
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2023 

M2-CNN: A macro-micro model for taxi demand prediction M2-CNN: A macro-micro model for taxi demand prediction 

Shih-Fen CHENG 
Singapore Management University, sfcheng@smu.edu.sg 

Prabod Manuranga RATHNAYAKA MUDIYANSELAGE 
Singapore Management University, prabodr@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems 

Commons 

Citation Citation 
CHENG, Shih-Fen and RATHNAYAKA MUDIYANSELAGE, Prabod Manuranga. M2-CNN: A macro-micro 
model for taxi demand prediction. (2023). 2023 IEEE International Conference on Big Data: Sorrento, Italy, 
December 15-18: Proceedings. 1395-1402. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8543 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 1395

M2–CNN: A Macro-Micro Model for Taxi Demand Prediction

Shih-Fen Cheng
School of Computing and Information Systems

Singapore Management University
Singapore

sfcheng@smu.edu.sg

Prabod Rathnayaka
Centre for Data Analytics and Cognition

La Trobe University
Melbourne, Australia

P.Rathnayaka@latrobe.edu.au

Abstract—In this paper, we introduce a macro-micro model
for predicting taxi demands. Our model is a composite deep
learning model that integrates multiple views. Our network
design specifically incorporates the spatial and temporal de-
pendency of taxi or ride-hailing demand, unlike previous
papers that also utilize deep learning models. In addition,
we propose a hybrid of Long Short-Term Memory Networks
and Temporal Convolutional Networks that incorporates real-
world time series with long sequences. Finally, we introduce
a microscopic component that attempts to extract insights
revealed by roaming vacant taxis. In our study, we demonstrate
that our approach is competitive against a large array of
approaches from the literature on the basis of detailed moving
logs of more than 20,000 taxis and 12 million trips per month
over a three-month period. Our analysis of the effectiveness of
individual components reveals that microscopic information is
essential for generating high-quality predictions.

1. Introduction

In large cities, taxis (or ride-hailing cars) play a piv-
otal role in providing point-to-point transportation service,
which is complementary to other modes of public transport
systems. However, a big problem in operating any type of
point-to-point transportation service is the imbalances of
taxi supplies and passenger demands. As these imbalances
are highly dynamic, and when drivers are left on their own
to rebalance themselves based on historical information or
their own limited local observations, the resulting system
performance would be far away from optimal. A number
of researchers have proposed to apply both centralized [1],
[2] and decentralized approaches [3] to provide guidance to
drivers, and a recent field trial of such system demonstrates
great promises in reducing inefficiencies [4].

However, for such systems to be effective, good de-
mand predictions, both immediate and in the near future,
need to be provided. This is thus one of the most active
areas of research in urban computing. With the advances in
deep-learning-based techniques, researchers have begun to
model complex demand prediction problems using the deep-
learning framework. As illustrated by recent studies such
as [5] and [6], we can see that these deep-learning-based

approaches greatly outperform traditional approaches, which
are mostly based on regression or time series approaches.

In this paper, we continue the investigation of the use of
deep learning techniques in advancing the state of the art in
predicting taxi demands. There are three major design gaps
in the literature that we aim to address. Firstly, most deep-
learning-based demand prediction approaches incorporate
spatial dependency by using local Convolutional Neural Net-
works (CNNs), using the fact that demands in a particular
region should only depend on “nearby” or “similar” regions.
However, no matter how the “closeness” is defined, only
demands from the same time period are considered. We
argue that this might not be sufficient, as the demands from
a neighboring region a couple of time periods earlier could
also have an impact on the demand prediction in the current
time period. To explicitly consider such dependency, we
come up with a three-dimensional variant of the local CNN
that explicitly considers the spatial and temporal demand
dependency simultaneously.

Secondly, we adopt the insight by [7], who empirically
demonstrate that for datasets with long sequence, the widely
used Recurrent Neural Networks (RNNs), specifically the
Long Short-Term Memory (LSTM) Networks, might not
be the best choice; instead, the Temporal Convolutional
Networks (TCN) might produce better results. When in-
corporating long sequence time series from sources other
than demand counts, we come up with a hybrid LSTM-
TCN design, which combines both the strength of the LSTM
network and TCN.

Finally, we extract valuable information from the mi-
croscopic movement data of vacant taxis, which is based on
the empirical observation that the longer a road link has not
seen a visit from a vacant taxi, the more likely a demand
would occur. The incorporation of this micro-feature further
improves our prediction accuracy.

In summary, we have made the following contributions
in our paper:

• We design a three-dimensional spatio-temporal CNN
model that explicitly captures both the spatial and
temporal correlations among regions for demand pre-
dictions.

• We propose a hybrid temporal model that combines
both the LSTM networks and the TCN to handle long
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sequence time series and use it to incorporate a wide
variety of real-world time series observations.

• We discover the relationship between vacant taxis’
visits to a road link and the likelihood that demands
would be generated, and we incorporate this insight
via an LSTM network to contribute to the demand
prediction.

• With a real-world dataset that contains more than
20,000 taxis and 12 million trips per month in Singa-
pore, we demonstrate that our approach is competitive
against a wide variety of baseline approaches from the
literature.

2. Related Work

The spatio-temporal prediction has become a trending
topic in the urban computing research area. Many re-
searchers have been working in this research area for the
past few years yielding interesting research topics such as
traffic flow prediction [8], bike flow prediction [9], [10],
and taxi demand prediction [5], [6], [11]. The majority of
the aforementioned research studies divide an urban area
into a grid-like structure and make predictions based on the
aggregated grid regions. There have been a few spatial grid
types used in the literature to aggregate urban data, such as
rectangular shape [5], [6] and hexagon shape [12], [13]. In
previous studies, a grid structure is used to represent spatial
urban data, and convolution neural networks are used to
model local and spatial correlations between regions and
extract spatial features of a certain region [5], [14]. Recur-
rent Neural Networks (RNNs), specifically Long Short-Term
Memory (LSTM) Networks [15], [16] are used to model
temporal patterns and sequences.

In the domain of taxi demand prediction, [5] have re-
cently proposed the DMVST-Net approach which makes
use of multiple views, i.e., spatial, temporal, and semantic
views for the taxi demand prediction. DMVST-Net mainly
separates each view into a sub-model and extracts features
from each model to generate predictions. Similarly, for the
traffic speed prediction studies, [14], [17], a CNN is trained
for the whole city and predictions are made on regions.
These previous studies use residual CNN on the images of
traffic flow considering both the spatial and the temporal
dimensions, yet none of them consider the spatial-temporal
dependencies explicitly.

Another thread of related study is on the use of CNNs
in sequence learning. A recent empirical study in sequence
learning by [7] reveals that for long sequence learning tasks,
the CNNs are better than the RNNs. The CNN framework
adopted by [7] is called the Temporal Convolutional Net-
work (TCN) and is shown to perform better than RNNs for
problems such as the adding problem, sequential MNIST,
P-MNIST problem, and copy memory problem. We adopt
their insights in handling exogenous time series datasets.

From the literature review, we can see that the major
gap in the spatio-temporal prediction literature is the lack of
explicit consideration of spatio-temporal dependencies and
the utilization of CNN for real-world time series. Almost all

past works on taxi demand prediction also do not consider
the information embedded in the movement of vacant taxis.
These gaps are the main contributions we intend to make to
the literature.

3. The M2–CNN Framework

In this section, we describe the design of our M2–CNN
framework for the taxi demand prediction. When describ-
ing the framework, we try to focus on the general design
principle and not the scenario-specific features. The details
of all the scenario-specific features will be provided in the
experiment section.

3.1. Background

As in most past works on taxi (or ride-hailing) demand
prediction, we discretize both the spatial and temporal di-
mensions using fixed interval sizes. For the spatial dimen-
sion, we define the unit grid region to be 1km by 1km; the
unit grid regions are mutually exclusive, and collectively
they cover all the city areas that we would want to generate
demand predictions for. For the temporal dimension, we
define the unit time period to be 15 minutes long.

We denote the unit grid n as ln and let the set
L = {l1, ..., ln, . . . , lN} be the collection of all unit grids.
Similarly, we denote the time period m as tm and let
the set T = {t1, ..., tm, . . . , tM} be the collection of all
time periods. Almost all features included in our model
are aggregated into a particular (n,m) tuple (grid ln, time
period tm).

Our framework contains three major components, as
illustrated in Fig. 1. We will describe them in greater detail
next.

3.2. 3D-CNN: 3D-Spatio-Temporal Convolutional
Neural Network

In the deep-learning-based taxi demand prediction liter-
ature, the spatial relationships are usually captured by using
a convolutional neural network (CNN) (e.g., see [5]). The
basic idea is to treat the demand prediction problem as an
image recognition problem, where each pixel stores demand-
related information of a grid region in its RGB channels.

The critical design decision of this approach is on what
grid regions to include in the image for each n. The most
naive design is to include all grid regions; however, this will
result in a very large image, and the prediction quality, as
a result, will deteriorate (as pointed out by [5]). A better
approach is to include only the relevant grid regions. This
is where domain knowledge comes into play, and there are
several different ways of identifying relevant grid regions.
For example, in [5], the authors apply the proximity prin-
ciple, and for each grid region n, all grid regions that are
within 3 unit grids of Chebyshev distance from the grid
n are included. Their image size is thus 7 by 7. In [6],
the authors have proposed another approach, which uses a
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Figure 1. High-level design of our M2–CNN model.

connectivity graph that reflects physical express road linkage
to capture the closeness of any two regions. The composed
image is thus based on the strength of linkages. In both
designs (which are both competitive), the authors decide to
encode only demand information that comes from the same
time period m.

Our design is based on the principle of proximity, yet
we also consider the temporal correlation; i.e., when the
demand occurrence in region A from an earlier time period
m − k is correlated with the demand occurrence in region
B in time m.

To realize this design while still using the CNN frame-
work, we define our image to be of 3 dimensions, (x, y,m):
(x, y) refer to the grid region’s spatial location, and m refers
to the temporal dimension, indicating the number of time
periods from the current time.

As shown in Fig. 2, for each grid region n, we construct
an K ×K × h image to encode all information on demand
and supply counts. The parameter h represents how far into
the past we would want to include. And K specifies the
size of the included neighborhood around the region n. In
our implementation, we use h = 16 and K = 9 (i.e., we
include all regions that are within 4 unit grids of Chebyshev
distance).

For a pixel (x, y,m) in the 3D image, we store the in-
formation related to the region (x, y) in time m in channels
R, G, and B. For channel R, we encode the number of trips
originating from that region; for channel G, we encode the
number of trips ending in that region; finally, for channel B,
we encode the number of vacant taxis in that region (during

Figure 2. An illustration of 3-dimensional neighborhood structure capturing
both spatial and temporal relationships.

the time interval).
We use 0 as the padding value for regions that are at

the boundary. As a result, we end up with a tensor Qn
m ∈

RK×K×h×3, for each location ln and time interval tm.

Figure 3. The 3D-CNN has 3 convolutions, 3 max-pooling, and 1 fully
connected layer.
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Tensor Qn
m is passed to a deep 3D-CNN described in

Fig. 3 having a depth of p. All 3D convolution filters are
3 × 3 × 3 with stride 1 × 1 × 1. All 3D pooling layers are
2×2×2 with stride 2×2×2. Rectified Linear Unit (ReLU)
activation function is used for each convolution layer.

3.3. LSTM-TCN: A Hybrid Model of Long Short-
Term Memory and Temporal Convolutional Net-
works

The 3D-CNN component handles all information di-
rectly related to the demand occurrence. In this section, we
propose to incorporate various exogenous time series that
could potentially have an impact on the demand occurrence
(we list all included data sources in the Experiment section).

To handle sequential data, the neural network model
of choice is usually the Recurrent Neural Network (RNN).
However, a recent study by [7] demonstrates that the Tem-
poral Convolutional Network (TCN) sometimes outperforms
RNN in certain sequence modeling tasks.

In our framework, we propose a hybrid model that
combines both the RNN and TCN, to take advantage of the
strengths of both methods. As we incorporate a large number
of data sources, the features we choose to include tend to be
rather noisy. The RNN models work well with these noises
and we use a popular RNN architecture, the Long Short-
Term Memory (LSTM) network [18], to perform encoding
and automatic feature selection. The TCN then makes use
of the encoded features to model the taxi demands as a
sequence.

All RNNs have a chain of repeating modules of neural
networks. The LSTM networks also have this chain-like
structure. A unit in a typical LSTM network contains four
unique components: the cell, the input gate, the forget gate,
and the output gate. While the state is kept in the cell, the
three gates control the flow of information.

Conceptually speaking, given a previous cell state cm−1,
the previous hidden state hm−1, and the input xm, the LSTM
network has to decide what new information to store in
the cell state. To achieve this, the input gate (a sigmoid
layer) decides which values to update, and processes these
values using the tanh layer. The resulting vector of candidate
values, c̃m, is then added to the cell state. Before updating
the cell state with c̃m, the forget gate also needs to decide
which part of cm−1 to forget. Finally, the output gate
generates a filtered version of the new cell state cm. The
governing equations of the LSTM are listed below:

fm = σ(Wifxm +Whfhm−1 + bf ), (1)
im = σ(Wiixm +Whihm−1 + bi), (2)
om = σ(Wioxm +Whohm−1 + bo), (3)
c̃m = tanh(Wic̃xm +Whc̃hm−1 + bc̃), (4)
cm = fm ◦ cm−1 + im ◦ c̃m, (5)
hm = om ◦ tanh(cm), (6)

where ◦ is the operator for element-wise product, σ is the
sigmoid function and tanh is hyperbolic tangent function.

After the input xm is sent through two LSTM layers,
the sequence of the latent representations, (hm−k, ..., hm),
are considered as the inputs to the TCN.

The TCN uses the Dilated Convolutions to accommodate
an exponentially large receptive field. For an 1-D sequence
input h ∈ Rn and a filter f : {0, . . . , k−1} → R, the dilated
convolution operation F on the element s of the sequence
is defined as:

F (s) = (h ∗d f)(s) =

k−1∑
i=0

f(i) · hs−d·i, (7)

where d is the dilation factor, k is the filter size, and (s −
d · i) accounts for the direction of the past. A residual block
contains a branch leading out to a series of transformations,
z, whose outputs are added to the input h of the block:

w = Activation(h+ z(h)). (8)

In our later experiments, we used one LSTM layer of
size 128, and a TCN with residual blocks, containing k =
128 filters and dilation factors d = 1, 2, 4, 8, 16, 32, 64 (as
illustrated in Fig. 4).

Figure 4. The LSTM-TCN architecture. One LSTM layer followed by
a TCN with dilated causal convolution with dilation factors d =
1, 2, 4, 8, 16, 32, 64, and filter size k = 2, and residual connections.

3.4. Micro-Feature Model

A unique design of our framework is the incorporation
of the vacant taxi’s microscopic movement. We introduce
this module to capture the hidden information in vacant
taxi’s movement: when a vacant taxi enters and exits a
road link without status change, it implies that no street-hail
demands are observed along that road link. At the road link
level, an extension to this observation is the strong positive
correlation between the time elapsed since the last visit by
a vacant taxi and the likelihood that the next incoming taxi
would discover a demand.

To incorporate this insight in our prediction framework,
we first identify road links that are worth monitoring (we
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only monitor road links that generate at least 600 demands
per month; in aggregate these road links generate around
70% of all street-hail demands). After identifying these road
links, we monitor the arrival of vacant taxis to these links
and update the elapsed time since the last visit by a vacant
taxi (the elapsed time increases as time progresses, but resets
when a vacant taxi arrives).

For the region of interest, we collect elapsed times of
all monitored links in this region, and together with the
summary statistics of recent elapsed time observations, we
send them to two stacked LSTM layers. The sequence of
the latent representations (hm−k, ..., hm) were extracted as
features for the fully connected layer.

3.5. Model Fusion

Fully connected layers are used to fuse all three models
together. We fuse output ulm from the 3D-CNN model, vlm
from the hybrid LSTM-TCN model, and wl

m from the Micro
Feature model to form a tensor:

zlm = ulm ⊕ vlm ⊕ wl
m. (9)

We feed zlm to the 2-layer fully connected network, and
finally to a sigmoid layer to get the final prediction value
ŷlm+1

ýlm = ReLU(Wf1z
l
m + bf1), (10)

ỹlm = ReLU(Wf2 ý
l
m + bf2), (11)

ŷlm+1 = σ(Wf3 ỹ
l
m + bf3). (12)

where {Wf1 ,Wf2 ,Wf3} and {bf1 , bf2 , bf3} are learned pa-
rameters, and σ denotes the sigmoid activation function.
The final prediction value ŷit+1 is in [0, 1], since we scale
our inputs also to the range of [0, 1].

3.6. Loss Function

When designing our prediction model, we want it to
work well for both high-demand and low-demand scenarios.
However, most available loss functions are scale-dependent,
making them sensitive to outliers; yet the taxi demand time
series tends to be highly volatile. To handle this concern,
we define a hybrid loss function that combines both the
Root Mean Squared Error (RMSE) and the Symmetric Mean
Percentage Error (SMAPE) since RMSE is more sensitive
to larger values and SMAPE is insensitive to outliers. The
resulting loss function is thus defined as:

J(Θ) =

N∑
i=1

(
α
√

(yit+1 − ŷit+1)2 + β
|yit+1 − ŷit+1|

(|yit+1|+ |ŷit+1|)/2

)
,

where Θ represents all learnable parameters in the model,
and α, β are adjustable hyperparameters.

4. Experiments

To demonstrate the effectiveness of our demand predic-
tion framework, we use a real-world dataset from Singapore
which contains detailed taxi movement logs of all taxis (the
fleet size is around 20,000) from January to March in 2018.
We use January and February data for training and March
data for testing. On average there are around 12 million taxi
trips per month. We divide Singapore into 626 1km-by-1km
grid regions, and we set the time interval length to be 15
minutes. For each prediction, the past 16 time intervals (4
hours) are used.

Besides the number of taxi trips and count of taxis in
a region (both are extracted directly from the taxi fleet
dataset), we also incorporate the following features that are
derived from other data sources:

• Temporal features: For each data point, we label it
with the following temporal features: the day of the
week, the day of the month, the hour of the day, the
minute of the hour, indicator of whether the day is a
weekday, and whether the day is a public holiday. All
these features are categorical.

• Meteorological features: For each data point (ln, tm),
we also include meteorological features such as average
temperature, UV index, humidity, and rainfall. Each
feature is represented as a numerical value. As there
are 62 weather stations across Singapore, for each grid
region, we assume that its meteorological features are
provided by the closest weather station.

• Microscopic movement features: This set of features
is derived from the microscopic movement of vacant
taxis. As described in the previous section, the most
important feature we extracted from the microscopic
movement data is the “elapsed time since last visit by
a vacant taxi”.

• Polynomial features: Polynomial features are artifi-
cially generated. We generate a new feature matrix con-
sisting of all polynomial combinations of the features
with degrees less than or equal to the specified degree.
For example, if an input sample is two-dimensional and
of the form [a, b], the degree-2 polynomial features are
[1, a, b, a2, ab, b2]. In our experiments, we use degree-2
polynomial features.

In Table 1 we list all features included in our prediction
framework.

4.1. Preprocessing, Feature Engineering, and Hy-
perparameters

All the demand values and continuous numerical fea-
tures are scaled to [0,1] using min-max normalization for
the training process. Binary features like weekend/weekday
indications are encoded as 0 or 1. The outputs of the
prediction model are in the range of [0,1], which will be
rescaled to get the absolute demand values.

Feature engineering techniques are used to enrich the
dataset. In particular, the polynomial feature engineering
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TABLE 1. LIST OF FEATURES FROM DIFFERENT SOURCES.

Feature Type Feature Description

Meteorological

• Average temperature in the time interval
• Average UV index in a time interval
• Average humidity in a time interval
• Cumulative rainfall in a time interval

Temporal

• Hour of day
• Minute of hour
• Day of week
• Day of month
• Whether the day is a weekday
• Whether the day is a holiday

Taxi Related

• # of trips starting in the target region
• # of trips starting in the immediate neighbors

of the target region
• # of trips ending in the target region
• # of trips ending in the immediate neighbors of

the target region
• # of free taxis

approach is used to grow 29 features to 464 features.
These new features include interaction features and self-
multiplications.

We set 9×9×16 as the image size for the 3D-CNN, i.e.,
16 images covering the same geographical area (9km×9km)
over the past 16 time periods are stacked together to form
a 3D image. The 3D-CNN consists of 3 convolutions and 3
max pooling operations. Each convolution has 32, 64, and
128 filters respectively. Filter size is set to 3 × 3 × 3. The
pooling layer size is set to 2× 2× 2 with stride 2× 2× 2.
Batch normalization is used after each convolution layer.
The LSTM Layer of size 128 is used with a residual-TCN
with 128 filters and dilation factors of 1, 2, 4, 8, 16, 32,
and 64 for the LSTM-TCN model. For the micro-feature
model, we use two stacked LTSMs of size 128. For model
fusion, we use two fully connected layers of size 128 and 64
respectively. The sigmoid activation function is used to get
the final output and the ReLU activation function is used
at every other instance. Batch size is set to 16 and early
stopping is used to control the over-fitting of the model.
The previous 16 demand values (4 hours) are considered as
the sequence length.

4.2. Evaluation Metric

We use Rooted Mean Square Error (RMSE), Symmetric
Mean Average Percentage Error (SMAPE), and Mean Av-
erage Percentage Error (MAPE) to evaluate our prediction
algorithm:

RMSE =

√√√√1

ε

ε∑
l=1

(ylm+1 − ŷlm+1)2, (13)

SMAPE =
1

ε

ε∑
l=1

|ylm+1 − ŷlm+1|
(|ylm+1|+ |ŷlm+1|)/2

, (14)

MAPE =
1

ε

ε∑
l=1

|ylm+1 − ŷlm+1|
ylm+1

, (15)

where ylm+1 and ŷlm+1 are the actual and predicted demand
values in region l at time m+ 1, and ε is the total number
of samples.

4.3. Competing Approaches

We compared our prediction approach against the fol-
lowing approaches from the literature. All hyperparameters
(if any) in these approaches are tuned to maximize the
results.

• Historical Average (HA): We employ the historical
average of the demand values to predict the demand
value in the next time interval.

• Linear Regression (LR): Linear Regression is a classi-
cal statistical approach to model the linear relationship
between a scalar response (or dependent variable) and
one or more explanatory variables.

• Support Vector Regression (SVR): Support Vec-
tor Regression (SVR) is a regression version of the
Support-Vector Machine.

• XGBoost: XGBoost is a widely used gradient boosting
framework.

• Multi-Layer Perceptron (MLP): Multi-Layer Percep-
tron is a class of feedforward artificial neural network
(ANN).

• Auto-Regressive Integrated Moving Average with
Weekday/Weekend Indicator (ARIMA): In time se-
ries analysis, an autoregressive integrated moving av-
erage model is a generalization of an autoregressive
moving average model. ARIMA is widely used for
time series prediction tasks. Here we have used an
ARIMA Model with different models for weekdays
and weekends. We use the Auto-ARIMA method in R
to automatically select the best orders for the ARIMA
model.

• Deep Multi-View Spatial-Temporal Networks
(DMVST-Net): Deep Multi-View Spatial-Temporal
Networks (DMVST-Net) is a deep learning-based
approach that uses multiple views of data to model
and predict taxi demand [5]. CNN is used for spatial
features, LSTM is used for temporal features, and
Graph Embedding is used to capture semantic features.
These three views are then integrated to produce the
final prediction. DMVST-Net is one of the most
recent state-of-the-art deep-learning-based methods in
ride-hailing demand prediction.

For fair comparison, we used the same set of features that
we used in our model to compare these approaches. The
same loss function is used where applicable.

We summarize the performance comparison in Table 2.
Our approach outperforms all other competing approaches
across all metrics. To highlight the advantage of our ap-
proach over other baselines, we compute the performance
gap of the baselines against our approach in percentage in
Table 3. From Table 3 we can see that when compared
against the best baseline, DMVST-Net, the advantage of our
approach increases with the demand density: the higher the
demand, the larger the performance gap.
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TABLE 2. PERFORMANCE COMPARISON AGAINST WELL-KNOWN BASELINES FROM THE LITERATURE. WE PERFORM COMPARISONS UNDER
DIFFERENT DEMAND PROFILES: LOW, MEDIUM, AND HIGH, REFERRING TO THE PERCENTILE OF DEMANDS AT BELOW 25%, 25% – 75%, AND ABOVE

75% RESPECTIVELY. THE BEST-PERFORMING MODEL IS HIGHLIGHTED IN BOLDFACE FOR EACH COLUMN.

RMSE MAPE SMAPE
Low Medium High Low Medium High Low Medium High

HA 6.8392 10.6237 15.2724 2.8719 3.1438 3.762 0.9912 1.101 0.9986
LR 2.4078 4.5630 7.1004 1.0307 0.9745 0.4142 0.7210 0.5591 0.3832

SVR 1.2218 2.8600 8.2159 0.7951 0.8463 0.6050 0.5177 0.4539 0.3227
ARIMA 1.0607 2.2094 5.4988 0.5380 0.4555 0.2480 0.5925 0.3848 0.2138

XGBoost 1.0670 2.1769 5.4163 0.5108 0.4371 0.2403 0.5852 0.3662 0.2053
MLP 1.1328 2.3367 6.1637 0.5758 0.4934 0.2772 0.6142 0.4103 0.2389

DMVST-Net 1.0189 2.1676 5.5287 0.4540 0.4254 0.2384 0.5091 0.3511 0.2074
M2-CNN 1.0166 2.0740 5.1228 0.4487 0.4139 0.2273 0.5084 0.3426 0.1957

TABLE 3. THE ADVANTAGES OF OUR APPROACH AGAINST BASELINES IN PERCENTAGES.

RMSE MAPE SMAPE
Low Medium High Low Medium High Low Medium High

HA 572.8% 412.2% 198.1% 540.0% 659.6% 1555.1% 95.0% 221.4% 410.3%
LR 136.8% 120.0% 38.6% 129.7% 135.4% 82.2% 41.8% 63.2% 95.8%

SVR 20.2% 37.9% 60.4% 77.2% 104.5% 166.2% 1.8% 32.5% 64.9%
ARIMA 4.3% 6.5% 7.3% 19.9% 10.1% 9.1% 16.5% 12.3% 9.2%

XGBoost 5.0% 5.0% 5.7% 13.8% 5.6% 5.7% 15.1% 6.9% 4.9%
MLP 11.4% 12.7% 20.3% 28.3% 19.2% 22.0% 20.8% 19.8% 22.1%

DMVST-Net 0.2% 4.5% 7.9% 1.2% 2.8% 4.9% 0.1% 2.5% 6.0%

TABLE 4. PERFORMANCE COMPARISON OF DIFFERENT MODEL VARIANTS.

RMSE MAPE SMAPE
Model Variant Low Medium High Low Medium High Low Medium High

3D-CNN 1.1131 2.1445 4.6725 0.506 0.3501 0.2243 0.4838 0.4299 0.2628
3D-CNN+LSTM-TCN 1.1327 2.1742 4.6967 0.5104 0.3537 0.2284 0.4841 0.4354 0.2727

3D-CNN+Micro 1.111 2.1363 4.5756 0.4951 0.348 0.2233 0.4833 0.4273 0.2647
M2-CNN 1.1021 2.1319 4.5554 0.4849 0.3477 0.2227 0.4817 0.4252 0.2623

TABLE 5. THE ADVANTAGES OF THE COMPLETE MODEL AGAINST ALL MODEL VARIANTS IN PERCENTAGES.

RMSE MAPE SMAPE
Model Variant Low Medium High Low Medium High Low Medium High

3D-CNN 1.0% 0.6% 2.6% 4.4% 0.7% 0.7% 0.4% 1.1% 0.2%
3D-CNN+LSTM-TCN 2.8% 2.0% 3.1% 5.3% 1.7% 2.6% 0.5% 2.4% 4.0%

3D-CNN+Micro 0.8% 0.2% 0.4% 2.1% 0.1% 0.3% 0.3% 0.5% 0.9%

4.4. Contributions by Different Components

To understand the contributions of different components
in our approach, we also experiment with the following
variants of our prediction model:

• 3D-CNN: In this model variant we only use 3D-CNN
to predict the taxi demand.

• 3D-CNN + LSTM-TCN: In this model variant we used
both 3D-CNN and LSTM-TCN by combining model
outputs to predict taxi demand. Combining spatio-
temporal features with sequence modeling gives better
performance than purely 3D-CNN.

• 3D-CNN + Micro-Feature Model: This variant uses
both 3D-CNN and Micro-Feature Model to predict the
taxi demand.

• M2-CNN: This is the complete version of our predic-
tion model.

Similar to Table 3, we also compute the performance gaps
in percentage and present them in Table 5.

From the summary of the performances in Table 4 and
Table 5, we can see that for the medium-demand and high-
demand scenarios, the micro-feature component is the most
influential and it complements 3D-CNN nicely. This finding
validates our conjecture that microscopic observations could
potentially bring significant values to the demand prediction.

5. Conclusions and Future Work

In this paper, we propose the M2–CNN model as
the framework for computing taxi demand prediction. Our
framework considers both spatial and temporal relationships
among regions, and we devise a new hybrid LSTM-TCN
model for handling long time series data. Finally, we also
incorporate the microscopic observations on the movement
of vacant taxis to further improve demand prediction.

The numerical studies are based on a large-scale real-
world taxi dataset containing more than 20,000 taxis and
12 million trips per month over a three-month period in
Singapore. Through the experiments, we demonstrate that
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our approach outperforms a wide array of approaches from
the literature. We also discover that the performance gap
between baselines and our approach widens as the de-
mand density increases. Coupling with the observation that
the micro-feature model seems to be most influential, we
demonstrate that the inclusion of microscopic observations
could significantly improve the prediction of taxi demands
in dense cities. This shows the importance of incorporat-
ing information related to demand or supply, whether this
information is explicit or implicit.

To further improve the performance of demand predic-
tion, we could look for other not-so-obvious information
sources that are consequential. For example, [19] has ex-
plored the use of real-time surge pricing of ride-hailing
platforms in predicting taxi demands, and demonstrated that
such pricing information could significantly improve the ac-
curacy of demand prediction. In the area of urban planning,
[20] has established that the changes in retail amenities in
a neighborhood can also permanently alter the taxi demand
patterns. This suggests that regional urban features (such as
building types and facilities) could be a useful sources in
predicting demands as well.
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