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Abstract: The cooperative delivery of trucks and drones promises considerable advantages in delivery efficiency and 

environmental friendliness over pure fossil fuel fleets. As the prosperity of rural B2C e-commerce grows, this study intends 

to explore the prospect of this cooperation mode for rural last-mile delivery by developing a green vehicle routing 

problem with drones that considers the presence of steep roads (GVRPD-SR). Realistic energy consumption calculations for 

trucks and drones that both consider the impacts of general factors and steep roads are incorporated into the GVRPD-SR 

model, and the objective is to minimize the total energy consumption. To solve the proposed model, an improved adaptive 

large neighborhood search (IALNS) algorithm is introduced, which incorporates several novel operators designed based on 

the characteristics of the problem. The effectiveness of the IALNS algorithm and the feasibility of the GVRPD-SR are 

verified through extensive computational experiments. Furthermore, a detailed sensitivity analysis is conducted on several 

critical parameters to derive managerial insights. 
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1. Introduction 

With the popularity of online purchasing, business-to-

consumer (B2C) e-commerce has accounted for a 

continuously increasing share of the global retail market. 

It is worth noting that rural areas have emerged as another 

booster for this trend due to the internet penetration and 

the perpetual innovation of business modes. As stated in 

the China Rural E-commerce Development Report 

(2021–2022) (China International Electronic Commerce 

Center, 2022, State Post Bureau of The People's Republic 

of China., 2022), the rural e-commerce trading volume 

reached 2.05 trillion RMB in 2021, accounting for 15.66 

% of the country with an annual increase of 11.3 %. 

Likewise, the boom in rural B2C e-commerce is 

accompanied by a soaring number of delivery parcels in 

these areas. In China, more than 30 billion parcels were 

shipped in 2020, and the quantity exceeded 37 billion in 

2021 (State Post Bureau of The People's Republic of 

China, 2022). To accommodate the present situation and 

provide satisfactory service levels, the logistic network 

for rural last-mile delivery has been rapidly expanded. 

However, many remote rural areas are characterized by 

low population density, rugged terrain, and mountainous 

landscapes. The current logistic network with pure fossil 

fuel fleets not only has a poorer delivery efficiency but 

also has a negative impact on the ecological environment 

due to their considerable energy consumption (Macrina et 

al., 2020, Zhang et al., 2022). Hence, rural last-mile 

delivery calls for other environmentally and efficient 

alternatives. 

Over the past few years, the applications of drones have 

become one of the most talked-about developments in 

logistics. Several major companies have actively 

launched pilot programs to deliver parcels by drones, such 

as Amazon, DHL, Google, United Parcel Service (UPS), 

JD.com, and SF Technology (Macrina et al., 2020, 

Wohlsen, 2014). The benefits of drone-based delivery are 

apparent in these industrial implementations, including 

being battery-powered, operating autonomously, and 

traveling at high speeds while remaining unaffected by 

traffic congestion. Nonetheless, the limitations of drones 

in terms of carrying capacity, and flight endurance are 

also exposed. Consequently, some companies turned 

attention to the cooperative delivery of trucks and drones, 

which leverages the advantages of trucks to counteract the 

shortcomings of drones and vice versa. Specifically, a 

truck is used as a moving hub for supporting a drone and 

allowing both to perform delivery tasks. In 2014, AMP 

electric vehicles and the University of Cincinnati jointly 

constructed one such system, called the “HorseFly” 

(Wohlsen, 2014), followed by UPS deploying an electric 

van-drone system in 2017 (Wang et al., 2017, 

Kastrenakes, 2017). Meanwhile, the academic 

community is concerned about the route planning for this 

cooperative delivery. One of the major research directions 

is the vehicle routing problem with drones (VRPD) 
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proposed by Wang et al. (Wang et al., 2017), in which the fleet is 
equipped with several trucks and one or more drones. They validated the 
best possible time savings achieved by the cooperative delivery of trucks 
and drones versus trucks alone. Afterwards, many studies have devel-
oped different extensions and variants of the VRPD model (Chiang et al., 
2019; Kitjacharoenchai et al., 2020; Poikonen et al., 2017; Schermer 
et al., 2019a), in which Chiang et al. (Chiang et al., 2019) concluded the 
environmental friendliness of using drones. All above indicate that the 
cooperation of trucks and drones is a promising option for rural last-mile 
delivery. 

To actively follow the call of green campaigns, this study concen-
trates on the energy consumption of cooperative delivery by trucks and 
drones implemented in rural areas. While a few related studies exist 
(Chiang et al., 2019), they only assume that the energy consumption of 
trucks and drones is influenced by the load and the distance traveled on 
flat roads. In real scenarios for the rural last-mile delivery, however, 
customers are mostly dispersedly located at different altitudes and 
connected through steep roads. Trucks and drones need to frequently 
travel uphill or downhill, consuming a different amount of energy 
compared to traveling on flat roads. Consequently, ignoring the effect of 
steep roads can result in suboptimal routing plan, e.g., the planned route 
becomes undesirable as the battery endurance of the drone is depleted 
during transit. 

In this study, a new green vehicle routing with drones model 
(GVRPD) is proposed for rural last-mile delivery. The objective is to 
minimize the energy consumption of drones and trucks. Specially, the 
realistic energy consumption calculations applicable to trucks and 
drones are incorporated into the GVRPD (i.e., the GVRPD-SR). They take 
steep road impact into account in addition to the general impact factors 
like travel distances, load, and speed. Since the GVRPD-SR is a complex 
variant of the classical vehicle routing problem (VRP), it is also an 
essentially NP-hard problem. An improved Adaptive Large Neighbor-
hood Search (IALNS) algorithm is proposed to solve the GVRPD-SR, 
which comes along with several novel operators designed based on 
the characteristics of the problem. Finally, a series of experiments are 
performed in terms of algorithmic performance, model analysis, and 
managerial discussions to verify the effectiveness of the proposed 
GVRPD-SR and IALNS algorithm. 

The rest of this study is organized as follows. Section 2 provides a 
literature review on related problems. The formulation of the GVRPD-SR 
model is presented in Section 3, and the introduction of the IALNS al-
gorithm to solve the model is described in Section 4. Section 5 imple-
ments a series of experiments to comprehensively demonstrate the 
significance of the GVRPD-SR and IALNS algorithm. Section 6 concludes 
the contributions of this study and discusses the research directions that 
can be moved forward. 

2. Literature review 

In this section, the existing literature related to the GVRPD-SR 
problem is reviewed and discussed. 

2.1. Green vehicle routing problems with steep roads 

As excessive energy consumption and generated pollution lead to the 
continuous deterioration of the ecological environment, GVRP as a 
variant of the classic VRP was first attempted by Sharma and Mathew 
(Sharma and Mathew, 2011), who use speed-dependent emission func-
tions to minimize emissions of various pollutants in the transportation 
network. Since then, some researchers have devoted their efforts to 
VRPs with energy consumption to prevent more environmental damage. 
Bektaş and Laporte (Bektaş and Laporte, 2011) first introduced a 
pollution routing problem (PRP) model that considers not only the travel 
distance but also the amount of greenhouse gas (GHG) emissions, fuel 
consumption, travel time, and costs. Subsequently, various character-
istics of VRPs, such as time windows (Zhu and Hu, 2019), pickup and 

delivery (Majidi et al., 2018), and multi-depot (Sadati and Çatay, 2021), 
have been incorporated into GVRP models with energy consumption. 

The abovementioned research assumes that the energy consumption 
rate is constant and has a linear relationship with the distance traveled 
by vehicles. In fact, as reported by the US Department of Energy (US 
Department of Energy, 2008), other factors such as load and vehicle 
speed also have a considerable impact on the amount of energy 
consumed. Consequently, more and more GVRP models calculate fuel 
consumption based on these actual factors (Karakostas et al., 2020; Liu 
et al., 2023; Rauniyar et al., 2019). Several researchers have paid 
attention to establishing different energy consumption models with 
consideration of steep roads to estimate more accurate fuel consump-
tion, since the arcs to be traveled are not always distributed over the flat 
and horizonal terrain in real-world scenario. In Goeke and Scheneider 
(Goeke and Schneider, 2015), a realistic energy consumption function 
was designed to assist in route planning for a mixed fleet of electric and 
conventional vehicles. Especially, the function considers the combined 
impact of weight, vehicle speed, and steep road. Similarly, Zhou and Lee 
(Zhou and Lee, 2017) proposed a GVRP model considering vehicle speed 
as a decision variable. Their objective is to minimize emissions, which 
are affected by the aforementioned three factors. Schröder and Cabral 
(Schröder and Cabral, 2019) introduced a three-dimensional routing 
model based on Geographic Information System (GIS) that considers the 
impact of steep roads and varying speeds on GHG emissions and fuel 
consumption. Brunner et al. (Brunner et al., 2021) presented a VRP with 
steep roads (VRP-SR) that considers steep road and load effects in fuel 
consumption. In their model, a detailed road network obtained from a 
GIS was used to estimate the road grade between any two customer 
locations. Dundar et al. (Dundar et al., 2022) developed a green trav-
eling salesman problem where fuel consumption is calculated by dy-
namic customer demands and realistic road gradients of the entire road 
network. 

With the rapid development of advanced intelligent technology, a 
variety of multi-mode delivery services have emerged over the past 
several years, such as truck-drone joint delivery and autonomous robot- 
assisted van delivery. The existing research on these delivery modes has 
mainly concentrated on developing mathematical models aimed at 
reducing cost and increasing economic benefit. However, the announced 
worldwide goals of carbon peaking and carbon neutrality urgently call 
for more environmentally friendly practices in freight transportation. 
Hence, the PRP studies on traditional single-type vehicle delivery can 
provide valuable guides and insights from GVRP research into emerging 
joint delivery modes. 

2.2. Trucks and drones cooperative routing problems 

Since several major online retailers pioneered the application of 
drones in delivery services, the academic community has aroused a keen 
interest in the cooperative delivery of drones and trucks. 

One mainstream research direction is the VRPD proposed by Wang 
et al. (Wang et al., 2017), which is directly relevant to this study. On the 
one hand, several studies extended the VRPD model by adding new 
constraints. For example, Poikonen et al. (Poikonen et al., 2017) pro-
posed an extended VRPD model with a constraint on the limited battery 
life of a drone. Schermer et al. (Schermer et al., 2019a) proposed a multi- 
drone VRPD model. Sacramento et al. (Sacramento et al., 2019) intro-
duced the VRPD with time limits for vehicles. Li et al. (Li et al., 2020); 
Coindreau et al. (Coindreau et al., 2021), and Kuo et al. (Kuo et al., 
2022) considered time windows for customers. On the other hand, a 
couple of researchers developed several variants of VRPD from the as-
pects of the number of drone visits, drone release, and the synchroni-
zation between the drone and truck. Schermer et al. (Schermer et al., 
2019b) allowed drones to be launched and rendezvoused both at the 
nodes and some discrete points on arcs. Wang and Sheu (Wang and 
Sheu, 2019) presented a VRPD model in which the launched drones 
must return to some predetermined docking locations before being 
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picked up by the trucks. Salama and Srinivas (Salama and Srinivas, 
2022) devised a VRPD model that allows the truck to stop at non- 
customer locations for a drone launch or rendezvous. Meng et al. 
(Meng et al., 2023) developed a multi-visit VRPD problem that allows 
drones to provide both pickup and delivery services in each flight. In 
addition, considering that drones have a much less negative impact on 
the environment than fossil fuel-powered vehicles, Chiang et al. (Chiang 
et al., 2019) discussed the positive environmental impact of VRPD by 
incorporating the evaluation of CO2 emissions of trucks. In Liu et al. (Liu 
et al., 2021), an energy consumption model of the route process of the 
drone was incorporated to analyze the impact of the payload, flying 
speed, travel distances, and efficiency of the motor. Table 1 summarizes 
the previous VRPD studies by classifying them based on the main 
features. 

Although the above contributions have led to the development of a 
range of truck-drone models, their applicability is predominantly 
tailored to urban last-mile delivery scenarios. This focus is misaligned 
with the evolving e-commerce that is witnessing a significant surge in 
demand in rural areas. In fact, the cooperative delivery of trucks and 
drones has become equally compelling in rural areas. However, the 
routing plan for trucks and drones determined by existing models might 
be suboptimal, potentially leading to increased cost, time, or polluting 
emissions, as they neglect that scattered customers are often connected 
by steep roads in rural environments. Therefore, the GVRPD-SR model, 

which takes into account the impact of steep roads, is proposed in this 
study to investigate the potential value of this mode in rural last-mile 
delivery from a green perspective. 

2.3. Solution methods 

As an extension of the well-known VRP that is an NP-hard problem, 
the VRPD can also be considered NP-hard in a strong sense (Chiang 
et al., 2019; Sacramento et al., 2019; Wang et al., 2017). Moreover, the 
varied restrictions described in the preceding section make the problem 
considerably more intractable to solve. Solution methods proposed in 
the literature can be categorized as either exact or meta-heuristic algo-
rithms. However, exact algorithms struggle to solve the problem in 
polynomial time as the scale and complexity of the problem increase. 
Consequently, fewer researchers use exact algorithms as solution 
methods. Wang & Sheu (Wang and Sheu, 2019) derived a branch-and- 
cut algorithm for solving the VRPD using a path-based model struc-
ture. Kang & Lee (Kang and Lee, 2021) developed an exact algorithm 
integrating with the logic-based Benders decomposition approach to 
solve a heterogenous VRPD problem. To solve a two-echelon VRPD 
problem, Zhou et al. (Zhou et al., 2023) proposed a branch-and-price 
algorithm that incorporates a bidirectional labeling algorithm for the 
pricing problem to enhance the search efficiency. 

Up to now, meta-heuristic algorithms are used as a mainstream 

Table 1 
Overview of the related literature.  

Literature Drone(s) per 
truck 

Drone multiple 
visits 

Payload 
capacity 

Time 
windows 

Steep 
road 

Objective function Solution method 

Wang et al. ( 2017) M 1 × × × Minimize completion time Worst-case 
analysis 

Poikonen et al. 
(2017) 

M 1 × × × Minimize completion time Worst-case 
analysis 

Schermer et al. 
(2019a) 

M 1 × × × Minimize makespan MILP, 
Matheuristic 

Wang and Sheu 
(2019) 

M M √ × × Minimize logistics cost Branch and 
price 

Kuo et al. (2022) 1 1 √ √ × Minimize traveling cost GUROBI, VNS 
Sacramento et al. 

(2019) 
1 1 √ × × Minimizes operational cost CPLEX, ALNS 

Li et al. (2020) M M √ √ × Minimize the integrated cost CPLEX, ALNS 
Schermer et al. 

(2019b) 
1 1 × × × Minimize makespan Gurobi, VNS/TS 

Salama and Srinivas 
(2022) 

M 1 × × × Minimizes completion time CPLEX, OTS 

Liu et al. (2021) 1 M √ × × Minimize traveling cost SA-TS 
Coindreau et al. 

(2021) 
1 1 × √ × Minimize global costs (including truck fuel costs 

and drone electricity costs) 
CPLEX, ALNS 

Meng et al. (2023) 1 M √ × × Minimize total cost MP-ISA 
Chiang et al. (2019) 1 1 √ × × Minimize CO2 emissions GA 
This study 1 1 √ × √ Minimize energy consumption CPLEX, IALNS  

Fig. 1. Cooperation mode of truck and drone.  
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solution method for the VRPD, as they can find the optimal solution or 
high-quality approximate optimal solution within an acceptable time. 
For example, Kuo et al. (Kuo et al., 2022) developed a variable neigh-
borhood search algorithm with a specific solution representation to 
solve a VRPD problem with time windows. Liu et al. (Liu et al., 2021) 
combined a simulated annealing algorithm with tabu search to solve a 
two-echelon VRPD problem. ALNS algorithm has become a mainstream 
solution method among meta-heuristic algorithms for many researchers 
(Coindreau et al., 2021; Li et al., 2020; Sacramento et al., 2019), as seen 
from Table 1, since it has superior capabilities with respect to extensi-
bility, balancing between local search and global search, and preventing 
premature convergence. However, these ALNS algorithms were partic-
ularly designed to address the corresponding VRPDs based on unique 
characteristics of the problem, so they are not the optimal choice for 
efficiently addressing the proposed GVRPD-SR. In this study, the IALNS 
algorithm is proposed for the GVRPD-SR, as detailed in Section 4. 

3. Problem statement 

This section presents the problem definition of the GVRPD-SR as well 
as its mathematical formulation. 

3.1. Problem definition 

The GVRPD-SR considers the delivery of parcels from a depot to 
multiple customers by using a fleet of homogeneous trucks, each of 
which is equipped with a drone. Customers are located at different al-
titudes and connected by steep roads with varied road grades. Each 
customer can be served by either a truck or a drone. Regarding the 
cooperation between a truck and a drone, as illustrated in Fig. 1(a), they 
are allowed to depart from the depot independently and return to the 
depot in tandem. Fig. 1(b) shows that they also can depart from the 
depot in tandem and return to the depot independently. Fig. 1(c) depicts 
them departing from and returning to the depot in tandem. During the 
delivery process, each truck not only performs delivery operations but 
also acts as a mobile charging station for its own drone. When the truck 
delivers the parcel at a customer node, the drone can take off with a 
small parcel from the truck to serve another customer independently. 
After the drone completes its operation, it can only rendezvous with its 
truck at a customer node and then swaps a full-charged battery to 
relaunch or prepare for the next delivery task. Since a drone consumes 
energy to hover and a long hover may pose operational challenges, it is 
assumed that the drone cannot arrive before its dedicated truck to keep 
the model practicable. 

The objective of the GVRPD-SR is to determine the main route for the 
trucks and the adjoint sub-routes for the drones to complete the delivery 
of all parcels with minimal energy consumption. The other common 
assumptions, referring to those introduced in Zhen et al. (Zhen et al., 
2023), are summarized as follows:  

(1) A drone can only serve one customer at a time by conducting 
back-and-forth flights within its maximum endurance.  

(2) A drone can only be launched and retrieved from its dedicated 
truck at the depot or a customer node, which can occur at a 
different location.  

(3) Each truck is equipped with sufficient batteries for its dedicated 
drone. As the battery replacement operation is quick, the 
consumed time is neglectable in the model formulation. 

(4) Due to the research focus of this study, the impact of meteoro-
logical and external conditions on trucks and drones is ignored. 
Consequently, the truck and drone maintain a constant speed, 
making the delivery time only related to travel distance.  

(5) The flight angle of a drone is assumed to be parallel to the steep 
road between the customers.  

(6) The required setup time before the launch and retrieval of drones 
is ignored, as it is extremely short in comparison to travel time. 

More formally, the GVRPD-SR can be regarded as a directed graph 
G = (N,A). In particular, N = N0 ∪ Nc is the node set, where N0 = {0,
n + 1} represents the depot and Nc={1,….,n} is the set of customers to 
be served. Each customer i ∈ Nc has qi ∈ ℝ+demand. Let A denote a set 
of all possible arcs connecting nodes. A travel distance dij ∈ ℝ+is asso-
ciated with each arc a = (i, j) ∈ A, which is calculated by the Euclidean 

distance. It is represented as dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d’2

ij + h2
ij

√

, where d′
ij denotes the 

horizontal distance and hij is the vertical distance (Rao et al., 2016). The 
road grade between any two customers is assumed to be the angle be-
tween dij and d′

ij. A fleet of homogenous trucks V= {1,…,m}with ca-
pacity Qt ∈ N+is dispatched, each equipped with a single drone with 
capacity Qt ∈ N+. Table 2 defines the notations required to formulate a 
mixed integer programming (MIP) model of the GVRPD-SR. 

3.2. Calculation of energy consumption 

3.2.1. Energy consumption model for trucks 
Since the energy consumption of a truck is associated with the 

physical calculation of the power demand for moving a point of mass, 
the mechanical power formulation presented in (Bektaş and Laporte, 
2011) is used as follows. 

PT = mt⋅g⋅sinα⋅vt + croll⋅mt⋅g⋅cosα⋅vt +
a⋅cair

2⋅103⋅At⋅v3
t +

nacc⋅0.504
2⋅103⋅3.6

⋅mt⋅ν3
t (1)  

where mt is the truck mass (ton), g is the gravitational constant (m/s2), α 
represents the road grade, croll is the rolling resistance coefficient, a is the 
air density (kg/m3), cair denotes the aerodynamical drag coefficient, At is 
the vehicle frontal surface area (m2), and vt and νt are vehicle speed (m/s 

Table 2 
Required notations for the GVRPD-SR model.  

Sets  

V Set of homogeneous trucks V = {1, 2,…, e}, which is indexed by v 
N Set of all nodes N = {0, 1,…, n + 1}, where 0 and n + 1 denote the 

starting and ending depots, respectively 
Nc Set of customers Nc = {1, 2,…, n}
Nd Set of departing nodes Nd = N\{n + 1} = {0, 1,…, n}
Na Set of arriving nodes Na = N\{0} = {1,…, n, n + 1}
F Set of the possible path for drones, (i, j, k) ∈ F, i ∈ Nd , 

j ∈ {Nc : j ∕= i},k ∈
{

Na : k ∕= j, k ∕= i, cdijk ≤ E, qj ≤ Qd

}

Parameters  
qi Demand of customer i ∈ Nc 

Qt Maximum load capacity of the truck 
Qd Maximum load capacity of the drone 
capb Maximum battery endurance of the drone 
Πt

ij Time required for a truck to travel from node i ∈ Nd to node j ∈ Na 

Πd
ij Time required for a drone to travel from node i ∈ Nd to node j ∈ Na 

Πd
h Time required for a drone to fly vertically at h altitude 

ctvij Energy consumption for truck v ∈ V to travel from node i ∈ Nd to 
node j ∈ Na 

cdijk Energy consumption for a drone to travel the path (i, j, k) ∈ F 
M An infinite value 
Decision 

variables  
xv

ij Binary variable, with 1 indicating truck v ∈ V travels from node i ∈
Nd to node j ∈ Na, and 0 otherwise 

yv
ijk Binary variable, with 1 indicating the drone on truck v ∈ V is 

launched from node i ∈ Nd, and then serves to node j ∈ Nc, finally 
rendezvous to truck v or the ending depot at node k ∈ Na, and 
0 otherwise 

wv
ij Integer variable, the load of truck v ∈ V from node i ∈ Nd to node 

j ∈ Na 

τt
vi Nonnegative continuous variable, the arrival time of truck v ∈ V at 

node i ∈ N 
τd

vi Nonnegative continuous variable, the arrival time of the drone on 
truck v ∈ V at node i ∈ N 

μv
i Integer variable, the order of node i ∈ N in the path of truck v ∈ V 

ρv
ij Binary variable, with 1 indicating truck v ∈ V serves node i ∈ N 

before node j ∈ N, and 0 otherwise  
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and km/h, respectively). 
The energy consumption model proposed by Kirschstein & Meisel 

(Kirschstein and Meisel, 2015) is adopted, shown in Eq.(2), 

F(mt, d, νt,α) =
d
νt

(

f idle +
f full − f idle

ϛ⋅P
max

(
PT(mt, d, νt,α), 0

)
)

(2)  

where d is the travel distance (km); f idle and f full denote the fuel con-
sumption rates (L/h) in idle and full-throttle mode, respectively; P is the 
engine power (kW); The transmission efficiency function ϛ is set to ϛ =

0.9 − 0.72⋅e− 0.077⋅ν1.41
t . Eq. (3) is used to convert the energy consumption 

of trucks to a similar order of magnitude as that of drones as follows, 

E(mt, d, νt,α) = F(mt, d, νt,α)⋅NHVDiesel (3)  

where NHVDiesel is the net heating value (kWh/L). 
Accordingly, the energy consumption of truck v for arc (i, j) can be 

calculated as Eq. (4), 

ctv
ij
= E

(
mt + wv

ij
, dij, νt, αij

)
(4) 

Fig. 2. Flight patterns of a drone.  

Fig. 3. Drone trips affected by steep roads.  
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3.2.2. Energy consumption model for drones 
For a drone, the model presented in Langelaan et al. (Langelaan 

et al., 2017) is adopted to figure out the energy consumption of its de-
livery process. The power required to overcome the air drag of body and 
rotors, lift, climb, and supply internal auxiliaries is computed by Eq. (5), 

where a and g are the air density (kg/m3) and gravitational constant (m/ 
s2), respectively; Ad denotes the drone frontal surface area (m2), vd is the 
flight speed (m/s), Vd is the blade tip speed (m/s), R represents the rotor 
disc area, σ is the rotor solidity ratio, cbd is the blade drag coefficient, K is 
an up-scaling factor, ω is the downwash coefficient, thrust T =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2

d ⋅g2 + D2
doby + 2⋅Dbody⋅md⋅g⋅sinα

√
(with Dbody = 1

2⋅a⋅v2
d ⋅Ad⋅cair), md is 

drone mass (kg), and α is the road grade. See Appendix A for more in-
formation on determining Vd, R, σ, cbd and ω. 

Fig. 2 depicts an illustration of the flying patterns of a drone. It is 
assumed that each flight begins with the drone flying vertically at an 
altitude of 150 m (i.e., h = 0.15). Then, the drone ascents, flies parallel 
to, or descents to the above of its dedicated truck or the serving customer 
at the same angle as road grade α, followed by a vertical landing. The 
energy demand of a drone for path < i, j, k > with load qj can be formally 
defined as  

where νd denotes flight speed (km/h); t is total time for path < i, j, 
k>, which is calculated by t = 4⋅h+dij+djk

νd 
(h); ηeng, ηtrans, and ηchar are en-

gine efficiency, transmission efficiency, and charging efficiency, 
respectively. 

3.2.3. Discussions 
The intuitive difference of the GVRPD-SR from existing VRPD models 

is to minimize the energy consumption of drones and trucks instead of 
operating costs or delivery makespan. More importantly, the energy 
consumption calculation of trucks and drones defined above compre-
hensively depends on the distance, load, speed, and steep road of 
traversing arcs(i, j). As a result, the GVRPD-SR is essentially represented 
as an asymmetric graph, whereas the VRPD is a symmetric one. In this 
sense, the route planning for trucks determined by the VRPD models 
may consume more energy. Regarding each drone, the route planning 
will be more sensitive to steep roads due to their limited battery 
endurance, leading to an increasing amount of computation time. As 
shown in Fig. 3, in the VRPD model, yellow customer nodes are deter-
mined to be the best choice for the drone to rendezvous and be launched 
on one trip. However, if GVRPD-SR follows the same delivery sequence 
as VRPD, drones will fly at a large angle uphill and a small angle 
downhill, consuming increased energy and perhaps even running out of 
battery on the way back. Consequently, the optimal rendezvous and 

launch nodes for the drone switch to the red customer nodes. In sum-
mary, the introduction of energy consumption in the GVRPD-SR model 
not only changes the objective but also makes the decision-making 
process more complicated. 

3.3. Mathematical formulation 

According to the above definitions and energy consumption model, a 
mathematical model for GVRPD-SR is formulated as follows. 

min
∑

v∈V

(
∑

i∈Nd

∑

j∈Nc

∑

k∈Na

cdijk⋅yv
ijk +

∑

i∈Nd

∑

j∈Na

ctv
ij⋅x

v
ij

)

(7)  

Subject to: 
∑

j∈Na

xv
0j ≤ 1∀v ∈ V (8)  

xv
0,n+1 = 0∀v ∈ V (9)  

∑

j∈Na

xv
0j =

∑

i∈Nd

xv
i,n+1∀v ∈ V (10)  

∑

i∈Nd

xv
ij =

∑

k∈Na

xv
jk∀v ∈ V, j ∈ Nc (11)  

∑

j∈Nc

∑

k∈Na

yv
ijk ≤ 1∀v ∈ V, i ∈ Nd (12)  

∑

i∈Nd

∑

j∈Nc

yv
ijk ≤ 1∀v ∈ V, k ∈ Na (13)  

∑

v∈V

∑

i∈Nd

xv
ij +
∑

v∈V

∑

i∈Nd

∑

k∈Na

yv
ijk = 1∀j ∈ Nc (14)  

2yv
ijk ≤

∑

h∈Nd

xv
hi +

∑

f∈Nc

xv
fk∀v ∈ V, i ∈ Nc, j ∈ Nc, k ∈ Na (15)  

yv
0jk ≤

∑

i∈Nd

xv
ik∀v ∈ V, j ∈ Nc, k ∈ Nc (16)  

cdijk ≤ capb +M⋅
(

1 − yv
ijk

)
∀v ∈ V, i ∈ Nd, j ∈ Nc, k ∈ Na (17)  

∑

j∈Nc

∑

k∈Na

yv
ijk⋅qj ≤ Qd∀v ∈ V, i ∈ Nd (18)  

PD = Pbody + Protor + κ⋅Plift + Pclimb + Pint

=

(
1
2
⋅a⋅v3

d⋅Ad⋅cair + ρ⋅R⋅V3
d

(

1 + 2⋅
(

vd

Vd

)2
)

σ⋅cbd

8
+ K⋅ω⋅T + md⋅g⋅vd⋅sinα

)/

1000 + Pint (5)   

cdijk
(
qj
)
=

1
ηeng⋅ηtrans⋅ηchar

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⃒
⃒PD(md + qj, vd,±90◦) ⃒⃒⋅

h
νd

+
⃒
⃒PD(md + qj, vd,αij

) ⃒
⃒⋅

dij

νd

+
⃒
⃒PD(md, vd,±90◦

)
⃒
⃒⋅

h
νd

+
⃒
⃒PD(md, vd, αjk

) ⃒
⃒⋅

djk

νd

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
1

ηchar

(
Pint⋅t

)
, (6)   
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wv
0j ≥ − Qt⋅

(
1 − xv

0j

)
+
∑

h∈Na

(
∑

i∈Nd

xv
ih⋅qh

)

+
∑

i∈Nc

(
∑

j∈Nc

∑

k∈Na

yv
ijk⋅qj

)

∀v ∈ V, j

∈ Nc

(19)  

wv
0j ≤ Qt⋅

(
1 − xv

0j

)
+
∑

h∈Na

(
∑

i∈Nd

xv
ih⋅qh

)

+
∑

i∈Nc

(
∑

j∈Nc

∑

k∈Na

yv
ijk⋅qj

)

∀v ∈ V, j ∈ Nc

(20)  

wv
ij ≥ − Qt⋅

(
2 − xv

fi − xv
ij

)
+

(

wv
fi − qi −

∑

j∈Nc

∑

k∈Na

yv
ijk⋅qj

)

∀v ∈ V, i ∈ Nc, j

∈ Nc, f ∈ Nd

(21)  

wv
ij ≤ Qt⋅

(
2 − xv

fi − xv
ij

)
+

(

wv
fi − qi −

∑

j∈Nc

∑

k∈Na

yv
ijk⋅qj

)

∀v ∈ V, i ∈ Nc, j ∈ Nc, f

∈ Nd

(22)  

wv
i,n+1 = 0∀v ∈ V, i ∈ Nd (23)  

τt
v0 = 0∀v ∈ V (24)  

τd
v0 = 0∀v ∈ V (25)  

τt
vh +Πt

hk ≤ τt
vk +M⋅

(
1 − xv

hk

)
∀v ∈ V, h ∈ Nd, k ∈ Na (26)  

τt
vh +Πt

hk ≥ τt
vk − M⋅

(
1 − xv

hk

)
∀v ∈ V, h ∈ Nd, k ∈ Na (27)  

τd
vi +Πd

ij + 2⋅Πd
h ≤ τd

vj +M⋅

(

1 −
∑

k∈Na

yv
ijk

)

∀v ∈ V, i ∈ Nd, j ∈ Nc (28)  

τd
vi +Πd

ij + 2⋅Πd
h ≥ τd

vj − M⋅

(

1 −
∑

k∈Na

yv
ijk

)

∀v ∈ V, i ∈ Nd, j ∈ Nc (29)  

τd
vj +Πd

jk + 2⋅Πd
h ≤ τd

vk +M⋅

(

1 −
∑

i∈Nd

yv
ijk

)

∀v ∈ V, j ∈ Nc, k ∈ Na (30)  

τd
vj +Πd

jk + 2⋅Πd
h ≥ τd

vk − M⋅

(

1 −
∑

i∈Nd

yv
ijk

)

∀v ∈ V, j ∈ Nc, k ∈ Na (31)  

τt
vi − M⋅

(

1 −
∑

j∈Nc

∑

k∈Na

yv
ijk

)

− M⋅
∑

f∈Nd

∑

h∈Nc

yv
fhi ≤ τd

vi∀v ∈ V, i ∈ Nc (32)  

τt
vi +M⋅

(

1 −
∑

j∈Nc

∑

k∈Na

yv
ijk

)

+M⋅
∑

f∈Nd

∑

h∈Nc

yv
fhi ≥ τd

vi∀v ∈ V, i ∈ Nc (33)  

τt
vk − τt

vi − M⋅

(

1 −
∑

j∈Nc

yv
ijk

)

≤ τd
vk − τd

vi∀v ∈ V, i ∈ Nd, k ∈ Na (34)  

τd
vf ≥ τd

vk − M⋅

(

3 −
∑

j∈Nc

yv
ijk −

∑

o∈Nc

∑

n∈Na

yv
fon − ρv

if

)

∀v ∈ V, i ∈ Nd, k ∈ Nc, f ∈ Nc

(35)  

μv
j − μv

i ≥ 1 − (n + 2)⋅
(

1 − xv
ij

)
∀v ∈ V, i ∈ Nd, j ∈ Na (36)  

μv
k − μv

i ≥ 1 − (n + 2)⋅

(

1 −
∑

j∈Nc

yv
ijk

)

∀v ∈ V, i ∈ Nd, k ∈ Na (37)  

μv
j − μv

i ≥ 1 − (n + 2)⋅
(

1 − ρv
ij

)
∀v ∈ V, i ∈ Nc, j ∈ Nc (38)  

μv
j − μv

i ≤ − 1+(n + 2)⋅ρv
ij∀v ∈ V, i ∈ Nc, j ∈ Nc (39)  

ρv
oj =

∑

i∈Nd

xv
ij∀v ∈ V, j ∈ Na (40)  

0 ≤ wv
ij ≤ Qt∀v ∈ V, i ∈ Nd, j ∈ Na (41)  

τt
vi ≥ 0∀v ∈ V, i ∈ N (42)  

τd
vi ≥ 0∀v ∈ V, i ∈ N (43)  

1 ≤ μv
i ≤ n+ 2, μv

i ∈ Z+∀v ∈ V, i ∈ N (44)  

xv
ij ∈ {0, 1}∀v ∈ V, i ∈ Nd, j ∈ Na (45)  

yv
ijk ∈ {0, 1}∀v ∈ V, i ∈ Nd, j ∈ Nc, k ∈ Na (46)  

ρv
ij ∈ {0, 1}∀v ∈ V, i ∈ N, j ∈ N (47) 

The objective function (7) minimizes the total energy consumption of 
serving all customers, including the energy consumption of trucks and 
drones. Constraint (8) restricts all trucks to leave the depot at most once. 
Constraint (9) indicates that all trucks are prohibited from traveling 
between depots. Trucks departing the depot must return to the depot, as 
given by Constraint (10). The flow conservation constraints for the truck 
are defined in Constraint (11). A drone can be launched and rendez-
voused at most once at each node, as shown in constraints (12)-(13). 
Constraint (14) guarantees that each customer must be served once. 
Constraint (15) makes sure that if the drone on truck v is launched at 
node i and rendezvous with it at node j, then i and j must be visited by 
truck v. Constraint (16) is a special case of Constraint (15) when the 
drone is launched from the depot. Constraint (17) states that each trip of 
the drone cannot exceed its endurance power. The capacity constraint 
for a drone is given in Constraint (18). Constraints (19)-(23) calculate 
the load of truck v for each arc (i, j). Constraints (24)-(25) initialize the 
times for the truck and drone at the beginning of each route. Constraints 
(26)-(27) are used to calculate the arrival time of trucks, and Constraints 
(28)-(31) are used for drones. It is worth noting that if successively 
perform rendezvous operation for the drone’s previous trip and launch 
operation for the drone’s new trip at customer node i, the launch time of 
the drone can be calculated by Constraints (30)-(31). It is independent of 
the arrival time of the dedicated truck, as the truck is residing at 
customer node i. Otherwise, when only the launch operation for a drone 
trip is performed at the customer node, the launch time of the drone 
needs to be synchronized with its truck. The time synchronization be-
tween the truck and its dedicated drone is defined in Constraints (32)- 
(33). Constraint (34) imposes that the drone cannot arrive before its 
dedicated truck. Constraint (35) prevents the drone from launching 
while it is flying. Specifically, the drone is allowed to be newly launched 
only if the launch time of the drone at another customer node f is later 
than its previous rendezvous time at customer node k. This is considered 
by the order in which the truck visits nodes i and f (i.e., ρv

if = 1), if the 
drone is launched from node i and rendezvoused at node k. Constraints 
(36)-(37) work as subtour eliminations for trucks and drones, respec-
tively. Constraints (38)-(40) determine the value of ρv

ij to ensure that the 
truck does not visit the same route in a different direction, which affect 
Constraint (35) that needs the customer visit sequence. Constraints (41)- 
(47) define the values of decision variables. 

4. A metaheuristic algorithm for the GVRPD-SR 

This section introduces the details of the IALNS algorithm. The 
standard ALNS framework was first designed by Ropke and Pisinger 
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(Ropke and Pisinger, 2006), a variant of Large Neighbor Search. It can 
iteratively improve the given initial solution through several removal 
and insertion operators as well as a simulated annealing (SA) acceptance 
function. One removal and one insertion operator performed at each 
iteration are statistically selected from all operators based on their 
previous search performance. The pseudo-code for the IALNS algorithm 
is shown in Algorithm 1.  

More specifically, an initial solution is first constructed and regarded 
as the current solution S, followed by S being stored as the best solution 
S*. Meanwhile, iterations are bundled into segments (lines 1–3). 
Regarding S, a removal operator and an insertion operator are selected 
using a roulette-wheel mechanism, and they are then performed to 
generate a new solution S’ (lines 5–6). f(S) represents the objective value 
of S. Following the updating of a parameter T, the acceptance of S’ is 
determined by a probability function based on the idea of SA to prevent 
getting trapped prematurely in a local optimum (lines 7–9). Then, the 
optimal solution S* and its related record parameter noImpv are both 
updated (lines 10–14). If a predefined number of consecutive iterations 
has passed without any improvement, S* is assigned to S (lines 15–17). 
Using the adaptive weight adjustment mechanism proposed by Ropke 
and Pisinger (Ropke and Pisinger, 2006), the scores of the performed 
removal operator and insertion operator are updated based on the 
quality of S’, and a parameter seg is also updated (lines 18–19). Note that 
the weights of each operator used for the roulette-wheel mechanism 
should be updated at the end of each segment (lines 20–22). The 
aforementioned steps are repeated until a specified maximum iteration 
Genmax is reached, after which the optimal solution obtained is output. 

Compared to the standard ALNS framework, the proposed IALNS 
algorithm is tailored and improved based on the characteristics of the 
GVRPD-SR in the following aspects: 1) As the use of drones to assist with 
delivery tasks is one of the prominent features of the GVRPD-SR, a 
heuristic initialization strategy that first determines primary truck 
routes followed by iteratively adjusting to obtain drone sub-routes is 
designed. 2) The presence of steep roads is another prominent feature of 
the GVRPD-SR. Therefore, on the one hand, several classic and powerful 
operators of the standard ALNS algorithm are modified by incorporating 
road grades into operating criteria. On the other hand, a new removal 
operator and two insertion operators are proposed, with a dominant 
consideration of steep road impacts. 

4.1. Initial solution 

An initial solution is constructed with a heuristic strategy consisting 
of three phases. Beginning with a classification for all customers, those 
that can solely be served by trucks are merged into a set Dt. The 
remaining customers are formed into a set Dd, which can be served by 
not only trucks but also drones. Then, Clarke and Wright savings algo-
rithm (Clarke and Wright, 1964) is applied to generate feasible routes 
for Dt. Specifically, each customer in Dt is independently connected with 
the depot to form a total of |Dt| initial routes. Let f(⋅) denote the total 
energy consumption of a route, Δfi,j denote the saving in energy con-
sumption incurred by merging a route (si0) ending with customer i and 
another route (s0j) starting with customer j, which can be calculated by 
Δfi,j = f(si0) + f

(
s0j
)
− f
(
sij
)
. The feasible merge operation with 

maximum Δfi,j is implemented at each iteration, and the procedure 
terminates when it is no longer possible to merge routes. Thereafter, the 
unvisited customers are inserted into the present routes one by one with 
a greedy heuristic, or a new truck route is created separately. At each 
iteration, a customer is randomly selected from Dd, and the increased 
energy consumption of all possible insertion positions is determined 
respecting the capacity constraints, including inserting it into the truck 
routes or constructing a new sub-route for the drone. After performing 
the insertion operation with a minimum increased value, this customer 
is removed from Dd. 

4.2. Removal operators 

The purpose of removal operators is to diversify the solution space 
exploration by randomly removing varying number of customers from 
the current solution. On the one hand, if the number of removed cus-
tomers is too small, it is difficult for the algorithm to escape the local 
optimum. On the other hand, if too much part of the solution is 
destroyed, the subsequent insertion procedure will struggle to recon-
struct a high-quality solution. Therefore, the number of customers χ to 
be removed is calculated by Eq. (48), 

χ = min(max(ψmin, κ⋅|NC| ),ψmax ) (48)  

where ψmin and ψmax are the lower and upper bounds for the number of 
customers to be removed, respectively; κ is responsible for ensuring that 
χ is appropriate for different scales of instances. 

Five removal operators are presented below, four of which are 
tailored versions of the powerful operators suggested by Ropke and 
Pisinger (Ropke and Pisinger, 2006) based on the specifics of the prob-
lem setting, and the fifth of which is a new one. It is worth noting that 
drone sub-routes will become invalid when their launch or rendezvous 
nodes are removed. Furthermore, the launch and rendezvous of a drone 
can both take place at the same customer node. Thus, the removal of 
such special truck customers is accompanied by the removal of two extra 
drone customers. After the removal procedure is completed, there may 
be one or two removed customers more than the specified number χ. 

4.2.1. Random removal 
This operator iteratively removes random customers from the cur-

rent solution until χ customers have been removed, which is beneficial 
to increasing the search diversity. Notice that it is required to determine 
whether any drone customers are also removed when removing the 
truck customer. 

4.2.2. Worst removal 
It attempts to remove truck customers with higher energy con-

sumption. The removal cost for each customer is the difference between 
the total energy consumption of the route and the removal of the 
customer after. A truck customer with ⌊yp|L| ⌋th highest cost is selected to 
remove, where y is a random number within [0, 1], and p is set to 6. This 
operator also needs to determine whether any drone customers are also 
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removed when removing the truck customer. The procedure is repeated 
until χ customers have been removed. 

4.2.3. Shaw removal 
It is designed to remove a set of customers that are similar to each 

other with respect to several criteria. For the customers i and j, the 
relatedness Rij, comprehensively considering the aspects of distance, 
steep road, demand, and route, is calculated as follows, 

Rij = ϕ1dij +ϕ2

⃒
⃒sinαij

⃒
⃒+ϕ3

⃒
⃒qi − qj

⃒
⃒+ϕ4lij (49)  

where lij = 0 if i and j are on the same route, and 1 otherwise; ϕ1, ϕ2, ϕ3 
and ϕ4 that add up to 1 denote the preference weights for these four 
criteria, respectively. Moreover, their values are normalized using the 
max–min method before calculating Rij. A lower value of Rij indicates a 
higher relatedness. 

The procedure of this operator is described as follows: a customer c is 
first randomly selected and added to the removal list, and the related-
ness between c and the remaining unremoved customers is calculated. In 
accordance with the non-decreasing order of the relatedness value, the 
selection strategy introduced by Section 4.2.2 is used to determine the 
next customer to be removed. It is necessary to determine whether any 
drone customers also need to be added to the removal list when adding 
the truck customer. This procedure is repeated until the number of re-
movals reaches χ. 

4.2.4. Cluster removal 
In this operator, customer removal is performed in the area around a 

random focal customer while considering the steep roads between cus-
tomers. First, a random customer is selected and removed from the 
current solution, which is regarded as the focal customer. Then, cus-
tomers are removed one by one until χ customers have been removed. In 
each step, one of the two customers closest to the focal customer is 
randomly selected as the next customer to be removed. The closeness 
between i and j depends on 

⃒
⃒sinαij

⃒
⃒. Furthermore, the cluster removal 

operator employs the same selection strategy as the worst removal 
operator. Notice that it is required to determine whether any drone 
customers are also removed when removing the truck customer. 

4.2.5. Partial-route removal 
Inspired by the cluster removal operator, a partial-route removal 

operator is designed in this study. It starts with a random route and then 
divides the customers on this route into two (roughly) equal groups. 
With the random selection of one group, customers within this group are 
removed based on the sequence of truck visits. A special case in which 
the latest removal group is empty may happen. It will trigger the random 
selection of an undestroyed truck route as the next route to be destroyed. 
The aforementioned steps of equal grouping, random selection, and 
sequential removal steps are carried out again. Regarding normal cases, 
a truck customer is first chosen from the latest removed group at 
random. Subsequently, one of the two truck customers closest to the 
customer is selected with equal probability, excluding the truck cus-
tomers whose routes have been destroyed. The route visiting the 
selected customer is the next route to be destroyed. Distinguished from 
the steps of the special case, the group to be removed is determined by 
the distances between each of the two newly separated groups and the 
latest removal group, with the smaller one being selected. The distance 
is measured by the minimum distance between two groups of customers. 
The above process is repeated until χ customers have been removed. 
Notice that it is required to determine whether any drone customers are 
also removed when removing the truck customer. Algorithm 2 outlines 
the pseudo-code for this operator.  

4.3. Insertion operators 

Six insertion operators consisting of four tailored operators and two 
new operators are presented, with the goal of reinserting all removed 
customers (denoted as set Ω) into the current partial solution to obtain a 
new feasible solution. Specially, Ωd is defined as a subset of Ω consisting 
of truck-only customers (no launch and rendezvous) whose demands are 
within the capacity of a drone. 

4.3.1. Basic greedy insertion 
This insertion operator consists of the following two phases: 1) 

reinserts all removed customers into the existing partial solution as truck 
visits; 2) attempts to service some customers with drones instead of 
trucks. 

In the first phase, the customers in Ω are randomly selected one by 
one and then inserted into the partial solution at the best position, based 
on the principle of least energy consumption. The second phase begins 
with random selection of a customer c from Ωd. The changes in energy 
consumption of all feasible sub-routes using a drone to serve c are 
calculated, choosing the best sub-route with the maximum positive 
reduction. The procedure for the second phase is terminated if all cus-
tomers in Ωd have been attempted. 

4.3.2. Deep greedy insertion 
Distinguished from the preceding operator, a customer to be per-

formed insertion is chosen greedily as opposed to randomly in each 
iteration. In the first phase, the customers in Ω are sorted with ascending 
order according to their minimum insertion energy consumption. The 
corresponding optimal insertion position for the first customer is per-
formed, followed by removing this customer from Ω. Regarding the 
second phase, the operations described in Section 4.2.2 are utilized to 
select a customer from Ωd. Subsequently, the selected customer is served 
by a drone using the same method as presented in Section 4.3.1. The 
procedure for the second phase is terminated if all customers in Ωd have 
been attempted. 

4.3.3. Regret insertion 
Regret-k operator is developed to avoid the myopic nature of the 

greedy insertion by incorporating look-ahead information when 
choosing the customer to be inserted. Specifically, let Δfm

i denote the 
change in energy consumption by inserting customer i into its mth 

greenest route at the best position. In each iteration, the customer i* to 
be inserted is determined by argmax

i∈Ω

∑k
g=2Δfig − Δfi1. In this study, a 

regret-4 operator is used as the truck-insertion operator for customers in 
Ω, i.e., only considering truck services, followed by performing the 
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second phase of the basic greedy insertion in Section 4.3.1. Notice that if 
the number of routes that some customers can be inserted into is less 
than four, then they can be inserted into the route with the fewest 
customers. 

4.3.4. Closest insertion 
In this operator, a customer i is randomly selected from Ω, and then 

the truck route visiting its closest customer is considered as the target 
insertion route. All feasible insertion positions for customer i using the 
truck or drone service are determined, and the optimal one is performed. 
If customer i has any feasible insertion position on the chosen route, it 
will be still retained in Ω. After all customers in Ω have been attempted, 
the first phase of the basic greedy insertion in Section 4.3.1 is adopted to 
deal with the remaining customers. 

4.3.5. Nearby-I insertion 
The nearby-I insertion operator is designed as one novel special 

variant of the operator described in Section 4.3.4. to enhance diversity. 
The differences are rendered on the first phase. On the one hand, the 
target insertion route is extended to multiple truck routes that visit the 
first 30 % of customers closest to the selected customer, based on the 
ascending sorting of distance. On the other hand, the calculation of 
insertion energy consumption is perturbed by a factor ε ∈ [0.8, 1.2]. 

4.3.6. Nearby-II insertion 
Likewise, this new operator is also extended from the operator 

described in Section 4.3.4. Distinguished from the nearby-I insertion 
operator, it takes into consideration not only distance but also steepness 
difference between two nodes. Specifically, the target insertion routes 
are filtrated through two steps. Firstly, the first half of customers closest 
to the selected customer are retained based on the ascending sorting of 
distance. Following that, these customers are re-sorted in ascending 
order by the absolute value of the steepness difference, and the routes 
that visit the first 70 % of customers are regarded as the target insertion 
routes. 

5. Computational experiments 

All experiments are coded in MATLAB, and the run environment is a 
PC with an Intel (R) Core 2.80 GHz processor, 24-GB RAM, and a 64-bits 
Windows 10 operating system. 

5.1. Benchmark instances 

Since the GVRPD-SR is a new variant of the VRPD, there is no dataset 
available yet in the literature. Hence, a new benchmark is generated 
based on that of Sacramento et al. (Sacramento et al., 2019). Appendix B 
describes the principle for generating instances. Each instance is named 
“n. d. m. h”, where n is the number of customers, d represents the 
dimension of the grid, m is the generic name of the scenarios with 
different coordinates and demands, and h refers to the generic name of 
the altitude scenarios. 

5.2. Parameters settings 

To ensure a fair comparison, the main parameters of the IALNS al-
gorithm are closely followed to the optimal parameter settings for the 
benchmark algorithm ALNS (Sacramento et al., 2019). The termination 
condition of both is the maximum number of iterations, whose value is 
determined by extensive trial-run experiments. Additionally, to prevent 
a too low temperature for small instances, the initial temperature for 
these instances is adjusted such that a solution that is 35 % worse than 
the current solution has a 50 % chance of being accepted. Table 3 
summarizes the parameter settings for both algorithms. See Appendix C 
for the parameter values of the GVRPD-SR model. 

5.3. Performance of the IALNS algorithm 

5.3.1. Analysis of operators 
To discuss the computational performance of each operator, the 

analysis method of Chen et al. (2021) is adopted on the results obtained 
from all instances. Let %IBest be the percentage of iterations where a 
new feasible solution is superior to the current best solution, whereas % 

Table 3 
Parameters of the IALNS and ALNS.  

Parameter Description IALNS ALNS 

noImpvMax Non-improvement limit 50 50 
Genmax Iteration limit 1000 1000 
T0 Initial temperature factor 0.5056/0.004 0.0044/0.0004 
κ Degree of destruction 0.15 0.15 
γ Reaction factor 0.90 0.90 
τmin/τmax Lower / Upper bound of removable nodes (1, 3) / 40 (1, 3) / 40 
β1,β2,β3 Weight adjustment parameters {33, 9, 13} {33, 9, 13} 
ϕ1 ,ϕ2 ,ϕ3,ϕ4 Shaw removal parameters {0.45, 0.3, 0.15, 0.1}   

Table 4 
Relative performance of each operator (%IBest / %Usage).  

Operators Number of customers Avg. 

6 10 12 50 100 150 

Removal        
Random 0.0041 0.0079 0.0094 0.0390 0.0441 0.0425  0.0245 
Worst 0.0044 0.0098 0.0108 0.0379 0.0534 0.0537  0.0283 
Cluster 0.0093 0.0167 0.0151 0.0908 0.1058 0.1219  0.0599 
Shaw 0.0087 0.0173 0.0224 0.0649 0.1028 0.1060  0.0537 
Partial-route 0.0039 0.0069 0.0080 0.0415 0.0508 0.0611  0.0287 
Insertion        
Basic greedy 0.0103 0.0146 0.0127 0.0409 0.0556 0.0637  0.0329 
Deep greedy 0.0087 0.0128 0.0128 0.0344 0.0449 0.0544  0.0280 
Regret-4 0.0041 0.0080 0.0092 0.0308 0.0238 0.0215  0.0162 
Closest 0.0056 0.0159 0.0181 0.0983 0.1045 0.0953  0.0563 
Nearby-I 0.0058 0.0080 0.0074 0.0176 0.0293 0.0286  0.0161 
Nearby-II 0.0015 0.0145 0.0239 0.0847 0.1220 0.1317  0.0630  
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Usage represents the percentage of total iterations where a removal / 
insertion operator is used. A metric %IBest / %Usage can be used to 
measure which operators are likely to get new best solutions. 

The experimental results are displayed in Table 4. For removal op-
erators, the cluster operator and shaw operator, as well as the designed 
partial-route operator, are the ones that are conducive to finding the 
new best solutions. In contrast, the other two operators are more 
responsible for solution diversity. With respect to insertion operators, 
the nearby-II insertion contributes the most to generating the new best 
solutions, while the nearby-I insertion and regret-4 insertion contribute 
more to solution diversity. To this end, the three operators designed 
based on features of the GVRPD-SR perform admirably and are effective 
components of the IALNS algorithm. 

5.3.2. Experiments with small-scale instances 
In this section, the results of IALNS algorithm are compared with 

those of the commercial software CPLEX to evaluate its solution quality 
as well as algorithmic efficiency. Considering the computational 
complexity of the GVRPD-SR, only 36 small-scale instances are tested to 
ensure that CPLEX can run the mathematical model to optimality within 
an acceptable time. The maximum execution time for CPLEX is set at 
7200 s. 

The obtained results are detailed in Table 5. The second and third 
columns provide information about the optimal solutions (zCPLEX

best ) ob-
tained from CPLEX and its running time (tCPLEX). Similarly, the next 
three columns show the results of IALNS algorithm, including the best 
value (zIALNS

best ), the average value (zIALNS
avg ), together with the required 

running time (tIALNS). The final two columns present the gap between the 

best (Δzbest) and average (Δzavg) values of IALNS algorithm and the 
optimal solution obtained from CPLEX, which can be computed as in 
Eqs. (50)-(51). 

Δzbest =

(
zIALNS

best − zCPLEX
best

zCPLEX
best

)

× 100% (50)  

Δzavg =

(zIALNS
avg − zCPLEX

best

zCPLEX
best

)

× 100% (51) 

From Table 5, it can be observed that IALNS algorithm can always 
find optimal solutions of equivalent quality to CPLEX and even a supe-
rior solution in 12.10.2.b. Moreover, the average value of IALNS algo-
rithm is consistent with the optimal solution of CPLEX in 18 instances, 
better in 12.10.2.b, and only slightly inferior in the remaining instances. 
These demonstrate that IALNS algorithm not only can solve all small- 
scale GVRPD-SR problems to optimality but also has desirable stability. 

Regarding the running time, CPLEX shows a slight advantage just in 
instances with 6 customers. With the increasing number of customers, 
CPLEX becomes more time-consuming to obtain the optimal solutions, 
whereas IALNS algorithm only spends a small amount of running time. 
More specifically, IALNS algorithm obtains optimal solutions for all in-
stances in a couple of seconds to dozens of seconds. On the contrary, the 
running time of CPLEX to solve certain instances is up to hours. There-
fore, IALNS algorithm has excellent solution efficiency in solving the 
small-scale GVRPD-SR problem. 

5.3.3. Experiments with large-scale instances 
This section aims to evaluate the effectiveness of the IALNS algo-

rithm in large-scale instances by comparing it with the powerful ALNS. 

Table 5 
Experiment results of CPLEX and IALNS for small-scale instances.  

Instances CPLEX IALNS Gap 
zCPLEX

best tCPLEX zIALNS
best zIALNS

avg tIALNS Δzbest Δzavg 

6.10.1.a  6.4452  3.69  6.4452  6.4672  3.71  0.00 %  0.34 % 
6.10.1.b  4.1907  2.05  4.1907  4.2098  2.45  0.00 %  0.46 % 
6.10.1.c  7.9463  0.89  7.9463  7.9463  2.80  0.00 %  0.00 % 
6.10.2.a  8.6190  3.81  8.6190  8.6190  5.49  0.00 %  0.00 % 
6.10.2.b  6.7436  1.78  6.7436  6.7436  1.91  0.00 %  0.00 % 
6.10.2.c  10.5351  0.84  10.5351  10.5351  1.47  0.00 %  0.00 % 
6.20.1.a  9.5469  5.7  9.5469  9.5469  2.50  0.00 %  0.00 % 
6.20.1.b  10.2856  1.61  10.2856  10.2856  1.72  0.00 %  0.00 % 
6.20.1.c  8.4072  4.22  8.4072  8.4072  1.88  0.00 %  0.00 % 
6.20.2.a  8.6407  2.66  8.6407  8.6407  2.38  0.00 %  0.00 % 
6.20.2.b  9.0723  1.78  9.0723  9.0723  3.19  0.00 %  0.00 % 
6.20.2.c  9.5480  4.88  9.5480  9.5818  17.22  0.00 %  0.35 % 
10.10.1.a  10.7392  25.52  10.7392  10.7392  4.72  0.00 %  0.00 % 
10.10.1.b  10.0960  439.25  10.0960  10.1620  3.62  0.00 %  0.65 % 
10.10.1.c  7.6807  72.3  7.6807  7.7567  11.90  0.00 %  0.99 % 
10.10.2.a  9.6332  2334.92  9.6332  9.6746  36.13  0.00 %  0.43 % 
10.10.2.b  8.7486  36.83  8.7486  8.7486  6.22  0.00 %  0.00 % 
10.10.2.c  12.3669  1060.09  12.3669  12.3669  11.09  0.00 %  0.00 % 
10.20.1.a  10.9534  2522.13  10.9534  10.9534  6.61  0.00 %  0.00 % 
10.20.1.b  12.4877  184.89  12.4877  12.5668  14.51  0.00 %  0.63 % 
10.20.1.c  11.5737  316.39  11.5737  11.5943  6.20  0.00 %  0.18 % 
10.20.2.a  14.3125  343.76  14.3125  14.4153  13.35  0.00 %  0.72 % 
10.20.2.b  12.5798  1322.66  12.5798  12.6951  5.98  0.00 %  0.92 % 
10.20.2.c  12.7199  2288.78  12.7199  12.7841  18.71  0.00 %  0.50 % 
12.10.1.a  10.2212  815.02  10.2212  10.3304  8.99  0.00 %  1.07 % 
12.10.1.b  13.4241  3606.88  13.4241  13.5367  13.42  0.00 %  0.84 % 
12.10.1.c  15.3611  479.33  15.3611  15.3799  37.50  0.00 %  0.12 % 
12.10.2.a  10.9683  609.06  10.9683  10.9683  15.71  0.00 %  0.00 % 
12.10.2.b  12.4110  7200.00  11.7504  11.7717  6.22  ¡5.32 %  ¡5.15 % 
12.10.2.c  12.0164  1284.53  12.0164  12.0218  7.54  0.00 %  0.04 % 
12.20.1.a  19.4571  697.99  19.4571  19.5241  9.15  0.00 %  0.34 % 
12.20.1.b  14.3305  649.55  14.3305  14.3305  17.52  0.00 %  0.00 % 
12.20.1.c  18.4419  111.53  18.4419  18.4419  4.18  0.00 %  0.00 % 
12.20.2.a  14.7331  261.31  14.7331  14.7331  9.86  0.00 %  0.00 % 
12.20.2.b  16.7330  905.75  16.7330  16.9612  26.57  0.00 %  1.36 % 
12.20.2.c  16.9098  180.94  16.9098  16.9098  3.96  0.00 %  0.00 % 

Note: Bold types denote significantly better results. 
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Table 6 lists the results obtained by both algorithms for solving the 
GVRPD-SR model. zIALNS

best , zIALNS
avg , and stdIALNS represent the best value, 

average value, and standard deviation obtained by the IALNS algorithm, 
respectively. Similarly, ALNS also has the corresponding three values, i. 
e., zALNS

best , zALNS
avg , and stdALNS. Furthermore, Δzbest and Δzavg show the gap 

between both the best and average objective values of the two algo-
rithms, which can be computed using the method described in Section 
5.3.2. Since ALNS is regarded as the benchmark, a negative value in 

Δzbest or Δzavg means that IALNS algorithm is superior. 
It can be seen in Table 6, IALNS algorithm leads the competition in 

33 instances, while ALNS algorithm merely gets slight advantages in the 
rest three. The reason may be that the proposed IALNS algorithm is 
equipped with several specific operators for dealing with steep roads, 
rendering its search process more effective. Regarding stability, ALNS 
algorithm works better than IALNS algorithm overall, especially with 50 
customers. With the increasing number of customers, IALNS algorithm 

Table 6 
Experiment results of IALNS and ALNS for larger-size instances.  

Instances IALNS ALNS Gap 
zIALNS

best zIALNS
avg stdIALNS zALNS

best zALNS
avg stdALNS Δzbest Δzavg 

50.30.1.a  51.84  55.80  2.74  52.95  56.41  1.41  ¡2.09 %  ¡1.07 % 
50.30.1.b  54.90  58.01  2.07  56.40  58.75  1.30  ¡2.65 %  ¡1.26 % 
50.30.1.c  56.81  60.28  2.17  58.22  61.36  1.62  ¡2.42 %  ¡1.77 % 
50.30.2.a  52.77  56.42  2.16  52.84  57.00  2.01  ¡0.13 %  ¡1.01 % 
50.30.2.b  52.77  54.36  1.06  52.25  54.12  1.22  0.99 %  0.44 % 
50.30.2.c  57.24  59.72  1.39  58.55  60.15  1.69  ¡2.24 %  ¡0.72 % 
50.40.1.a  60.38  64.55  2.43  65.94  68.16  1.48  ¡8.43 %  ¡5.29 % 
50.40.1.b  63.64  65.72  2.46  64.67  68.39  1.53  ¡1.60 %  ¡3.91 % 
50.40.1.c  63.51  65.28  1.26  63.00  64.83  1.90  0.82 %  0.70 % 
50.40.2.a  61.67  64.43  2.48  60.98  63.64  1.27  1.13 %  1.24 % 
50.40.2.b  70.12  71.82  1.17  71.00  72.79  0.85  ¡1.24 %  ¡1.33 % 
50.40.2.c  66.94  67.72  0.78  66.97  67.91  0.61  ¡0.05 %  ¡0.28 % 
100.30.1.a  109.45  114.58  3.92  111.08  115.33  3.82  ¡1.47 %  ¡0.65 % 
100.30.1.b  113.61  116.57  1.95  118.38  124.75  3.16  ¡4.03 %  ¡6.56 % 
100.30.1.c  103.46  109.66  3.41  106.89  111.02  2.21  ¡3.21 %  ¡1.23 % 
100.30.2.a  112.68  114.77  1.40  116.83  120.51  2.46  ¡3.56 %  ¡4.76 % 
100.30.2.b  102.86  106.19  2.55  108.95  111.54  3.05  ¡5.59 %  ¡4.80 % 
100.30.2.c  121.37  123.48  1.23  122.68  124.54  1.80  ¡1.06 %  ¡0.85 % 
100.40.1.a  119.77  122.67  2.34  122.86  125.53  1.68  ¡2.52 %  ¡2.28 % 
100.40.1.b  113.51  118.12  3.03  117.95  124.93  3.84  ¡3.76 %  ¡5.44 % 
100.40.1.c  111.34  114.55  2.23  113.94  117.31  1.91  ¡2.28 %  ¡2.36 % 
100.40.2.a  119.98  123.44  2.37  120.90  124.53  2.61  ¡0.76 %  ¡0.87 % 
100.40.2.b  113.15  116.88  2.54  114.57  120.25  3.82  ¡1.24 %  ¡2.80 % 
100.40.2.c  111.25  114.98  2.96  112.77  117.21  2.71  ¡1.35 %  ¡1.90 % 
150.30.1.a  153.01  156.93  2.95  157.40  166.63  5.83  ¡2.79 %  ¡5.82 % 
150.30.1.b  161.12  165.18  2.56  163.55  171.72  3.73  ¡1.49 %  ¡3.81 % 
150.30.1.c  163.06  173.27  4.97  175.70  179.64  2.02  ¡7.20 %  ¡3.54 % 
150.30.2.a  165.86  170.72  3.08  166.99  176.28  6.14  ¡0.67 %  ¡3.15 % 
150.30.2.b  206.77  212.81  4.34  213.14  215.93  2.43  ¡2.99 %  ¡1.45 % 
150.30.2.c  153.20  160.52  4.22  161.11  170.56  4.29  ¡4.91 %  ¡5.88 % 
150.40.1.a  154.53  158.31  2.58  157.76  160.23  2.13  ¡2.05 %  ¡1.20 % 
150.40.1.b  170.70  176.94  3.52  178.28  185.18  4.96  ¡4.25 %  ¡4.45 % 
150.40.1.c  191.29  195.69  2.82  199.34  203.24  3.07  ¡4.04 %  ¡3.72 % 
150.40.2.a  174.18  181.40  5.10  177.23  183.18  4.99  ¡1.72 %  ¡0.97 % 
150.40.2.b  181.15  188.33  4.52  185.98  192.14  4.32  ¡2.60 %  ¡1.98 % 
150.40.2.c  182.97  188.68  2.59  187.68  191.09  2.03  ¡2.51 %  ¡1.26 % 

Note: Bold types denote significantly better results. 

Fig. 4. (a) Detailed results obtained by the GVRP-SR, GVRPD, and GVRPD-SR models. (b) Energy saving percentage of the GVRPD-SR with respect to the GVRP-SR 
and GVRPD. 
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can perform more stably than ALNS in some instances. 

5.4. Feasibility of the GVRPD-SR 

From the perspective of operations research, the GVRPD-SR in-
tegrates the classic VRPD and the VRP-SR models, with the objective 
function shifting from commercial purposes to minimizing energy con-
sumption. Thus, the GVRPD-SR is compared with GVRPD and GVRP-SR 
on six instances to confirm its feasibility. Specifically, the GVRP-SR 
employs a pure fleet of conventional fuel trucks, and the energy con-
sumption calculation for each truck mirrors that of the GVRPD-SR. Other 
formulations of the GVRP-SR can be referred to in the classic VRP-SR 
(Brunner et al., 2021). For the GVRPD, a fleet of trucks, each equip-
ped with a drone, is dispatched for delivery tasks. Distinguished from the 

GVRPD-SR, the GVRPD adopts the energy consumption calculations for 
trucks and drones in the GVRPD-SR, but with the road grade set to 0. 
Consequently, the delivery operations for the drone are changed corre-
spondingly, ascending vertically to a certain height, flying horizontally, 
and then descending vertically to the customer node. The delivery op-
erations for trucks and the synchronization for trucks and drones remain 
consistent with those in the GVRPD-SR. In addition, the instances 
contain between 6 and 150 customers distributed in areas from 20 × 20 
miles to 40 × 40 miles, with t = 3 and h = a. Fig. 4(a) intuitively presents 
the decomposed objectives obtained by the GVRPD-SR, GVRPD, and 
GVRP-SR models, and the energy savings of the GVRPD-SR with respect 
to the GVRP-SR and GVRPD are shown in Fig. 4(b). 

The results of the GVRPD-SR and GVRP-SR are firstly analyzed. It can 
be observed from Fig. 4(a) that the energy consumption of GVRPD-SR is 

Fig. 5. (a) Decomposed objective of the three instances under each altitude scenario. (b) Percentage change in energy consumption under each altitude scenario 
compared to the baseline. 

Fig. 6. The optimal solution under each altitude scenario with 50 customers.  
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significantly lower than that of GVRP-SR in terms of trucks (see GVRPD- 
SR_t and GVRP-SR_t). Meanwhile, the difference grows as the number of 
customers increases. The explanation is that drones are preferable to 
trucks for delivering parcels on steep roads as their energy consumption 
is not of a similar order of magnitude. Consequently, as the broken line 

obtained by GVRPD-SR (see GVRPD-SR_cr) indicated that, a certain 
percentage of customers will be served by drones when drones are in-
tegrated into the rural last-mile logistic network. Furthermore, Fig. 4(b) 
shows that the cooperative delivery of trucks and drones in rural areas 
can reduce the total energy consumption by around 27 % − 36 % 

Fig. 7. Detailed results of the three instances under varied endurance power.  

Fig. 8. Detailed results for customers of all sizes under each payload capacity.  
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compared to a pure truck fleet, demonstrating the benefits of using 
drones. 

For the comparison of GVRPD-SR (see GVRPD-SR_t and GVRPD- 
SR_d) and GVRPD (see GVRPD_t and GVRPD_d), the cumulative bars 
of Fig. 4(a) show that the optimal planned route will consume more 
energy when the impact of steep roads is ignored. The reason is evident 
from the two broken lines, i.e., the customer served ratio of drones in the 
GVRPD is considerably lower than that of the GVRPD-SR (see GVRPD- 
SR_cr and GVRPD_cr). On the other hand, Fig. 4(b) depicts the con-
crete percentage of energy savings between the GVRPD-SR and the 
GVRPD. In both small-scale and large-scale instances, the energy-saving 
advantage of GVRPD-SR becomes more prominent as the number of 
customers increases, with the highest energy savings reaching 52.04 %. 
As a result, it is necessary for a routing planning model to take into 
account the impacts of various practical factors. 

5.5. Managerial discussions 

The main components that constitute the GVRPD-SR are the presence 
of steep roads during the rural last-mile delivery and the use of drones to 
assist with the delivery tasks. Therefore, several critical parameters 
related to the two aspects are selected for sensitivity analysis to derive 
valuable management insights. The adopted instances are “50. 30. 4. a”, 
“100. 30. 4. a”, and “150. 30. 4. a”, respectively. 

5.5.1. Sensitivity analysis on altitude difference 
As explained in Appendix B, ξ is used to adjust the varying altitudes 

between customers so as to depict the delivery scenario with steep roads. 
To explore the exogenous impact of rural terrain, the maximum value of 
ξ is altered based on the set {200, 300, 500, 600}, with ξ = (0,400)
regarded as a baseline. 

Fig. 5(a) illustrates the decomposed objective of three instances 
under each altitude scenario. It can be seen that both trucks and drones 
have an apparent increasing trend in terms of energy consumption when 
carrying out delivery tasks on steep roads, as opposed to relatively flat 
roads. In addition, Fig. 6 illustrates the specific routes of trucks and 
drones to serve 50 customers in different altitude scenarios. From the 
ratios of customers served by drones in Fig. 5(a) and Fig. 6, drones 
deliver parcels to a portion of customers, but trucks remain the main 
force for last-mile delivery. The reason lies in some technical boundaries 
of drones, such as their limited endurance power and payload capacity. 
These limitations also result in the need for drones to be launched and 
rendezvoused more frequently as the altitude difference increases, as 
shown in Fig. 6. 

Fig. 5(b) shows the changes in the total energy consumption of the 
four altitude scenarios with respect to the baseline. As seen from Fig. 5 
(b), the energy consumption is highly sensitive to road grades, high-
lighting the importance for a route planning model to take into account 
the impact of steep roads. Meanwhile, as seen from the cumulative bars 

of ξ = (0,200) and ξ = (0, 600), their average percent changes in total 
energy consumption are 16.12 % and 18.03 %, respectively. Specif-
ically, in the scenario with ξ = (0, 600), the change exceeds 17 % for all 
three instances. In summary, the cooperative delivery of trucks and 
drones is an excellent suggestion for the rural last-mile, especially in 
areas with more mountainous terrain. 

5.5.2. Sensitivity analysis on endurance power 
The maximum endurance power of each drone is set at 1.5 kWh in 

Section 5.2. In actual applications, if the maximum endurance power is 
reduced, the reduced battery weight can be utilized to carry heavier 
parcels instead. On the other hand, with the progressive development of 
technology, it is possible for drones to carry heavier batteries to improve 
their endurance without sacrificing their payload capacity. Hence, this 
section investigates how endurance power affects the performance of 
trucks and drones for cooperative delivery in rural areas. 

As seen from Fig. 7, the energy consumption of trucks and drones 
does not go down as the endurance power of drones increases. The total 
energy consumption of each instance peaks when the endurance power 
reaches 2.1 kWh. Conversely, scenarios with an endurance power of 0.9 
kWh have the lowest energy consumption. In addition, the ratio of 
customers served by drones at other higher endurance power levels is 
mostly cut down compared to that at endurance power of 0.9 kWh. 
These results are unexpected but explainable. On the one hand, a 
decreased level of endurance power contributes to this result as it 
loosens the payload capacity restriction for drones. On the other hand, 
these levels of endurance power may be adequate for most trips by each 
drone since only one customer is served at a time in this study. Conse-
quently, when the endurance power is set to 0.9 kWh, drones can serve 
more customers due to their increased capacity, leading to a reduction in 
total energy consumption. When the endurance power substantially 
increases but the capacity reduces, drones are inclined to be dispatched 
to serve remote customers due to their superior endurance power, 
whereas trucks can serve more customers nearby during drone services 
with a greater customer ratio. Moreover, drones will consume more 
energy because of their longer travel distance and relatively heavier self- 
weight, dominantly contributing to a small increase in total energy 
consumption. The above analysis may facilitate enterprises tradeoffs 
between endurance power and payload capacity based on different 
scenarios. 

5.5.3. Sensitivity analysis on payload capacity 
The payload capacity of a drone is set to 10 kg in the main config-

uration. Nonetheless, drones are expected to carry heavier parcels in the 
future as their hardware keeps improving. This increase is conducive to 
the expansion of drones’ service scope. Hence, the effect of different 
payload capacities on route planning is studied. 

It can be observed from Fig. 8 that as the payload capacity of drones 
increases, the total energy consumption gradually decreases while the 
proportion of drone service grows. This result can be explained by the 
change in travel distance of trucks and drones listed in Table 7. The 
increased travel distance of drones means that total energy consumption 
is reduced by using more drone services to reduce truck detours or avoid 
traveling on some steeper roads for trucks. It can also be seen from Fig. 8 
that the too-small payload capacity of a drone will inhibit the advan-
tages of cooperative delivery of trucks and drones. On the contrary, the 
change in the two indicators becomes slow when the payload capacity 
exceeds 10 kg. This is because the median demand of customers is set to 
10 kg in all generated instances. If this parameter is set larger, the 
change may be more obvious. Considering that the deployment cost of 
drones is expensive, these findings indicate that enterprises should make 
informed decisions about which kind of drones they use after thoroughly 
surveying customer demands. 

Table 7 
Traveled distance of the three instances under different payload capacities.   

Payload capacity Number of customers 
50 100 150 

Distt
Distd 

1 kg 138.40 227.99 338.01 
6.36 29.52 12.89 

5 kg 98.74 177.09 255.19 
108.22 133.99 155.48 

10 kg 82.83 133.18 180.33 
167.99 209.39 297.28 

25 kg 80.73 126.71 183.75 
192.94 220.65 316.15 

40 kg 80.73 126.71 171.27 
192.94 220.65 355.21 

Note: Distt and Distd denote the total travel distance of trucks and drones, 
respectively. 
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6. Conclusions 

In this study, a new GVRPD-SR model is proposed to explore the 
prospect of cooperation between trucks and drones for rural last-mile 
delivery with steep roads. The mathematical formulation of the 
GVRPD-SR model is extended based on the basic constraints of VRPD 
models, with the objective to minimize the total energy consumption of 
the delivery process. Besides, realistic energy consumption calculations 
for trucks and drones are incorporated into the GVRPD-SR model. They 
not only consider the impact of general factors but also the impact of a 
representative feature of rural areas (i.e., abounding steep roads). As the 
solution approach for the GVRPD-SR model, an ALNS-based algorithm 
(i.e., IALNS algorithm) is introduced, which includes several novel op-
erators designed based on the characteristics of the proposed problem. 

A systematic comparison experiment is conducted from three per-
spectives, i.e., the efficiency of the IALNS algorithm, the effectiveness of 
the GVRPD-SR model, and managerial discussion. First of all, the 
experimental results demonstrate that the IALNS algorithm achieves 
desirable performance to solve the GVRPD-SR model in instances of 
varied scales by comparing it with CPLEX and ALNS. Then, comparing 
the GVRPD-SR with the GVRP-SR model, the obtained results indicate 
that the advantages of cooperation between trucks and drones are 
remarkable in rural areas. On average, this cooperative delivery mode 
results in an impressive energy savings of 31.34 %. Besides, the com-
parison between the GVPRD-SR and GVRPD reveals that considering the 
effect of steep roads facilitates planning more environmentally friendly 
routes for managers. Finally, several managerial insights are extracted 
from the sensitivity analysis. (1) Road information is essential to plan-
ning logistics activities, and the cooperative delivery of trucks and 
drones is more promising for areas with more mountainous terrain. (2) It 
is suggested to select a suitable compromise of endurance power and 
payload capacity for drones based on the demands and location of 
customers. 

In future works, several aspects can be further explored based on the 
presented research. For instance, other settings, such as multiple drones, 
pickup and delivery, and allowing drones to visit multiple customers in a 
single flight, can be added to extend the model. Besides, the realistic 
dynamics of the delivery process can be taken into account, including 
weather conditions, unexpected truck failures, and the uncertain time 
window of customers. Finally, deep (reinforcement) learning and other 
heuristics can also be utilized to enhance algorithmic performance. 
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Table C1 
Parameters used in the GVRPD-SR model.  

Parameter Description Value 
truck drone 

g gravitational constant 
(

m/s2
)

9.81 

a air density 
(

kg/m3
)

1.225 

A frontal surface area 
(
m2) At = 6 Ad = 0.15 

m (without payload) tare weight (ton) mt = 2.5 md = 0.025 
P engine power (kW) 150 —— 
f idle fuel consumption (idle)(L/h) 1 —— 
ffull fuel consumption (full)(L/h) 25 —— 
NHVDiesel net heating value (kWh/L) 10 —— 
croll rolling resistance 0.008 —— 
cair air drag 0.65 0.5 
nacc frequency of acceleration 0 —— 
capb maximum endurance power (kWh) —— 1.5 
Pint power internal auxiliaries (kW) —— 0.1 
ηeng engine efficiency —— 0.9 
ηtrans transmission efficiency —— 0.9 
ηchar charging efficiency —— 0.9 
r rotor radius (m) —— 0.4 
nrotor number rotors —— 8 
nblades number blades —— 3 
c rotor mean chord —— 0.1 
cl blade lift —— 0.4 
cbd blade drag —— 0.075 
K lifting power markup —— 1.15 
ν speed (km/h) νt = 40 νd = 80 
Q Maximum load capacity (kg) Qt = 300 Qd = 10  
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Appendix A. Related parameters of drone energy consumption 

The energy required by the rotor to overcome air drag depends on the number and size of the rotor and other physical parameters. Let r denote the 
radius of the rotors and nrotor the number of rotors. The total area R over which the air flows on the rotors is calculated as 

R = π⋅r2⋅nrotor (A1) 

The speed of the blade tips Vd relies on the thrust to be exerted and the physical qualities of the blades. Let nblades denote the number of blades per 
rotor, c is the rotor mean chord, and cl represents the mean lift coefficient. Vd can be computed as 

Vd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6⋅md⋅g

nrotor⋅nblades⋅c⋅cl⋅ρ⋅r

√

(A2) 

In addition, the disc solidity ratio σ is defined as nblades ⋅c
π⋅r . The blade drag coefficient cbd is mainly determined by the airfoil and increases with the 

thrust coefficient and blade lift coefficient, which is set to 0.075. 
Finally, the downwash ω is determined by the following equation: 

T
2⋅ρ⋅R

= ω⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ω − νd⋅sinϑ)2
+ (νd⋅cosϑ)2

√

(A3)  

where ϑ is the angle of attack, which is calculated by ϑ = arctan
(
− Dbody − md ⋅g⋅sinα

md ⋅g⋅cosα

)
. 

Appendix B. Principles for generating benchmark instances 

The newly generated benchmark includes two distinct classes, i.e., small-scale and large-scale instances. The former involves 6, 10, or 12 cus-
tomers, while the latter comprises 50, 100, or 150 customers. These customers are randomly placed within a 2d × 2d square grid by a uniform dis-
tribution U( − d, d). Considering that the realistic rural environment is broad and covers a considerable region, d is set between {10, 20} for small-scale 
instances and {30, 40} for large-scale instances. In addition, the central depot in all instances is always located at coordinates (0, 0). 

In 2020, SF Technology launched an emergency drone delivery service capable of carrying up to 10 kg of parcels at a time. Moreover, UPS stated 
that the maximum load of a parcel transported by a truck is 68 kg. Following the above limits, let p be a random number ranging from [0, 1] to indicate 
potential scenarios for small parcel delivery with drones, and the demand (kg) of a customer is given by: 

qi =

{
qi ∈ U(0, 10) if p < 0.86
qi ∈ U(10, 68) otherwise (B1) 

Regarding the altitude for each customer, the Foxholes Shekel function to simulate 3-D terrain of Arshi et al. [44] is modified as follows: 

h(x, y) = ⌊ξ ×
∑n

i=1

C
(x − ai)

2
+ (y − bi)

2
+ c

⌋ (B2)  

where n is the total number of customers, and (ai, bi) represents the customer coordinate. C and c are both constants that alter the shape of terrains, 
with values of 2 and 3, respectively. Let 0 ≤ ξ ≤ 400 be a random number associated with the difference in the altitudes of customers. 

Appendix C. Parameter settings of the GVRPD-SR 

According to the recommendation of Kirschstein [45], all parameter settings of the GVRPD-SR model are summarized in Table C1. 

References 
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