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Quantifying Taxi Drivers’ Behaviors with Behavioral Game Theory

Mengyu Ji1, Yuhong Xu1, and Shih-Fen Cheng1

Abstract— With their flexibility and convenience, taxis
play a vital role in urban transportation systems. Under-
standing how human drivers make decisions in a context
of uncertainty and competition is crucial for taxi fleets that
depend on drivers to provide their services. As part of this
paper, we propose modeling taxi drivers’ behaviors based
on behavioral game theory. Based on real-world data, we
demonstrate that the behavioral game theory model we
select is superior to state-of-the-art baselines. These results
provide a solid foundation for improving taxi fleet efficiency
in the future.

I. INTRODUCTION

In urban cities like Singapore, New York, and Hong
Kong, taxis play a vital role in the public transportation
system. They complement extensive transit networks by
offering flexible, door-to-door mobility services. More-
over, the taxi industry generates a significant number
of employment opportunities. Therefore, enhancing the
efficiency of taxi operations is essential, as it not only
improves overall transportation effectiveness but also
contributes to the income growth of taxi drivers.

In the conventional taxi operation model, when a
taxi is vacant, the taxi driver faces a series of deci-
sions regarding the optimal directions to find the next
passenger. Interestingly, significant variations in taxi
operation efficiency are observed within the same city,
wherein certain drivers adopt more effective ‘rational’
strategies, resulting in higher hourly salaries compared
to others. To gain a deeper understanding of the diverse
decision-making dynamics among taxi drivers, we have
summarized their characteristics as follows:
• Agents (taxi drivers) compete for the same shared

resources (passengers).
• Interactions among agents (taxi drivers) occur due

to the existence of these common resources (pas-
sengers).

• Agents (taxi drivers) don’t always act perfectly
rational, either due to their inability to sense and
collect necessary information for making decisions
or limited real-time decision-making capabilities.

If we view taxi fleet operations as a group of rational
agents (taxis) competing for common shared resources
(passengers), we can utilize game-theoretic models to
describe and predict how agents would behave. However,
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due to the limitation of human rationality, traditional
game-theoretic models that assume fully rational agents
cannot be used directly.

To address this, we look into behavioral game theory,
in particular, the family of the Cognitive Hierarchy
(CH) models [1], in which agents are assumed to have
different “levels” of reasoning. In a CH model, an agent
whose reasoning level is k can optimize against other
agents, with the assumption that they are acting with
reasoning levels that are from 0 to k − 1 (the CH
model assumes that a Poisson distribution is used to
describe the distribution of levels). A level-0 agent does
not consider the existence of other agents and makes
decisions myopically. The current state-of-the-art CH
model is called the Quantal Cognitive Hierarchy (QCH)
model [2], in which the agents’ optimal decisions are
“quantal” (i.e., probabilistic and following a softmax
function). The latest variant of the QCH model further
relaxes the requirement that the opponents’ reasoning
levels follow a Poisson distribution, and instead uses a
data-driven approach to “learn” the actual distribution
of agents’ reasoning levels. This approach is called the
“Iterative Population Learning” (QCH-IPL) [3], and we
will adopt this framework to model the interactions
among taxi drivers.

An important part of the implementation of the QCH-
IPL framework is to come up with an efficient approach
to compute agents’ optimal responses against a mixed
population of opponents with varying reasoning levels.
To achieve this, we follow the formulation and adopt the
algorithm proposed by Varakantham et al. (2012) [4].
The model is based on the Markov Decision Process
(MDP), where other agents’ decisions are aggregated
into a vector of state variables. The key to the scalability
of this approach is to ensure that the size of the state is
invariant to the number of agents.

In summary, we aim to make the following contribu-
tions in this paper:
• We utilize the Selfish Routing with Transition

uncertainty (SRT) framework, as proposed by
Varakantham et al. (2012) [4], to model the
decision-making process of taxi drivers.

• We present the application of QCH-IPL for taxi
drivers using both synthetically-generated data and
real-world data from Singapore taxi drivers.

• We formally define the determination of the popu-
lation reasoning level distribution as a fixed point-



seeking problem within the population dynamics.
• By comparing QCH-IPL with other frameworks,

such as QCH and Iterative Bayesian Inference
(IBI), we demonstrate that our iterative process can
efficiently converge to a more accurate and stable
population reasoning level distribution.

II. LITERATURE REVIEW

The decision-making processes of taxi drivers have
been a subject of interest in transportation research. One
line of research focuses on understanding the spatial
and temporal dynamics of taxi operations. For example,
Guan et al. (2016) [5] analyzed taxi drivers’ decision-
making processes in response to changing demand pat-
terns and traffic conditions. Similar studies have investi-
gated the impact of factors like congestion, weather con-
ditions, and economic variables on taxi driver decision-
making (Liu et al., 2017 [6]; Wang et al., 2018 [7]).

Another area of research explores the role of com-
petition among taxi drivers. As taxis compete for the
same pool of passengers, drivers make decisions on
routes, fares, and passenger selection to maximize their
earnings. Zheng et al. (2018) [8] investigated the spatial
competition among taxi drivers and proposed a model
to analyze the effects of competition on their decision-
making behaviors.

Furthermore, the bounded rationality of taxi drivers
has been a subject of investigation. Models that capture
‘limited iterative strategic thinking’ include the Cog-
nitive Hierarchy (CH) model [1], which assumes that
players have varying levels of strategic thinking ability
and that each player believes they understand the game
better than other players. The CH model incorporates
decision rules that reflect an iterative process of strategic
thinking [9], [10]. Models that capture ‘cost-proportional
errors’ include the Quantal Response Equilibrium (QRE)
model, where better responses are more likely to be
chosen than worse responses, but the best responses are
not chosen with certainty [11]. Empirical evidence has
shown that CH and QRE models often fit better than
random or Nash models in many game situations.

Traditionally, player reasoning levels have been as-
sumed to be fixed. However, recent research by Ho et al.
(2021) [12] introduces adaptive learning for level 0 play-
ers and sophisticated learning for higher-level players. In
our work, we take a different approach by assuming that
agents’ reasoning level follows a distribution.

While Bayesian methods have been widely used to
estimate probability distributions over reasoning levels
[12], [4], [13], [14], the traditional Bayesian approach
tends to perform poorly in Markov games with complex
strategy spaces. To efficiently estimate the population
reasoning level distribution, we propose to use the Iter-
ative Population Learning (IPL) method, which allows

us to iteratively update and refine the distribution of
reasoning levels based on observed behaviors and deci-
sion histories. This contributes to the existing literature
on using fixed point-seeking mechanisms to estimate
population reasoning level distribution in the context of
the Markov decision process.

III. TAXI DRIVER’S DECISION-MAKING PROBLEM

Our research aims to address the issue of rationality
levels among urban taxi drivers by applying behav-
ioral models to their decision-making processes. By
categorizing taxi drivers into different groups based on
their rationality levels, we investigate their strategies for
passenger-seeking during their free time.

Let’s define the n-player game for urban taxi drivers.
In this game, we have a set of players (drivers) denoted
as N , where N = {1, ..., n}. The time horizon is repre-
sented byH, withH = {0, ..., T−1}. The city is divided
into various zones, forming the set of states denoted as
S, where S = {1, ..., S}. Additionally, we define the
set of reasoning levels as L, with L = {1, ..., L}. For
each player (driver) i ∈ N , in each state s ∈ S and at
each time period t ∈ H, while using reasoning level
l ∈ L, they have a strategy set denoted as Ailst =
{ailst1, ..., ailstJs}. Here, Js represents the number of
pure strategies in the strategy set Ailst.We define the
action space as A =

∏
i∈N

∏
l∈L
∏
s∈S

∏
t∈HAilst.

To capture the drivers’ decision-making, we introduce
the set ∆ilst, which represents the set of probability
measures on Ailst. Elements of ∆ilst can be expressed
as pilst : Ailst → R, where

∑
ailstj∈Ailst

pilst(ailstj) =

1, and pilst(ailstj) ≥ 0 for all ailstj ∈ Ailst. We
denote pilstj = pilst(ailstj), making ∆ilst isomorphic
to the Js-dimensional simplex. Mathematically, ∆ilst =
pilst = (pilst1, ..., pilstJs) :

∑
j pilstj = 1, pilstj ≥ 0.

IV. BEHAVIORAL MODELS FOR DRIVERS

Driver’s behavioral model draws from both transporta-
tion research and game theory, which are detailed next.

A. Markov Games

The Markov game framework is a valuable tool for
modeling the decision-making process of multi-agent
games, particularly in the presence of transitional un-
certainty. A Markov game is defined by the tuple <
S,A, T ,R,H >, where S represents the set of states
that agents (taxi drivers) can be in, A represents the set
of actions or decisions that can be taken by agents in
each state. H represents the time horizon. T : S ×A×
H → ∆(S) is the transition probability function, which
determines the probability of transitioning from one state
to another when taking a specific action at a given time.
It satisfies the constraint

∑
s′ T t(s, a, s′) = 1,∀s, a, t.

R : S × A × H → R represents the reward function,



which assigns a real value to each state-action pair at
each time step.

Various solution techniques exist for the Markov game
[15], [16]. In this paper, we employ Backward Induction.
Our objective is to obtain a policy π : S ×H → ∆(A),
representing the quantal best response (QBR) derived
from the expected utilities.

B. Nash Equilibrium and the CH Model

Nash equilibrium, as described by Fudenberg and
Tirole [17], helps predict how agents would collectively
behave. However, Nash equilibrium assumes agents are
fully rational, and when human decision-makers, who
are at best partially rational, are involved in a game,
it provides poor outcome predictions [18]. To address
this limitation, the ‘cognitive hierarchy’ (CH) framework
proposed by Camerer et al. (2004) [1], aims to explic-
itly model the limited rationality of human agents and
allows for the explicit specification of different levels of
rationality among agents in a game.

C. The QCH Model

In this study, we extend the CH model by incorpo-
rating QBR, enabling multiple levels of reasoning and
probabilistic strategies. Denote payoff function for each
i ∈ N in each state s ∈ S and each period t ∈ H when
using reasoning level l ∈ L as rilst, rilst(ailstj , π−i)
represents the reward obtained by agent i on taking jth
strategy given opponets’ joint strategy π−i. The QBR for
agent i specifies the probability for playing each strategy
and is given by:

QBRi(π
−i) = πi,

where πi(ailstj) =
eλrilst(ailstj ,π

−i)∑
a′∈Ailst

eλrilst(a′,π−i)

(1)

Given the QCH model, the probabilistic strategy for
an agent i taking each strategy, ailstj is defined as
follows:

πi(ai0stj) =
1

|Ailst|
,

πi(ailstj) = QBRi(λ, ∆̂l, π
−i
0 , π−i1 ...π−i(l−1))

(2)

where λ represents the precision or sensitivity of an
agent to the actual utility value. When it approaches
0, agents choose strategies uniformly; as it approaches
infinity (λ → ∞), agents tend to choose the exact best
responses [19]. ∆̂l is the estimator of the normalized
proportion of other agents for level l agents. Players
with higher levels of reasoning are more likely to make
better decisions since they have a better estimate of the
actual agent distribution. We enhance the CH model by
allowing players to make mistakes, enabling players to
make decisions based on QBR’s probabilistic strategies.

V. ITERATIVE POPULATION LEARNING (IPL)

This section provides a comprehensive overview of
the IPL method for estimating the population’s reasoning
level distribution. We will provide detailed insights and
prove the existence of fixed-point. Some useful notations
used in the algorithm are presented in the table below:

TABLE I
NOTATION USED IN ALGORITHM 1.

Description
lmax Maximum level of reasoning.
w Moving window used in IPL.
πe
l Level-l policy in iteration e.
dth(s) Taxi driver distribution for level h while at time

t and state s.
→0
de Agents distribution from t = 0 to T − 1 in

iteration e.
∆l Proportion of level-l agents in the population,

∆(l) =
∑

i Pri(l)

N
.

∆l(h) Proportion of level-h agents in the population
as computed by a level-l agent, ∆l(h) =

∆(h)∑l−1
k=0

∆(k)
, ∀h < l.

Algorithm 1 Iterative Population Learning
1: e← 0
2: ∆l = Uniform(0, lmax),∀l
3: ∆e

l : ∆l at iteration e
4: ∆e

l = mean(∆e−w
l , ...,∆e−1

l ),∀l
5: δ ← a very small number
6: d0 ← UniformDistribution
7: while |∆e

l −∆e
l | > δ, ∀l, or e = 0 do

8: π0 = GetLevel0Strategy(){uniform}
9: for ∀l ≤ lmax do

10:
→0

de= GetDist(T,∆e
l ,d

0, < π0, .., πl−1 >)

11: πel = GetQBR(λ, T,
→0

de )
12: end for
13: ∆e

l = CLR(πe0, ..., π
e
lmax

, transition),∀l
14: e = e+ 1
15: end while

A. Supply Distribution Simulation
The supply distribution function takes the following

form:

GetDist(T,∆l,d
0, {π0, ..., πl−1})

d0
h(s) = ∆l(h) · d0(s)

dch(s) =
∑
s′,a

πh(s′, a) · dc−1
h (s′) · T t

h (s′, a, s,dc−1),

∀ c ∈ [1, T − 1]

dc(s) =
∑
h<l

dch(s), ∀ c ∈ [1, T − 1]

(3)



The simulation process begins with the first formula,
using the input ∆l(h) and the initial supply distribution
d0 (which is uniformly distributed). This lets us obtain
the supply distribution of level h computed by level l
agents. Next, we simulate the supply distribution over
the time horizons based on the corresponding level
policies and transition probabilities. Finally, in the third
formula, we sum up the expected distribution of all lower
levels. The complete process will be run several times
until the generated distribution is stable.

B. Constrained Linear Regression (CLR)

In Algorithm 1, we propose the use of CLR to
estimate the reasoning level distribution of taxi drivers
based on aggregated transitions. CLR is a variant of
regular linear regression that offers several advantages,
including its intuitive nature, simplicity, and low data
requirement. In CLR, the response variable is the ag-
gregated action frequency. The independent variables
are the QBRs at different reasoning levels. By fitting
the actual observations to the predictions from all the
reasoning levels, we can estimate the parameters that
represent the distribution of reasoning across these lev-
els.

The CLR incorporates two additional constraints: the
first constraint ensures that the sum of the parameters
equals 1, reflecting the fact that the reasoning level
distribution is a probability distribution. The second
constraint enforces the non-negativity of the parameters.
The CLR can be represented by the following formulas:

min
∑
a0∈A0

(
y(a0)−

∑
l∈L

αlπl(a0)

)2

(4)

s.t.∑
l

αl = 1, αl ≥ 0,∀l ∈ [0, lmax].

C. Fixed Point of the QCH-IPL Process

Algorithm 1 decomposes the QCH-IPL process into
two main parts. First is the ‘level strategy generation’
where strategies for each level are generated based on
the population reasoning level distribution. Second is
the ‘population distribution’ part, which identifies the
population reasoning level distribution based on the level
strategies.

We can combine all the steps in Algorithm 1 func-
tionally into a single composite function. Define Φ(·) as
the CLR in line 13 of Algorithm 1. Further define Ψ as
the computation of QBR (π0, . . . , πlmax

) in line 11 of
Algorithm 1. We can examine our QCH-IPL approach
from a mathematical perspective:

(π0, . . . , πlmax
) = Ψ

(
Φ
((

(π0, . . . , πlmax
), tr

)))
(5)

Equation 5 is a strategy and distribution combined
iterative process and (π0, . . . , πlmax) is the fixed point
of this iterative process. The IPL process is seeking
a vector (π0, . . . , πlmax

), which would be returned as
output when given as input.

Theorem 1 A fixed point exists in the above policy and
distribution combined iterative process [eq.(5)] (Theo-
rem 1 from [3])

proof: Firstly, we represent the set of strategies in
topology form. Next, we establish the compactness and
convexity properties of the strategy set. We also establish
the continuity property of the strategy and reasoning
level distribution combined iteration Ψ(Φ(·, tr)). To
complete the proof, we can apply Schauder-Tychonoff
fixed point theorem. More details can be found in [3].
To make sure the successive approximation executed by
the loop algorithm converges to a fixed point from any
starting point, and this fixed point is unique, we can
establish contraction property.

VI. NUMERICAL STUDIES

To prove that our method can be applied in games
with more complex strategy space, we apply QCH-IPL
to study the reasoning level of taxi drivers. Motivated
by Varakantham et al. (2012) [4], we incorporate the
SRT framework. We assume that taxi drivers compete
for passengers across Singapore, and each driver faces
uncertainty when deciding to move from their current
location. In QBR, we employ the same transition and
reward functions as [4] functions (4) and (5) shows. And
all symbols we use in the following are also from the
SRT framework in [4] section 4.

A. Data Extraction
Under our defined settings, the variable Γ represents

levels of reasoning, ranging from 0 to 3. To form
the transition (T ) and reward (R) functions used for
computing QBRs, we require four essential types of
data: passenger flow data, taxi drivers distribution data,
fare data, and costs data. Here is an explanation of how
each type of data is extracted and utilized:
• Passenger Flow Data: We utilize the taxi trip dataset

from 2009 to 2012 and find the number of trips
within each hour between zones i and j.

• Taxi Drivers Distribution Data: We set the total
number of taxi drivers and assign them a uniform
distribution across the zones. This distribution is
then incorporated into the Supply Simulation.

• Fare Data: We apply the fare charged for each trip
to get the normalized value over all tuples of origins
and destinations.

• Costs Data: We utilize the Google API to extract the
distance between any two zones. Then we calculate
the gasoline costs of the trip distance.



With the aforementioned data and a Backward Induc-
tion framework, we can successfully compute QBRs.
However, we also require observations of taxi drivers’
transition behavior at free status to run CLR. Here’s a
breakdown of getting transition data:

1. Time Slicing: We divide the time into 20-minute
intervals.

2. Origin Selection: For each 20-minute interval, we
identify the zone ID with the longest duration in
free status as the driver’s origin zone.

3. Transition Probability Distribution: The free status
duration over zones in the next 20-minute interval
represents the drivers’ transition probability distri-
bution.

4. Removal of Transition Between 6 am and 8 am:
Drivers tend to wander around their homes during
this period.

5. Aggregation: To increase the number of transition
observations, we aggregate the 20-minute transi-
tions into 1-hour intervals from 8 am to 5 pm each
day over the course of three years.

B. Synthetic Experiments

Before applying the QCH-IPL algorithm to real-world
taxi drivers, we compare it with two baseline meth-
ods: Iterative Bayesian Inference (IBI) and the QCH
method with synthetically generated movement data. IBI
is based on iteratively Bayesian inference. It applies a
Bayesian update (as formula 6 shows) iteratively for
each driver’s movement.

Pri(l|at,i) =
Pri(at,i|l)× Pri(l)∑lmax

k Pri(at,i|k)× Pri(k)
(6)

To evaluate the performance of QCH-IPL, we com-
pare its results with those of the IBI and QCH baselines.
We focus on population reasoning levels. In the case
of IBI, to obtain the proportion of drivers belonging to
different levels in the population, we aggregate the prob-
ability distributions Pri(l) for all drivers i and all levels
l. The parameters used in our synthetic experiments are
summarized below:
• supply = 18000,
• discount factor = 0.8,
• λ = {1, 2, 3, 4},
• number of zones = 145,
• number of horizons = 9,
• moving window size = 1.
The initial population level distribution is generated

using a truncated Poisson distribution. The parameter
τ is varied from 0.1 to 2.0 with an increment of 0.1.
The focus of the experiments is on population levels
of reasoning, and the CLR (Constrained Least Squares)
method is solved using the Gurobi optimization solver.

Three ground truth population reasoning level distri-
butions are assumed for evaluation purposes. These dis-
tributions are: (1). [0.3, 0.4, 0.3, 0]; (2). [0, 0.3, 0.4, 0.3];
(3). [0.25, 0.15, 0.4, 0.2]. Besides simulated transition,
all other input data used in the experiments, are real-
world datasets mentioned in the previous part.

As mentioned in step 3, the performance of different
methods is evaluated using several metrics. The results,
summarized in Table II, indicate the following observa-
tions:

• Compared with the IBI baseline, the CLR approach
employed in QCH-IPL outperforms the Bayesian
update process by a very large percentage. For
example, for ground truth (3), QCH-IPL can im-
prove EMD by around 76% and KL-Divergence by
around 98%.

• Compared with the QCH baseline, the QCH-IPL
method demonstrates improved performance, re-
ducing the EMD by 17% to 68%, KLD by 30%
to 93%. This suggests that the IPL aids in better
inferring the distribution of reasoning levels.

TABLE II
QCH-IPL METRICS COMPARED WITH QCH AND IBI

Ground Truth (1) (2) (3)
QCH-IPL Model
W-distance (EMD) 0.0433 0.0168 0.0489
KL-Divergence 0.0608 0.0028 0.0443
Mean Squared Error 0.0146 0.0151 0.0144
QCH Model
W-distance (EMD) 0.0526 0.0524 0.0815
KL-Divergence 0.0873 0.0422 0.1126
Mean Squared Error 0.0149 0.0153 0.0147
IBI Model
W-distance (EMD) 0.2481 0.1246 0.2002
KL-Divergence 2.3482 0.7182 1.8854

TABLE III
QCH-IPL EMPIRICAL PERFORMANCE COMPARED WITH QCH

τ value 0.1 0.2 average overall τ
QCH-IPL Model
KLD 26.20 26.20 26.20
EMD 0.0555 0.0555 0.0555
MSE 0.0196 0.0196 0.0196
MAE 0.0681 0.0681 0.0681
RMSE 0.1292 0.1292 0.1292
log-likelihood -37220 -37220 -37220
QCH Model
KLD 27.29 26.98 26.86
EMD 0.0575 0.0572 0.0570
MSE 0.0212 0.0208 0.0206
MAE 0.0701 0.0696 0.0693
RMSE 0.1336 0.1326 0.1318
log-likelihood -37840 -37660 -37590



C. Empirical Experiments

After conducting the synthetic experiments and ob-
taining promising results, the next step is to apply
the QCH-IPL method to the empirical dataset. The
following additional procedures are performed for the
empirical dataset:

First of all, it is ‘filtering day-shift working drivers’.
For each month from 2009 to 2012, the list of taxi
driver IDs who work 80% of their time during the 8
am to 5 pm period is identified. Secondly, we need to
do ‘aggregated transition filtering’. Only tuples of (t, s)
that have observations exceeding the lower bound are
included in the CLR process.

The next important step is to tune the parameters to
obtain optimal results. The parameters include supply,
discount factor, lower bound for transition data, and the
parameter lambda (λ) that influences QBR generation.
In this case, the supply parameter is set to 18,000, and
the moving window in the iteration is set to 3. QCH-IPL
is then run with different values for the discount factor
(0.7 and 0.8), lower bound (100 and 150), and λ values
ranging from 3 to 10.

Finally, the chosen scenario is λ = 10, discount factor
= 0.8, and lower bound = 150. By running QCH-IPL
with these selected parameters, IPL converges within
15 iterations. The final population-level distribution ob-
tained is [0.2105, 0.2347, 0.4281, 0.1266], representing
the distribution of drivers across the reasoning levels.

In order to compare the empirical results of QCH-
IPL with QCH, we conducted a comparative analysis.
For QCH, we set λ = 10 to match the performance
of QCH-IPL. Additionally, we generated a truncated
Poisson distribution for τ values ranging from 0.1 to 0.4
with an increment of 0.1. To evaluate the performance
of QCH-IPL and QCH, we used metrics such as EMD,
KL-Divergence, MSE, MAE, RMSE, and log-likelihood.
The comparison was made by calculating the mean
improvement overall τ values. Table III presents the
value of the mean metrics from τ = 0.1 to 0.4, as well
as the values for selected τ values.

Upon comparing the results, it is evident that the
QCH-IPL approach outperforms QCH across all eval-
uation metrics. Specifically, QCH-IPL exhibits notable
improvements, such as a 4% to 8% reduction in MSE,
and a 2% to 4% decrease in EMD and KL-Divergence.

VII. CONCLUSIONS

This study examines the decision-making process of
taxi drivers in urban transportation systems as a whole.
In order to gain insights into drivers’ rationality during
the passenger-seeking phase, we adopt the QCH-IPL
approach that combines QBR strategies with IPL. We
demonstrate the effectiveness of our approach by com-
paring it against other frameworks and analyzing both

synthetic and real-world data. This current research lays
the foundation for further research on how to improve
the efficiency of taxi fleets.
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