
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2023

Beyond "protected" and "private": An empirical security analysis of Beyond "protected" and "private": An empirical security analysis of

custom function modifiers in smart contracts custom function modifiers in smart contracts

Yuzhou FANG

Daoyuan WU

Xiao YI

Shuai WANG

Yufan CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Finance and Financial Management Commons, Information Security Commons, and the

Software Engineering Commons

Citation Citation
FANG, Yuzhou; WU, Daoyuan; YI, Xiao; WANG, Shuai; CHEN, Yufan; CHEN, Mengjie; LIU, Yang; and JIANG,
Lingxiao. Beyond "protected" and "private": An empirical security analysis of custom function modifiers in
smart contracts. (2023). ISSTA '23: Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, Seattle, July 17-21. 1157-1168.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8545

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yuzhou FANG, Daoyuan WU, Xiao YI, Shuai WANG, Yufan CHEN, Mengjie CHEN, Yang LIU, and Lingxiao
JIANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8545

https://ink.library.smu.edu.sg/sis_research/8545

Beyond “Protected” and “Private”: An Empirical Security Analysis
of Custom Function Modifiers in Smart Contracts
Yuzhou Fang∗

The Hong Kong University of Science
and Technology

Hong Kong SAR, China
yzfang@cse.ust.hk

Daoyuan Wu†‡
The Chinese University of Hong Kong

Hong Kong SAR, China
dywu@ie.cuhk.edu.hk

Xiao Yi
The Chinese University of Hong Kong

Hong Kong SAR, China
yx019@ie.cuhk.edu.hk

Shuai Wang†
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
shuaiw@cse.ust.hk

Yufan Chen
Xidian University

Xi’an, China
fanwatcher144@gmail.com

Mengjie Chen
Mask Network
Shanghai, China

rachel_chen0915@outlook.com

Yang Liu‡
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

Lingxiao Jiang
Singapore Management University

Singapore, Singapore
lxjiang@smu.edu.sg

ABSTRACT
A smart contract is a piece of application-layer code running on
blockchain ledgers and it provides programmatic logic via transaction-
based execution of pre-defined functions. Smart contract functions
are by default invokable by any party. To safeguard them, the
mainstream smart contract language, i.e., Solidity of the popular
Ethereum blockchain, proposed a unique language-level keyword
called “modifier,” which allows developers to define custom func-
tion access control policies beyond the traditional “protected” and
“private” modifiers in classic programming languages.

In this paper, we aim to conduct a large-scale security analy-
sis of the modifiers used in real-world Ethereum smart contracts.
To achieve this, we design and implement a novel smart contract
analysis tool called SoMo. Its main objective is to identify insecure
modifiers that can be bypassed from one or more unprotected smart
contract functions. This is challenging because of the complicated
relationship between modifiers and their variables/functions and
the ambiguity of attacker-accessible entry functions. To overcome
them, we first propose a new structure, the Modifier Dependency
Graph (MDG), to connect all the modifier-related control/data flows.
Over MDGs, we then model system variables, generate symbolic
path constraints, and iteratively test each candidate entry function.

∗Half of the work by Yuzhou Fang was done at the Chinese University of Hong Kong.
†Daoyuan Wu and Shuai Wang are the corresponding authors.
‡Daoyuan Wu and Yang Liu are also affiliated with MetaTrust Labs during this study.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598125

Our extensive evaluation shows that SoMo outperforms the state-
of-the-art SPCon tool by detecting all its true positives and correctly
avoiding 9 out of 11 false positives. It also achieves high precision of
91.2% when analyzing a large dataset of 62,464 contracts, over 400
of which were identified with bypassable modifiers. Our analysis
further reveals three interesting security findings about modifiers
and nine major types of modifier usage in the wild. SoMo has been
integrated into an online security scanning service, MetaScan.

CCS CONCEPTS
• Security and privacy → Smart contract security; • Software
and its engineering→ Software verification and validation.

KEYWORDS
Smart Contract Security, Taint Analysis, Access Control, Modifiers

ACM Reference Format:
Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie
Chen, Yang Liu, and Lingxiao Jiang. 2023. Beyond “Protected” and “Private”:
An Empirical Security Analysis of Custom Function Modifiers in Smart
Contracts. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.
3598125

1 INTRODUCTION
The rise of blockchain technology has lead to the immense devel-
opment of decentralized applications [15, 54]. Ethereum [55] has
gained significant attention in recent years due to its unique ca-
pacity to facilitate running Turing-complete smart contracts for
various purposes. However, vulnerabilities in smart contracts have
emerged as a significant threat to the whole Ethereum ecosys-
tem [12, 22, 24, 31, 37, 40, 44, 48, 52, 58]. If smart contracts contain
flaws, the inability to change deployed contracts or reverse trans-
actions once they have been written to the blockchain can have

https://doi.org/10.1145/3597926.3598125
https://doi.org/10.1145/3597926.3598125
https://doi.org/10.1145/3597926.3598125

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

severe consequences. Given that smart contract computations of-
ten involve cryptocurrency transactions, the potential for financial
loss is particularly high. For instance, the infamous Dao attack [2]
resulted in the theft of over 3.6 million Ethers (the cryptocurrency
of Ethereum), causing a mandatory hard fork of Ethereum.

Ethereum smart contracts are written in a high-level language
called Solidity [8], the bytecode of which runs in stack-based virtual
machine named EthereumVirtual Machine (EVM) [4]. As smart con-
tracts are designed to interact with Ethereum transactions, Solidity
functions are by default invokable by any party unless they are spec-
ified with the internal or private visibility specifiers. To allow
developers to enforce more flexible function access control policies
beyond the traditional “protected” and “private” modifiers in classic
programming languages, Solidity proposed a unique language-level
keyword called “modifier.” Specifically, a modifier declares a piece
of conditional checks that are automatically embedded by Solidity
into the function prologues during contract compilation. Modifier
conditions often check against the global or contract-wide state
variables1 and system variables2. However, state variables might
be manipulated by attackers from an unprotected function, causing
a bypass of the corresponding modifiers and further affecting the
functions protected by insecure modifiers. The infamous Parity
Wallet bug [3] that led to over 150,000 Ethers stolen was actually
due to this reason, and we will illustrate the Parity bug in §2.

In this paper, we conduct an empirical security analysis of cus-
tom function modifiers in real-world Ethereum smart contracts.
Our main objective is to identify insecure modifiers that could be
bypassed from one or more unprotected smart contract functions.
We refer to such modifiers as bypassable modifiers in this paper.
To automatically detect them, however, requires us to address two
unique challenges on modifier analysis due to (i) mutual depend-
ability between modifiers, variables used by modifiers, conditions
related, and functions that change the variables and (ii) the ambi-
guity of entry functions, whereby any function — even those with
modifiers — could become an attacker-accessible entry function.

We propose a novel smart contract analysis tool, SoMo, to address
the aforementioned challenges. Specifically, SoMo first performs
backward slicing to construct a Modifier Dependency Graph (MDG),
which leverages global state variables to connect all the modifier-
related control and data flows. On top of the generated MDG, SoMo
then iteratively explores sliced paths for different modifiers and
tests their path feasibility from each candidate entry function by
modelling system variables and resolving symbolic path constraints.
Besides detecting bypassable modifiers, SoMo also collects all the
modifiers to allow a modifier-specific NLP (Natural Language Pro-
cessing) analysis for understanding their usage in the wild.

To evaluate SoMo, we first benchmark it with a state-of-the-art
tool with similar objectives. The most related to our work are SP-
Con [37] and Ethainter [13], both of which explicitly consider the
impact of modifiers in their analysis. Specifically, Ethainter [13]
takes into account modifier-related sanitization during its Datalog-
based information flow analysis. On the other hand, SPCon [37]

1State variables in Solidity refer to the non-volatile variables that are stored in the
EVM storage space and have a persistent impact on the contract.
2System variables refer to special variables, such as msg.sender, that are predefined
and available in the global namespace of Solidity.

identifies privileged functions that should not be accessible to nor-
mal users by analyzing the transaction history. Since SPCon targets
at a problem much closer to ours, we benchmark SoMo with SPCon
using its public dataset and found that among the 34 contracts with
modifiers, SoMo can detect all the 23 true positives while correctly
avoiding 9 out of 11 false positives made by SPCon.

We further conduct a large-scale experiment with 62,464 real-
world smart contracts collected from multiple sources, including
5,000 recent contracts that were submitted to Etherscan [5] on 2
November 2022. Overall, SoMo reports 500 vulnerable contracts
and marks 61,481 contracts secure (with 483 contracts failed; see
§4.2). We cross-check all the 500 vulnerable contracts reported and
confirm that 456 of them are true positives, including 411 actually
vulnerable and the other 45 with modifiers intentionally designed
to be bypassable under certain conditions (e.g., a transaction with a
certain amount of tokens). As a result, SoMo achieves high precision
of 91.2%, which suggests that SoMo is practically accurate to analyze
a large set of real-world smart contracts. Moreover, SoMo is fast,
with 95% of the 62,464 contracts finished within 2 seconds.

SoMo’s results also reveal three interesting security findings.
Firstly, SoMo identified a higher percentage of vulnerable contracts
with Ether compared to previous works, highlighting the signifi-
cance of the issue of bypassable modifiers that may go unnoticed
by developers. Secondly, earlier versions of Solidity led some devel-
opers to mistakenly expose constructor functions as public entry
functions, resulting in approximately 80% of the vulnerable con-
tracts in our dataset. Thirdly, the default behavior of Solidity, which
set functions with no visibility specifiers as public, may not align
with developers’ understanding, leading to another 20% of the vul-
nerable contracts. In addition to these insights about bypassable
modifiers, our NLP analysis and clustering categorize major mod-
ifier usage into four categories —access control, financial related,
contract state, and misc check. We also summarize nine types of
common modifiers defined in real-world smart contracts.

Contributions. This paper makes the following contributions:
• (Methodology) We propose a novel tool SoMo to detect by-
passable modifiers, in which we (i) design a modifier depen-
dency graph (MDG) to correlate modifier-related control-
and data-flows with state variables and (ii) iteratively and
symbolically explore and test each candidate entry function.

• (Evaluation) We conduct extensive evaluation by comparing
SoMo with the state-of-the-art SPCon tool and applying it to
analyze a large dataset of 62,464 real-world smart contracts.
The result shows high accuracy and efficiency of SoMo.

• (Insights) Our results reveal three interesting findings about
the root causes of modifier-related vulnerabilities and nine
types of major modifier usage in the wild.

Availability. SoMo has been integrated as a part of MetaScan3,
an industry-leading smart contract security scanning platform. To
facilitate future comparisons with SoMo, we have made the dataset
publicly available on https://github.com/VPRLab/ModifierDataset.

Roadmap. The rest of this paper is organized as follows. We
first provide background in §2. We then present SoMo’s design
and evaluation in §3 and §4, respectively. We further discuss some
threats in §5, summarize related work in §6, and conclude in §7.
3https://metatrust.io/metascan

https://github.com/VPRLab/ModifierDataset
https://metatrust.io/metascan

Beyond “Protected” and “Private”: An Empirical Security Analysis of Custom Function Modifiers in Smart Contracts ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 pragma solidity ^0.4.9;

2 contract WalletLibrary {

3 address owner;

4 modifier onlyowner (){

5 require(msg.sender == owner);

6 _;

7 }

8 function initWallet(address _owner){

9 // Should only be called by constructor

10 owner = _owner;

11 // ... more setup ...

12 }

13 function execute (...) external onlyowner{

14 // execute any transaction by owner immediately

15 }

16 }

Figure 1: The trimmed Parity Wallet bug.

2 BACKGROUND
In this section, we introduce some background about Solidity and
its modifiers, as well as the security implication of modifiers.

Solidity. Ethereum offers a stack-based virtual machine named
Ethereum Virtual Machine (EVM) [4] for executing the bytecode
compiled from smart contract programs written in a high-level lan-
guage called Solidity [8]. Solidity provides four visibility specifiers,
namely public, external, internal, and private, to determine
the accessibility to contract components (i.e., functions and vari-
ables). While private and internal specifiers prevent potentially
untrusted parties from accessing contract elements, public and
external allow such accesses, though external prohibits the call
from other functions in current contract.

Modifiers. Function modifiers are a smart contract language
feature used to modify the behavior of general functions. Modifiers
can be used to enforce specific conditions that must be met prior
to executing a function, such as checking the sender’s identity or
the amount of the Ether appended. By using modifiers, developers
can create reusable and modular code that can be easily applied to
multiple functions, ensuring consistent behavior across the contract.
This includes, but is not limited to, defining a modifier to enforce
sensitive functions like mintTokens that are accessible to a specific
group of users. Typically, modifiers are designed as preconditions
to check properties before executing contract functions. Therefore,
they are often associated with the privileges of contracts.

The security implication. Due to the access control nature
of contract modifiers, improper usage can lead to unintended and
severe consequences. For example, Figure 1 shows the trimmed
code of the infamous Parity Wallet bug [3], which resulted in the
loss of millions of dollars. The root cause of this bug is a bypassable
modifier onlyowner, which was exploitable via the unintentionally
exposed function initWallet. Specifically, attackers can first in-
voke function initWallet to update the state variable owner such
that the included check (line 5 in Figure 1) in onlyowner is satisfied.
With the bypassed modifier onlyowner, attackers can further in-
voke the function execute to drain funds from the contract. To fix
such a severe vulnerability, developers should set the initWallet
function private or internal to prevent unintended exposure.

Smart Contracts

The SoMo Workflow

Test Path Feasibility
(In §3.3)

VerifierIntermediate
Result

Bypassable
Modifiers

Parse Contract and Build MDG
(In §3.2)

Builder

MDG
Collect

Sliced PathsExplorer

Explore Sliced MDG Paths
(In §3.3)

Analyze Modifier Usage
(In §3.4)

Modifier Usage

Paths

Figure 2: The overall workflow of SoMo.

3 THE SOMO TOOL
To enable an empirical security analysis of modifiers, we design a
novel smart contract analysis tool called SoMo. Its main objective
is to identify insecure modifiers that could be bypassed from one or
more unprotected smart contract functions. As mentioned in §1, we
refer to such modifiers as bypassable modifiers in this paper. Most of
them lead to access control vulnerabilities and are thus vulnerable,
but we also observe that a few of them are intentionally designed
by developers so that they can be triggered under certain condi-
tions (e.g., a transaction with a certain amount of tokens). SoMo
does not aim to distinguish these two in its automated analysis
because both cases are technically bypassable. One human analyst
can easily differentiate them from SoMo’s output by understanding
the context of a smart contract.

Besides detecting bypassable modifiers, SoMo also collects all the
modifiers to allow an NLP (Natural Language Processing) analysis
of these modifiers for understanding their usage in the wild. In this
section, we present the design towards the main objective from §3.1
to §3.3, and describe the part of NLP analysis in §3.4.

3.1 Overview and Challenges
In this section, we first give an overview of SoMo’s design and
implementation, then illustrate its major challenges using a running
example contract.

Overview. Figure 2 presents the overall workflow of SoMo. It
has four major components. First, the builder component takes an
input contract source code, parses it to generate intermediate repre-
sentation (IR), and generates a modifier dependency graph (MDG)
via backward slicing. Second, on top of the generated MDG, the
explorer component collects and iteratively explores sliced paths
for different modifiers. Third, the verifier component symbolically
validates the path feasibility of existing sliced paths and presents
the intermediate analysis result, i.e., some bypassable modifiers,
back to the explorer component. The latter continues to collect new
sliced paths because some entry functions protected with bypass-
able modifiers are now shown as invokable by adversaries. After
these two steps, SoMo reports the final result of all the bypassable
modifiers. Lastly, we design and apply an NLP-based method to
cluster the major usage of different modifiers in the wild.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

1 pragma solidity ^0.8.0;

2 contract Example{

3 address owner;

4 address newOwner;

5 mapping (address=>uint) balance;
6 mapping(address=>bool) admin;

7 modifier onlyOwner () {

8 address caller = msg.sender;
9 require(caller == owner);

10 _;

11 }

12 modifier onlyAdmin () {

13 require(admin[msg.sender]);
14 _;

15 }

16 function changeOwner(address _addr) public {

17 newOwner = _addr;

18 }

19 function transferOwnership () external {

20 require(msg.sender == newOwner);

21 owner = newOwner;

22 }

23 function addAdmin(address _addr) onlyOwner public{
24 admin[_addr] = true;
25 }

26 function reward(address _addr , uint _value)

onlyAdmin public {

27 // add more tokens to the target address

28 balance[_addr] += _value;

29 }

30 function superChangeOwner(address _addr) public{
31 // A hard -coded address of developers

32 require(msg.sender == 0xABC);

33 owner = _addr;

34 }

35 }

Figure 3: A running example to illustrate the two main chal-
lenges that are addressed by SoMo in §3.2 and §3.3; see its
corresponding modifier dependency graph in Figure 4.

SoMo utilizes several tools for its implementation. First, SoMo
relies on Slither [21] (version 0.8.2) to compile smart contract source
code and provide support of a single static-assignment (SSA [47])
form IR. We choose to input contract source code instead of byte-
code because the modifier information will be embedded into func-
tions and is indistinguishable with the conditional statements in
bytecode. Second, on top of the Slither SSA IR, we implement a sym-
bolic execution prototype for Solidity by employing Z3 solver [11]
(version 4.11.2) to resolve the constraints. Third, to handle different
versions of smart contracts, SoMo leverages Sol-select [6] (ver-
sion 0.8.2) to switch between different Solidity compilers. Overall,
SoMo is implemented with 5,400 lines of Python code.

Challenges.Wedesign a running example contract in Figure 3 to
illustrate the two main challenges in the course of designing SoMo.
This contract defines two modifiers, onlyOwner and onlyAdmin,
and use them to protect the function addAdmin() and reward(),
respectively. We now explain the challenges related to these two
modifiers as follows.

First, to bypass the check of modifier onlyOwner, an attacker
needs to modify the value of the state variable owner (line 9) so
that it is equal to the attacker’s wallet address (i.e., msg.sender in
line 8). The variable owner could be set to a new value (line 21) by

a public function called transferOwnership(), but such change
is only allowed when a condition (line 20) related to another vari-
able newOwner is satisfied. As such, we need to further analyze the
variable newOwner (line 17) in another function changeOwner().
We can see that this process involves the complicated relationship
between multiple parties, i.e., modifiers, variables used by modifiers,
conditions with related variables, and functions that change the
variables. It is thus challenging to identify, correlate, and resolve such
relationship, and we address this problem by proposing a new struc-
ture called modifier dependency graph (MDG), which summarizes
all the data and control flow information required to analyze the
modifiers in a contract. We present how to construct MDG in §3.2.

Second, to further bypass another modifier onlyAdmin, an at-
tacker needs to similarly modify the value of a state variable admin
(line 13). This variable could be modified by the function
addAdmin(), but it is protected by the modifier onlyOwner. While
we have known onlyOwner is bypassable through the analysis
above, SoMo does not if it analyzes onlyAdmin first. This prob-
lem is caused by the challenge that any function — even those with
modifiers — could become an attacker-accessible entry function. To
address this challenge, SoMo must iteratively analyze different
modifiers and resolve the ambiguity of a target entry function
(e.g., addAdmin() here) by symbolically verifying whether its mod-
ifier (i.e., onlyOwner here) is bypassable or not. We explain how to
achieve this in §3.3.

Additionally, to effectively understand the usage of a large amount
of different modifiers, we need a domain-specific NLP analysis
method for modifiers. We introduce our approach in §3.4.

3.2 Constructing Modifier Dependency Graph
We design modifier dependency graph (MDG) as a variant of other
dependency or slicing graphs, such as code property graph (CPG)
[59] and backward slicing graph (BSG) [56, 57]. Essentially, MDG
is a modifier-related slicing of the traditional control- and data-
flow graphs, capturing all the information required to analyze the
modifiers in a smart contract.

Figure 4 shows a major portion of MDG generated for the run-
ning example contract in Figure 3. Compared to other dependency
graphs, we can see that there are two unique designs in MDG.
First, we treat modifiers in a way similar to functions so that SoMo
can build control and data flow graphs for modifiers. This also
allows to build the caller and callee relationship between func-
tions and modifiers, such as function addAdmin() calls modifier
onlyOwner via a special node of MODIFIER_CALL in Slither. Second,
we leverage global state variables to connect different modifiers
and functions. For example, while function transferownership()
and modifier onlyOwner have no direct call relationship accord-
ing to the traditional dependency graph, but because of smart
contract’s transaction mechanism, a transaction can call function
transferOwnership() to change the value of variable owner and
further affect modifier onlyOwner. We thus intentionally establish
the connection edge from modifier onlyOwner to state variable
owner (i.e., edge 2 in Figure 4) and the edge from variable owner
to its assignment statement in function transferOwnership() (i.e.,
edge 3). In this way, MDG recovers the hidden relationship be-
tween modifier onlyOwner and function transferownership().

Beyond “Protected” and “Private”: An Empirical Security Analysis of Custom Function Modifiers in Smart Contracts ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Function changeOwner public

newOwner_1(address) := _addr_1(address)

Entry

Exit

Block of global variable nodes

address owner

address newOwner

mapping(address=>bool) admin

Function transferOwnership external

newOwner_2(address) := ϕ(['newOwner_0', 'newOwner_1’])

TMP_0(bool) = msg.sender == newOwner_2

TMP_1(None) = SOLIDITY_CALL require(bool)(TMP_0)

Entry

Exit

owner_1(address) := newOwner_2(address)

Function addAdmin public onlyOwner

MODIFIER_CALL: MDG.onlyOwner()()

Entry

REF_0(bool) -> admin_0[_addr_1]

admin_1(mapping(address => bool)) := ϕ(['admin_0’])

REF_0 (->admin_1) := True(bool)

Exit

Exit

Entry

TMP_5(None) = SOLIDITY_CALL require(bool)(REF_1)

REF_1(bool) -> admin_2[msg.sender]

admin_2(mapping(address
=> bool)) := ϕ(['admin_2', 'admin_0', 'admin_1’])

_

modifier onlyAdmin

For §3.2 For §3.3

owner_2(address) := ϕ(['owner_1', 'owner_0’])

caller_1(address) := msg.sender(address)

TMP_3(bool) = caller_1 == owner_2

TMP_4(None) = SOLIDITY_CALL require(bool)(TMP_3)

Entry

Exit

_

modifier onlyOwner

Return EdgeCall EdgeBackward Slicing function sink of newOwnerfunction sink of ownermodifier sink of onlyOwner function taint of ownermodifier taint of onlyOwner sliced path of exploiting onlyAdmin

Figure 4: A major portion of the modifier dependency graph (MDG) generated for the running example contract in Figure 3.
Note that here we skip the edges from modifier onlyAdmin to variable admin and further to function addAdmin for simplicity.

Based on the inter-procedural control flow graph (I-CFG) con-
structed in the pre-processing stage, SoMo generates and expands
MDG along with the analysis of different modifiers. It is worth not-
ing that Slither provides only intra-procedural control flow graph
for each single function and modifier, and SoMo thus leverages
them and the call graph information to customize a complete I-
CFG for the entire contract. In this I-CFG and subsequent MDG,
each node is expressed in Slither SSA IR (static single assignment
intermediate representation) for convenient dataflow analysis.

We now use the process of analyzing modifier onlyOwner to
illustrate how to construct MDG. As shown in Figure 4, there are
seven steps as follows:

(1) Given a modifier like onlyOwner, the first step is to identify
its modifier sinks, which are conditional statements used in
this modifier, such as line 9 for modifier onlyOwner in Fig-
ure 3. Besides the require statement, we also cover other
conditional statements, including the if/else and assert
statements. In each modifier sink statement, SoMo extracts
the involved tainted object (e.g., the temporary SSA vari-
able TMP_3 in Figure 4) and uses it as the starting point for
backward slicing or taint analysis.

(2) From the tainted object TMP_3, SoMo performs backward
slicing until reaching the modifier entry and records all the
tainted statements into MDG. We call such relevant state-
ments modifier taints in Figure 4. During the taint propa-
gation, SoMo applies the transfer function that taints the
variables on the left-hand side of assignment operations
when there is an operand on the operation’s right-hand

side that is tainted. Meanwhile, the transfer function over-
approximately taints the composite variable if one of its
fields has been tainted. For instance, when analyzing the
statement in line 13 that relies the on the msg.sender field
of variable admin (denoted as the object admin.msg.sender),
SoMo over-approximately marks variable admin as tainted
instead of just tainting the object admin.msg.sender. This
allows easier taint analysis on MDGwhile the potential over-
estimates could be excluded during the forward symbolic
testing in §3.3.

(3) At the entry of modifier onlyOwner, SoMo needs to propa-
gate the tainted state variables to their block of global vari-
able nodes and add the connection edge 3 in Figure 4.

(4) Likewise, this step connects edge 4 from variable owner in
the block of global variable nodes to its assignment state-
ment in function transferOwnership. This requires SoMo
to identify all the assignment statements of variable owner,
and we call such statements function sinks in Figure 4.

(5) Similar to step 1, this step first extracts the tainted SSA vari-
able owner_1 from the sink statement in function transfer
Ownership. It then performs backward slicing in a way sim-
ilar to step 2 and tracks all the tainted function taint state-
ments until reaching the function entry.

(6) Similar to step 3, this step makes another connection edge
from the tainted state variables in function
transferOwnership to their block of global variable nodes.

(7) Lastly, SoMo repeats the procedure above and finishes the
backward slicing at function changeOwner because it has
no further caller flows. At this stage, MDG for modifier
onlyOwner has been successfully generated.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

3.3 Iteratively Exploring Sliced Paths in MDG
and Symbolically Testing Path Feasibility

With the generated MDG, SoMo iteratively explores sliced paths
and symbolically tests their path feasibility. As explained previously
in §3.1, the major challenge of this task is to handle the ambiguity of
entry functions, whereby any function — even those with modifiers
— could become an attacker-accessible entry function. As a result,
SoMo must iteratively analyze different modifiers until all attacker-
accessible entry functions are determined.

Take Figure 4 as an example, there are two modifiers, onlyOwner
and onlyAdmin. Initially, SoMo constructs MDG for both of them
and finds that the entry of onlyOwner’s sliced path is function
changeOwner()while the entry of onlyAdmin’s sliced path is func-
tion addAdmin(). The former is certainly an entry function because
it is public and can be invoked by adversaries, whereas the latter
is protected by modifier onlyOwner. Hence, SoMo first analyzes
modifier onlyOwner, determines its attack feasibility via symbolic
execution, then further analyzes modifier onlyAdmin because func-
tion addAdmin() now becomes a callable entry function. In contrast,
if a modifier is not bypassable, the functions it protects are thus not
attacker-accessible entry functions.

Technically, the major difficulty is how to symbolically handle
Slither IR code on the sliced paths, generate path constraints in for-
ward execution on MDG, and resolve those constraints to test path
feasibility. To do that, SoMo first maintains a collection of symbolic
variables to record the path execution states and introduces any
symbolic variable if it is required by the IR code semantics. Then,
SoMo symbolically interprets the commonly used types of IR oper-
ations and records their corresponding constraints. After executing
all code on a sliced path, SoMo invokes Z3 solver to resolve all
the constraints recorded. Based on the output of Z3’s constraint
solving, SoMo identifies bypassable or secure modifiers. Specially,
if the Z3 solver returns “unsat,” indicating it is impossible to find
solutions for the constraints of a path, SoMo considers this path
and its corresonding modifier secure. Otherwise, if the Z3 solver
can generate concrete solutions, SoMo considers the corresponding
modifer bypassable.

However, not all constraints could be well handled by Z3. We
take function superChangeOwner in Figure 3 an example, where
the developer hard-codes her wallet address into the contract so
that only herself can invoke this function to change the contract
owner. When SoMo leverages Z3 to resolve the constraints, Z3 tells
SoMo that there is a vulnerability in function superChangeOwner
when the attacker wallet address is equal to the one in the con-
tract, namely msg.sender == 0xABC. However, an adversary could
never satisfy such a constraint because attackers cannot manipulate
the developer’s wallet address (unless the private key leaks), and
function superChangeOwner is thus secure.

Inspired by this case, we model Solidity system variables 4 and
integrate them into SoMo’s constraint resolving. Specifically, we
first search all the global variables reserved by Ethereum from the
Solidity document [7] and retrieve the variables that are not un-
der users’ control, e.g., block’s time block.timestamp and block’s
height block.number. We consider such variables immutable, i.e.,

4Note that all system variables are assigned symbolic values before they are used.

they cannot be manipulated by attackers. We categorize all the im-
mutable variables into three categories: (i) address-based, including
msg.sender, tx.origin, and this; (ii) time-based, including now
and block.timestamp; and (iii) related to blockchain properties,
including block.basefee, block.chainid, block.coinbase,
block.difficulty, block.gaslimit, and block.number. We
found that by modeling these system variables, SoMo avoids a
number of false positives in the real-world vulnerability detection.

3.4 NLP Analysis and Clustering of Modifiers
Besides detecting bypassable modifiers, we also aim to understand
modifier usage in the wild. Typically, a modifier’s name reflects its
purpose and usage. For instance, the commonly used onlyOwner
modifier ensures that only the contract owner can call a protected
function. However, simply clusteringmodifier names alone does not
produce effective clusters regarding modifier usage, as the actual
usage is embedded within the semantic information of the modifier.
Moreover, a modifier name is composed of multiple tokens, such as
“only” and “owner” in the case of the onlyOwnermodifier. Therefore,
understanding the meaning of each token becomes essential for
extracting the semantic information of a modifier. As a result, we
propose a modifier-specific NLP analysis method that first analyzes
the modifier tokens before conducting clustering on the modifiers.

Tokenizingmodifier names and categorizing the tokenized
words. Typically, developers define modifiers in a camel case style,
e.g., “only”, “Fee”, and “Controller” for onlyFeeController. How-
ever, simply splitting the string by capitalized letters may encounter
errors. For instance, onlyCEOOrOwner will be mistakenly split into
“only”, “CEOOr”, and “Owner”. To address this problem, we use
PrincetonWordNet [10] as our dictionary and a divide-and-conquer
algorithm [1] to handle the tokens that can be fully extracted as Eng-
lish words. As such, onlyCEOOrOwner can be correctly tokenized
into “only”, “CEO”, “Or”, and “Owner”. Eventually, we obtain 3,173
different word tokens after tokenization. We then clean them to
remove the tokens appearing only once and the useless tokens.
Specifically, an useless token include (i) the token is less or equal
to two letters, e.g., “an” and “or”, (ii) the token belongs to the stop
words, e.g., “the” and “that”, and (iii) the token is not in the dictio-
nary, e.g., misspelled words and made-up words. For the remaining
1,309 tokens, we calculate a pair-wise similarity matrix according
to their semantic similarity using the NLP analysis via spaCy [9].
Finally, we cluster the similarity matrix by Affinity Propagation [23]
since it does not require pre-setting the number of clusters and
performs well with a gradual tuning of the damping factor to 0.86.
Under this setting, we eventually obtain a total of 75 token clusters.

Clustering modifiers according to token clusters. After
tokenizing modifier names in the last step, we then assign the
clusters of tokens to modifiers. Specifically, for a modifier𝑚 con-
sisting of 𝑝 tokens (i.e.,𝑚 = 𝑡1𝑡2 ...𝑡𝑝), if token 𝑡𝑖 belongs to clus-
ter 𝑐 𝑗 , we assign 𝑐 𝑗 to 𝑚, i.e., 𝑚 = {𝑐1, 𝑐2, ..., 𝑐𝑞}. For example,
onlyOwnerOrAdmin is tokenized into {“only”,“owner”,“or”,“admin”}.
Two tokens, “only” and “or”, are removed during the cleaning pro-
cess; the other tokens, “owner” and “admin”, belong to token clus-
ters “21” and “37”, respectively. Hence, we assign “21” and “37” to
onlyOwnerOrAdmin, i.e., onlyOwnerOrAdmin = {21, 37}. As such,

Beyond “Protected” and “Private”: An Empirical Security Analysis of Custom Function Modifiers in Smart Contracts ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 1: Benchmarking SoMo with 44 vulnerable contracts
reported by SPCon, a permission bug detection tool.

Contracts SPCon SoMo SumTP FP TP TN FP FN Fail
All 31 13 23 9 - 10♦ 2 44

Modifiers 23 11 23 9 - - 2 34
♦ As SoMo targets at only modifier-related vulnerabilities, 10 con-
tracts without any modifier are thus skipped.

we can measure the similarity between two modifiers by their Jac-
card index, i.e., SIMILARITY(𝑚1,𝑚2) = |𝑚1∩𝑚2 |

|𝑚1∪𝑚2 | . For instance, the
similarity between onlyOwner = {21} and onlyOwnerOrAdmin =

{21, 37} is 0.5. The last step is to calculate the pair-wise similarity
matrix of all the modifiers by Jaccard index and cluster the matrix
into 300 clusters via Affinity Propagation (damp = 0.88).

4 EVALUATION
In this section, we aim to conduct a comprehensive evaluation of
SoMo by answering the following four research questions (RQs):
RQ1: How effective is SoMo when being compared with the state-

of-the-art tool targeting at similar problems?
RQ2: How accurate and fast is SoMo in analyzing a large set of

real-world smart contracts?
RQ3: What are the major modifier usage in the wild?
RQ4: Can SoMo identify some interesting security findings?

4.1 RQ1: Comparing SoMo with SPCon
We first try to benchmark SoMo with a state-of-the-art tool with
similar objectives. While there are many smart contract security
analysis tools [12, 13, 32, 37, 40, 48, 52], most of them are designed
for generic pattern-based vulnerabilities, such as reentrancy [46],
stealing Ether or frozen funds [32, 52], and transaction order de-
pendency bugs [12]. The most related to our work are SPCon [37]
and Ethainter [13], both of which explicitly consider the impact of
modifiers in their analysis. Specifically, Ethainter [13] takes into
account modifier-related sanitization during its Datalog-based in-
formation flow analysis. On the other hand, SPCon [37] identifies
privileged functions that should not be accessible to normal users
by analyzing the transaction history. Specifically, it dynamically
mines the past transaction records of a contract, characterizes the
roles of different users, and detects permission bugs that violate
the mined security policy. Since SPCon targets at a problem much
closer to ours, we benchmark SoMo with SPCon in this paper. More-
over, SPCon provided a dataset of 44 vulnerable contracts reported
by its tool on GitHub5, allowing an effective comparison.

We thus employ SoMo to analyze those 44 contracts. Table 1
shows the comparison results between SPCon and SoMo. It is worth
noting that among the 44 contracts, ten of them do not contain
any modifier and are thus skipped by SoMo. Therefore, we list
the modifier-only result in Table 1 too. For SPCon’s result, since
SPCon did not provide specific labels (true or false positive, i.e., TP
or FP) for each of its deemed “vulnerable” contract, we manually
validate and label all the vulnerable contracts it reports. We can

5https://github.com/Franklinliu/SpCon-Artifact/tree/master/ISSTA2022Result/
SmartBugsWildResults/spcon-smartbugs

see that SPCon has 13 false positives, 11 of which are from the
contracts with modifiers. In contrast, SoMo has no false positive
for all the 34 contracts with modifiers. SoMo correctly marks 9
contracts as secure (i.e., true negative or TN), but it also fails in the
remaining two contracts due to the parsing error in Slither. Overall,
SoMo is better than SPCon to detect insecure modifiers in terms of
introducing much fewer false positives.

The reason why SPCon could have more false positives is mainly
because it relies on past transactions to infer the permissions of
different contract functions. However, existing transaction records
may not reveal all scenarios. It is possible that one function was
accessed only by privileged users in the transaction records, but
it is actually designed to be open all to users, leading to a false
positive.

Answer to RQ1: The benchmark result shows that SoMo out-
performs the state-of-the-art SPCon tool in detecting insecure
modifiers. Out of the 34 contracts that contain modifiers, SoMo
can detect all 23 true positives while effectively avoiding 9 out
of the 11 false positives generated by SPCon.

4.2 RQ2: Applying SoMo to Real Contracts
To comprehensively measure SoMo’s accuracy and performance,
we further conduct a large-scale experiment with real-world smart
contracts collected from multiple sources.

Dataset.We first construct our dataset by leveraging an exist-
ing contract dataset from a state-of-the-art work. Specifically, we
fetched smart contracts from the open-source dataset of Sailfish [12],
which includes 89,853 contracts that were uploaded to GitHub6 on
18 February 2022. Due to the outdated nature of Sailfish’s dataset, we
further collected 5,000 recent contracts that were submitted to Ether-
scan [5] on 2 November 2022. After collecting contracts from the
two sources, we exclude 32,389 contracts without modifiers. That
said, 62,464 (or 66%) smart contracts contain at least one modifier in
their contracts, suggesting the pervasiveness of modifier usage in
smart contracts. Since our objective is to study modifiers, this paper
uses those 62,464 smart contracts with modifiers as the dataset,
which is available on https://github.com/VPRLab/ModifierDataset.

Result overview.We run all of our following experiments on
an Ubuntu 18.04 server with 256GB of RAM and Intel Xeon E5-2683
CPU. After analyzing the large-scale dataset above, SoMo reports a
total of 500 vulnerable contracts and marks 61,481 contracts secure,
as shown in Table 2. There are also 483 contracts failed: 170 of them
root from Slither’s parsing errors (same as the two failed cases in
§4.1) and the rest 313 are due to “timeout” (we configure SoMo to
analyze each contract for at most 2 minutes). Since the failed 483
cases are only 0.7% of the entire dataset, we thus skip them in this
paper.

Accuracy evaluation. To evaluate SoMo’s results, we validate
all the reported 500 vulnerable contracts and randomly sample
100 secure contracts with Ether in the smart contract balance. To
guarantee the correctness of our validation, two of the authors
cross-validate all the 600 contracts; when a validation conflict arise,
the third author joins to resolve it. Table 2 shows the detailed

6https://github.com/ucsb-seclab/sailfish/tree/master/data

https://github.com/Franklinliu/SpCon-Artifact/tree/master/ISSTA2022Result/SmartBugsWildResults/spcon-smartbugs
https://github.com/Franklinliu/SpCon-Artifact/tree/master/ISSTA2022Result/SmartBugsWildResults/spcon-smartbugs
https://github.com/VPRLab/ModifierDataset
https://github.com/ucsb-seclab/sailfish/tree/master/data

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

Table 2: SoMo’s results of analyzing real-world contracts.

Overall Results
Total # Secure Vulnerable Panic
62,464 61,481 500 483

Sample Validation
Sample # TP FP TN Sum
Sec. Vul. Vulnerable Intended Sum IM* IF⋄ Sum 100 600100 500 411 45 456 39 5 44

IM* represents the false positives caused by imprecise analysis (IM).
IF⋄ represents the false positives due to implementation flaws (IF).

1 pragma solidity ^0.4.2;

2 contract onlyKeyHolder{

3 mapping(address => uint) public balances;

4 modifier onlyKeyHolders () {

5 require(balances[msg.sender] >= TOKEN_NUM);

6 _;

7 }

8 function transfer(address to, uint value){
9 balances[msg.sender]= balances[msg.sender]-value;
10 balances[to] = balances[to] + value;
11 }

12 function startAuction () onlyKeyHolders () {

13 // hold some tokens to start auction.

14 ...

15 }

16 }

Figure 5: A bypassable true positive case. It is intentionally
designed to be bypassedwhen certain conditions are satisfied.

validation results. We can see that for the 500 vulnerable contracts
reported, we confirm 456 of them are true positives, including 411
actually vulnerable and the other 45 with modifiers intentionally
designed to be bypassable under certain conditions. We refer to
them as “Intended” in Table 2. We will explain such cases in the
following paragraphs. We then calculate the precision, recall, and
F1 score of SoMo according to 𝑇𝑃

𝑇𝑃+𝐹𝑃 ,
𝑇𝑃

𝑇𝑃+𝐹𝑁 , and 2×𝑇𝑃
2×𝑇𝑃+𝐹𝑃+𝐹𝑁 ,

respectively. Hence, SoMo achieves high precision at 91.2%, recall at
1.0, and F1 score at 95.4%. Note that all the sampled secure contracts
are actually secure, thus the number of 𝑇𝑁 is 100. The evaluation
result suggests that SoMo is practically accurate to analyze a large
set of real-world smart contracts.

We first analyze and discuss the root causes of those 45 contracts
with intentionally bypassable modifiers. Figure 5 shows an example
of such smart contract. We can see that modifier onlyKeyHolder
checks if a user holds enough tokens by querying the state variable
balances. If a user is eligible to onlyKeyHolder, they can initiate
an auction via function startAuction(). However, SoMo identi-
fied a bypassable path in a normal function transfer() that is
for moving tokens between users. This is because SoMo detects
that the sensitive state variable balances is changed after call-
ing transfer(), resulting in a bypass of modifier onlyKeyHolder.
While this is considered as a vulnerability from the technical per-
spective, we believe that developers intentionally design such by-
passable modifiers. Therefore, we treat this detection result as a
true positive, but clarify that the involved modifier is secure and is
intentionally bypassable by developers.

We then explore the root cause of SoMo’s 44 false positives. As
listed in Table 2, the majority of false positives (39/44) come from

1 pragma solidity ^0.8.0;

2 contract Approve{

3 mapping (address => mapping (address => bool))
private approved;

4 modifier onlyApproved(address user) {

5 require(approved[user][msg.sender]);
6 _;

7 }

8 function approve(address spender) external {

9 approved[msg.sender][spender] = true;
10 }

11 }

Figure 6: A false-positive contract due to the imprecision of
variable filed analysis.

0 2 4 6 8 10
Analysis time (seconds) per contract

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 7: The CDF plot of analysis time per contract.

SoMo’s current coarse-grained data-flow analysis of composite
variables, such as mapping, array, struct, and etc. The remaining
five false positives (5/44) are due to the implementation errors in
the current SoMo prototype. We refer to them as imprecise analysis
(IM) and implementation flaws (IF), respectively. Since IF-type false
positives are easy to fix, we focus on the more error-prone IM-type
false positives here. Figure 6 shows an example taken from the real-
world contracts. This contract has a modifier onlyApproved that
utilizes a nested mapping variable approved to store the approval
status of different users. Users can also call function approve()
to manage their own approval list. When analyzing this contract,
SoMomistakenly considers approve() exploitable as it allows users
to write to the variable approved, which would cause modifier
onlyApproved to be bypassed. However, each user can only access
and update their own approval list, and onlyApproved modifier is
thus secure. As a result, we know that the coarse-grained data-flow
analysis of composite variables in the current SoMo prototype leads
to the false positives.

Running performance. Besides accuracy results, we also mea-
sure the analysis time of each contract required by SoMo. Figure 7
presents a cumulative distribution function (CDF) plot of the analy-
sis time per contract in SoMo. We can see that over 95% contracts
were finished by SoMo with 2 seconds each and around 80% con-
tracts need less than one second. This suggests that SoMo is quite
fast for the majority of the contracts. Moreover, we find that only
1.67% (1,044 out of all the 62,464 contracts) took over 10 seconds.
Analyzing 313 out of these contracts fails due to analysis timeout.

Beyond “Protected” and “Private”: An Empirical Security Analysis of Custom Function Modifiers in Smart Contracts ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

A major reason is that SoMo may encounter potential graph circles
in MDG, causing dead loops. We thus set a timeout to terminate
such analyses.

Answer to RQ2: SoMo achieves high accuracy and efficiency
in analyzing real-world modifiers within a large dataset, with
precision at 91.2% and able to analyze 95% of the 62,464 con-
tracts within 2 seconds. Furthermore, SoMo identified over
400 vulnerable contracts that contain bypassable modifiers.

4.3 RQ3: Understanding Modifier Usage
Based on the NLP analysis and clustering of modifier usage in §3.4,
we obtain 300 clusters for the 6,299 unique modifiers. Note that
while our dataset consists of 134,692 modifiers in total, many of
them share the the same names. For example, onlyOwner, the most
common modifier name, appeared 48,027 times, and whenPaused
and whenNotPaused rank as the second and third most prevalent
ones, appearing 6,653 and 6,308 times respectively.

By manually checking the cluster result, we obtain the primary
uses of modifiers and summarize them in Table 3.We first categorize
them into four categories, namely access control, financial related,
contract state, and misc check. We then present the detailed major
usage and introduce corresponding examples. As shown in Table 3,
our modifier usage analysis result has covered 63.4% of all the
unique modifiers.

• The access control category covers the widely used modifiers
that specify the access control policies of protected functions.
Specifically, usage U1 checks the role of users through modifiers
such as onlyOwner and onlyAdmin. Similarly, usage U2 checks
whether a user address is in the whitelist or approved, such as
onlyWhitelisted and isApproved.

• The financial-related category contains three types of usage,
namely U3 for validating the transfer state, U4 for checking
the number of assets, and U5 for validating the token value or
state. For instance, the transferLock modifier prevents data
race when transferring sensitive resources between users (U3),
while the onlyifEnoughFundsmodifier ensures that the amount
of assets appended in a transaction is sufficient (U4). Similarly,
in usage U5, the hasToken and onlyMintable modifiers vali-
date whether the caller has token balances or is eligible to mint,
respectively.

• The contract state category checks the contract state for maintain-
ing contract running status (U6) and specifies certain contract
events (U7). In particular, we find that modifiers like onlyFrozen
and afterStartTimemanage the contract status, allowing users
to interact only during a specific period (U6). Likewise, in usage
U7, the isInitialized modifier specifies the event of contract
initialization, and the onlyICO modifier specifies that it is only
for the ICO event.

• The last misc check category checks different aspects of prop-
erties and is hard to be categorized. In this category, one usage
is to check whether function calls are from proxy contracts by
defining modifiers like isDelegated (U8). This is important for
developing upgradable contracts. For other checks, we catego-
rize them into usage U9, including the antiSpam modifier for
preventing malicious transactions.

1 pragma solidity ^0.4.20;

2 contract Owned {

3 address owner;

4 modifier onlyOwner () {

5 require(msg.sender == owner);

6 _;

7 }

8 function owned(){

9 owner = msg.sender;
10 }

11 }

Figure 8: An example vulnerable contract related to Finding 2.

In the future, we plan to further categorize and link the usage
of modifiers with the previously summarized categories of smart
contract vulnerabilities [27].

Answer to RQ3: We classify the primary usage of modifiers
into four categories: access control, financial-related, contract
state, and misc check. We also summarize nine types of com-
mon modifiers that are defined in real-world contracts.

4.4 RQ4: Security Findings and Case Studies
In this section, we report three major security findings obtained
during vulnerability analysis of SoMo’s results. We also conduct a
case study of a high-value vulnerable contract with 37 Ether. For
ethic considerations, we do not disclose the details of the vulnerable
contracts reported in terms of their name, address, compiling argu-
ments, and etc. We also tried to contact developers for vulnerability
mitigation, but due to the decentralized and anonymous nature
of smart contracts, we currently are not able to approach them.
Similar situation was also encountered by the teEther team [32].

Finding 1: SoMo identified more percentage of vulnerable
contracts with Ether than that in previous works. Accord-
ing to Perez et al. [45], many vulnerable contracts detected by six
state-of-the-art techniques [26, 31, 32, 40, 44, 52] are exploitable,
but hold only very limited Ether (the cryptocurrency of Ethereum).
For example, Perez et al. [45] reported that “the percentage of Ether
exploited is an order of magnitude lower, with at most 0.4% of the
Ether at stake exploited for re-entrancy.” As a result, the vulnerability
impact or consequence was considered low. This is because when
developers become aware of vulnerabilities in their contracts, they
have to deploy a new contract due to the immutability of smart
contracts. As a result, many vulnerable yet inactive contracts with-
out a big threat of financial loss could still remain on Ethereum.
In this paper, SoMo identified more percentage of vulnerable con-
tracts with Ether than the above reported. Specifically, out of the
411 bypassable contracts detected, 20 or 4.87% were found to have
Ether, including two contracts with over two and 37 Ether on the
balance. This demonstrates the real-world value of SoMo and the
importance of the problem on bypassable modifiers that may not
be realized by developers.

Finding 2: Earlier versions of Solidity caused some develop-
ers to mistakenly expose constructor functions as the public
entry functions. Prior to Solidity version 0.4.22, constructors were
defined using a function with the same name as the contract. How-
ever, we found that this way of declaring constructors could result

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

Table 3: Nine types of major modifier usage that are summarized from our clustering result for 6,299 unique modifiers.
Category ID Type Usage Examples # Modifiers

Access Control U1 Role Check the role of users onlyOwner, onlyAdmin, onlyCEO, onlyAuthorized 919
U2 Address Check the address of users onlyWhitelisted, notBlocklisted, isAppoved 322

Financial Related
U3 Transfer Validate the transfer state transferLock, transferAuthorized, hasNotPaid 266
U4 Amount Validate the amount of assets onlyIfEnoughFunds, adjustPrice, enoughFundsToPay 252
U5 Token Check the token value or state hasTokens, checkMintValue, onlyMintable, tokenDoesNotExist 222

Contract State U6 Status Checking contract’s running status isActive, afterStart, isLock, whenNotFreeze, isOpenToPublic 1033
U7 Event Specify events when running contracts isInitialized, onlyRecovery, onlyEmergency, onlyICO 270

Misc Check U8 Delegate Verify calls from proxy contracts onlyDelegateFrom, isDelegated, ifDelegate 291
U9 General Check Different kinds of modifier checks antiSpam, checkLocking, checkFihished, notNull, validUint8 420

Sum (%) - - - - 3,995 (63.4%)

1 pragma solidity ^0.4.13;

2 contract MyCrowdSale {

3 address public owner;

4 modifier onlyOwner () {

5 require(msg.sender == owner);

6 _;

7 }

8 function kill() onlyOwner {

9 selfdestruct(owner);
10 }

11 function Crowdsale(address _t,uint _s){

12 require(_t != 0);

13 require(_s != 0);

14 // anyone can become owner!

15 owner = msg.sender;
16 token = ZiberToken(_t);

17 startsAt = _s;

18 }

19 }

Figure 9: A high-value vulnerable contract with 37 Ether.

in unintended bugs, particularly those related to contract modifiers.
Figure 8 illustrates a common mistake made by developers when
using earlier versions of Solidity in defining constructors. Since
Solidity is case-sensitive, the compiler does not recognize function
owned() in Figure 8 as a constructor; instead, the compiler treats
it as a normal public function. As a result, the vulnerable function
owned() can be used to update the state variable owner, allowing
attackers to bypass modifier onlyOwner. We found that around
80% of the vulnerable contracts SoMo identified were more or less
due to this root cause. To address this issue, Solidity introduced
the keyword constructor to prevent incorrect usage of contract
constructors in recent versions.

Finding 3: The default behavior of Solidity to set the func-
tions with no visibility specifiers public may not match with
developers’ understanding. Another major reason for modifier-
related vulnerabilities is the lack of proper understanding of the
function visibility. Specifically, as a permissionless and decentral-
ized platform, Ethereum allows all users to interact with Solidity
public and external functions (with no modifier) in a contract.
However, unlike traditional programs, this feature could sometimes
cause unintentional bugs or vulnerabilities. From the earlier exam-
ple in Figure 1, developers failed to specify visibility of function
initWallet(), and Solidity compiler by default assigns the func-
tion public visibility. This default behavior allows any user to
invoke the function and to become the owner despite that the de-
veloper’s intention to use it internally. We found that around 20%
of the vulnerable contracts were due to this reason.

Case study. We now conduct a case study to illustrate a vul-
nerable contract detected with over 37 Ether, as shown in Figure 9.
This contract has a modifier called onlyOwner (line 4), which ver-
ifies the transaction caller against the state variable owner (line
5). Unfortunately, this contract also includes a vulnerable function
Crowdsale() (line 14), which allows attackers to input random
data and become the contract owner (line 15). After becoming the
owner, attackers can call kill() function (line 8) to destroy the
contract and drain all the funds on the contract balance by invoking
a built-in Solidity function selfdestruct() (line 9). As a result, all
Ether remaining on the contract balance would be transferred to
the attacker. This case demonstrates the serious consequences of
bypassable modifiers in smart contracts.

Answer to RQ4: Analyzing the vulnerability results of SoMo
enables us to identify three interesting security findings and
perform a case study on a vulnerable contract of high value.

5 THREATS TO VALIDITY
In this section, we briefly discuss how to further improve SoMo.

Internal validity. As shown in §4.2, SoMo has false positives,
which root from SoMo’s taint analysis. We find that when encoun-
tering data structures like array, mapping, struct, or their com-
posites, SoMo overly taints the involved elements and thus results in
false positive findings. Additionally, circles exist on the constructed
MDG, which may result in infinite loops during path slicing and
consequently SoMo yields “timeout” when handling them. Though
such infinite loops are rare, neglecting them leads to potential false
negatives. To mitigate these threats, we plan to improve SoMo by
incorporating finer-grained taint policy and by limiting the number
of iteration steps when performing path slicing.

External validity. SoMo heavily relies on the analysis outputs
of Slither; nevertheless, Slither fails to analyze a few contracts,
which prevents SoMo from being applied and results in over 100
failure cases in our evaluation. To mitigate this threat, we plan to
collaborate with the Slither team to enhance their tool. This will
not only improve SoMo’s applicability, but also benefit the Solidity
community as a whole. Furthermore, SoMo currently struggles to
process contracts that include multiple source-code files, because
Slither lacks the capability to compile such contracts. To address
this issue, we plan on extending Slither’s functionality to support
the compilation of multi-file contracts in the future.

Beyond “Protected” and “Private”: An Empirical Security Analysis of Custom Function Modifiers in Smart Contracts ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

6 RELATEDWORK
Smart contract programs are known to be exploitable under various
infamous vulnerabilities, such as the transaction order dependency
(TOD) and reentrancy attacks [2, 40]. With this regard, numerous
studies have been conducted to detect smart contract vulnerabilities
via both static analysis [12, 22, 31, 40, 44, 48, 52, 58] and dynamic
testing [17, 28, 30, 34, 43, 51] approaches. Sailfish [12] forms the so-
called storage dependency graph (SDG) to enable static analysis of
smart contract vulnerabilities. Clairvoyance [58] first conducts em-
pirical study to summarize a comprehensive set of reentrancy pat-
terns; it then performs cross-contract analysis to detect reentrancy
bugs with high accuracy. As for dynamic testing-based approaches,
Reguard [34] focuses primarily on using fuzzing to detect reen-
trancy, while ContractFuzzer [30], ConFuzzius [51], and sfuzz [43]
feature a wider range of bug patterns and higher vulnerability de-
tectability. In addition to offline vulnerability detection, Sereum [46]
prevents the DAO attack during runtime with runtime validation.
Chen et al. [16] designs an EVM runtime monitoring framework
with high applicability, and Solythesis [33] is designed with a focus
on minimizing runtime validation overhead.

teEther [32], Ethainter [13], SPCon [37], and AChecker [25]
are the most related studies. teEther formulates smart contract
vulnerabilities in a general manner; it features automated detection
and exploit generation on the bytecode level. However, teEther
does not explicitly model contract modifiers. Ethainter and SPCon
both take modifiers into account. Ethainter encodes information
flow propagations as Datalog rules, whereas SPCon primarily relies
on mining vulnerabilities from prior transactions. Another recent
work, AChecker [25], was proposed concurrently with our study
to statically detect access control vulnerabilities. Similar to SPCon,
AChecker focuses on inferring role-related access control policies,
such as checking the contract owner and address. That said, it
only covers the role/address related modifiers, i.e., the U1 and U2
categories in Table 3. Moreover, AChecker relies on teEther [32]
to analyze smart contracts at the bytecode level, which limits its
access to source-code-level modifier information. In comparison,
SoMo leverages the bypassable characteristic to accurately detect
all types of insecure modifiers without the need of domain-specific
knowledge (as in AChecker and SPCon) and fixed patterns (as in
Ethainter and teEther).

VETSC [20] proposes a UI-driven method to extract DApps se-
mantics and statically vets the inconsistency between UI and con-
tract code. VRust [18] detects contract vulnerabilities on the Solana
platform. Ghaleb et al. [24] present eTainter, a static analyzer to
detect gas-related vulnerabilities in contract bytecode. Empirical
efforts are spent to analyze the usage of revert statements in So-
lidity [36]. TXSpector [60] and SmartTest [49] are both vulnerable
transaction sequence mining tools. NPChecker [53] models the
nondeterminism in smart contracts that can result in payment bugs.
SolType [50] presents a refinement type system for Solidity to pre-
vent the arithmetic flows. SGUARD [42] applies runtime verification
to automatically fix four kinds of vulnerabilities with minor over-
head. Das et al. [19] conducted the first study on security issues in
the NFT ecosystem, which heavily relying on the functionality of
smart contracts. Recent studies also explored using AI-based ap-
proaches to detect vulnerability patterns [14, 29, 35, 38, 39, 41, 61].

7 CONCLUSION
In this paper, we conducted an empirical security analysis of custom
function modifiers in real-world Ethereum smart contracts. To do
that, we proposed a novel tool, SoMo, specialized for modifier anal-
ysis, which constructed modifier dependency graph (MDG) to cover
all the modifier-related control/data flows, generated symbolic path
constraints over MDG, and iteratively tested each candidate en-
try function. Our experiments showed that SoMo outperformed
the state-of-the-art SPCon tool in detecting insecure modifiers, and
successfully detected 411 vulnerable contracts with bypassable mod-
ifiers from 62,464 real-world contracts. The results also revealed
three interesting security findings about the root causes of com-
mon modifier-related vulnerabilities. Furthermore, we conducted
modifier-specific NLP analysis and clustering to identify nine types
of major modifier usage in the wild. In the future, we plan to further
enhance SoMo’s analysis precision and robustness, as well as help
developers mitigate modifier-related security risks.

ACKNOWLEDGEMENTS
We thank all the reviewers for their detailed and constructive com-
ments. We thank Yue Xue of MetaTrust Labs for helping integrate
SoMo into MetaScan. This work was partially supported by a di-
rect grant (ref. no. 4055127) and a TDLEG grant (ref. no. 4170890)
from The Chinese University of Hong Kong, and the Cyber Secu-
rity Agency under its National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN). The HKUST authors were supported in
part by RGC RMGS under the contract RMGS22EG02.

REFERENCES
[1] 2014. Using a Divide and Conquer Algorithm to Split Text without Spaces into

List of Words. https://stackoverflow.com/a/21308255/197165/.
[2] 2016. The Dao Attack. https://www.coindesk.com/learn/understanding-the-dao-

attack/.
[3] 2017. The Parity Wallet Bug. https://blog.openzeppelin.com/on-the-parity-

wallet-multisig-hack-405a8c12e8f7.
[4] 2023. Ethereum Virtual Machine (EVM). https://Ethereum.org/en/developers/

docs/evm/.
[5] 2023. EtherScan. https://etherscan.io/.
[6] 2023. Solc-select. https://github.com/crytic/solc-select.
[7] 2023. The Solidity Document. https://docs.soliditylang.org/.
[8] 2023. Solidity Programming Language. https://soliditylang.org/.
[9] 2023. spaCy: Industrial-Strength Natural Language Processing. https://spacy.io/.
[10] 2023. WordNet by Princeton University. http://wordnet.princeton.edu/.
[11] 2023. Z3. https://github.com/Z3Prover/z3.
[12] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and

Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs
in seconds. In Proc. IEEE Symposium on Security and Privacy.

[13] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: A Smart Contract Security Analyzer for Composite Vul-
nerabilities. In Proc. ACM PLDI.

[14] Jiachi Chen. 2020. Finding Ethereum Smart Contracts Security Issues By Com-
paring History Versions. In Proc. IEEE/ACM ASE.

[15] Mengjie Chen, Daoyuan Wu, Xiao Yi, and Jianliang Xu. 2021. AGChain: A
Blockchain-based Gateway for Permanent, Distributed, and Secure App Delega-
tion from Existing Mobile App Markets. CoRR arXiv abs/2101.06454 (2021).

[16] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,
Hang Zhu, Gang Chen, Zheyuan He, Yuxing Tang, Xiaodong Lin, and Xiaosong
Zhang. 2017. SODA: A Generic Online Detection Framework for Smart Contracts.
In Proc. ISOC NDSS.

[17] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. Smartian: Enhancing Smart Contract Fuzzing With Static
and Dynamic Data-Flow Analyses. In Proc. IEEE/ACM ASE.

[18] Siwei Cui, Gang Zhao, Yifei Gao, Tien Tavu, and Jeff Huang. 2022. VRust: Auto-
mated Vulnerability Detection for Solana Smart Contracts. In Proc. ACM CCS.

[19] Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni
Vigna. 2022. Understanding Security Issues in the NFT Ecosystem. In Proc. ACM

https://stackoverflow.com/a/21308255/197165/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://Ethereum.org/en/developers/docs/evm/
https://Ethereum.org/en/developers/docs/evm/
https://etherscan.io/
https://github.com/crytic/solc-select
https://docs.soliditylang.org/
https://soliditylang.org/
https://spacy.io/
http://wordnet.princeton.edu/
https://github.com/Z3Prover/z3

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu, and Lingxiao Jiang

CCS.
[20] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu, and

Mu Zhang. 2022. Towards Automated Safety Vetting of Smart Contracts in
Decentralized Applications. In Proc. ACM CCS.

[21] Josselin Feist, Gustavo Greico, and Alex Groce. 2019. Slither: A Static Analysis
Framework for Smart Contracts. In Proc. WETSEB.

[22] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A
Bounded Model Checker for Smart Contracts. In Proc. USENIX Security.

[23] Brendan J. Frey and Delbert Dueck. 2007. Clustering by Passing Messages
Between Data Points. Science (2007).

[24] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2022. eTainter: Detecting
Gas-Related Vulnerabilities In Smart Contracts. In Proc. ACM ISSTA.

[25] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2023. AChecker: Statically
Detecting Smart Contract Access Control Vulnerabilities. In Proc. ACM ICSE.

[26] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,
and Yannis Smaragdakis. [n. d.]. Madmax: Surviving Out-of-gas Conditions in
Ethereum Smart Contracts. In Proc. ACM OOPSLA.

[27] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. 2020. What Are
the Actual Flaws in Important Smart Contracts (and How Can We Find Them)?.
In Springer FC.

[28] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application to
Smart Contracts. In Proc. ACM CCS.

[29] Jianjun Huang, Songming Han, Wei You, Wenchang Shi, Bin Liang, Jingzheng
Wu, and Yanjun Wu. 2021. Hunting Vulnerable Smart Contracts via Graph
Embedding Based Bytecode Matching. IEEE Transactions on Information Forensics
and Security (2021).

[30] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proc. IEEE/ACM ASE.

[31] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In Proc. ISOC NDSS.

[32] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to
Automatically Exploit Smart Contracts. In Proc. USENIX Security.

[33] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing Smart Contract with
Runtime Validation. In Proc. ACM PLDI.

[34] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
Reguard: Finding Reentrancy Bugs in Smart Contracts. In Proc. ACM ICSE.

[35] Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts. In
Proc. IEEE/ACM ASE.

[36] Lu Liu, LiliWei,Wuqi Zhang,MingWen, Yepang Liu, and Shing-Chi Cheung. 2021.
Characterizing Transaction-Reverting Statements in Ethereum Smart Contracts.
In Proc. IEEE/ACM ASE.

[37] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding Permission Bugs
in Smart Contracts with Role Mining. In Proc. ACM ISSTA.

[38] Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qinming He, and Shouling
Ji. 2021. Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion. In Proc. IJCAI.

[39] Oliver Lutz, Huili Chen, Hossein Fereidooni, Christoph Sendner, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, and Farinaz Koushanfar. 2021. ESCORT:
Ethereum Smart Contracts Vulnerability Detection Using Deep Neural Network
and Transfer Learning. CoRR arXiv abs/2103.12607 (2021).

[40] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In Proc. ACM CCS.

[41] Hoang H Nguyen, Nhat-Minh Nguyen, Chunyao Xie, Zahra Ahmadi, Daniel
Kudendo, Thanh-Nam Doan, and Lingxiao Jiang. 2023. MANDO-HGT: Heteroge-
neous Graph Transformers for Smart Contract Vulnerability Detection. In Proc.
ACM MSR.

[42] Tai D Nguyen, Long H Pham, and Jun Sun. 2021. SGUARD: Towards Fixing
Vulnerable Smart Contracts Automatically. In Proc. IEEE Symposium on Security
and Privacy.

[43] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proc. ACM ICSE.

[44] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the Greedy, prodigal, and Suicidal Contracts at Scale. In Proc. ACM
ACSAC.

[45] Daniel Perez and Benjamin Livshits. 2021. Smart contract vulnerabilities: Vulner-
able does not imply exploited. In Proc. USENIX Security.

[46] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In Proc. ISOC
NDSS.

[47] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value
numbers and redundant computations. In Proc. ACM POPL.

[48] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. 2020.
ethor: Practical and Provably Sound Static Analysis of Ethereum Smart Contracts.
In Proc. ACM CCS.

[49] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Effectively
Hunting Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution.. In Proc. USENIX Security.

[50] Bryan Tan, Benjamin Mariano, Shuvendu K Lahiri, Isil Dillig, and Yu Feng. 2022.
SolType: Refinement Types for Arithmetic Overflow in Solidity. In Proc. ACM
POPL.

[51] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts.
In Proc. IEEE European Symposium on Security and Privacy.

[52] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proc. ACM CCS.

[53] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting Nondetermin-
istic Payment Bugs in Ethereum Smart Contracts. In Proc. ACM OOPSLA.

[54] Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik
Harz, and William J Knottenbelt. 2021. SoK: Decentralized Finance (DeFi). CoRR
arXiv abs/2101.08778 (2021).

[55] Gavin Wood. 2023. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Yellow paper (2023).

[56] Daoyuan Wu, Debin Gao, Rocky KC Chang, En He, Eric KT Cheng, and Robert H
Deng. 2019. Understanding open ports in Android applications: Discovery, diag-
nosis, and security assessment. In Proc. ISOC NDSS.

[57] Daoyuan Wu, Debin Gao, Robert H Deng, and Chang Rocky KC. 2021. When
ProgramAnalysisMeets Bytecode Search: Targeted and Efficient Inter-Procedural
Analysis of Modern Android Apps in Backdroid. In Proc. IEEE DSN.

[58] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2021. Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulnera-
bilities in Smart Contracts. In Proc. IEEE/ACM ASE.

[59] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In Proc. IEEE Symposium
on Security and Privacy.

[60] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020.
TXSPECTOR: Uncovering Attacks in Ethereum from Transactions. In USENIX
Security.

[61] Zhuo Zhang, Yan Lei, Meng Yan, Yue Yu, Jiachi Chen, Shangwen Wang, and
Xiaoguang Mao. 2022. Reentrancy Vulnerability Detection and Localization: A
Deep Learning Based Two-phase Approach. In Proc. IEEE/ACM ASE.

Received 2023-02-16; accepted 2023-05-03

	Beyond "protected" and "private": An empirical security analysis of custom function modifiers in smart contracts
	Citation
	Author

	Abstract
	1 Introduction
	2 Background
	3 The SoMo Tool
	3.1 Overview and Challenges
	3.2 Constructing Modifier Dependency Graph
	3.3 Iteratively Exploring Sliced Paths in MDG and Symbolically Testing Path Feasibility
	3.4 NLP Analysis and Clustering of Modifiers

	4 Evaluation
	4.1 RQ1: Comparing SoMo with SPCon
	4.2 RQ2: Applying SoMo to Real Contracts
	4.3 RQ3: Understanding Modifier Usage
	4.4 RQ4: Security Findings and Case Studies

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

