
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2023

ASDF: A Differential testing framework for automatic speech ASDF: A Differential testing framework for automatic speech

recognition systems recognition systems

Daniel Hao Xian YUEN

Andrew Yong Chen PANG

Zhou YANG

Chun Yong CHONG

Mei Kuan LIM

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
YUEN, Daniel Hao Xian; PANG, Andrew Yong Chen; YANG, Zhou; CHONG, Chun Yong; LIM, Mei Kuan; and
LO, David. ASDF: A Differential testing framework for automatic speech recognition systems. (2023).
Proceedings of the 16th IEEE International Conference on Software Testing, Verification and Validation,
Dublin, Ireland, 2023 April 16-20. 461-463.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8565

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Daniel Hao Xian YUEN, Andrew Yong Chen PANG, Zhou YANG, Chun Yong CHONG, Mei Kuan LIM, and
David LO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8565

https://ink.library.smu.edu.sg/sis_research/8565

ASDF: A Differential Testing Framework for
Automatic Speech Recognition Systems

Daniel Hao Xian Yuen,∗ Andrew Yong Chen Pang,∗ Zhou Yang,† Chun Yong Chong,∗ Mei Kuan Lim,∗
David Lo†∗School of Information Technology, Monash University Malaysia

{dyue0003, apan0027, chong.chunyong, lim.meikuan}@monash.edu
†School of Computing and Information Systems, Singapore Management University

{zyang, davidlo}@smu.edu.sg

Abstract—Recent years have witnessed wider adoption of
Automated Speech Recognition (ASR) techniques in various
domains. Consequently, evaluating and enhancing the quality
of ASR systems is of great importance. This paper proposes
ASDF, an Automated Speech Recognition Differential Testing
Framework to test ASR systems. ASDF extends an existing ASR
testing tool, the CrossASR++, which synthesizes test cases from
a text corpus. However, CrossASR++ fails to make use of the
text corpus efficiently and provides limited information on how
the failed test cases can improve ASR systems. To address these
limitations, our tool incorporates two novel features: (1) a text
transformation module to boost the number of generated test cases
and uncover more errors in ASR systems, and (2) a phonetic
analysis module to identify phonemes that the ASR systems tend
to transcribe incorrectly. ASDF generates more high-quality test
cases by applying various text transformation methods (e.g.,
changing tense) to the input text in a failed test case. By doing so,
ASDF can utilize a small text corpus to generate a large number
of audio test cases, something which CrossASR++ is not capable
of. In addition, ASDF implements more metrics to evaluate the
performance of ASR systems from multiple perspectives. ASDF
performs phonetic analysis on the identified failed test cases
to identify the phonemes that ASR systems tend to transcribe
incorrectly, providing useful information for developers to im-
prove ASR systems. The demonstration video of our tool is made
online at https://www.youtube.com/watch?v=DzVwfc3h9As. The
implementation is available at https://github.com/danielyuenhx/
asdf-differential-testing.

I. INTRODUCTION

The growing presence of Automated Speech Recognition

(ASR) systems in modern society [1], [2], [3] motivates the

need to properly test ASR systems. Researchers have pro-

posed a series of methods to test various artificial intelligence

systems (e.g., image classification [4], [5], autonomous driv-

ing [6], [7], etc.) from various perspectives (e.g., fairness [8],

robustness [9]). Recently, the rise of automated audio test

case synthesis [10], [11], [12], [13], [14] has significantly

reduced human involvement in the ASR testing process. For

example, CrossASR++ [11] is a tool that leverages Text-to-

Speech (TTS) services to automatically generate audio files

from texts and uses them to test ASR systems. Intuitively, the

transcription produced by an ASR system should be equivalent

to the text used to generate the audio. Otherwise, a failed test

case for an ASR system is uncovered.

Although CrossASR++ demonstrates the capability of un-

covering failed test cases successfully, it still has a few limi-

tations. First, it fails to make efficient use of the text corpus;

it requires taking as input a large number of texts to find

sufficient failed test cases. The variation and volume of gen-

erated test cases depend solely on the quality and quantity of

the provided text corpus. Such exhaustive selection employed

in CrossASR++ is time-consuming and inefficient. Second,

CrossASR++ only reports the number of failed test cases

uncovered, while more fine-grained information is needed to

help developers to improve ASR systems.

To tackle the aforementioned limitations, we propose ASDF,

a new Automated Speech Recognition Differential Testing

Framework to test ASR systems. Our tool has the following

features. It employs a text transformation module and lever-

ages known errors in the ASR systems to synthesize one or

more audio test cases from a single text. After collecting a

small initial set of failed test cases, ASDF transforms the failed

texts using various text transformation methods to further

generate more test cases. For example, changing the tense of a

sentence or substituting error-inducing terms with other words

that have similar phonemes. Our experiments show that utiliz-

ing the text transformation module can boost the number of

failed texts by an average of 22.3%. Details of our experiment

results can be found in our GitHub repository [15]. ASDF also

conducts phonetic analysis to identify the phonemes that are

more challenging for ASR systems to transcribe. The phoneme

information can provide useful information for developers to

further improve ASR systems and their robustness [16].

II. TOOL DESIGN

ASDF extends the differential testing workflow used in

CrossASR++ [17]. Figure 1 illustrates the pipeline used by

ASDF to generate test cases. The pipeline involves two itera-

tions. In the first iteration, each text in the corpus is processed

as follows. A Text-To-Speech (TTS) service is used to generate

audio from the text, which is then fed into the ASR systems to

obtain their transcriptions. Then, we perform cross-referencing

by comparing the outputs from various ASR systems. If there

exists at least one system that can correctly transcribe the audio

while a specific ASR system fails to do so, we say that a

failed test case is uncovered for this specific ASR system.

461

2023 IEEE Conference on Software Testing, Verification and Validation (ICST)

978-1-6654-5666-1/23/$31.00 ©2023 IEEE
DOI 10.1109/ICST57152.2023.00050

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

(I
C

ST
) |

 9
78

-1
-6

65
4-

56
66

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

ST
57

15
2.

20
23

.0
00

50

First
Iteration

Second
Iteration

Text
corpus

Transformed
texts corpus

TTS
Engine

ASR
Systems

Audio files

Cross-
referencing &

Evaluation

Failed texts
from first
iteration

Phonetic
Analysis

Failed texts
from both
iterations

Text
Transformation

Text
transformer

Transcriptions

Fig. 1. The overview of the pipeline to generate test cases in ASDF.

We refer interested readers to our previous paper [11] for a

more detailed description of this pipeline. ASDF can be easily

configured to test multiple ASR systems. The installation,

configuration, and usage instructions for ASDF are made

publicly available in our GitHub repository [15].

The failed test cases (i.e., original texts and their corre-

sponding transcriptions) uncovered in the first iteration are

collected and analyzed in the second iteration, which includes

a text transformation module. In this iteration, a text trans-

former will mutate the texts of the failed test cases, effectively

generating one or more transformed test cases to be appended

to the corpus. This stage is crucial in extending the number

of test cases available in the original corpus.

Lastly, phonetic analysis is performed on the failed test

cases from both iterations. The phonetics of the error-inducing

terms found in the test cases will be analyzed to determine the

most common phonemes that appear in the failed test cases.

Analysis of highly occurring phonemes in error-inducing

terms can be utilized to identify the phonemes that are more

challenging for ASR systems to transcribe. These error-prone

phonemes can be targeted for further improvements or research

in the context of ASR transcription.

III. CORE FUNCTIONALITIES

ASDF requires 5 inputs: 1) a text corpus, 2) the output

directory of results, 3) the number of texts to be processed,

4) the ASR systems under test, and 5) a text transformation

method. The input text corpus should be in the format of a

.txt file. Each line of text in the file is converted into an

audio file by gTTS [18]. Users can specify the number of

texts to be processed before the Text Transformation Stage
begins. The ASR systems currently available in ASDF are

DeepSpeech [19], wav2letter [20], and wav2vec2 [21]. Other

ASR systems can be easily added and tested by inheriting the

ASR abstract class and adhering to the interface rules [17].

Cross-referencing is performed amongst the selected ASR

systems to ensure that the test cases are valid and can be

determined by at least one ASR service. If specified, a text

transformer transforms the original texts of the failed test cases

found in the first iteration. This step generates new test cases

to be appended to the original corpus, which is used to test

ASR systems in the second iteration. Lastly, the test results

are outputted to the path as specified.

Currently, ASDF supports multiple transformation methods.

The Homophone Transformation method first identifies the

homophone of the error-inducing term of the failed test case.

Subsequently, a new example sentence that contains that

homophone is obtained through the WordHoard Python li-

brary [22]. This new sentence will be used as the new test case.

Details and examples of the other available text transformation

methods such as Augmentation, Adjacent Deletion, Plurality

Transformation, and Tense Transformation can be found in our

replication package [15].

IV. USAGE

Ten metrics are used to evaluate the performance of the ASR

systems. A bar chart is also plotted to show the phonemes

and their frequency of appearance in error-inducing terms. A

.csv file is produced, which can be used to perform analyses

on the performance of each individual ASR system. Details of

the metrics can be found in the GitHub repository [15].

A failed text is defined as an audio file that is incorrectly

transcribed by at least one ASR system. It is important to note

that cross-referencing is used to filter the low-quality, unreal-

istic texts resulting from text transformation. A transformed

text input must be transcribed correctly by at least one ASR

service to be deemed valid (or determinable); otherwise, it is

deemed indeterminable and discarded.

The percentage of transformed failed text is the ratio of

failed transformed text inputs to the total transformed text

inputs. The higher the percentage of transformed failed text,

the better the quality of the transformation method, as this

indicates that the transformed texts are more challenging for

ASR systems to transcribe correctly. A failed test case is

defined as a specific text output from an individual ASR

service that does not match its corresponding input text.

The percentage of transformed failed cases is the ratio

of transformed output from the ASR systems that does not

match its corresponding transformed input to the total number

of transformed outputs from the ASR systems. The higher

the percentage of failed transformed cases, the better the

coverage of the transformed texts generated across different

ASR systems.

V. CHALLENGES AND FUTURE WORK

ASDF generates an audio test suite using a TTS library.

This assumes that the generated audio is interchangeable with

the real-world speech of humans, which may not be the

case in real-life situations. There would still be differences

between human speech and computer-generated audio, namely

pronunciation, accent, and tone. As a result, if human speech

were to be used instead of computer-generated audio, such

inconsistencies may yield different results for our differential

testing. Furthermore, more sophisticated text transformation

strategies can be incorporated into differential testing to test

their effectiveness in revealing erroneous words. Such tech-

niques include a change in grammar, a change in words, and

a modification of sentence structure.

462

REFERENCES

[1] V. Këpuska and G. Bohouta, “Next-generation of virtual personal assis-
tants (microsoft cortana, apple siri, amazon alexa and google home),” in
2018 IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC), 2018, pp. 99–103.

[2] N. Yoshimura, H. Yoshida, F. Matulic, and T. Igarashi, “Extending
discrete verbal commands with continuous speech for flexible robot
control,” in Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems, ser. CHI EA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 1–6. [Online].
Available: https://doi.org/10.1145/3290607.3312791

[3] A. B. Kocaballi, J. C. Quiroz, L. Laranjo, D. Rezazadegan,
R. Kocielnik, L. Clark, Q. V. Liao, S. Y. Park, R. J. Moore,
and A. Miner, “Conversational agents for health and wellbeing,”
in Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, ser. CHI EA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–8. [Online].
Available: https://doi.org/10.1145/3334480.3375154

[4] Z. Yang, J. Shi, M. Asyrofi, and D. Lo, “Revisiting neuron
coverage metrics and quality of deep neural networks,” in 2022
IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). Los Alamitos, CA, USA: IEEE
Computer Society, mar 2022, pp. 408–419. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SANER53432.2022.00056

[5] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz
testing framework for deep neural networks,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 146–157. [Online]. Available:
https://doi.org/10.1145/3293882.3330579

[6] C. Gong, Z. Yang, Y. Bai, J. Shi, A. Sinha, B. Xu, D. Lo, X. Hou,
and G. Fan, “Curiosity-driven and victim-aware adversarial policies,”
in Proceedings of the 38th Annual Computer Security Applications
Conference, ser. ACSAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 186–200. [Online]. Available:
https://doi.org/10.1145/3564625.3564636

[7] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input validation
framework for autonomous driving systems,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 132–142. [Online]. Available:
https://doi.org/10.1145/3238147.3238187

[8] M. H. Asyrofi, Z. Yang, I. N. B. Yusuf, H. J. Kang, F. Thung, and D. Lo,
“Biasfinder: Metamorphic test generation to uncover bias for sentiment
analysis systems,” IEEE Transactions on Software Engineering, vol. 48,
no. 12, pp. 5087–5101, 2022.

[9] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained
models of code,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1482–1493. [Online].
Available: https://doi.org/10.1145/3510003.3510146

[10] P. Ji, Y. Feng, J. Liu, Z. Zhao, and Z. Chen, “Asrtest: Automated
testing for deep-neural-network-driven speech recognition systems,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 189–201. [Online].
Available: https://doi.org/10.1145/3533767.3534391

[11] M. H. Asyrofi, Z. Yang, and D. Lo, “Crossasr++: A modular differential
testing framework for automatic speech recognition,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1575–1579.

[12] M. H. Asyrofi, Z. Yang, J. Shi, C. W. Quan, and D. Lo, “Can
differential testing improve automatic speech recognition systems?” in
2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2021, pp. 674–678.

[13] Z. Yang, J. Shi, M. H. Asyrofi, B. Xu, X. Zhou, D. Han, and
D. Lo, “Prioritizing speech test cases,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.00330

[14] S. S. Rajan, S. Udeshi, and S. Chattopadhyay, “Aequevox: Automated
fairness testing of speech recognition systems,” in Fundamental Ap-
proaches to Software Engineering, E. B. Johnsen and M. Wimmer, Eds.
Springer International Publishing, 2022, pp. 245–267.

[15] (2023, Jan.) Asr differential testing framework (asdf). On-
line. GitHub. [Online]. Available: https://github.com/danielyuenhx/
asdf-differential-testing

[16] A. Fang, S. Filice, N. Limsopatham, and O. Rokhlenko, “Using phoneme
representations to build predictive models robust to asr errors,” in
Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’20), 07
2020, pp. 699–708.

[17] (2021, Dec.) Crossasr++. Online. GitHub. [Online]. Available: https:
//github.com/soarsmu/CrossASRplus

[18] (2022, Dec.) gtts. Online. GitHub. [Online]. Available: https:
//github.com/pndurette/gTTS

[19] (2021, Nov.) Deepspeech. Online. GitHub. [Online]. Available:
https://github.com/mozilla/DeepSpeech

[20] (2022, Dec.) wav2letter. Online. GitHub. [Online]. Available: https:
//github.com/flashlight/wav2letter

[21] wav2vec2. Online. HuggingFace. [Online]. Available: https:
//huggingface.co/docs/transformers/model doc/wav2vec2

[22] J. Bumgarner. (2022, May) Wordhoard. Online. GitHub. [Online].
Available: https://github.com/johnbumgarner/wordhoard

463

	ASDF: A Differential testing framework for automatic speech recognition systems
	Citation
	Author

	tmp.1706173308.pdf.Ozb17

