. Furthermore,
wewould like to explore the use of a speech or multimodal approach
to train the proposed false alarm estimator to further enhance the
performance and capabilities in estimating potential occurrences
of false alarms.

In conclusion, developers should be aware of testing with TTS-
generated audio, as false alarms have been proven to affect results.
This also recommends that researchers consider the active usage
of human audio in research, taking into consideration the cons
of doing so, such as poor scalability and expense. Alternatively,
incorporating a false alarm estimator can still allow researchers to

utilise TTS-generated audio by able to find the likely false alarms.
With this in mind, we hope that our research presented in this paper
can act as a support for the further development of automated ASR
testing systems.
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