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Machine Learning for Refining Knowledge Graphs: A Survey

BUDHITAMA SUBAGDJA, D. SHANTHOSHIGAA, ZHAOXIA WANG, and

AH-HWEE TAN, School of Computing and Information Systems, Singapore Management University,

Singapore, Singapore

Knowledge graph (KG) refinement refers to the process of filling in missing information, removing
redundancies, and resolving inconsistencies in KGs. With the growing popularity of KG in various domains,
many techniques involving machine learning have been applied, but there is no survey dedicated to machine
learning-based KG refinement yet. Based on a novel framework following the KG refinement process,
this article presents a survey of machine learning approaches to KG refinement according to the kind of
operations in KG refinement, the training datasets, mode of learning, and process multiplicity. Furthermore,
the survey aims to provide broad practical insights into the development of fully automated KG refinement.
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1 INTRODUCTION

Knowledge graphs (KG) have a rich expressive power to represent meanings and to enable com-
plex reasoning over the represented knowledge. By representing entities in a domain as nodes and
relations among the entities as directed edges, KGs have become the universal way to represent
meanings in general. For any given domain, constructing a KG in terms of entities and relations
commonly requires some ontologies, rules, or schemas to specify their semantics and meanings
within the scope of the corresponding subject matter [1, 44]. The specification helps to ensure that
the representation can be interpreted correctly, but still allows an automated reasoner to deduce
additional information in the right context. In practical cases, especially in engineering domains, a
KG may be used for multiple purposes, for example, supporting on-the-job training, augmenting in-
formation to relieve cognitive overload, and providing decision aids through question-answering
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interaction [142]. This may require semantics on concepts involving process, causality, laws of
physics, analogy, and many others that are relevant to the domain and its strategy of presentation.

Issues and challenges in constructing knowledge graphs. Despite the ontologies and rules,
KGs are always susceptible to errors and incompleteness during the initial stages of construction.
The origin of the issues may be human mistakes when a graph is manually curated or some flaws
in the algorithms or missing information in the data source for automated construction. After the
construction, the KG still needs to be refined to fill in missing information and rectify inaccura-
cies. KG refinement [84] is known to be the process that adds missing information, corrects errors,
and simplifies a graph by removing redundancies in an already existing pre-constructed KG. Some
literatures consider KG refinement to be the same as KG completion [48] or KG identification [88].
However, Paulheim takes the KG refinement to cover all kinds of update to the KG, including
completing missing information, detecting and correcting errors, and removing redundancies [84],
whereas KG completion and identification cover only the addition of missing information and the
identification of redundancies or errors, respectively. In this article, KG refinement refers to Paul-
heim’s definition of the process to add missing information, correct errors, and simplify the KG [84]
while KG completion is defined to be limited to the identification (or prediction) and addition of
missing information (e.g., link prediction, relation prediction, and attribute completion) excluding
the error correction or redundancy removal.

Traditional methods for refining knowledge graphs. Given the growing popularity of KGs
in many domains, such as engineering [60, 129], biology [39], healthcare [67, 137], and social sci-
ences [91, 120], the sheer size of information and knowledge to represent demands automation.
This implies that the KG refinement requires the ability for a computer to complete missing in-
formation and correct mistakes on its own, with minimal or no human intervention. Traditional
methods for automating the refinement process may involve the use of logical reasoning to deduce
new information for completing or fixing the KGs [84]. In this case, powerful reasoning processes
are required with very rich ontologies, rules, or logical axioms specifying the plausible patterns of
contradiction, inconsistencies, and disjointing assertions among the entities in a KG [15, 72, 118].
However, as the graphs become very large with broad and deep material coverage, handcrafting
reasoning rules, and heuristics to anticipate all possible erroneously conditions may also become
enormously laborious and impractical [84]. To resolve this circular problem, one possible approach
is to automatically acquire some models from data which can be used as the knowledge for guiding
the process of refinement. The source of the data can be the KG itself, or can be from other sources,
such as alignments with its domain ontologies or other KGs in related domains [96].

Machine learning for refining knowledge graphs. With the above motivation, various ma-
chine learning techniques have been applied to acquire various kinds of models from KGs [42].
The learned models enable various automated refinement tasks and operations, including com-
pleting, correcting, and simplifying the graphs. The techniques may range from traditional ap-
proaches in learning symbolic rules for detecting errors or anomalies [28, 80] to the popular deep
learning methods that encode and process the KGs as neural networks [17, 42]. The learned mod-
els may also provide a more compact representation of the KGs, wherein the refinement process
can be conducted more efficiently. For example, various approaches to representation learning
have recently been applied to discover latent features in the graph. A low-dimensional vector
representation can be formed so that it can be processed more effectively by most current meth-
ods of machine learning, especially those involving contemporary deep learning techniques (e.g.,
[12, 40, 65, 102, 116, 123]). This embedding step to map the graph into low-dimensional vectors
representation becomes an important part of the process in most current KG refinement [133],
especially those involving machine learning.
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Machine learning for KG refinements can also be seen as composite, consisting of multiple ap-
proaches and learning techniques. Some refinement models have been regarded as autonomous
agents acting to improve a KG. Under the reinforcement learning paradigm, the main actions of
an agent are to explore, to complete, and to modify the graph such that the best way to refine the
graph can be learned based on reward feedback from the environment (e.g., [37, 59, 114, 124, 126]).
Here, the agent learns to improve a pre-constructed KG through exploration and trial-and-error,
while the KG may undergo refinement along the way. In this context, it is interesting to study
the mutual relationships between the process of learning how to refine the KG properly and the
change made to the KG as the intended result of the refinement itself.

Objectives and the distinction of the survey. This article presents a survey of machine learn-
ing techniques and models that are used to support the KG refinement process. The techniques are
categorized according to various factors, from the source of data for training, the learning paradigm
(e.g., supervised, unsupervised, semi-supervised, reinforcement learning), and the multiplicity of
the applied machine learning algorithms to the purposes of the outcome of the learning.

Although other surveys have reviewed different approaches to KG refinement and completion
in general (e.g., [17, 84]), only a few have looked specifically at the involvement of machine learn-
ing in the refinement processes [4, 42, 62, 75, 122]. Those with emphasis on machine learning
techniques in KG completion have mostly focused on representation learning and embedding tech-
niques as the essential element that enables most modern machine learning techniques to process
the graphs [4, 42, 62, 75]. On the other hand, some recent surveys with more comprehensive re-
views provide a broader view on KGs, including their construction and refinement [122], quality
management [127], and personalized interactions with humans [61]. However, they still consider
individual machine learning techniques for particular tasks in processing the graphs, regardless of
their roles in refining the pre-constructed KGs. In contrast, the survey in this article focuses on the
use of machine learning for various types of KG refinement tasks, which may include completion,
error correction, and graph simplification. In particular, the relationships between the knowledge
learned by the machine learning models and the desired changes in the KGs as the main objective
of the refinement will be investigated.

Based on our proposed KG refinement framework, a detailed account of how machine learning
is applied to the particular type of KG refinement is provided. These applications may include
combinations of different machine learning algorithms with different particular roles and interac-
tions along the entire process. Notably, the detailed account of machine learning techniques used
includes the emerging approaches of learning in this area, for example, reinforcement learning,
which are intended to lead to fully automatic KG refinement.

The main contributions of this article can be summarized as follows:

(1) A comprehensive overview of knowledge graph representation and refinement. This
survey introduces a broad technical overview related to the representation of KGs and the
refinement process. The graph representations, ranging from the basic representation of
nodes with edges to the latest emerging models of temporal knowledge, are introduced and
defined. The process of the KG refinement is also defined as consisting of basic operations
for analyzing and modifying an existing KG. These basic operations become the framework
for characterizing different learning algorithms in this article.

(2) A new taxonomy of machine learning models for the purpose of knowledge graph

refinement. This survey provides a new classification of machine learning models based on
the classical learning paradigms (namely supervised learning, unsupervised learning, semi-
supervised, and reinforcement learning) added together with some emerging types of learn-
ing techniques in the field of KGs (in particular representation learning). The taxonomy
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includes practical characterizations of machine learning based on the training data availabil-
ity (e.g., internal versus external to the initial KG, pre-trained models), particular roles in
the KG refinement, learning process configuration (e.g., inputs, labels, observation, actions,
reward feedbacks), and the possibility of continual refinement (e.g., offline learning, online
learning, and incremental learning). Those characteristics may reveal the relationship be-
tween a policy, model, or knowledge acquired by a learning system and the update made to
the KG as the result of the refinement process itself.

(3) Practical insights and consideration for applying machine learning in knowledge

graph refinement. Different types of machine learning, as laid out in the taxonomy, are
revisited with their particular roles in the basic operations of KG refinement. The following
factors are considered: (i) Which kind of machine learning models can really be beneficial
for a particular operation in the refinement? (ii) Are there still gaps in machine learning to
support certain kinds of refinement operations? (iii) Which operations may be less affected
by the lack of machine learning? These are discussed as practical considerations for applying
machine learning in KG refinement.

(4) Highlights and outlooks towards fully autonomous knowledge graph refinement.
A summary of the new categorization of machine learning and types of refinement opera-
tion is provided, with outlooks highlighting the future direction toward fully automated KG
refinement.

The rest of the article is organized as follows: The overview of concepts related to KG refine-
ment is provided in Section 2. Section 3 defines KG refinement as the term referring to the process
of completing, correcting, or simplifying a KG. The section also presents a framework for charac-
terizing the kind of operations involved in the refinement process. Section 4 provides an overview
of machine learning models with their possible use in KGs. The section also provides detailed ac-
counts of the survey on different machine learning models for KG refinement characterized based
on the framework laid out in the previous section. Section 5 discusses the potential of realizing
machine learning models in KG refinement and some gaps that still need to be filled by the current
model of machine learning. Section 6 concludes the article. The organization of the article is also
shown in Figure 1.

2 KNOWLEDGE GRAPHS

Graphs provide a way to assign meanings to a set of data. To express the meaning, entities of
interest are represented as nodes in the graph, with relationships as directed edges between them.
A KG is a graphic representation of knowledge that can express meaning or semantics. This section
describes KG representation more formally from the basic vertices and edges, graph types and how
they can be constructed. It also describes the main operations involved in KG refinement that may
need machine learning to function effectively.

2.1 Knowledge Graph Representation

A KG is commonly represented as a directed graph

G = (V,E), (1)

whereV is the set of the graph vertex and E is the set of edge that links the vertices. A directed
edge can be represented as a triple (h, r , t) ∈ E representing a relationship between two entities
inV , wherein h ∈ V , t ∈ V , and r ∈ R are the head vertex, tail vertex, and r as a distinct type of
relation that connects the head with the tail, respectively, wherein R is the set of possible relation
types of an edge in the graph. In a KG, a vertexv ∈ V represents an entity about a fact or a concept
in the world associated with a particular meaning. In that case, the graph can be heterogeneous and
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Fig. 1. Organization of the survey paper in sequential order: Section 1 Introduction; Section 2 Knowledge

Graph; Section 3 Knowledge Graph Refinement; Section 4 Machine Learning for Knowledge Graph Refine-

ment; Section 5 Open Challenges and Future Study; and Section 6 Conclusion. Each section/topic may have

subsections. The dashed arrows indicate content dependencies across sections.

the nodes and edges are enriched with additional information, such as labels, types, and attributes
to imbue them with semantics and meanings. Every node may have a distinct type. For example,
Vc ⊂ V represent the set of vertex in the graph with type c .

To compute the graph representation, an adjacency tensor M ∈ �|V |×|R |×|V | can be used to
represent the graph wherein a node corresponds to a row and to a column in a matrix in the tensor
M. Given thatmir j is a cell or an element at the ith row and jth column of an adjacency matrix of a
sub-graph with all edges only of type r in tensor M,mir j = 1 if ∃(i, r , j) ∈ E ormir j = 0 otherwise.

When the KG represents facts or states occurring in the real world, it may not be static over time.
Edges and their types, labels, or attributes in the graph may be changing. There is an emerging
field of temporal KGs attempting to extend the basic representation of KGs by imbuing additional
information about the time when particular edges hold true (e.g., [56, 106]). Approaches to KG re-
finement that use the extended temporal graph representation will be discussed in more detail later.

Although the adjacency matrix can still be used to express basic graphs for computation, with
possible extension to adjacency tensor to handle extra types, labels, or attributes as described
above, there is still a scalability issue when the number of nodes and relations is quite large. The
sparsity of the adjacency matrices and tensor demands high computation resources [17]. Another
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alternative representation is the Laplacian matrix, which summarizes important properties of the
graph by representing the degree of connectivity of the corresponding vertex with its neighbors.
In recent years, people have used KG embedding techniques to represent the graphs [115, 131].
Each entity and edge in the KG is translated into a vector of a low-dimension, producing a more
efficient and dense representation that preserves the graph structure and semantics to be used for
many different purposes. The survey in this article will discuss several types of embedding in more
detail later, as parts of the new category of representation learning.

2.2 Knowledge Graph Construction

Constructing a KG involves the extraction of entities and relations from some external sources
of data, such as natural language texts, web pages, and/or existing databases. Traditionally, the
construction process can be done manually by domain experts, who handcraft every entity (node)
and relation (edge) in the graph, together with their types, attributes, or labels [1]. Recent works
on KG construction have been oriented toward automating the process [44].

Domain discovery, wherein data on the Web or in other repositories are mined to extract the en-
tities and relations relevant to the domain or scope of the KG, can be regarded as the first stage in
the automated construction process. Focus crawling can be employed to identify relevant sources
of information (especially on the Web) to download for further analysis [44]. Based on the crawled
and downloaded data (mostly in natural language texts), the next stage of the construction process
is to extract the entity by identifying a token or a word referring to a name of a person, a location of
an organization, an event, or another type of named entity through named entity recognition

(NER) [2]. Further, the recognized entity goes through named entity disambiguation (NED)
and named entity linking (NEL) to resolve ambiguities and to assign semantics with identifier,
respectively [2]. Beside the entity extraction, relation extraction is intended to discover the seman-
tic relationships between the entities extracted from the source text or information [1, 44]. KG
construction is not in the scope of the review and will not be discussed further.

3 KNOWLEDGE GRAPH REFINEMENT

After a KG is constructed, it may contain incomplete, erroneous, and/or duplicated information.
For example, some triples may be incorrect, redundant, or missing, so that the KG needs to be
corrected, simplified, or completed, before they can be used in an application. The term KG refine-

ment [84] thus refers to the process to achieve those tasks. Other literatures have also used terms,
such as KG completion [48] or KG identification [88] to refer to the processes involved in KG re-
finement. However, they are mostly limited to the detection or identification of redundant entities
or incorrect information, without specifying how a graph can be updated. In KG completion, the
update of the graph may still be included but simply for addition of links or relations. This article
makes use a broader scope of refinement that may include updates on completion and correction
of the KG [84].

In contrast with KG construction, which may start from scratch and directly extract triples from
texts, KG refinement starts with an already existing KG to fix or to expand. Based on various litera-
ture and related surveys [17, 42, 48, 84], several basic operations included in the refinement process
can be identified according to the objective of the refinement tasks. Simplifying a KG requires a pro-
cess called instance matching to find redundant information or duplicate entities in the graph [48].
The process involves updating the KG by removing the unwanted excessive information and merg-
ing redundant entities or linking them together to remark their similarity [48, 84]. A process for
correcting errors needs to be conducted to identify and resolve possible incorrect or contradictory
information in the graph [84]. In KG completion, missing information can also be identified and
added through the process of completing missing relations to identify additional links establishing
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Fig. 2. A framework for knowledge graph refinement. The dashed lines indicate the dependency between

different operations.

new connections between nodes [17, 42, 84] and the process of completing types or attributes to
fill up relevant types or attributes to individual nodes or relations [84]. To enable the refinement
operations above, the KG needs to be represented in a form suitable for more efficient computing
and analysis especially when the graph is large. Encoding KGs can be considered as an essential
operation in the refinement process to encode the KG into a form suitable for more effective and
efficient processing. Various encoding methods have been applied from the basic adjacency matrix,
matrix Laplacian, to the recent graph embedding or latent space representation [17, 42, 48].

In this article, basic operations in KG refinement can be listed as follows: encoding KGs, cor-

recting errors, completing types and attributes, instance matching, and completing missing relations.
Each operation can be applied independently to address its own particular task objective. How-
ever, some or all of them may be combined to resolve the refinement task either sequentially or
in parallel together. Multiple operations may also work together cooperatively to learn and refine
the KG as described later in a section discussing reinforcement learning in KGs. Figure 2 shows the
operations involved in KG refinement. Two or more operations may be used together to support
each other in coming up with the overall tasks of refinement. For example, correcting errors can
be made to run independently to clean the KG from errors, but it may also be applied together
with instance matching to resolve redundancy and duplication from the KG. However, those down-
stream operations are mostly dependent on the result of the encoding KGs operation as it supports
many inferences or predictions related to the representation of features in the KG.

In the following sub-sections, the operations are described in more detail.

3.1 Encoding Knowledge Graphs

Processes in KG refinement involve inferences and reasoning to extract features and properties
of the graph representation relevant to identifying redundancies or missing information. Encod-

ing KGs is an operation that aims to represent the knowledge graph in a form supporting such
inferences to obtain the relevant properties of the graph. Traditional approaches typically encode
the graphs into adjacency matrices (tensors) or spectral graph Laplacian representation suitable
to compute the relevant node and graph properties, such as node degree (number of neighboring
nodes), node centrality (structural importance of the node), clustering coefficients (clustered neigh-
bors), the number of graphlet’s (sub-graph structure) occurrences, neighborhood overlap (node
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pairwise similarity), and optimal graph partitions [34]. Despite their potentials in providing useful
feature information and powerful heuristics for KG refinement, traditional methods of encoding
graphs with adjacency matrices and graph Laplacian are still inflexible. Extracting the relevant
graph features and properties still requires handcrafted domain specific statistics and measures.

In recent years, as modern machine learning techniques such as deep learning have been gain-
ing popularity, a lot of attention has been turned toward representation learning [6] including
its application for encoding KGs. Representation learning in KGs can learn representations that
encode the graphs’ properties and structural information as neural networks. In particular, KG
embeddings are types of encoding based on representational learning that express more meaning-
ful information about entities and relations as low-dimensional, real-value vectors in continuous
space. Representing them in a continuous vector space simplifies the operations involved to pro-
cess the information while preserving the structural information about the KGs by translating
elements of the triples into low-dimensional vectors. This can be useful for tasks, such as instance
matching and relation prediction, as the embedding representation can be applied to obtain a score
indicating the similarity between entities or the likelihood that a triple should exist in the graph.

More formally, this encoding operation can be defined as a pair of encoder-decoder function. The
encoder maps each node in the graph into a low-dimensional vector representation, which can be
defined as a function

Fenc : G →Md , (2)

where G andMd are the set of graph representation and d-dimensional encoded graph represen-
tation, respectively. A basic encoding operation with Fenc may result in an adjacency matrix or
tensor M ∈ Md . A decoder function Fdec : M×Md → F , on the other hand, must be configurable
to extract some useful features from the encoded representation, where M ⊆ Md be parts of the
encoded graph representation. For example, given the entire adjacency matrix of a graph as a pa-
rameter, a decoder Fdec may be made to return all nodes’ centrality of the graph as the returned
features. In representation learning, the encoder and decoder functions are trainable to produce a
representation and features suitable for the task at hand.

3.2 Correcting Errors

This operation identifies and fix errors in nodes or relations of the KG [84]. In this case, issues, such
as errors, inconsistencies, and contradictions, are searched and corrected within the attributes of
entities and relations. The main challenge in this error detection is to recognize incorrectness
within the graph.

More formally, let Ĝ = (V̂, Ê) be an ideal KG that contains all the correct facts in the world
without wrong or incorrect ones, where V̂ and Ê are the set of node and edge (triple), respectively.
Given graph G = (V,E) as the KG model to check. Let τ be a triple. The task of this operation is
to identify whether ∃τ ∈ E,τ ∈ Ê or τ � Ê. Accordingly, the head, relation, or tail element within
τ can then be either kept or removed.

Besides factual truths or correctness, detecting errors, such as inconsistencies or contradictions,
in the KG may require a powerful reasoning process with a rich ontology that defines what should
and should not be true in the real world [84]. For example, PROSPERA (PRospering knOwledge
with Scalability, PrEcision, and RecAll) has been made to cater to the ontological reasoning at
that level by determining the plausibility of a new axiom based on the ontology [72]. This kind
of reasoning needs disjoint axioms to state that a certain concept cannot be a member of two
different classes.

Machine learning techniques have been applied to enrich ontology or background knowledge to
support the reasoning about fallacies. A knowledge vault has been constructed using probabilistic
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methods to be used as a large-scale generic prior knowledge base supporting such reasoning [23].
Beside disjoint axioms, the prior knowledge can provide probabilistic information regarding the
correctness of a relation. Another approach uses statistical distribution of triples directly on the
graph to derive their correctness probability [86]. For a particular type of data, for instance, a nu-
merical attribute, the error detection can also be done by statistically analyzing the graph itself for
anomalies [119]. By looking at some deviations from common distributions, wrong or inconsis-
tent assignments to numerical attributes can be detected. Similarly, error detection of numerical
attributes can also be applied with probabilistic method, wherein a Bayesian learning is employed
to learn the distribution [58]. Machine learning has also been applied to acquire rules to detect
inconsistency in the entity attributes[66].

3.3 Completing Types and Attributes

This operation predicts and adds missing information as types or attributes of a node or a rela-
tion in the KG [84]. Predicting the types or attributes of an entity is commonly considered as a
classification problem in which the existing information about a node or entity is mapped into a
class or category indicating the type or group that share the same characteristics (to assign as new
attributes). More formally, given an ideal KG Ĝ = (V̂, Ê) containing all correct facts including the
types or attributes assigned to every vertex in it, let v ∈ V be a vertex in KG G = (V,E), where
V and E are vertices and edges (triples) in G, respectively. The task in this operation is to assign
v to be inVc ⊂ V if ∃ v̂ ∈ V̂, v̂ = v and v̂ ∈ Vc .

Traditionally, to infer the types of attributes that are unknown or missing, some entailment
rules can be used as heuristics to map relation types or values as contexts to possible types of
attributes [83]. This requires the rules to be complete and entirely correct. Although the heuristics
can be improved by considering the statistical distribution of in-going and out-going relations [83],
the approach is still domain-specific and may not be generalized to other domains. To tackle the
limitations of handcrafting rules or heuristics, machine learning can be applied to automatically
extract models and rules from data to fix the types and attributes in the KG.

To classify an entity (or relation), external sources of information, for example the Web, can be
used to predict the type. The interlinks between Wikipedia pages can be learned using k nearest

neighbors (k-NN) classifier to produce feature vectors to predict the type of an entity associated
with a Wikipedia page in the KG [79]. Similarly, k-NN can be used to learn the features of different
DBPedia language editions, so as to predict the missing types of the entity in the KG [82]. Others
apply similar approaches with DBPedia abstract [29].

On the other hand, when entities do not have any association with an external source of in-
formation, supervised machine learning can be applied to the KG. Given the entities (with their
representation of types and attributes) and the associated labels as types that come from the KG
itself, a supervised machine learning algorithm can be employed to learn a classifier to predict
the type given an input entity. A probabilistic method has been applied to acquire the conditional
probability of a node to have a particular type given the relations that are connected to it [85]. Sup-

port vector machines (SVM) has also been used to assign entity types in DBPedia and Freebase
based on the interlinks between KGs and the others’ properties to predict the type [97]. Others use
matrix factorization [77], association rule mining [83], and topic modeling [98] to predict entity
types based on co-occurrences of other data items or related documents.

3.4 Instance Matching

Instance matching [48] is the process of finding and clustering instances or concepts in the KG
to resolve them to be unique entities. This kind of operation has been known under many differ-
ent names such as entity resolution, deduplication, data linking, or entity reconciliation [30]. The
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important part of this operation is to find that two or more entities are similar enough to be consid-
ered the same instances, so that they can be linked or merged together as a single entity. An entity
can be duplicated by one or more other entities in the KG during construction, especially when the
sources of the triples extracted are different, made at different times, or in different contexts. The
duplicated entity may contain raw text attributes that may require some text processing to resolve,
but it may also contain structured attributes that may or may not be aligned with the schema of
the original one [71].

There are two main functions of instance matching: match function and merge function [8]. The
match function is to indicate whether two entities or instances are the same. More formally, given
nodev1 ∈ V and nodev2 ∈ V , match functionM(v1,v2) is true ifv1 andv2 are the same instance
(or false otherwise).M can be made to return a real value or made as fuzzy function returning a
positive normalized value indicating probability or confidence thatv1 and v2 are the same. On the
other hand, the merge function may link, group, or merge the duplicated entities together. Once
the nodes (v1,v2) are considered to be the same, a new entity that merges all attributes of v1 and
v2 can be created and inserted into the KG. Depending on which node is dominant, the merge
function may also be applied by removing either one of v1 or v2. In the linking data model of
instance matching (e.g., [10, 27, 51, 74]), a new link between v1 and v2 is established to explicitly
indicate that v1 and v2 are the same.

The basic model of instance matching traditionally uses the pairwise method to match the two
entities by exhaustively obtaining every pair in the graph to match [3]. However, with a much
larger KG, this pairwise method is considered inefficient. More recent models of instance matching
have employed two stages of matching process. Firstly, blocking is a process that clusters similar
entities using a lighter and less complex computation. Once blocking is done, a more rigorous
pairwise similarity matching process is conducted within the group of matching entities [8].

Instance matching has been applied using handcrafted rules constructed based on some heuris-
tics [3]. More recently, machine learning methods have been applied to realize the matching func-
tion [45–47, 78] either at the blocking stage, to rapidly group matching entities, or to more carefully
merge duplicated nodes. Some models have also applied deep learning models [26, 53, 71] based
on deep neural network architectures, which require the input data to be entirely vector repre-
sentations. This implies that deep-learning-based instance matching has a dependency with the
encoding KG operations to provide a low-dimensional vector representation for entities [26, 53, 71].

3.5 Completing Missing Relations

This operation aims to determine whether a relation exists between two entities of interest, given
the types of the entities and the other relations [17, 48, 84]. If the relation should exist but still non-
existent in the KG, then the task includes filling up the missing one. The problem to solve in this
case is to estimate the missing relations from triples. More formally, given an ideal KG Ĝ = (V̂, Ê)
containing all correct facts without the incorrect ones. Let (ĥ, r̂ , t̂) ∈ Ê be a triple in Ĝ. The task
of predicting relations is to determine whether (ĥ, r̂ , t̂) ∈ Ê or (ĥ, r̂ , t̂) � Ê given either element of
ĥ, r̂ , or t̂ is known. Let, G = (V,E) be the target graph to refine. If (ĥ, r̂ , t̂) ∈ Ê and ĥ, t̂ ∈ V but
(ĥ, r̂ , t̂) � E, then (ĥ, r̂ , t̂) should be added to G.

Traditional approaches to relation prediction uses pre-defined rules or statistical features to
deduce the relation. For example, NELL is a rule-based system that operates based on the ontology
of the KG to deduce new relations [15]. Similarly, KGRL uses inference rules to infer missing
information in the KG [118]. However, the rule-based methods require a large number of rules
and features to operate effectively.

Similar to completing types and attributes, relations in a KG can also be predicted using external
sources of information such as the content on the Web. For example, patterns of textual keywords
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and phrases in Wikipedia abstracts can be learned using conditional random fields (CRF) to
predict possible relations to different entities in a KG [55]. Using large text corpora from a particu-
lar source, such as Wikipedia, NER can be applied to link entities in the KG to the text corpus. Text
patterns in the corpus corresponding to relations types can be acquired, and the patterns can be
applied to predict additional relations from the text corpus [69]. When the KGs are interlinked with
each other, the links can be used to identify and fill in the missing relations in one KG based on the
information available in another one. This approach has been demonstrated using DBpedia, with
multiple versions of different languages [14]. The idea of interlinked KGs has also been extended
with probabilistic mapping between KGs that can be used to derive missing links in the KGs [25].

On the other hand, this operation can also be regarded as a classification task to predict the
existence of relations. Some learning mechanisms can be applied to predict possible relations using
the internal information of the KG itself. Meaningful chains of relations can be acquired for relation
prediction through a process such as association rule mining [52, 83]. Prediction of the relation can
also be improved by embedding the triples into vector representations to be processed further by
a neural network architecture. Embedding of models, for example RESCAL[76], Neural Tensor

Network (NTN) [99], and ComplEx [107] have been used for predicting relations based on the
other existing relations in the KG. Another embedding technique maps pairwise entity-relations
in Freebase into a lower dimensional space to predict the existence of relations [138].

Currently, various types of KG embeddings have been applied to predict relations. In recent
years, much attention has been turned toward graph embeddings with representation learning
especially with the advent of deep learning techniques in AI.

4 MACHINE LEARNING FOR KNOWLEDGE GRAPH REFINEMENT

4.1 Types of Machine Learning for Knowledge Graph

Machine learning is a process whereby a computer program constructs a model from data it has
observed in order to improve its performance [70, 90]. Learning can be characterized according to
the kind of improvements, the model it builds, and how the model contributes to the improvements.
In the context of KG refinement, the input data to explore and discover the model may come from
external sources, such as the Web and online databases [14, 23, 25, 29, 55, 69, 72, 79, 82]), but there
are also learning algorithms that take the KG itself or part of it as the input data for learning. This
also implies that the learning is conducted to explore the KG, which can be regarded as another
kind of model that was previously constructed, in order to improve the representation of the KG.

This article adopts the common categorization of machine learning for KG refinement with the
inclusion of a new type from the emerging topic of representation learning. The types of machine
learning are as follows:

— Supervised Learning. Supervised learning is a kind of learning process that acquires the map-
ping from input to output based on samples of pairs of input and output data. Given training
set T = {(i j ,oj )}

N
j=1 wherein oj = f (i j ), a supervised learning process constructs a hypothe-

sis function h ∈ H fromT as an approximation or a model of the actual function f (ground
truth). The result of supervised learning is usually applied for classification tasks wherein the
domain of output sample oj is a set of discrete classes or label C. Supervised learning may
also be applied for regression tasks wherein the domain of the output sample is continuous
or real oj ∈ �.

— Unsupervised Learning. In contrast to supervised learning, which approximates the model
based on list of pairs of input/output, unsupervised learning acquires the model based solely
on the input data, without any output label. Instead of classifying the input based on pre-
defined categories, the learning creates new categories or extracts new features for the given
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inputs without any label or output sample. Unsupervised learning is conducted based on
training set Tu = {i j }

N
j=1 consisting of only input data i j without any label or output sam-

ple. The common purpose of unsupervised learning is clustering, wherein instances in the
training set are separated into k clusters or groups.

— Semi-supervised Learning. This can be viewed as a type of learning between unsupervised
and supervised learning. It is applied to learn the model when the labeled data are limited
while the unlabeled ones may be abundant so that they are combined to come up with the
best of both worlds. Supervised learning can be conducted firstly based on a few labeled
samples followed by the use of the model to mine additional information from a larger set
of unlabeled data [140]. This approach is related to the recent growing popularity of pre-
trained models, especially for deep learning wherein a pre-trained model can be fine-tuned
with unlabeled domain-related data instead of training it from scratch.

— Reinforcement Learning. In this type of learning, the instance of the machine learning pro-
gram is considered as an agent residing in and interacting with an environment and receiv-
ing rewards at certain points to reflect how well it performs [90, 103]. The agent then learns
to select the best action to take when it senses a certain environmental state, such that it
will gain the maximum cumulative reward in the long run. An agent under Markov De-

cision Process (MDP) must take action a ∈ A when observing state s ∈ S according to
policy π such that a ← π (s), and it will receive reward r ∈ � (can be positive or negative)
while arriving at another state s ′ ∈ S. In policy-based reinforcement learning, the policy
can be parameterized with θ to return a conditional probability of action a, given s and θ as
π (a |s,θ ). The learning is to adjust θ to maximize its cumulative reward. In value-based rein-
forcement learning, such as Q-learning [117], the agent learns action-value function Q(s,a)
so that the policy becomes π (s) = arg maxaQ(s,a). Both policy-based and value-based rein-
forcement learning can also be combined in an actor-critic model wherein one module learns
in a value-based manner to guide (or criticize) the update of θ in the other module employing
policy-based learning.

— Representation Learning. In this survey, representation learning is considered to be a distinct
type of machine learning although it is similar to unsupervised learning wherein it learns
from training data without labels. Representation learning encodes each instance data into
a low-dimensional feature vector or matrix in order to obtain more useful information for
further reasoning or learning tasks [6]. A neural network is enabled to learn the encoded
vector representation so that similar input data get nearby points in the learned vector hy-
perspace [68]. The result of the learning (e.g., a language model in a neural network) can be
used for prediction tasks.

4.2 Knowledge Graph Refinement with Machine Learning

Based on the framework of KG refinement as laid out in the previous section, different machine
learning techniques can also be characterized according to the related operations for KG refine-
ment. Figure 3 shows a taxonomy structure for characterizing machine learning to support KG
refinement. The figure reflects the characteristics of different types of machine learning, accord-
ing to the basic operations of refinement presented in this section.

4.2.1 Supervised Learning in Knowledge Graph Refinement. In KG refinement, supervised learn-
ing is applicable to most types of operations. The training data can be parts or components of a KG,
but the labels are usually provided from an external source or through manual input. Supervised
learning may also be employed as the mode in representation learning for node classification and
link prediction, with positive labels based on existing nodes or relations in the graph and some
randomly generated contrastive data for negative samples.
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Fig. 3. A taxonomy of machine learning for knowledge graph refinement.

Supervised Learning in Correcting Errors. Very few KG error detection processes apply super-
vised learning, since the need for disjoint axioms may complicate the labeling and make it costly.
Supervised learning has been used to train a probabilistic classifier in a knowledge vault model [23].
In this type of model, the input data for the learning is a triple from external sources, such as Free-
Base. To automate the inclusion of disjoint axioms, the label is generated based on locally closed-

world assumption heuristic to judge whether a triple is correct or wrong. The triple can also be
assigned a probability value indicating to what degree it is right or wrong.

Supervised Learning in Completing Types and Attributes. Since predicting attributes and types
of an entity can be considered as classification problem, it is straightforward to apply supervised
learning for this kind of task. The k-NN classification learning has been applied to learn an entity
in DBPedia interlinked with other Wikipedia pages to predict the type of the associated entity in
a KG [79]. Typically, the k-NN algorithm is used to classify DBPedia entities based on the closest
training examples in the labeled feature space of the training samples. Although k-NN was origi-
nally a clustering algorithm, the attached label in the input feature makes it a supervised learning
one. The labels used in the identified case were derived from DBPedia ontology, such as place,
person, organization, and activity. The labeled features can then be expressed as feature vectors
wherein distances among different entities can be used to predict missing types in the graph. Sim-
ilar approaches to using supervised k-NN model have also been adopted to learn entities from
DBPedia language editions [82] and DBPedia abstract [29]. Another similar approach uses SVM to
learn to predict missing entity types based on the links between different KGs when multiple KGs
are involved [97].

Supervised Learning in Instance Matching. In instance matching, supervised learning has been
applied to train classification systems to determine whether two different entities should belong
together [9, 101] based on the similarity between the nodes’ attributes and text features using learn-
ing algorithms, such as SVM, Bayesian learning, and Multi-layer Perceptron (Neural Network). The
input data to the supervised learning model is the similarity representation of the pair of entities
with a binary label indicating if the two entities in the pair should be considered as the same thing
or as different entities. Recent approaches of instance matching involving deep learning models
still also employ similar methods to train classifiers to predict if two entities are belong together in
a supervised manner [26, 53, 71]. The difference is that the similarity measures can be directly ob-
tained through the embedding vector of the entities. Supervised learning has also been applied for
entity classification tasks, which can be considered as an important part of the instance-matching
operation, by leveraging embedding representation such as GNN to include both content based
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semantic and structural similarity [21, 36, 50, 125]. In this case, multiple types of representation
learning and supervised learning are combined.

Supervised Learning in Completing Missing Relations. Similar to the completion of types and at-
tributes, completing missing relations can also be regarded as a classification task to predict the
existence of relations. Some traditional methods use external sources of information or other KGs
as training examples for relations or triples within the KG. For example, iPopulator completes the
infobox display in Wikipedia with information linked to the textual contents of the corresponding
Wikipedia page itself [55]. The training data are extracted from the texts of the first paragraph in
the contents of the Wikipedia page as chains of features and labels. Each label is augmented with
the position of labeled token in the article, representing the dependencies of the labels with other
parts in the texts. Using supervised conditional random fields (CRF), the sequential dependen-
cies among the tokens can be leveraged to predict the relations to populate the infobox. Another
type of supervision in learning called distant supervision [69] has been used to train a relation
predictor by taking the training data as entity pairs from the KG with the label extracted from
other source (e.g., Freebase). By using the external generic purpose database, overfitting during
the learning process can be avoided. When the KGs are interlinked with each other, the links can
be used to identify and fill the missing relations in one KG based on the information available in
another one. This approach has been demonstrated using DBpedia with multiple versions of differ-
ent languages [14]. The idea of interlinked KGs has also been extended with probabilistic mapping
between KGs that can be used to derive missing links in the KGs [25].

4.2.2 Unsupervised Learning in Knowledge Graph Refinement. Unsupervised learning has been
applied in most types of the operation in KG refinement, especially when the training data required
are large or sourced externally from the KG. It may also be more suitable when it is too expensive
to manually label the training data for supervised learning.

Unsupervised Learning in Correcting Errors. Unsupervised learning has been applied for correct-
ing errors in the KG itself. SDValidate has been used to provide a confidence score to each triple so
that the triple can be assessed in terms of its correctness [86]. The correctness is derived from the
relative predicate frequency (RPF) or the frequency of triple with the same predicate-object
combination. KGist [5] is another unsupervised learning for detecting errors making use of KG in-
ductive summarization. The learning summarizes the graph into inductive rules to indicate normal
or abnormal conditions in the KG.

Unsupervised Learning in Completing Types and Attributes. Another example of unsupervised
learning for completing types and attributes is SDType, which is based statistical distribution of
types in the head and tail of a triple [85, 86]. Specifically, SDType measures the conditional prob-
abilities of an entity to have a type T , given that the entity is in the head or tail position of the
triple. Weights for every triple are applied to avoid the issues with skewed distributions when the
population of certain types of entity is imbalance. The conditional probabilities can then be used
to derive a confidence score for a type to be assigned to an entity.

Unsupervised Learning in Instance Matching. Unsupervised learning for instance matching is usu-
ally combined with supervised learning to make it semi-or weakly supervised learning (described
in more detail in the next section). When it has to deal with large dataset containing many enti-
ties, the objective of unsupervised learning in instance matching is to acquire a model for grouping
identical or similar entities in the quickest possible way before another round of rigorous matching
process within each group. One interesting approach is the use of genetic algorithms to generate
decision rules for matching entities when they should be grouped or linked together [78]. The
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decision rules may involve many aspects and parameters to set, such as similarity and comparable
attributes. With a genetic algorithm, a population of the candidate “decision rules” is evolved with
some selection and variation mechanisms towards the “fittest” solutions over many generations to
converge the optimal ones. The “fitness criteria” is based on pseudo-precision and pseudo-recall
when the candidate solutions are tested to obtain their fitness values.

Unsupervised Learning in Completing Missing Relations. The semantic relation composition ap-
proach has been used to extract first-order logic rules from the KGs for unsupervised learning for
relation prediction [52]. The extracted rules are in the form of transitive relation among multi-hops
of entities in the graph, so that a direct relation from the start to end of the chain of relation can
be established. The rules are also quantified with support and confidence level. Another example
of unsupervised learning in relation prediction is the probabilistic case-based reasoning (CBR)
approach [19]. A model built on this approach learns the reasoning paths for predicting relations
by gathering reasoning paths from similar entities in the KG. This probabilistic model estimates
likelihood of effective path that answers query of a given entity. This CBR model uses a k-NN ap-
proach whereby it retrieves k similar entities from a query entity and detects multiple reasoning
paths of each retrieved entity to a connected entity by query relation.

4.2.3 Semi-Supervised Learning in Knowledge Graph Refinement. Semi-supervised learning in
refining the KG is commonly used to manage a larger amount of training data whenever the label-
ing process is expensive. The learning may involve automatic generation of dataset labels, reducing
the involved manual labors in training the system.

Semi-Supervised Learning in Encoding Knowledge Graphs. Semi-supervised learning can be ap-
plied in representation learning for the encoding KGs operation. Particularly, deep neural net-
works that are based on pre-trained language models, such as KG-BERT [132] and Variational

Graph Auto-Encoder (VGAE) [36, 50, 125], as well as self-supervised learning may also be ap-
plied in encoder or decoder models in representation learning. In VGAE, the graph neural net-

work (GNN)is trained to perform classification tasks. However, no external label can be provided
to let the network learn directly in supervised manner. In this case, a semi-supervised learning ap-
proach can be leveraged in such a way that the learned labels can be propagated to other parts of
training data that are still missing labels or just taken from the input as in the case of auto-encoder
networks. Similarly, Transformer-based pre-trained model such as KG-BERT [132] can be used
directly but often requires fine-tuning process. This fine-tuning usually involves self-supervised
learning with a contrastive training regime wherein positive and negative training samples may
be synthesized from the existing data set to enhance its discriminative capacity. A combination of
contextualized embedding representation with structure-based graph embedding in relation pre-
diction tasks can also be leveraged to handle actual problems in practice, such as to find candidate
drugs to repurpose for COVID-19 [135]. A literature-based discovery (LBD) process is applied
to seek and uncover valuable hidden connections between different research literatures regard-
ing COVID-19 and to extract possible triples about the relevant concepts. The extracted triples
are then constructed as a KG. Finding the candidate drugs can then be done by predicting links
between entities in the KG through supervised representation learning to obtain translational,
multi-relational, or contextualized (KG-BERT) embeddings.

Semi-Supervised Learning in Instance Matching. Semi-supervised learning has been applied for
instance-matching operations, especially at the stage of blocking process that groups the same
or similar nodes in what may be less accurate manner but is much quicker to process [45]. The
learning algorithm runs in two separate phases. First, it generates a weakly labeled training set
based on term frequency and index-document frequency (TFIdF) measures. The label can
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be negative (the nodes are dissimilar) or positive (the nodes are the same). Based on the KG as
learned from the labeled dataset, the second phase of learning can start based on learned labeled
data to refine the KG. Another approach makes use of boosting strategy, wherein a classifier is
trained at first with some labels. In the second step, the learning continues with unlabeled training
data [46, 47].

4.2.4 Reinforcement Learning in Knowledge Graph Refinement. In KG refinement, reinforce-
ment learning is mostly used for reasoning about the path to traverse in the KG for question
answering tasks or to predict missing relations between entities. The main difference from other
types of learning is that the refinement program is considered to be an agent that interacts with
the KG as its environment and learns to take some actions to update the KG. As a reinforcement
learning agent, it receives feedback from the environment as reward signals, indicating its progress
toward its task objectives. The state space observed by the agent commonly involves the current
node position where the agent currently resides and may include the destination node as the target
position in the graph. The action space wherein the agent can take to traverse the graph in every
step is usually the set of possible relations that can be chosen to move in a single step from the
current node position. The agent may receive the reward feedback when it reaches the target.

Reinforcement Learning in Correcting Errors. There are a few reinforcement learning models in
KGs that are used for checking the validity of a triple. REL4KC [124] is a model of reinforcement
learning for KG completion tasks. It is trained to learn paths in a KG from a structured database
such as Wikidata to predict links or relations given an initial node and a target node to reach. With
a policy-based learning approach and LSTM network to represent the history of states and actions
taken, a policy is acquired as a probability distribution over possible actions that are sampled. Some
extra negative samples from the external training data can be used to validate the triples in the KG
and preventing false positive in prediction.

Another model called generative reinforcement learning (GRL) [114] uses an actor-critic
model of learning together with LSTM to keep the historical information, but represents the graph
in embedding space with a graph convolutional network (GCN) that aggregates many features
and structural information of the graph in a multi-layer neural network. Besides visiting nodes
and relations as the basic actions in the reinforcement learning, GRL may also generate new sub-
graphs to predict the paths. The generative process in GRL allows correct nodes to replace wrong
or missing nodes from the original KG, and the GCN embedding makes it inferential, with more
comprehensive awareness of the KG to judge the truth and falsity of the triples.

Reinforcement Learning in Completing Missing Relations. DeepPath is the first kind of reinforce-
ment learning applied to the task of KG completion by predicting relations that can potentially
answer particular questions [126]. An agent resides in the KG to traverse it to find the best path
given a source and a target node. The agent’s state space is the embedding vector representation,
based on TransE [12] and TransH [116] embedding methods, of the node position where the agent
currently resides and the distance to the target node position in the graph. The action space the
agent can take to traverse the graph in every step is the relation that can be chosen in the em-
bedding space from the current state. The agent will receive the reward feedback either when it
fails to reach the target (as negative feedback) or a positive value reflecting path length and the
diversity of choices. Since the number of possible actions to choose at one time can be very large,
DeepPath applies policy-based learning to allow vector-based representation of action. This rein-
forcement learning model is also combined with supervised learning in which the agent learns
some existing samples of successful paths during exploration to reduce the search space during
learning. This also makes this reinforcement learning a case of a composite or multiple learning

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.



Machine Learning for Refining Knowledge Graphs: A Survey 156:17

approach combining reinforcement learning, supervised learning, and representation learning (for
the embedding representation).

MINERVA [18] is also a reinforcement learning architecture for KG completion with policy-
based learning. Different from DeepPath [126], the learning in MINERVA is conducted from scratch
without pre-training such as supervised learning to direct the exploration process. MINERVA also
operates directly in the KG representation rather than the embedding space of the graph. Embed-
ding representations may still be applied, but only for representing the observation vector of the
agent. The observation space of the agent includes its current location in the graph, the relation
connected to it, and questions to answer (for question-answering tasks). At every step, the agent
chooses among outgoing edges connected to the current location. A positive reward is given only
when agent reaches the target. To handle a large exploration space, MINERVA applies an LSTM
model that encodes the history of state and the selected actions over time. Based on this encoded
history, the policy chooses the action to take. Similarly, to handle sparse rewards in a large explo-
ration space, M-Walk [94] uses a Monte-Carlo tree search (MCTS) with a customized recurrent

neural network (RNN) to store the history of the search process. This M-Walk applies a value-
based Q-learning model rather than policy-based reinforcement learning. Rule-aware reinforce-

ment learning (RARL) [37] uses similar approaches with policy-based reinforcement learning
and LSTM to deal with a complex exploration space, but applies a rule-based action selection strat-
egy and beam search to direct the agent’s exploration in the graph.

A more elaborated model employs a hierarchical reinforcement learning for KG comple-
tion [109]. Using a policy-based method, the so called reasoning-like-human (RHL) model con-
ducts learning on a hierarchy of two-level reinforcement learning. The high-level policy in RHL
is learned using policy-based learning that captures history vectors to keep historical information
about the previous trajectory to better guide the agent. The state and action spaces at this level
are similar to those in the other models of reinforcement learning, with positive rewards provided
when the search ends up at the target. The low-level policy uses policy-based learning as well, but
conducts it in the embedding space of the graph in different relation clusters that decompose a
high level action into sub-actions. The state in the low-level policy consists of all valid sub-actions
in the cluster, and a maximum positive reward is obtained when the agent reaches the next ac-
tion in its high level policy. The embedding space is learned and represented with TransE [12]. In
this way, the agent can learn to deal with multiple semantic meanings and contexts to reason and
complete the KG.

Besides its application for validating facts in triples, GRL [114] can also be used for link pre-
diction in KG. It uses an actor-critic model of learning together with LSTM to keep the historical
information, but represents the graph in the embedding space with GCN, which aggregates many
features and structural information about the graph in a multi-layer neural network. GRL employs
hierarchical reinforcement learning as well, but unlike RHL [109], it generates a sub-graph using a
generative adversial network (GAN). As parts of its action space, the agent can choose different
actions such as continuing to walk in the KG or generating new sub-graph. The newly generated
sub-graph is used to better predict the answer or the paths given the starting nodes. Similarly,
REL4KC [124] can also be used for link prediction in addition to fact checking. In fact, the rein-
forcement learning agent is trained to perform link prediction using a publicly available external
source of KGs, such as Wikidata. The rewards can be derived from embedding triple representation
of the source KG, so that the agent will get additional reward value when taking the relation that
leads to a true or correct fact compared to the invalid one.

MARLPaR is another model of reinforcement learning to resolve path reasoning problems such
as query-answering tasks related to KG completion [59]. Two different reinforcement learning
agents work together to explore the KG and accomplish the task. Each agent works similarly to
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the MINERVA agent [18]. However, one agent selects a relation to explore at every time step, while
the other selects a node. A similar model of multi-agent reinforcement learning (MARL) has
been applied [136]. One agent, called the KG reasoning agent, learns to answer a query in terms
of a question triplet (h, r , ?) in order to complete the missing element. Another reinforcement
agent, called the information extraction agent, learns to rank useful knowledge from corpus in
terms of ranked triples to help the KG reasoning agent to accomplish its task. Both agents receive
a maximum positive reward when a correct answer is found. However, each agent has its own
individual rewards, for example the minimum number of hops for the KG reasoning agent and the
minimum number of unused triples.

4.2.5 Representation Learning in Knowledge Graph Refinement. In recent years, representation
learning has gained considerable popularity as a method of encoding graph structures for KG
refinement. It is known that tasks and operations, such as link prediction and instance matching,
are directly supported by encoding the KGs in deep neural networks. Representation learning
provides a representation that directly reveals distances between nodes, relations, and paths, or
even the subgraph structure reflecting the semantics and structural relationships in the actual
graph.

As mentioned previously, this type of learning involves an encoding phase wherein each data
item to be represented, such as a node or a relation, is initially associated with a low-dimensional
real vector. This vector can initially be assigned random values, or it can be based on some initial
distributions. The learning process can then be conducted to train the decoder to adjust the values
of the vector based on the conditions reflecting the distances between different data items in the
embedding space.

These embedding models are commonly characterized based on an encoder-decoder architecture
of a neural network for representing and processing the graph. The encoder maps each node into
a low-dimensional vector representation, which can be defined as a function fenc : V → �d

where V and d are the set of vertices in the graph and the dimension of the vector, respectively.
For example, fenc (v) = v maps a node v ∈ V into its real vector embedding v. A decoder function
fdec : �d × �d → �+, on the other hand, predicts a value reflecting the relationship between
two embedding vectors, such as the structural and similarity distance between the two.

There are various embedding models for KGs. Individual entity model is the simplest form of
KG embedding wherein the embedding representation is applied to the content of each individual
node or relation in the graph but not the structural information. In this model, the learning pro-
cess is conducted similarly to the text-based or word embedding models. Since it does not include
the structural information about the KG, the training data for the representation learning can be
based on external sources in the form of textual documents or usage samples of particular words
or phrases appearing in the KGs. These sample data may have also been formed as embedding
representations of pre-trained neural network models wherein some major training phases may
be skipped or simplified. This kind of embedding model often used in instance-matching opera-
tions [26, 53, 71].

Shallow embedding is another type of embedding model that represents individual nodes or re-
lations of a graph in the embedding space as distributed vectors while considering other related
neighboring entities in the graph to determine the nodes’ (or relations’) positions within the em-
bedding space (e.g., [32, 87, 89, 104, 113, 134]). In this kind of embedding, the decoder function fdec

indicates the relative structural distance or first-order similarity between two entities in the graph
reflecting the likelihood that one entity is connected or closely related (e.g., connected within a
few number of hops or steps along multiple nodes) to another. This kind of shallow embeddings
can be learned stochastically through random walks [16, 32, 87] and may represent the structural
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similarities between nodes (e.g., node2vec [32]), edges (e.g., edge2vec [112]), or subgraphs (e.g.,
Graph2vec [73]). Second-order similarity measures can also be obtained besides the first-order one.
For example, in LINE [104] embedding model, the similarity of adjacency structure between two
nodes can be obtained regardless the structural distance or position of them in the graph.

Translational embedding is another type of embedding representation wherein head or tail repre-
sents a point in the vast continuous vector space and the relation is a vector translation operation
between them. The simplest form of this embedding, for instance TransE [12], follows a transla-
tion operation h + r ≈ t for the encoder function, where h, r, and t are the vector representations
of the head, relation, and tail, respectively. The decoder function fdec (h, t) = −||h + r − t| |L1/L2,
provides the likelihood that the head and tail have a relation in the KG. Other variants of transla-
tional embedding, including TransH [116], TransR [63], TransD [40], and TranSparse [41], extend
the embedding space with separate hyperplanes for nodes, relations, and among different types
of relation, so that they can deal with more complex types of relations, namely reflexive, one-to-
many, and many-to-one, that TransE alone cannot handle. To reduce the learning complexity due
to the graph structural heterogeneity, TranSparse [41] has been used to handle heterogeneous and
unbalanced KGs by leveraging sparse matrices that can optimize the computations required during
learning. Learning the translational embedding representation require iterations of vector trans-
formation and projection in different hyperplanes in the embedding space for every triple in the
KG involving the embedding vector of a head node, tail node, and relation. Since the embedding
involves the head, relation, and tail of the triple, it should reflect the actual structural or semantic
distance as represented as the triple from its data source.

Beyond structural information, semantic correlation between nodes and relations can also be
obtained with multi-relational embedding so that inferences, for example, analogical reasoning,
can be applied to derive additional “unobserved” relations [7, 11, 64, 81, 100, 100, 128, 139, 139].
In this embedding model, each entity is associated with an embedding vector (e.g., based on word
or phrase embeddings) with a matrix that represents the relationships to model the interactions
between latent factors of the connected entities [11, 130, 139]. Extensions and simplifications have
also been made in this type of embedding to reduce the space complexity of the network and im-
prove the accuracy in handling both symmetric-asymmetric relations, bilinear tensor, and complex
embeddings [99, 107, 130, 139].

A learning algorithm for multi-layer neural networks can then be applied, such as backpropaga-
tion or gradient-descent. The similarity between nodes can be based on binary value indicating the
presence of the input relation (together with head and tail nodes) in the graph. It is also possible
to provide a real or gradual value of similarity based on the similarity of the meaning between the
head and the tail node when there is a way to externally obtain the semantic distance between
them. The latter approach may also imply that the learning becomes supervised.

GNN is another class of deep neural networks that encode the KG based on a representation
learning algorithm. In GNN, the neural networks represent nodes together with aggregated infor-
mation from local neighbors. Based on the idea from convolutional neural networks (CNN), the
node, with its aggregated local information, can be recursively extracted in a sequence of network
layers. Deeper layers leverage the local features to construct highly expressive and more complex
representations of the node both locally and holistically in the context of the entire graph structure.
Variants of GNN [13, 22, 33, 35, 57, 92, 93, 105, 108] may use different ways on defining the neigh-
bors, in obtaining the local aggregate information, and in processing the vector representation. In
GNN, the representation learning process can be considered as a node receiving and aggregating
messages continuously from its neighboring nodes from time to time in order to obtain the struc-
tural representation of the graph. More formally, let ht

i be the embedding vector representation of
nodevi at time t (it can be assumed ht

i is a random vector at t = 0 or with the initial node features
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ofvi ). For every iteration, ht
i can be updated based on trainable weight parameters related to every

connected neighboring nodes of vi .
When the update applies, the nodevi may aggregate information not just about its own features

but also about its neighboring nodes, which recursively include their neighbors, and so on. With
a sufficient time, the aggregated information may cover the entire graph. For example, in Graph-
SAGE [35], as one of practical frameworks for GNN, each node is equipped with its own neural
networks to process the aggregated features from its neighbors that can be obtained through aver-
aging the vectors; filtering specific features; or even applying RNN (e.g., long-short-term memory
or LSTM). Some techniques leverage more elaborate features and structure of the neural network
architecture in which they are realized, and may employ different neural networks to realize the
encoder and decoder functions. ConvE is a link prediction model based on a 2D convolutional
network structure with multiple layers of non-linear features [22]. Structure aware convolu-

tional networks (SACN) use weighted graph convolutional networks (WGCN) as encoder
networks to combine translational embedding and link prediction as decoder networks [93]. Sim-
ilar models with CNN structures combining different embedding layers, such as R-GCN [92] and
RA-GCN [105], have also been proposed. Sequential learning with RNN has also been used to
learn the local embedding features as if they are coming in a sequential order. The deep sequential
model for KGs (DSKG) aggregates information about the node features as a sequence learning in
RNN wherein entities and relations are presented in sequence [33]. LSTM has also been applied to
obtain sequence embeddings combined with attention mechanism [57]. Graph attention network
or GAT applies attention mechanism for processing local information from the neighbors [108].

Most operations in KG refinement can be simplified by utilizing the encoded KGs from the rep-
resentation learning. Inferences, such as validating triples and predicting missing nodes/relations,
can be conducted by the decoder function in the neural network, wherein the graph is represented
as the neural network itself to obtain the results. However, as machine learning models, these KG
encoding must be trained to find the right configuration of distributed vector representation in
the multi-dimensional hyperspace before the proper refinement process can be conducted. The
KG representation may also impose some challenges to representation learning including training
complexity, graph heterogeneity, and dynamic temporal representation. The requirements to visit
every node, relations, or combination of triples during training may make the process in represen-
tation learning quite complex. Many representation learning models employ stochastic methods
to visit different nodes in the graph (e.g., random walks) to learn about their properties and rela-
tionships, but mostly assume homogeneous structure of the graph wherein types of relation in the
graph are indistinguishable. Graph representation learning with this homogeneous assumption
may not be effective to apply to heterogeneous graphs as significant information from different
types of nodes or relations may be ignored or missing. On the other hand, special treatment may
be required to handle KG with changing features or properties over time or require time informa-
tion to be explicit. More details on how existing approaches address the challenges will be given
in the following parts of this section.

Representation Learning in Correcting Errors. In KG-BERT [132], self-supervised learning is com-
monly applied for the triples with contrastive learning. The pre-trained network is fine-tuned with
positive and negative examples synthesized from the training data for encoding the KG. This al-
lows the representation learning in KG-BERT to learn to validate whether a triple should or should
not exist in the KG. This fine-tuning of a pre-trained language model involves different sources
of training data. Firstly, the pre-trained language model is considered to be initially trained on an
external source of free text data. Secondly, the triples to be represented as token sequences as the
input data are obtained from the KG itself. Lastly, the positive and negative labels for the input
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triples are derived from the triples themselves. A positive label indicates that the triple really exists
in the KG, while a negative one states that it should not be existed. The negative triple data can be
generated by randomly replacing the head or tail entity in one of the positively labeled triples.

In GRL [114], the GCN aggregates many features and structural information of the graph in a
multi-layer neural network. The GCN makes the agent inferential, with a more comprehensive
awareness of the KG to judge the truth and falsity of triples. This allows a GRL agent to generate
sub-graphs and to replace wrong or fill up missing nodes in the original KG. In this case the encoded
graph in the form of GCN must be leveraged by a GRL agent to enable the complete operation of
correcting errors.

Translational embeddings (e.g., [12, 40, 41, 63, 116]) can also be leveraged as simpler ways for
correcting errors in KG through a triplet classification task. The task is a binary classification to
determine if a triple (head, relation, and tail) is correct or not, based on the score obtained directly
from the embedding representation. This approach, however, still requires the process of checking
every possible triple in the graph to detect the incorrect ones and limited to errors in relations
only.

Representation Learning in Completing Types and Attributes. Multi-relational embedding models
allow nodes’ and relations’ properties to be semantically correlated. In this way, it is possible to use
the learned model to complete the KG at the node attributes and properties levels. RESCAL [76], as
a multi-relational embedding model that learns correlations among the elements in triples using
a three-way tensor factorization, has been extended to include node attributes information [77].
The information about attributes is added as an entity-attribute matrix factorization during the
embedding representation of the attributes. This matrix is included in updating tensor X during
learning so that the correlation among nodes, relations, and attributes can be obtained. Predicting
attributes is possible, in this case, to approximately determine if a particular triple with given
attributes should exist. This also implies that the multi-relational embeddings can be trained to
conduct regression tasks that predict or generalize new information beyond the training data.

Representation Learning in Instance Matching. DeepER uses word embeddings to learn the se-
mantic relationships among nodes in the graph [71]. The system predicts if each pair of entities
is matched or mismatched. Similarly, Deep Matcher is also based on a pairwise entity classifica-
tion task of node properties with logistic loss [26]. DeepNN-ER also uses word embeddings as the
pre-processing [53]. These pairwise classification tasks require supervised learning after the em-
bedding vectors for every node are produced. However, these semantic embeddings [26, 53, 71] are
still considered individual entity embeddings, as they do not include structural information nor re-
lations among the entities in the context of the graph. This also implies that the learning processes
involved are limited to producing text-or word-level embedding representation with training data
obtained from some external sources (e.g., publicly available corpus, source text documents) rather
than the KG itself.

The task of instance matching can also be seen as a node classification problem in that two nodes
can be considered to be the same if they belong to the same class or group. VGAE is a kind of GNN
embedding model that can be trained for node classification tasks [36, 50, 125]. A self-supervised
learning is applied to enable the network to classify the node. In this case, the classification takes
the structural aspect of the nodes into account as well. The task of node classification based on the
structural aspect of the graph can also be achieved by a shallow embedding or skip-gram method
of encoding [32, 87, 89, 104, 113, 134]. However, when the KG is heterogeneous, direct stochas-
tic methods for visiting the nodes may not be effective and the results may potentially be biased
towards those with a dominant number of paths. Metapath2vec [24] can applied for node classifi-
cation tasks for heterogeneous KGs by generating meta-path as guidance for random walks during
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representation learning such that semantic relationships between different types of nodes can be
properly incorporated into the embedding representation. Although, both GNN and translational
embeddings do not learn to perform the overall instance matching processes, it is straightforward
to obtain the score indicating the similarity between two different nodes in the graph. However,
some exhaustive processes may still be needed to search all possible pairs of nodes to find the best
match and to determine if they are belong to the same instance.

Representation Learning in Completing Missing Relations. Most, if not all, encoding models with
representation learning mentioned in this article represent nodes as vectors in the low-dimensional
embedding space. It is straightforward to make use of these embedding representations to pre-
dict either existing or missing relations. Given two vectors of different nodes, distances between
them can be obtained, which predict how closely they are related. All the shallow [32, 87, 89,
104, 113, 134]), translational [12, 40, 63, 116], and multi-relational [7, 13, 32, 64, 81, 100, 128, 139]
embeddings mentioned previously can be used to obtain the likelihood that two different nodes
in the graph should be connected either structurally or semantically. Some multi-relational and
GNN [13, 22, 33, 35, 57, 92, 93, 105, 108] models can also be used to predict new possible relations
even though they do not exist in the original graph as the internal source of training data set for
the embeddings. These embedding techniques can also be used for link prediction, together with
another learning paradigm, for example reinforcement learning [109, 114, 126]. Some models of
representation learning for link prediction are also made to deal with heterogeneous KGs. For ex-
ample, ComplEx [107] is a multi-relational embedding model that leverages complex vectors to
deal with the graph heterogeneity issues. Heterogeneous Graph Transformer (HGT) [38] is a
GNN leveraging meta relations that parameterize weight matrices for calculating attention for ev-
ery relation to represent heterogeneous graphs. KGTtm [43] leverages crisscrossed neural network
to measure trustworthiness of triples which can be applied for predicting relations.

Besides the embedding models, there are more examples of combinations of representation
learning methods and applications for predicting relations. Structured-augmented text repre-

sentation (StAR) learning [110] applies a hybrid model of textual encoding of triples with KG-
BERT [132] and transitional graph embedding, such as TransE [12] and RotatE [102], to combine
the capabilities of the contextualized sequential representation with structural features in the em-
bedding model. A Siamese-style textual encoder is applied to the triples of the contextualized
representation while applying a different scoring module to the two in order to get the best of
both contextualized and structural representation. Self-supervised learning is applied in this case,
with labels indicating if a relation exists between two nodes in the graph. If so, positive examples
are generated. Contrastive learning is also used by randomly changing entities in the triples to
generate negative examples.

Another method with KG-BERT is to use multi-task learning to identify more relational
properties in the KG [49]. This is achieved by combining the objectives of relation prediction
and relevance ranking in the learning for link prediction. A multi-task learning method was
created to learn more relational properties in the KG. A combination of contextualized embedding
representation with structure-based graph embedding in relation prediction tasks can also be
leveraged to handle actual problems in practice, such as to find candidate drugs to repurpose for
COVID-19 [135]. A literature-based discovery (LBD) process is applied to seek and uncover
valuable hidden connections between different research literatures regarding COVID-19 and to
extract possible triples about the relevant concepts. The extracted triples are then constructed
as a KG. Finding the candidate drugs can then be done by predicting links between entities in
the KG through supervised representation learning to obtain translational, multi-relational, or
contextualized (KG-BERT) embeddings. As learning models for predicting relations, supervised
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learning approaches with contrastive labeling are also applied in representation learning to create
combinations of contextualized and structural embeddings.

Predicting relations can also be made inductive such that the model can infer a new triple with
head and tail entities that are hidden or not present in the original KG. In a commonsense knowl-

edge graph (CKG), wherein entities are composed of free-form text, InductivE [111] has been used
as a framework for conducting inductive KG completion. Given the initial form of CKG, a graph
densification process is applied to generate high-quality links between semantically similar enti-
ties during the graph encoding process. Using a graph convolution network as the encoder and
ConvE model as the decoder, InductivE can predict unseen or hidden triples in the KG. In this case,
contrastive labeling in supervised learning is also used to enable the prediction.

Beyond simple geometrical structures to explore in translational embeddings, a few variants
have been made to consider more complex relationship between entities. OPTransE [141] extends
TransE’s translational KG completion to take relational paths into consideration. Unlike the other
translational models, OPTransE projects the head and tail of a triple into different embedding
spaces. In this way, it can keep the relational order information beyond just a collection of relations
along the path.

Hierarchy-aware knowledge graph embedding (HAKE) [137] is another variant of trans-
lational graph completion that encodes semantic hierarchical structure among the entities. The
semantic relationships, as described by relations in the triples, are encoded in a polar coordinate
system, such that the radial coordinate indicates the entity level in the hierarchy while the angular
coordinate represents the semantic distance within the same level.

One of the issues in representation learning for KG completion in general and link prediction
in particular is the complexity of the training process, which requires possible combinations of
relation triples in the graph to be presented so that missing links can be predicted. Together with
contrastive supervised learning, few shot learning techniques have been proposed to deal with
the issue. These techniques allow the learning model to take only few reference triples in order to
come with more complete predictions. Adaptive attentional network for few-shot KG completion
(FAAN)[95] has been used to learn to predict links and relations based on a few number of reference
samples to learn. The reference triples are encoded adaptively with translational embedding and
attention mechanisms in transformer networks to match the references with queries. Few-shot

relation learning (FSRL) [137] is another model of few-shot learning for KG completion using
attention mechanisms as well, but applies GNN to aggregate relations of the reference triples with
recurrent autoencoder.

Besides the complexity of training a link prediction system, another issue with a temporal KG
is that every relation is associated with temporal information, so that a triple may be true for a
certain time, but does not hold in another. Moreover, the KG may also change over time, so that the
representation learning must also be incremental. A straightforward approach to tackling this is to
apply diachronic embedding, wherein the entity and timestamp are taken for the embedding [31],
so that contrastive supervised learning can be applied to learn for link prediction. Using SimplE
as translational embedding with diachronic model, DE-SimplE [31] is a model for temporal KG
completion based on diachronic embedding. TComplEx and TNTComplEx [54] are extensions to
ComplEx [107] multi-relational embedding to include timestamp attributes in the embedding space.
HyTE [20] is another temporal extension of translational embedding that incorporates temporal
information directly to hyperplanes in the embedding space. In this case, the task becomes tempo-
ral link prediction as in TComplEx and TNTComplEx [54] that amounts to predict the head, tail,
or relation held at certain time as specified in the timestamp [54]. However, incremental learning
remains an issue in this kind of diachronic embedding. Time-aware incremental embedding

(TIE) [121] has been proposed to deal with the incremental learning issues and the dynamic of
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the KG. Instead of just simply applying diachronic embedding, TIE makes use of experience replay
techniques to maintain updated relation in KG and to avoid catastrophic forgetting. In that case,
facts from new time steps can be incorporated while preserving knowledge derived from the pre-
vious ones. TIE selects pattern frequencies among samples and only uses deleted and added facts
at the current time step for training to improve performance.

4.3 Comparison and Discussion

From the different types of machine learning for KG refinement described above, it is clear that
there are classical models of machine learning directly applied and operated on the KG itself and
there are more modern approaches that use embedding representation of the KG to perform the
operations in KG refinement. Table 1 summarizes different machine learning models applied to the
encoding KGs operation. Table 2 shows the other machine learning applied to the other four op-
erations. Each column in Tables 1 and 2 can be described as follows: Refinement operations (Refine

op.) indicates the KG refinement operation; Learning type indicates the type of machine learning
(supervised, unsupervised, semi-supervised, reinforcement learning, or representation learning);
Training data describes the source of the training set used by the machine learning (can be inter-

nal from the KG itself or externally from other sources); Multiplicity indicates whether more than
one (single) learning algorithms are applied to resolve the same problem; Supported operations in-
dicates what KG refinement operations are supported by this machine learning approach besides
the one indicated in Refine op. column; and Description provides some detail about the learning
approach. Based on the kind of refinement operation, type of learning, source of input, other op-
erations supported in the refinement process, and the multiplicity of the learning algorithm, it is
also indicated that several machine learning approaches for different KG refinement operations
involve different machine learning algorithms. One learning approach may also support multiple
KG refinement operations.

4.3.1 Classical (Non-embedding) Machine Learning for Knowledge Graph Refinement. Most clas-
sical approaches to machine learning operate directly in the KG representation to improve
the entire refinement operation. They cover most of the operations which includes updating
the KG as the target of the refinement. For example, classical approaches to learning for in-
stance matching [9, 101] involve merging or link establishment to the KG after the nodes that
should be under the same category or should be together are identified. Similarly, unsupervised
or semi-supervised learning for instance matching [45–47, 78], error detection [23, 85], type
completion [29, 79, 82, 86, 97], and relation prediction [14, 19, 25, 52, 55, 69] involve the re-
quired changes to the KG as parts of the refinement objective. Depending on the algorithms,
some of them learn internally or directly from the KG itself as the target of the KG refine-
ment [9, 85, 86, 101], but most other may take some external sources of data to be used as the
training set [14, 19, 25, 29, 45–47, 52, 55, 69, 78, 79, 82, 97]. These external data may come from
free text documents [14, 25, 55, 69], publicly available databases [29, 79, 82], or as populations of
rules [97]. In some operations such as correcting errors and completing missing relations, the re-
quired updates in the KG are directly supported by reinforcement learning [109, 114, 124] wherein
the actions to change the graph are inherent in the methods. However, the design of the learning
refinement system must incorporate reward mechanisms to direct the agent behavior towards the
task objectives.

4.3.2 Modern (Representation) Machine Learning for Knowledge Graph Refinement. Most mod-
ern approaches of machine learning for KG refinement that leverage representation learning for
encoding the graphs are commonly considered only for detecting or identifying the duplication,
errors, or gaps to fulfill. No further updates on KG are commonly applied, except for a direct
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Table 1. Characteristics of Machine Learning in Encoding Knowledge Graphs Operation for Knowledge

Graph Refinement

Refine op. Learning type Algorithm/Model Training

data

Multiplicity Supported

operations Description

Rep. Learning

Shallow-Embedding:
Node2Vec, DeepWalk,
NetMF, LINE, SDNE,
LBD, MetaPath2Vec [24,
32, 87, 89, 104, 113, 134]

internal single Encoding KG,
Instance Matching,
Completing Missing
Relations

Random walk and Matrix
Factorization to learn the
embedding vectors

Translational-
Embedding: TransE,
TransD, TransR,
TransH, TranSparse
[12, 40, 41, 63, 116]

internal single Encoding KG,
Instance Matching,
Completing Missing
Relations,
Correcting Errors

Vector/matrix
transformation in
embedding space

Multi-Relational-
Embedding: RESCAL,
NPL, Spectral-Network,
ANALOGY, LRE, NTN,
HolE, ComplEx, KGTtm
[5, 7, 21, 43, 64, 76, 81,
100, 128, 139]

internal single Encoding KG,
Instance Matching,
Completing Missing
Relations,
Completing Types &
Attributes

Matrix Factorization to
handle structural and
semantic information

Encoding
KG

GNN: Spectral, ConvE,
DSKG, GraphSAGE,
PathBased, SACN,
RA-GCN, GAT,
HGT [13, 22, 33, 35, 38,
57, 92, 93, 105, 108]

internal single Encoding KG,
Instance Matching,
Completing Missing
Relations,
Correcting Errors

Learning and embedding in
terms of Graph Neural
Networks

Individual-Entity-
Embedding:
DeepER,DeepMatcher,
DeepNN-ER [26, 53, 71]

internal multiple
(supervised
learning, Rep.
Learning)

Encoding KG,
Instance Matching

Word embedding to learn
semantic among nodes in
the graph

Translational-
Embedding-and-GNN:
InductivE, OPTransE,
HAKE, FAAN, FSRL
[95, 110, 111, 137, 141]

external
(common-
sense KG,
freetext)

single Encoding KG,
Completing Missing
Relations

Inductive learning in GNN
(InductivE) and
translational embedding

Temporal-
Embedding/Diachronic:
DE-SimplE, TCom-
plEx/TNTComplEx,
HyTE, TIE
[20, 31, 54, 121]

internal multiple(Rep.
Learning,
memory-based/
experience-
replay(TIE))

Encoding KG,
Completing Missing
Relations

Incorporating temporal
information in the
embedding space,
leveraging experience
replay to preserve time
information (TIE)

Semi-Supervised

GNN: KG-BERT [132] external
(pre-trained
language
model)

multiple (Rep.
Learning,
semi-supervised
learning)

Encoding KG,
Completing Missing
Relations,
Correcting Errors

Fine-tuning pre-trained
language model with
self-supervised learning
and contrastive labeling

GNN: VGAE
[36, 50, 125]

internal multiple (Rep.
Learning,
self-supervised
learning
(contrastive))

Encoding KG,
Instance Matching

Node classification to check
node similarity

GNN: StAR,
Context-Struct
relational, LBD
(Covid-19) [49, 110, 135]

external
(pre-trained,
freetext)

multiple (Rep.
Learning,
self-supervised
learning
(contrastive))

Encoding KG,
Completing Missing
Relations

Fine-tuning pre-trained
language model with
self-supervised learning
and contrastive labeling

update, such as link prediction that only requires additional links or relations to any pair of nodes
in the initial KG [31, 49, 95, 110, 110, 111, 121, 135, 137, 141] or those with individual-entity em-
beddings [26, 53, 71]. For individual-entity embeddings, the representation learning is only used
to obtain the embedded vector space of individual nodes to identify whether some of them can be
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Table 2. Characteristics of Machine Learning in Correcting Errors, Completing Types and Attributes,

Instance Matching, and Completing Missing Relations Operations for Knowledge Graph Refinement

Refine op. Learning type Algorithm/Model Training data Multiplicity Supported

operations

Description

Supervised
Learning

Knowledge Vault [23] external
(Freebase)

single Correcting Errors Learning a probabilistic
classifier from triples

Correcting
Errors

Unsupervised
Learning

SDValidate [85] internal single Correcting Errors Statistical learning to
provide confidence score to
each triple

KGist [5] internal single Correcting Errors Knowledge graph Inductive
Summarization to extract
soft rules

Rel4KC [124] external
(wikidata)

multiple (RL,
Supervised
Learning, Rep.
Learning)

Correcting Errors,
Completing Missing
Relations

RL (policy based with
LSTM).

Reinforcement
Learning

RHL [109] internal multiple (two RL
instances)

Correcting Errors,
Completing Missing
Relations

Hierarchical RL,
policy-based (high-level),
policy-based on embedding
(low-level).

GRL [114] internal multiple (RL,
Rep. Learning,
generative
(GAN))

Correcting Errors,
Completing Missing
Relations

RL (actor-critic with LSTM),
RpL (GCN), GAN.

Supervised k-NN [29, 79, 82] external
(DBPedia,
Wikipedia pages)

single completing types_&
attributes

Learn to classify the types
of entities.

Completing
Types_&
Attributes

SVM [97] external
(multiple KGs)

single completing types_&
attributes

Learn to predict missing
entity types based on links
between different KGs

Unsupervised SDType [86] internal single completing types_&
attributes

Learn conditional
probabilities of an entity to
have a certain type

Supervised SVM, Bayesian,
MLP(NN) [9, 101]

internal single Instance Matching Matching based on the
similarity between nodes’
attributes and text features

Instance
Matching

Unsupervised Genetic Algorithm [78] internal single Instance Matching Genetic algorithm to
generate decision rules for
matching entities

Semi-supervised TFIdF [45],
boosting [46, 47]

external (initial
labeling)

multiple
(supervised
followed by
semi-supervised
learning)

Instance Matching Two separate phases:
generates labels with TFIdF
and learn based on labeled
data

Supervised iPopulator,
CRF-dist.supervision,
interlinked KGs, prob.
interlinked
KGs [14, 25, 55, 69]

external
(Wikipedia,
Freebase,
DBPedia,
multiple KGs)

single Completing Missing
Relations

Supervised learning with
distant supervision:
training data and labels
taken from different KGs

Completing
Missing
Relations

Unsupervised Semantic relation
composition [52],
Probabilistic CBR [19]

internal multiple (CBR
and k-NN in
Probablistic
CBR)

Completing Missing
Relations

Learn rules and reasoning
paths as hops in KG

DeepPath [126] external (samples
of successful
paths for
supervised
learning)

multiple
(Supervised, Rep.
Learning, RL)

Completing Missing
Relations

Learning from reward and
from successful path
samples

Reinforcement
Learning

MINERVA, M-Walk,
RARL [18, 37, 94]

internal single Completing Missing
Relations

Learning to predict relation
and path reasoning

MARLPaR [59],
MARL [136]

external (text
corpus for agent
2)

multiple
(multi-agent RL)

Completing Missing
Relations

Two agents work together
to resolve path reasoning
task
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grouped together, independent from the original KG. In that case, the change to the graph can be
directly applied.

Other embedding-based methods (e.g., [21, 36, 50, 125, 132, 132]) that require updates to the KG
may also constitute costly retraining of the embedding representation. Changes in node or rela-
tion properties, removal of entities or relations, or triples may require changes in the embedding
representation, as well as relearning the representations for all elements in the graph, with the
exception of GNN embedding models (e.g., [21, 36, 50, 121, 125]). In GNN embeddings, changes in
neighboring nodes’ properties can still be learned incrementally with the aggregating process of
neighboring features. Although the process may still be expensive [35], updating the embedding
representation of the KG may not be needed, as the graph change can still be considered as part
of the input data to the neural network.

Table 1 shows that the application of representation learning for KG refinement is dominated by
operations, such as relation prediction and node classification, which are important for instance
matching or entity resolution. Few approaches to embedding representation are also applied for
detecting errors [132]. However, they still need to be combined with other kinds of machine learn-
ing, pre-trained models, or contrastive learning from other validated sources. The embedding of
representation as the results of representation learning in the modern approaches can also be
multipurpose, so that besides predicting relations, it can also be applied for instance matching,
detecting error with classification, and completing types or attributes.

4.3.3 Integrated Processes in Knowledge Graph Refinement: Reinforcement Learning. Some rela-
tively recent machine learning models such as reinforcement learning have been applied to KG re-
finement with some independence from embedding representation learning. Tables 1 and 2 summa-
rize different machine learning models applying reinforcement learning and representation learn-
ing, respectively. Reinforcement learning demands incremental changes to the KG as the agents
explore and perform some actions in the graph as their environment. Some reinforcement learn-
ing approaches operate directly on the KG representation itself, without the need for embedding
representation [18, 37, 94]. The approaches are made with the improvements of DeepPath [126] as
their predecessor. DeepPath makes use of embedding representations of the KG instead of the KG
itself, and requires some combination with supervised learning to direct the exploration toward
favorable outcomes for every action step. Those that operate directly on the KG itself [18, 37, 94]
can learn from scratch with prior knowledge and work as single monolithic reinforcement learning
agents. Besides the single monolithic model of reinforcement learning, other models in Table 2 are
mixtures or combinations of reinforcement learning with representation learning (embeddding)
and supervised learning. For example, Rel4KC [124] and RHL [109] combine different learning
mechanisms, including supervised learning, to generate contrastive labeling [124] with hierarchi-
cal multi-level reinforcement learning at different levels of embedding representation [109]. Since
the process of learning and KG refinement are seen as interacting agents, reinforcement learning
also has the potential to combine different learning mechanisms in multiple agents [59, 136].

The issue of KG embedding representation in reinforcement learning is that the changes made
to KG as parts of the refinement objective to make incremental updates can be costly and difficult,
especially if they must be completed in real time. Retraining the embedding space may take time,
and previous learned data may need to be discarded, but with GNN based embedding as an excep-
tion. GRL [114] makes use of GNN embedding representation (GCN) to operate on the graph. Since
GNN, to an extent, supports incremental learning through iterative aggregation of neighboring en-
tities in the graph, learned actions to generate subgraphs can be made possible in GRL. Combined
with GAN to generate new subgraph and fix incorrect nodes, GRL can be operated incrementally
to refine a KG. However, this still requires precise tuning of hyperparameters to allow optimal
changes to the graph that conform with the particular tasks of the refinement operations.
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Following the characteristics of the approaches as laid out in Tables 1 and 2, each KG refinement
functionality and operation is characterized based on the machine learning process applied. It also
indicates that link prediction in completing missing relations is the most common operation in all
variations of machine learning including representation learning.

4.3.4 Insights and Considerations. As observed in this survey, the kind of machine learning
most applied and studied in KG refinement is representation learning. This is reasonable as KGs
need to be encoded in a certain way to reveal the necessary features and properties enabling most
of the refinement operations. As such, representation learning can be considered as the most prac-
tical to realize as it minimizes the requirement for external data set or user-provided labels except
the initially constructed KG to refine itself. Semi-supervised, self-supervised, and contrastive learn-
ing techniques may reduce the inclusion of user-defined labeling and the size of the training set
while improving the prediction performance. Among different operations in KG Refinement, com-

pleting missing relations is the most straightforward to realize with representation learning. Other
operations such as instance matching, correcting errors, and completing types and attributes are also
supported but most require enhanced encoding techniques and combination with other machine
learning models to deal with the training complexity and graph heterogeneity.

On the other hand, as discussed previously, most of the embedding models and representation
learning are only effective if conducted once due to the complexity of the representation learning
to learn the encoding-decoding model. Despite the inclusion of temporal information for dynamic
representation in KGs and the incremental capability in certain types of GNN, the cost of frequent
updates and fine-tunings makes the representation learning impractical. In this case, combining
different methods of learning and the incorporation of agency models, such as those in reinforce-
ment learning, to enable continuous updates on the graph representation can be the way for online
refinement in KGs. The combination of different methods and agency in refining the KG may also
be required to make the entire system complete since the encoding KG operation only produces
representation for identifying potential errors, duplication, or missing information. However, they
still do not include the steps to correct the KG itself. As such, learning how to update and fix the
KG effectively is still a gap in KG refinement given that the current works mostly focus on repre-
sentation learning.

Among all the main operations in KG refinement, correcting errors operation may have the least
benefits from incorporating machine learning. Although some contemporary machine learning
models, such as representation learning [41] and reinforcement learning [114, 124], have been ap-
plied to detect incorrect relationships, the kinds of errors detected by the learning systems are
still limited to anomalous patterns in learned statistical distribution of the encoded graph [114].
Some of them still rely on external source of data explicitly providing positive and negative labels
indicating their correctness [124]. Classical models of machine learning including supervised [23]
and unsupervised [86] learning also rely on probabilistic or statistical model to infer the correct-
ness. However, detecting errors in a more generic way as in PROSPERA [72], requires powerful
reasoning capabilities to process high-order logical entailment and generate plausible axioms from
ontologies to infer that a concept is logically correct.

5 OPEN CHALLENGES AND FUTURE STUDY

It can be shown from the review of machine learning methods above that different stages of KG
refinement make use of different techniques and algorithms for learning. Current approaches to KG
refinement are dominated by embedding techniques. However, the kind of operations addressed
by most current refinement models converges with the completion tasks of KGs, such as relation
prediction. As shown in Table 1, there are few “modern” techniques, specifically embeddings or
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deep learning methods, that are used to address the issues in KG instance matching, error detection,
and type-attributes completion. As discussed in the previous section, despite the versatility of
embedding methods, modern approaches are mainly used in certain operations, in particular link
prediction and node classification. This is due to the limitation of the embedding representation in
allowing incremental changes or real-time updates since re-training the embedding representation
is expensive.

Accordingly, the pipeline of learning involving embedding representation can be computation-
ally heavy [136]. For example, during every step of action selection in reinforcement learning,
every time new triples are added or updated, the corresponding embedding representation of the
graph should also change via re-training on the updated graph. Although GNN can be potentially
leverage to resolve this issue, careful and finer-grained tuning on the hyperparameters of GNN
are still required to enable it to address the incremental learning requirement.

GNN embeddings may be the ultimate technique for representation learning in this case. On
the one hand, they focus on the context-dependent embeddings of every node in the graph. On
the other hand, they may also provide support to cover the entire KG when the number of iter-
ations during the aggregation of embeddings is enough. However, aggregating information from
neighboring entities and parts of the KG can be a double-edged sword. When node features are ag-
gregated with the structural information from neighboring entities, the specific information may
be lost as the similarity distances or values regarding the structure or the semantic of the nodes be-
come indistinguishable. This kind of issue has been recognized in LINE [104] wherein two levels of
embedding should be represented separately as first-order and second-order similarity measures.
In this case, one needs to treat the similarity of the adjacency structure in the graph (e.g., two nodes
are currently closely linked together) and the similarity of the structural patterns separately (e.g.,
two nodes are similar to each other since they have the same number of outgoing relations to the
same type of nodes). The main issue here is how to come up with an embedding representation
such as GNN that handles these different kinds of structural similarity separately.

The real-time updating of embedding representation in reinforcement learning and GNN models
has also been studied in relation to temporal KG representation or those with diachronic embed-
dings. For example, TIE [121] has been the ultimate model for embedding temporal dynamic KGs.
Facts from new time steps can be incorporated while knowledge derived from previous ones can
still be preserved. In order to handle the dynamics in a temporal KG, an experience replay buffer is
used to maintain updated relations in KG and to avoid catastrophic forgetting when the incoming
information is generalized and the important information from a specific input in the previous
step is lost. TIE uses the experience replay to keep track the frequencies of changes and select only
the changes in the current time for training. However, important and relevant updates may come
not just in the latest change or at the current time but also may appear at multiple time points.
Determining what needs to be maintained in memory and what to remove requires a smarter way
to manage the memory. The experience replays may not just be sequential updates in time, but
may also be subgraphs themselves. Dealing with more elaborated structures to handle momentary
reasoning can also be an issue to study. The open challenges to be studied in the future can also
be summarized as follows:

— Real-time incremental updates on knowledge graph embedding representation. The issue and
challenge here is allowing an embedding representation to be incrementally updated. This
capability may involve integrating different approaches of learning, for example through
reinforcement learning and continuous aggregation in GNN embedding methods, to update
the KG representation continuously. Currently, this issue is still an open challenge, though
a few approaches have tackled it to some extent [114, 121].
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— Multiple Semantic-Structural Aspect in a single embedding for the entire graph. The challenge
to address here is how to come up with an embedding representation of the KG that does not
just aggregate or accumulate information from neighboring entities in the entire graph, but
also separates the aspect of similarity in terms of semantic and structural information. This
may require an embedding model that covers information about the graph more compre-
hensively, but is also flexible enough to discern individual semantic and structural aspects
of similarity separately.

— Maintaining consistency and relevance in long-term continuous knowledge graph refinement.
The challenge to address here is how to maintain the consistency and relevance of the items
in the KG given the dynamic nature of the incoming change of facts and reasoning process
conducted to process the KG. The experience replay buffer may need to be arranged hierar-
chically so that multiple versions of changes of subgraphs can still be maintained without
overwhelming the entire structure of the KG.

6 CONCLUSION

This survey provides a comprehensive review of various approaches to KG refinement supported
by machine learning techniques. The review covers both classical models of machine learning that
operate directly on the KG representation and modern techniques that leverage KG embeddings
and representation learning for various operations and tasks in KG refinement. The main types of
machine learning that are relevant to the refinement tasks and operations are identified. A classi-
fication of the classical and modern techniques with embedding methods has also been presented.

As a contribution of this survey, a framework has been developed for characterizing the pro-
cess and operations involved in KG refinement. The classification of operations in the refinement
process includes encoding KGs, correcting errors, completing types and attributes, instance match-
ing, and completing missing relations. The framework has also been used to characterize machine
learning techniques to support KG refinement. Based on this characterization, it has been revealed
that representation learning that generates embedding representation of a KG is versatile for cer-
tain types of operations, such as completing missing relations, instance matching, and correcting
errors as long as they do not involve extensive updates to the KG. In particular, the embedding rep-
resentation from representation learning can reveal both semantics and structural relationships
among nodes and relations in the KG, which is useful in matching and classifying important el-
ements of the KG. However, classical non-embedding machine learning techniques can still be
useful when semantic and structural aspects of similarity in the graph must be dealt with sepa-
rately. The modern techniques of graph learning may also need a complementary process with
the classical learning approaches when significant and frequent updates to a KG are required to
avoid costly re-training of the embedding representation.

Through the survey, some basic issues and open challenges have also been identified. The first
kind of challenge is the incremental nature of encoding KGs, which are important for processing
new relationships among entities. Rapid or frequent changes to the embedding representation
may still be needed in order to deal with changes required, as in online reinforcement learning.
The second type of open issue is the aspect separation of structural and semantic similarity to
handle the specific contexts of similarity measures in distinguishing different entities in the graphs.
The last type of issue is about maintaining the consistency and relevance of the KGs to support
continuous reasoning and learning in the long run.

REFERENCES

[1] Bilal Abu-Salih. 2021. Domain-specific knowledge graphs: A survey. Journal of Network and Computer Applications

185 (2021), 103076. DOI:https://doi.org/10.1016/j.jnca.2021.103076

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1016/j.jnca.2021.103076


Machine Learning for Refining Knowledge Graphs: A Survey 156:31

[2] Tareq Al-Moslmi, Marc Gallofré Ocaña, Andreas L. Opdahl, and Csaba Veres. 2020. Named entity extraction for
knowledge graphs: A literature overview. IEEE Access 8 (2020), 32862–32881. DOI:https://doi.org/10.1109/ACCESS.
2020.2973928

[3] Samur Araújo, Duc Tran, Arjen DeVries, Jan Hidders, and Daniel Schwabe. 2012. SERIMI: Class-based disambiguation
for effective instance matching over heterogeneous web data. In Proceedings of the 15th International Workshop on

the Web and Databases 2012, Zachary G. Ives and Yannis Velegrakis (Eds.). 25–30. Retrieved from http://db.disi.unitn.
eu/pages/WebDB2012/papers/p4.pdf

[4] Siddhant Arora. 2020. A survey on graph neural networks for knowledge graph completion. arXiv:2007.12374.
Retrieved from http://arxiv.org/abs/2007.12374

[5] Caleb Belth, Xinyi Zheng, Jilles Vreeken, and Danai Koutra. 2020. What is normal, what is strange, and what is miss-
ing in a knowledge graph: Unified characterization via inductive summarization. Proceedings of the Web Conference

(WWW’20), 1115–1126. DOI:https://doi.org/10.1145/3366423.3380189
[6] Y. Bengio, A. Courville, and P. Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 35, 8 (aug 2013), 1798–1828. DOI:https://doi.org/10.1109/tpami.
2013.50

[7] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model.
Journal of Machine Learning Research 3 (2003), 1137–1155.

[8] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Euijong Whang, and Jennifer Widom. 2009.
Swoosh: A generic approach to entity resolution. The VLDB Journal 18, 1 (jan 2009), 255–276. DOI:https://doi.org/
10.1007/s00778-008-0098-x

[9] Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive duplicate detection using learnable string similarity mea-
sures. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD

’03). Association for Computing Machinery, New York, NY, USA, 39–48. DOI:https://doi.org/10.1145/956750.956759
[10] Christian Bizer. 2009. The emerging web of linked data. IEEE Intelligent Systems 24, 5 (2009), 87–92. DOI:https://doi.

org/10.1109/MIS.2009.102
[11] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2013. A semantic matching energy function for

learning with multi-relational data. Machine Learning 94, 2 (may 2013), 233–259. DOI:https://doi.org/10.1007/s10994-
013-5363-6

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In Proceedings of the 26th International Conference on Neural Infor-

mation Processing Systems - Volume 2 . Curran Associates Inc., Red Hook, NY, USA, 2787–2795.
[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and locally connected

networks on graphs. In Proceedings of the 2nd International Conference on Learning Representations 2014, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1312.6203

[14] Volha Bryl and Christian Bizer. 2014. Learning conflict resolution strategies for cross-language wikipedia data fusion.
In Proceedings of the 23rd International Conference on World Wide Web . Association for Computing Machinery, New
York, NY, USA, 1129–1134. DOI:https://doi.org/10.1145/2567948.2578999

[15] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and Tom M. Mitchell. 2010.
Toward an architecture for never-ending language learning. In Proceedings of the 24th AAAI Conference on Artificial

Intelligence . AAAI Press, 1306–1313.
[16] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. 2019. Fast and accurate net-

work embeddings via very sparse random projection. In Proceedings of the 28th ACM International Conference on

Information and Knowledge Management . Association for Computing Machinery, New York, NY, USA, 399–408.
DOI:https://doi.org/10.1145/3357384.3357879

[17] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan. 2020. Knowledge graph completion:
A review. IEEE Access 8 (2020), 192435–192456. DOI:https://doi.org/10.1109/access.2020.3030076

[18] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akhsay Krishnamurthy, and
Alexander J. Smola. 2018. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning.. In Proceedings of the 6th International Conference on Learning Representations. 18.

[19] Rajarshi Das, Ameya Godbole, Nicholas Monath, Manzil Zaheer, and Andrew McCallum. 2020. Probabilistic case-
based reasoning for open-world knowledge graph completion. In Findings of the Association for Computational Lin-

guistics: EMNLP 2020, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
4752–4765. DOI:https://doi.org/10.18653/v1/2020.findings-emnlp.427

[20] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. 2018. HyTE: Hyperplane-based temporally aware
knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing. Association for Computational Linguistics, 2001–2011. DOI:https://doi.org/10.18653/v1/D18-1225

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1109/ACCESS.2020.2973928
http://db.disi.unitn.eu/pages/WebDB2012/papers/p4.pdf
https://arxiv.org/abs/2007.12374.
http://arxiv.org/abs/2007.12374
https://doi.org/10.1145/3366423.3380189
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1007/s00778-008-0098-x
https://doi.org/10.1145/956750.956759
https://doi.org/10.1109/MIS.2009.102
https://doi.org/10.1007/s10994-013-5363-6
http://arxiv.org/abs/1312.6203
https://doi.org/10.1145/2567948.2578999
https://doi.org/10.1145/3357384.3357879
https://doi.org/10.1109/access.2020.3030076
https://doi.org/10.18653/v1/2020.findings-emnlp.427
https://doi.org/10.18653/v1/D18-1225


156:32 B. Subagdja et al.

[21] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette de Keizer. 2011. Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semantic Web 2, 2 (2011), 71–87. DOI:https://doi.org/10.3233/SW-2011-0034

[22] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D knowledge graph
embeddings. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of

Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence . AAAI
Press, Article 221, 8 pages.

[23] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua
Sun, and Wei Zhang. 2014. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceed-

ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . Association for
Computing Machinery, New York, NY, USA, 601–610. DOI:https://doi.org/10.1145/2623330.2623623

[24] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2vec: Scalable representation learning for
heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining . Association for Computing Machinery, New York, NY, USA, 135–144. DOI:https://doi.org/10.1145/
3097983.3098036

[25] Arnab Dutta, Christian Meilicke, and Simone Paolo Ponzetto. 2014. A probabilistic approach for integrating het-
erogeneous knowledge sources. In Proceedings of the Semantic Web: Trends and Challenges. Springer International
Publishing, Cham, 286–301. DOI:https://doi.org/10.1007/978-3-319-07443-6_20

[26] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouzzani, and Nan Tang. 2018. Dis-
tributed representations of tuples for entity resolution. Proceedings of the VLDB Endowment 11, 11 (Jul 2018),
1454–1467. DOI:https://doi.org/10.14778/3236187.3236198

[27] Alfio Ferrara, Andriy Nikolov, and François Scharffe. 2011. Data linking for the semantic web. International Journal

on Semantic Web and Information Systems 7, 3 (jul 2011), 46–76. DOI:https://doi.org/10.4018/jswis.2011070103
[28] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association rule mining

under incomplete evidence in ontological knowledge bases. In Proceedings of the 22nd International Conference on

World Wide Web . Association for Computing Machinery, New York, NY, USA, 413–422. DOI:https://doi.org/10.1145/
2488388.2488425

[29] Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Presutti, Francesco Draicchio, Alberto Musetti, and Paolo
Ciancarini. 2012. Automatic typing of DBpedia entities. In Proceedings of the 11th International Conference on The

Semantic Web - Volume Part I . Springer-Verlag, Berlin, 65–81. DOI:https://doi.org/10.1007/978-3-642-35176-1_5
[30] Lise Getoor and Ashwin Machanavajjhala. 2012. Entity resolution: Theory, practice, and open challenges. Proceedings

of the VLDB Endowment 5, 12 (aug 2012), 2018–2019. DOI:https://doi.org/10.14778/2367502.2367564
[31] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2020. Diachronic embedding for tem-

poral knowledge graph completion. Proceedings of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020),
3988–3995. DOI:https://doi.org/10.1609/aaai.v34i04.5815

[32] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning for networks. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . Association for Computing
Machinery, New York, NY, USA, 855–864. DOI:https://doi.org/10.1145/2939672.2939754

[33] Lingbing Guo, Qingheng Zhang, Weiyi Ge, Wei Hu, and Yuzhong Qu. 2019. DSKG: A deep sequential model for
knowledge graph completion. In Knowledge Graph and Semantic Computing. Knowledge Computing and Language

Understanding, Jun Zhao, Frank van Harmelen, Jie Tang, Xianpei Han, Quan Wang, and Xianyong Li (Eds.). Springer,
65–77.

[34] William L. Hamilton. 2020. Background and traditional approaches. In Graph Representation Learning. Springer In-
ternational Publishing, Cham, 9–27. DOI:https://doi.org/10.1007/978-3-031-01588-5_2

[35] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems . Curran Associates Inc., Red
Hook, NY, USA, 1025–1035.

[36] Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and Xiaoning Qian.
2019. Semi-implicit graph variational auto-encoders. In Proceedings of the 33rd International Conference on Neural

Information Processing Systems. Article 961, 10712–10723 pages. Retrieved from https://proceedings.neurips.cc/paper/
2019/file/fd4771e85e1f916f239624486bff502d-Paper.pdf

[37] Zhongni Hou, Xiaolong Jin, Zixuan Li, and Long Bai. 2021. Rule-aware reinforcement learning for knowledge graph
reasoning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 4687–4692. DOI:https://doi.org/10.18653/v1/2021.findings-acl.412

[38] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In Proceedings

of The Web Conference 2020 . Association for Computing Machinery, New York, NY, USA, 2704–2710. DOI:https://
doi.org/10.1145/3366423.3380027

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.3233/SW-2011-0034
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1007/978-3-319-07443-6_20
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.4018/jswis.2011070103
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1007/978-3-642-35176-1_5
https://doi.org/10.14778/2367502.2367564
https://doi.org/10.1609/aaai.v34i04.5815
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1007/978-3-031-01588-5_2
https://proceedings.neurips.cc/paper/2019/file/fd4771e85e1f916f239624486bff502d-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.412
https://doi.org/10.1145/3366423.3380027


Machine Learning for Refining Knowledge Graphs: A Survey 156:33

[39] Farah Humayun, Daniel Domingo-Fernández, Ajay Abisheck Paul George, Marie Thérèse Hopp, Benjamin F. Syll-
wasschy, Milena S. Detzel, Charles Tapley Hoyt, Martin Hofmann-Apitius, and Diana Imhof. 2020. A computational
approach for mapping heme biology in the context of hemolytic disorders. Frontiers in Bioengineering and Biotech-

nology 8, 74 (2020). DOI:https://doi.org/10.3389/fbioe.2020.00074
[40] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge graph embedding via dynamic mapping

matrix. In Proceedings of the ACL-IJCNLP 2015 - 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language

Processing, Proceedings of the Conference 1 (2015), 687–696. DOI:https://doi.org/10.3115/v1/p15-1067
[41] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016. Knowledge graph completion with adaptive sparse transfer

matrix. Proceedings of the AAAI Conference on Artificial Intelligence 30, 1 (Feb. 2016), 985–991. DOI:https://doi.org/10.
1609/aaai.v30i1.10089

[42] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2022. A survey on knowledge graphs:
Representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems 33, 2 (2022),
494–514. DOI:https://doi.org/10.1109/TNNLS.2021.3070843

[43] Shengbin Jia, Yang Xiang, Xiaojun Chen, Kun Wang, and Shijia. 2019. Triple trustworthiness measurement for knowl-
edge graph. In Proceedings of the World Wide Web Conference . Association for Computing Machinery, New York, NY,
USA, 2865–2871. DOI:https://doi.org/10.1145/3308558.3313586

[44] Mayank Kejriwal. 2019. Domain-specific Knowledge Graph Construction. Springer, Cham. DOI:https://doi.org/10.1007/
978-3-030-12375-8

[45] M. Kejriwal and D. P. Miranker. 2013. An unsupervised algorithm for learning blocking schemes. In Proceedings of the

2013 IEEE International Conference on Data Mining . IEEE Computer Society, 340–349. DOI:https://doi.org/10.1109/
ICDM.2013.60

[46] Mayank Kejriwal and Daniel P. Miranker. 2015. Semi-supervised instance matching using boosted classifiers. In
Proceedings of the Semantic Web. Latest Advances and New Domains, Fabien Gandon, Marta Sabou, Harald Sack,
Claudia d’Amato, Philippe Cudré-Mauroux, and Antoine Zimmermann (Eds.). Springer International Publishing,
Cham, 388–402.

[47] Mayank Kejriwal and Daniel P. Miranker. 2015. An unsupervised instance matcher for schema-free RDF data. Web

Semantics 35, P2 (2015), 102–123. DOI:https://doi.org/10.1016/j.websem.2015.07.002
[48] Mayank A. Kejriwal, Knoblock Craig, and Pedro Szekely. 2021. Knowledge Graphs: Fundamentals, Techniques, and

Applications. MIT Press, Cambridge.
[49] Bosung Kim, Taesuk Hong, Youngjoong Ko, and Jungyun Seo. 2020. Multi-task learning for knowledge graph com-

pletion with pre-trained language models. In Proceedings of the 28th International Conference on Computational Lin-

guistics, Donia Scott, Nuria Bel, and Chengqing Zong (Eds.). International Committee on Computational Linguistics,
Barcelona, Spain (Online), 1737–1743. DOI:https://doi.org/10.18653/v1/2020.coling-main.153

[50] Thomas Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv: 1611.07308. Retrieved from https://
arxiv.org/abs/1611.07308

[51] Jakub Klímek, Petr Škoda, and Martin Nečaský. 2019. Survey of tools for linked data consumption. Semantic Web 10,
4 (2019), 665–720. DOI:https://doi.org/10.3233/SW-180316

[52] Christian Kolthoff and Arnab Dutta. 2015. Semantic relation composition in large scale knowledge bases. In Pro-

ceedings of the 3rd International Workshop on Linked Data for Information Extraction. Gentile, Anna Lisa, Aachen,
34–47.

[53] Nihel Kooli, Robin Allesiardo, and Erwan Pigneul. 2018. Deep learning based approach for entity resolution in
databases. In Intelligent Information and Database Systems. Springer International Publishing, Cham, 3–12. DOI:https:
//doi.org/10.1007/978-3-319-75420-8_1

[54] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2020. Tensor decompositions for temporal knowledge
base completion. In Proceedings of the 8th International Conference on Learning Representations. OpenReview.net.
Retrieved from https://openreview.net/forum?id=rke2P1BFwS

[55] Dustin Lange, Christoph Böhm, and Felix Naumann. 2010. Extracting structured information from Wikipedia arti-
cles to populate infoboxes. In Proceedings of the 19th ACM International Conference on Information and Knowledge

Management - . ACM Press, 1661–1664. DOI:https://doi.org/10.1145/1871437.1871698
[56] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time in knowledge graph. In Companion

Proceedings of the Web Conference 2018 . International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE, 1771–1776. DOI:https://doi.org/10.1145/3184558.3191639

[57] Kai Lei, Jin Zhang, Yuexiang Xie, Desi Wen, Daoyuan Chen, Min Yang, and Ying Shen. 2019. Path-based reasoning
with constrained type attention for knowledge graph completion. Neural Computing and Applications 32, 11 (apr
2019), 6957–6966. DOI:https://doi.org/10.1007/s00521-019-04181-1

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.3389/fbioe.2020.00074
https://doi.org/10.3115/v1/p15-1067
https://doi.org/10.1609/aaai.v30i1.10089
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1145/3308558.3313586
https://doi.org/10.1007/978-3-030-12375-8
https://doi.org/10.1109/ICDM.2013.60
https://doi.org/10.1016/j.websem.2015.07.002
https://doi.org/10.18653/v1/2020.coling-main.153
https://arxiv.org/abs/1611.07308
https://doi.org/10.3233/SW-180316
https://doi.org/10.1007/978-3-319-75420-8_1
https://openreview.net/forum?id=rke2P1BFwS
https://doi.org/10.1145/1871437.1871698
https://doi.org/10.1145/3184558.3191639
https://doi.org/10.1007/s00521-019-04181-1


156:34 B. Subagdja et al.

[58] Huiying Li, Yuanyuan Li, Feifei Xu, and Xinyu Zhong. 2015. Probabilistic error detecting in numerical linked data.
In Database and Expert Systems Applications. Springer International Publishing, Cham, 61–75. DOI:https://doi.org/
10.1007/978-3-319-22849-5_5

[59] Zixuan Li, Xiaolong Jin, Saiping Guan, Yuanzhuo Wang, and Xueqi Cheng. 2018. Path reasoning over knowledge
graph: A multi-agent and reinforcement learning based method. In Proceedings of the 2018 IEEE International Confer-

ence on Data Mining Workshops, Vol. 2018-Novem. IEEE, 929–936. DOI:https://doi.org/10.1109/ICDMW.2018.00135
[60] Zhuotong Li, Yongli Zhao, Yajie Li, Sabidur Rahman, Xiaosong Yu, and Jie Zhang. 2020. Demonstration of fault

localization in optical networks based on knowledge graph and graph neural network. In Proceedings of the Optical

Fiber Communications Conference and Exhibition Part F174-OFC 2020 (2020), 1–3. DOI:https://doi.org/10.1364/OFC.
2020.Th1F.5

[61] Peiying Lin, Yangfan Li, Wensheng Luo, Xu Zhou, Yuanyuan Zeng, Kenli Li, and Keqin Li. 2022. Personalized query
techniques in graphs: A survey. Information Sciences 607 (2022), 961–1000. DOI:https://doi.org/10.1016/j.ins.2022.06.
023

[62] Yankai Lin, Xu Han, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2018. Knowledge representation learning: A
quantitative review. arXiv:1812.10901. Retrieved from http://arxiv.org/abs/1812.10901

[63] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation embeddings for
knowledge graph completion. Proceedings of the National Conference on Artificial Intelligence 3, 1 (2015), 2181–2187.

[64] Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analogical inference for multi-relational embeddings. In Proceed-

ings of the 34th International Conference on Machine Learning - Volume 70 . JMLR.org, 2168–2178.
[65] Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and Minyi Guo. 2017. TransT: Type-based multiple embedding

representations for knowledge graph completion. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) 10534 LNAI (2017), 717–733. DOI:https://doi.org/10.1007/
978-3-319-71249-9_43

[66] Yanfang Ma, Huan Gao, Tianxing Wu, and Guilin Qi. 2014. Learning disjointness axioms with association rule mining
and its application to inconsistency detection of linked data. In Proceedings of the Communications in Computer and

Information Science. Springer Berlin , 29–41. DOI:https://doi.org/10.1007/978-3-662-45495-4_3
[67] Khalid Mahmood Malik, Madan Krishnamurthy, Mazen Alobaidi, Maqbool Hussain, Fakhare Alam, and Ghaus Malik.

2020. Automated domain-specific healthcare knowledge graph curation framework: Subarachnoid hemorrhage as
phenotype. Expert Systems with Applications 145 (2020), 113120. DOI:https://doi.org/10.1016/j.eswa.2019.113120

[68] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information

Processing Systems - . Curran Associates Inc., Red Hook, NY, USA, 3111–3119.
[69] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without

labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - . Association for Computational Linguistics,
USA, 1003–1011.

[70] Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill, New York.
[71] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep,

Esteban Arcaute, and Vijay Raghavendra. 2018. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on Management of Data . Association for Computing Machinery, New
York, NY, USA, 19–34. DOI:https://doi.org/10.1145/3183713.3196926

[72] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. 2011. Scalable knowledge harvesting with high
precision and high recall. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining .
Association for Computing Machinery, New York, NY, USA, 227–236. DOI:https://doi.org/10.1145/1935826.1935869

[73] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shantanu
Jaiswal. 2017. graph2vec: Learning distributed representations of graphs. arXiv: 1707.05005. Retrieved from https:
//arxiv.org/abs/1707.05005

[74] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm. 2016. A survey of current Link
Discovery frameworks. Semantic Web 8, 3 (2016), 419–436. DOI:https://doi.org/10.3233/SW-150210

[75] Dat Quoc Nguyen. 2020. A survey of embedding models of entities and relationships for knowledge graph completion.
In Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs). 1–14. DOI:https://doi.org/
10.18653/v1/2020.textgraphs-1.1

[76] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way model for collective learning on multi-
relational data. In Proceedings of the 28th International Conference on International Conference on Machine Learning .
Omnipress, Madison, WI, USA, 809–816.

[77] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing YAGO: Scalable machine learning for
linked data. In Proceedings of the 21st International Conference on World Wide Web . Association for Computing
Machinery, New York, NY, USA, 271–280. DOI:https://doi.org/10.1145/2187836.2187874

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1007/978-3-319-22849-5_5
https://doi.org/10.1109/ICDMW.2018.00135
https://doi.org/10.1364/OFC.2020.Th1F.5
https://doi.org/10.1016/j.ins.2022.06.023
https://arxiv.org/abs/1812.10901.
http://arxiv.org/abs/1812.10901
https://doi.org/10.1007/978-3-319-71249-9_43
https://doi.org/10.1007/978-3-662-45495-4_3
https://doi.org/10.1016/j.eswa.2019.113120
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/1935826.1935869
https://arxiv.org/abs/1707.05005
https://doi.org/10.3233/SW-150210
https://doi.org/10.18653/v1/2020.textgraphs-1.1
https://doi.org/10.1145/2187836.2187874


Machine Learning for Refining Knowledge Graphs: A Survey 156:35

[78] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. 2012. Unsupervised learning of link discovery configuration. In
Proceedings of the 9th Extended Semantic Web Conference . Springer Berlin 119–133. DOI:https://doi.org/10.1007/978-
3-642-30284-8_15

[79] Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini. 2012. Type inference through
the analysis of Wikipedia links. In Proceedings of the World Wide Web 2012 Workshop on Linked Data on the Web. 1–9.
Retrieved from http://ceur-ws.org/Vol-937/

[80] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. 2021. An embedding-based approach to rule learning in
knowledge graphs. IEEE Transactions on Knowledge and Data Engineering 33, 4 (2021), 1348–1359.

[81] A. Paccanaro and G.E. Hinton. 2001. Learning distributed representations of concepts using linear relational em-
bedding. IEEE Transactions on Knowledge and Data Engineering 13, 2 (2001), 232–244. DOI:https://doi.org/10.1109/69.
917563

[82] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. 2013. Automatic expansion of DBpedia exploiting
wikipedia cross-language information. In Proceedings of the Semantic Web: Semantics and Big Data, Philipp Cimiano,
Oscar Corcho, Valentina Presutti, Laura Hollink, and Sebastian Rudolph (Eds.). Springer Berlin 397–411.

[83] Heiko Paulheim. 2012. Browsing linked open data with auto complete. In Proceedings of the 10th Semantic Web

Challenge 2012 at the 11th International Semantic Web Conference. 1–8.
[84] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web

8, 3 (2017), 489–508.
[85] Heiko Paulheim and Christian Bizer. 2013. Type inference on noisy RDF data. In Proceedings of the 12th International

Semantic Web Conference - Part I. Springer Berlin 510–525. DOI:https://doi.org/10.1007/978-3-642-41335-3_32
[86] Heiko Paulheim and Christian Bizer. 2014. Improving the quality of linked data using statistical distributions. Inter-

national Journal on Semantic Web and Information Systems 10, 2 (apr 2014), 63–86. DOI:https://doi.org/10.4018/ijswis.
2014040104

[87] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . Association
for Computing Machinery, New York, NY, 701–710. DOI:https://doi.org/10.1145/2623330.2623732

[88] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. 2013. Knowledge graph identification. Lecture Notes in Com-

puter Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8218 LNCS,
PART 1 (2013), 542–557. DOI:https://doi.org/10.1007/978-3-642-41335-3_34

[89] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix
factorization: Unifying DeepWalk, LINE, PTE, and Node2vec. In Proceedings of the 11th ACM International Conference

on Web Search and Data Mining . Association for Computing Machinery, New York, NY, USA, 459–467. DOI:https://
doi.org/10.1145/3159652.3159706

[90] Stuart J. Russell and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach (4th Edition). Pearson, Hoboken.
Retrieved from http://aima.cs.berkeley.edu/

[91] David Schindler, Benjamin Zapilko, and Frank Krüger. 2020. Investigating software usage in the social sciences: A
knowledge graph approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics) 12123 LNCS (2020), 271–286. DOI:https://doi.org/10.1007/978-3-030-49461-
2_16 arXiv:2003.10715. Retrieved from https://arxiv.org/abs/2003.10715

[92] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling. 2018. Model-
ing relational data with graph convolutional networks. In Proceedings of the 15th European Semantic Web Conference.
Springer International Publishing, 593–607. DOI:https://doi.org/10.1007/978-3-319-93417-4_38

[93] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. 2019. End-to-end structure-aware con-
volutional networks for knowledge base completion. In Proceedings of the AAAI Conference on Artificial Intelligence

33 (jul 2019), 3060–3067. DOI:https://doi.org/10.1609/aaai.v33i01.33013060
[94] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. 2018. M-Walk: Learning to walk over

graphs using Monte Carlo tree search. In Proceedings of the 32nd International Conference on Neural Information

Processing Systems . Curran Associates Inc., Red Hook, NY, USA, 6787–6798.
[95] Jiawei Sheng, Shu Guo, Zhenyu Chen, Juwei Yue, Lihong Wang, Tingwen Liu, and Hongbo Xu. 2020. Adaptive

attentional network for few-shot knowledge graph completion. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing. 1681–1691. DOI:https://doi.org/10.18653/v1/2020.emnlp-main.131
[96] Baoxu Shi and Tim Weninger. 2018. Open-world knowledge graph completion. In Proceedings of the 32nd AAAI

Conference on Artificial Intelligence , 1957–1964.
[97] Jennifer Sleeman and Tim Finin. 2013. Type prediction for efficient coreference resolution in heterogeneous semantic

graphs. In Proceedings of the 2013 IEEE 7th International Conference on Semantic Computing. 78–85. DOI:https://doi.
org/10.1109/ICSC.2013.22

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1007/978-3-642-30284-8_15
http://ceur-ws.org/Vol-937/
https://doi.org/10.1109/69.917563
https://doi.org/10.1007/978-3-642-41335-3_32
https://doi.org/10.4018/ijswis.2014040104
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/978-3-642-41335-3_34
https://doi.org/10.1145/3159652.3159706
http://aima.cs.berkeley.edu/
https://doi.org/10.1007/978-3-030-49461-2_16
https://arxiv.org/abs/2003.10715
https://arxiv.org/abs/2003.10715
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1609/aaai.v33i01.33013060
https://doi.org/10.18653/v1/2020.emnlp-main.131
https://doi.org/10.1109/ICSC.2013.22


156:36 B. Subagdja et al.

[98] Jennifer Sleeman, Tim Finin, and Anupam Joshi. 2015. Topic modeling for RDF graphs. In Proceedings of the 3rd

International Workshop on Linked Data for Information Extraction. CEUR Workshop Proceedings, 48–62.
[99] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013. Reasoning with neural tensor net-

works for knowledge base completion. In Proceedings of the 26th International Conference on Neural Information

Processing Systems - Volume 1 . Curran Associates Inc., Red Hook, NY, USA, 926–934.
[100] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013. Reasoning with neural tensor net-

works for knowledge base completion. In Proceedings of the 26th International Conference on Neural Information

Processing Systems - Volume 1 . Curran Associates Inc., Red Hook, NY, USA, 926–934.
[101] Tommaso Soru and Axel-Cyrille Ngonga Ngomo. 2014. A comparison of supervised learning classifiers for link

discovery. In Proceedings of the 10th International Conference on Semantic Systems . Association for Computing Ma-
chinery, New York, NY, USA, 41–44. DOI:https://doi.org/10.1145/2660517.2660532

[102] Zhiqing Sun, Zhi Hong Deng, Jian Yun Nie, and Jian Tang. 2019. RotatE: Knowledge graph embedding by relational
rotation in complex space. In Proceedings of the 7th International Conference on Learning Representations .

[103] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A Bradford Book, Cambridge,
MA, USA.

[104] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web . International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 1067–1077. DOI:https://doi.org/
10.1145/2736277.2741093

[105] Anqi Tian, Chunhong Zhang, Miao Rang, Xueying Yang, and Zhiqiang Zhan. 2020. RA-GCN: Relational aggregation
graph convolutional network for knowledge graph completion. In Proceedings of the 2020 12th International Con-

ference on Machine Learning and Computing . Association for Computing Machinery, New York, NY, USA, 580–586.
DOI:https://doi.org/10.1145/3383972.3384067

[106] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve: Deep temporal reasoning for dynamic
knowledge graphs. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 . JMLR.org,
3462–3471.

[107] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. 2016. Complex embed-
dings for simple link prediction. In Proceedings of The 33rd International Conference on Machine Learning (Proceedings

of Machine Learning Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, 2071–2080. Re-
trieved from https://proceedings.mlr.press/v48/trouillon16.html

[108] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph
attention networks. In Proceedings of the 6th International Conference on Learning Representations (ICLR ’18). Retrieved
from https://openreview.net/forum?id=rJXMpikCZ

[109] Guojia Wan, Shirui Pan, Chen Gong, Chuan Zhou, and Gholamreza Haffari. 2020. Reasoning like human: Hierarchical
reinforcement learning for knowledge graph reasoning. In Proceedings of the 29th International Joint Conference on

Artificial Intelligence, IJCAI-20, Christian Bessiere (Ed.). International Joint Conferences on Artificial Intelligence
Organization, 1926–1932. DOI:https://doi.org/10.24963/ijcai.2020/267 Main track.

[110] Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. 2021. Structure-augmented text rep-
resentation learning for efficient knowledge graph completion. In Proceedings of the Web Conference 2021 - Pro-

ceedings of the World Wide Web Conference, WWW 2021, 1737–1748. DOI:https://doi.org/10.1145/3442381.3450043
arXiv:2004.14781

[111] Bin Wang, Guangtao Wang, Jing Huang, Jiaxuan You, Jure Leskovec, and C.-C. Jay Kuo. 2021. Inductive learning
on commonsense knowledge graph completion. In Proceedings of the 2021 International Joint Conference on Neural

Networks. 1–8. DOI:https://doi.org/10.1109/ijcnn52387.2021.9534355
[112] Changping Wang, Chaokun Wang, Zheng Wang, Xiaojun Ye, and Philip S. Yu. 2020. Edge2vec. ACM Transactions on

Knowledge Discovery from Data 14, 4 (jul 2020), 1–24. DOI:https://doi.org/10.1145/3391298
[113] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining . Association for Computing Machinery,
New York, NY, USA, 1225–1234. DOI:https://doi.org/10.1145/2939672.2939753

[114] Qi Wang, Yuede Ji, Yongsheng Hao, and Jie Cao. 2020. GRL: Knowledge graph completion with GAN-based reinforce-
ment learning. Knowledge-Based Systems 209 (2020), 106421. DOI:https://doi.org/10.1016/j.knosys.2020.106421

[115] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering 29, 12 (2017), 2724–2743. DOI:https://doi.org/10.
1109/TKDE.2017.2754499

[116] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by translating on
hyperplanes. In Proceedings of the National Conference on Artificial Intelligence , 1112–1119. Retrieved from https://
wvvw.aaai.org/ojs/index.php/AAAI/article/view/4725

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1145/2660517.2660532
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/3383972.3384067
https://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.24963/ijcai.2020/267
https://doi.org/10.1145/3442381.3450043
https://arxiv.org/abs/2004.14781
https://doi.org/10.1109/ijcnn52387.2021.9534355
https://doi.org/10.1145/3391298
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1016/j.knosys.2020.106421
https://doi.org/10.1109/TKDE.2017.2754499
https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4725


Machine Learning for Refining Knowledge Graphs: A Survey 156:37

[117] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8, 3-4 (may 1992), 279–292.
DOI:https://doi.org/10.1007/BF00992698

[118] Yuze Wei, Jie Luo, and Huiyuan Xie. 2016. KGRL: An OWL2 RL reasoning system for large scale knowledge graph.
In Proceedings of the 2016 12th International Conference on Semantics, Knowledge and Grids. 83–89. DOI:https://doi.
org/10.1109/SKG.2016.020

[119] Dominik Wienand and Heiko Paulheim. 2014. Detecting incorrect numerical data in DBpedia. In Proceedings of the

11th European Semantic Web Conference. Springer International Publishing, 504–518. DOI:https://doi.org/10.1007/
978-3-319-07443-6_34

[120] Pornpit Wongthongtham and Bilal Abu Salih. 2018. Ontology-based approach for identifying the credibility domain
in social Big Data. Journal of Organizational Computing and Electronic Commerce 28, 4 (2018), 354–377. DOI:https://
doi.org/10.1080/10919392.2018.1517481

[121] Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma, Mark Coates, and Jackie Chi Kit Cheung. 2021. TIE: A framework for
embedding-based incremental temporal knowledge graph completion. In Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information Retrieval . Association for Computing Machinery, New
York, NY, USA, 428–437. DOI:https://doi.org/10.1145/3404835.3462961

[122] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. 2021. Graph learning: A sur-
vey. IEEE Transactions on Artificial Intelligence 2, 2 (2021), 109–127. DOI:https://doi.org/10.1109/tai.2021.3076021.
arXiv:2105.00696

[123] Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016. TransG: A generative model for knowledge graph embedding. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers 4
(2016), 2316–2325. DOI:https://doi.org/10.18653/v1/p16-1219

[124] Xiao Lin, Pero Subasic, and Hongfeng Yin. 2020. Rel4KC: A reinforcement learning agent for knowledge graph
completion and validation. In Proceedings of the Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE, 1291. Retrieved from http://www.cse.msu.edu/$\sim$zhaoxi35/DRL4KDD/1.pdf
[125] Qianqian Xie, Jimin Huang, Pan Du, Min Peng, and Jian-Yun Nie. 2021. Inductive topic variational graph auto-

encoder for text classification. In Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Online,
4218–4227. DOI:https://doi.org/10.18653/v1/2021.naacl-main.333

[126] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A reinforcement learning method for knowl-
edge graph reasoning. In Proceedings of the EMNLP 2017 - Conference on Empirical Methods in Natural Language

Processing, Proceedings, 564–573. DOI:https://doi.org/10.18653/v1/d17-1060. arXiv:1707.06690
[127] Bingcong Xue and Lei Zou. 2023. Knowledge graph quality management: A comprehensive survey. IEEE Transactions

on Knowledge and Data Engineering 35, 5 (2023), 4969–4988. DOI:https://doi.org/10.1109/TKDE.2022.3150080
[128] Yexiang Xue, Yang Yuan, Zhitian Xu, and Ashish Sabharwal. 2018. Expanding holographic embeddings for knowl-

edge completion. In Proceedings of the Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. Retrieved from
https://proceedings.neurips.cc/paper/2018/file/dd28e50635038e9cf3a648c2dd17ad0a-Paper.pdf

[129] Hehua Yan, Jun Yang, and Jiafu Wan. 2020. KnowIME: A system to construct a knowledge graph for intelligent
manufacturing equipment. IEEE Access 8 (2020), 41805–41813. DOI:https://doi.org/10.1109/ACCESS.2020.2977136

[130] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embedding entities and relations for learn-
ing and inference in knowledge bases. In Proceedings of the 3rd International Conference on Learning Representations,
Yoshua Bengio and Yann LeCun (Eds.). Retrieved from http://arxiv.org/abs/1412.6575

[131] Cheng Yang, Zhiyuan Liu, Cunchao Tu, and Maosong Sun. 2017. Network representation learning: an overview.
SCIENTIA SINICA Informationis 47, 8 (2017), 980–996. DOI:https://doi.org/10.1360/n112017-00145

[132] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge graph completion. arXiv:
1909.03193. Retrieved from http://arxiv.org/abs/1909.03193

[133] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Network representation learning: A survey. IEEE

Transactions on Big Data 6, 1 (2018), 3–28. DOI:https://doi.org/10.1109/tbdata.2018.2850013
[134] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast and scalable network representation

learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence . AAAI Press, 4278–4284.
[135] Rui Zhang, Dimitar Hristovski, Dalton Schutte, Andrej Kastrin, Marcelo Fiszman, and Halil Kilicoglu. 2021. Drug

repurposing for COVID-19 via knowledge graph completion. Journal of Biomedical Informatics 115 (2021), 103696.
DOI:https://doi.org/10.1016/j.jbi.2021.103696

[136] Yunan Zhang, Xiang Cheng, Heting Gao, and ChengXiang Zhai. 2019. Cooperative reasoning on knowledge graph
and corpus: A multi-agent reinforcement learning approach. arXiv:1912.02206. Retrieved from https://arxiv.org/abs/
1912.02206

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/SKG.2016.020
https://doi.org/10.1007/978-3-319-07443-6_34
https://doi.org/10.1080/10919392.2018.1517481
https://doi.org/10.1145/3404835.3462961
https://doi.org/10.1109/tai.2021.3076021
https://arxiv.org/abs/2105.00696
https://doi.org/10.18653/v1/p16-1219
http://www.cse.msu.edu/$\sim $zhaoxi35/DRL4KDD/1.pdf
https://doi.org/10.18653/v1/2021.naacl-main.333
https://doi.org/10.18653/v1/d17-1060
https://arxiv.org/abs/1707.06690
https://doi.org/10.1109/TKDE.2022.3150080
https://proceedings.neurips.cc/paper/2018/file/dd28e50635038e9cf3a648c2dd17ad0a-Paper.pdf
https://doi.org/10.1109/ACCESS.2020.2977136
http://arxiv.org/abs/1412.6575
https://doi.org/10.1360/n112017-00145
http://arxiv.org/abs/1909.03193
http://arxiv.org/abs/1909.03193
https://doi.org/10.1109/tbdata.2018.2850013
https://doi.org/10.1016/j.jbi.2021.103696
https://arxiv.org/abs/1912.02206


156:38 B. Subagdja et al.

[137] Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. 2020. Learning hierarchy-aware knowledge graph em-
beddings for link prediction. In Proceedings of the AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (2020),
3065–3072. DOI:https://doi.org/10.1609/aaai.v34i03.5701

[138] Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo. 2015. Knowledge base completion by learning pairwise-
interaction differentiated embeddings. Data Mining and Knowledge Discovery 29, 5 (jul 2015), 1486–1504. DOI:https:
//doi.org/10.1007/s10618-015-0430-1

[139] Xiaofei Zhou, Qiannan Zhu, Ping Liu, and Li Guo. 2017. Learning knowledge embeddings by combining limit-based
scoring loss. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management . Association
for Computing Machinery, New York, NY, USA, 1009–1018. DOI:https://doi.org/10.1145/3132847.3132939

[140] Xiaojin Zhu and Andrew B. Goldberg. 2009. Introduction to semi-supervised learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning 3, 1 (jan 2009), 1–130. DOI:https://doi.org/10.2200/S00196ED1V01Y200906AIM006
[141] Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yang Song, and Tao Zhang. 2020. Representation learning with ordered rela-

tion paths for knowledge graph completion. In Proceedings of the EMNLP-IJCNLP 2019 - 2019 Conference on Empirical

Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Pro-

ceedings of the Conference (2020), 2662–2671. DOI:https://doi.org/10.18653/v1/d19-1268. arXiv:1909.11864
[142] Xiaohan Zou. 2020. A survey on application of knowledge graph. Journal of Physics: Conference Series 1487, 1 (03

2020), 012016. DOI:https://doi.org/10.1088/1742-6596/1487/1/012016

Received 20 April 2022; revised 5 September 2023; accepted 15 December 2023

ACM Comput. Surv., Vol. 56, No. 6, Article 156. Publication date: February 2024.

https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.1007/s10618-015-0430-1
https://doi.org/10.1145/3132847.3132939
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://doi.org/10.18653/v1/d19-1268
https://arxiv.org/abs/1909.11864
https://doi.org/10.1088/1742-6596/1487/1/012016

	Machine learning for refining knowledge graphs: A survey
	Citation

	Machine Learning for Refining Knowledge Graphs: A Survey

