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Figure 1: The varied cycle lengths and context-dependent motions of repetitive actions pose challenges for counting temporal

repetitions. We propose a context-aware and scale-insensitive framework to cope with these problems. The counting process

is designed in a coarse-to-fine manner, integrating with a context-aware network for detecting bidirectional repetitive actions.

Abstract
Temporal repetition counting aims to estimate the

number of cycles of a given repetitive action. Existing

deep learning methods assume repetitive actions are

performed in a fixed time-scale, which is invalid for the

complex repetitive actions in real life. In this paper, we

tailor a context-aware and scale-insensitive framework,

to tackle the challenges in repetition counting caused by

the unknown and diverse cycle-lengths. Our approach

combines two key insights: (1) Cycle lengths from different

actions are unpredictable that require large-scale search-

ing, but, once a coarse cycle length is determined, the

variety between repetitions can be overcome by regression.

(2) Determining the cycle length cannot only rely on a

short fragment of video but a contextual understanding.

The first point is implemented by a coarse-to-fine cycle

refinement method. It avoids the heavy computation of

exhaustively searching all the cycle lengths in the video,

and, instead, it propagates the coarse prediction for

further refinement in a hierarchical manner. We secondly

propose a bidirectional cycle length estimation method for

a context-aware prediction. It is a regression network that

takes two consecutive coarse cycles as input, and predicts

the locations of the previous and next repetitive cycles. To

benefit the training and evaluation of temporal repetition

∗Xuemiao Xu and Shengfeng He are joint corresponding authors.

Email: xuemx@scut.edu.cn, hesfe@scut.edu.cn

counting area, we construct a new and largest benchmark,

which contains 526 videos with diverse repetitive actions.

Extensive experiments show that the proposed network

trained on a single dataset outperforms state-of-the-art

methods on several benchmarks, indicating that the pro-

posed framework is general enough to capture repetition

patterns across domains. Code and data are avail-

able in https://github.com/Xiaodomgdomg/

Deep-Temporal-Repetition-Counting.

1. Introduction

Human activities are commonly involved repetitive ac-

tions. Temporal repetition counting is a problem that aims

to count the number of repetitive actions in a video [7, 14,

21, 26]. The repetition analysis is explored as an auxiliary

cue to other video analysis applications, such as cardiac and

respiratory signal recover [16], pedestrian detection [22],

3D reconstruction [15, 24], and camera calibration [11].

This is a challenging problem as repetitive actions ex-

hibit inherently different action patterns. We summarize 4

representative cases in the left part of Figure 1. Figure 1(a)

and (b) show the most common repetitions, in which ac-

tions are performed in fixed cycles. The problem of detect-

ing these two repetitions is that their cycle lengths varied

largely, and therefore is invalid to make restricted assump-

tions about the time-scale of the cycle length across actions.
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In Figure 1(c), the case of playing the violin shows that the

cycle lengths are not always a fixed value. This case is con-

tradictory to (a) and (b), and hence the assumption of ac-

tions will be performed in a periodic manner is false. In

Figure 1(d), a front crawl action can be decomposed into

two sub-actions with a similar motion field, crawling with

the left hand and right hand. As the two sub-actions are

similar in motion space, contextual information in seman-

tic space should be considered to avoid the double counting

error.

Most existing methods [3, 7, 14, 16, 21] rely heavily on

the periodicity assumption. As a consequence, although

the representative work [14] achieves a near-perfect per-

formance on the periodic dataset YTsegments, it cannot de-

tect varied cycle lengths in the non-stationary video dataset

QUVA Repetition [25]. While the latest work [26] address

this problem, it detect repetition solely based on the mo-

tion field. Therefore it conflicts with the scenarios like Fig-

ure 1(d), in which repetitions cannot be distinguished by

motion field and contextual and semantic information is re-

quired to understand the action. Based on the above ob-

servations, we argue that detecting repetitions should 1) ex-

haustive search for a large range of cycle lengths to cover

most unknown actions; 2) include contextual understanding

and estimating cycle lengths by taking multiple periods into

consideration.

In this paper, we tailor a context-aware and scale-

insensitive framework based on the above principles. The

data flow is shown in the right part of Figure 1. Follow-

ing rule #1 to exhaustively search all the time scales can

absolutely address the cycle lengths variations problem, but

it leads to expensive computation. We combat this prob-

lem by proposing a coarse-to-fine cycle lengths estimation

strategy integrated with a regression network. In particular,

we only exhaustive search the initial cycle lengths for a lo-

cal video clip. The initial estimation, is then propagated to

the entire video, and each of the estimated repetition in the

video is refined by our regression model. In this way, we

largely reduce the computational cost in searching accurate

cycle lengths, while we can adapt to large variations of cycle

lengths in the same video. The proposed regression model

handles rule #2, in which we inject contextual information

for estimating accurate cycle lengths. Specifically, instead

of taking only one action cycle as input, we sample the

video to contain two consecutive repetitions, named double-

cycle. Given such broad context, our regression model aims

to relocate the previous and future repetitive cycles in a bidi-

rectional manner. Furthermore, existing researches in rep-

etition counting lack of sufficient data, therefore we pro-

pose a new repetitive action counting benchmark, named

UCFRep. It is constructed by annotating repetitive actions

from the widely used dataset UCF101 [28], and it is the

largest dataset containing 526 videos. Extensive experi-

ments demonstrate the proposed method is able to cope with

various repetitive actions, and we outperform state-of-the-

art methods on three benchmarks.

Our contributions are four-fold:

(1) We propose a coarse-to-fine double-cycle estimation

strategy integrated with regression, which allows fast

estimation of cycle lengths for the entire video and dy-

namic relocation of varied cycles.

(2) We present a bidirectional context-aware regression

model. It explores contextual information to simultane-

ously estimate the previous and future cycles in a bidi-

rectional manner.

(3) We construct a new and largest benchmark UCFRep.

526 repetitive action videos are annotated for training

and evaluation.

(4) The proposed network outperforms state-of-the-art

methods on three benchmarks, especially we achieve

superior performances on two unseen benchmarks

(without fine-tuning). It reveals the proposed frame-

work is general enough to complex and unknown

scenes.

2. Related Work

A typical solution for temporal repetition counting is to

transfer the motion field into one-dimensional signals, and

then they try to recover the repetition structure from the

signal period [1, 13, 19, 20, 30]. The mainstream of these

methods obtains repetition frequency with Fourier analy-

sis [2, 3, 7, 21]. In addition, they detect the cycle by fil-

tering [4], peak detection [29], classification [8], and sin-

gular value decomposition [6]. The above methods assume

that the estimating repetition is periodic, so that they cannot

handle the non-stationary repetitions. A recent work [26]

addresses this limitation, and propose a novel inference

scheme to detect non-stationary actions. However, they

only adopt the motion field to extract features for analysis,

while ignoring context-dependency in semantic domain.

Like us, there are methods that also use deep features for

repetition analysis. Li et al. [16] propose to learn tempo-

ral dependency by adopting the LSTM network on the se-

quence of images. They aim to recover the cardiac and res-

piratory signals from the medical image sequence, as such

their method cannot handle complex repetitions in real-

world. Levy and Wolf [14] aim to propose a classification

network for live repetition estimation. Their network is de-

signed to extract features of 20 frames from the video with

the predefined sampling-rate. As discussed above, a prede-

fined cycle lengths cannot adapt to the complex repetitive

actions with large variations of cycle lengths.

Action localization [17, 18, 27] shares a similar spirit to

localize actions in temporal domain. These methods aim
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Figure 2: Framework overview. The proposed context-aware double-cycle regression network is shown on the left. It

regresses a new double-cycle {tpr(i), tnr(i)} based on the context information sampled from the previous double-cycle

{tp(i), tn(i)}. In the right part, a coarse-to-fine double-cycle refinement method is illustrated. We first perform exhaustive

search locally on the first stage, and the initial double-cycle is propagated and refined in the following stages. An accurate

counting result can be obtained by averaging all the cycle lengths in the video.

to locate the temporal begin and ending points of each ac-

tion in the entire video, hence these methods can be easily

adapted to the field of repetition counting. However, these

methods find the action segment separately, which means

that they ignore the repetition priors to effectively utilize

the context information. In our method, we borrow the idea

of the anchor-based temporal regression from this literature,

and further explore context dependency.

3. Approach

In this section, we first introduce the problem formula-

tion and overview of the proposed context-aware and scale-

insensitive framework. Then we describe two core modules

of our framework, the context-aware double-cycle regres-

sion network and coarse-to-fine double-cycle refinement.

Finally, we present the details of our newly constructed tem-

poral repetition benchmark.

3.1. Problem Formulation

Repetition definition. We have a different problem set-

ting than prior works, as we aim to locate both previous and

future cycles in a bidirectional manner. Given a video with

N frames I = {I1, I2, ..., IN}, the repetition can be defined

as follows: for a frame Ii, if we can find a previous frame

Ip(i) and a future frame In(i), such that the two frame se-

quences {Ip(i), Ip(i)+1, ..., Ii} and {Ii, Ii+1, ..., In(i)} con-

tains the identical actions, then there are two repetitions ex-

isting in these two sequences. We refer these two consec-

utive cycles as double-cycle, and the Ip(i) as the previous

repetitive frame of Ii and In(i) as the next repetitive frame

of Ii.

Target formulation. In this paper, we aim to count the

temporal repetition number c for the given video. If the

action is strongly periodic in the video, we can assume the

cycle length is a constant across the entire video. Then we

can easily estimate the repetitions number by finding the

previous and next repetitive frame locations {p(i), n(i)} of

an arbitrary frame i and calculate the number of repetitions

c as:

c =
N

i− p(i) + 1
=

N

n(i)− i+ 1
. (1)

However, the variety between repetitions cannot be ne-

glected in the real-world. To tackle this problem, we

propose to calculate the repetition counts by estimating

{p(i), n(i)} of each frame in the video. Therefore we for-

mulate the problem as

c =

N
∑

i=1

(

0.5

i− p(i) + 1
+

0.5

n(i)− i+ 1

)

. (2)

Two cycle lengths can be computed as tp(i) = i − p(i) +
1 and tn(i) = n(i) − i + 1. For clarity, we define

{tp(i), tn(i)} as the double-cycle that describes two con-

secutive repetitions with frame i.

3.2. Framework Overview

Following the target formulation, our framework is de-

signed to predict the double-cycle {tp(i), tn(i)} for all the

position i ∈ {1, 2, ..., N}. We first propose a context-aware

double-cycle regression network, which is illustrated in the

left part of Figure 2 and described in Section 3.3. The

network is designed to refine the given double-cycle for a
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specific position. Given an initial double-cycle, our net-

work extracts the 3D features based on some sampled video

frames and outputs a new double-cycle {tpr(i), tnr(i)}.

With the extracted context information from a large range of

video frames, the network is able to identify the repetition

and regress the cycle lengths easily. Furthermore, this pro-

cess is performed multiple times to obtain a progressively

refined double-cycle.

As discussed above, an exhaustive search should be per-

formed to cope with the large cycle length variation prob-

lem. It can also provide an reasonable initial double-cycle

for the regression network. Instead of searching the entire

video, we first search locally in the video, and propagated

the prediction to the other frames. The right part of Fig-

ure 2 shows our method and it is described in Section 3.4.

We perform exhaustive searching for one time in the mid-

dle frame of the video, such that the initial double-cycle is

likely within the same scale with others. It is then prop-

agated to the other frames, each of the new frame is in-

tegrated with the regression network for local refinement.

For each stage we sample the positions uniformly across

the video so that the sampled position can be the propaga-

tion root for the next stages. The final repetition counts of

the video can be calculated by the repetition count summa-

rization of all frames.

3.3. Double­cycle Regression Network

The objective of the network is to refine the input double-

cycle {tpr(i), tnr(i)} of an assigned position i. To extract

features of fixed size for regression, we sample specific

frames within the double-cycle. As illustrated in the left

part of Figure 2, network input L is a sequence with 2M
frames, which consists of two half. We sample the first half

of the inputs uniformly from the range [i − 2tp(i), i], and

the next half inputs from the range [i + 1, i + 2tn(i) + 1].
Note that we double the sampling range to detect large con-

text like the double-motion in Figure 1(d). The sampled

sequence L is then fed into a 3D-backbone model. We

use the 3D-ResNext101 [10, 31] pretrained on the Activ-

ityNet [5]. Other network architectures are also applied,

please refer to the experiments for details. We remove

the last classification layer and use the outputs after pool-

ing to be the context-aware 1D-features (4096 dimensions

for ResNext101). The features are then fed into the newly

added prediction branch for classification and regression.

The prediction branch is a two fully-connected layers with

multi-anchor, where we use 7 anchors with default size

{0.5, 0.66, 0.8, 1.0, 1.25, 1.5, 2.0} to detect different size of

the repetition. Note that totally 14 anchors are used since

we have two cycles {tpr(i), tnr(i)}.

During training, the 3D backbone and the added branch

are trained end-to-end with classification loss and regres-

sion loss. With the network outputs for classification

Algorithm 1 Coarse-to-fine Double-cycle Refinement

Input: Video length N , double-cycle regression network

F , number of refinement stages K
Output: Double-cycle prediction {tp, tn}

1: Initialize queue Q
2: Determine {tp(N/2), tn(N/2)} by global search with

network F
3: Push {tp(N/2), tn(N/2)} into Q
4: for k = 1, 2, ..., K-1 do

5: Initialize point set Sk with 2k points sampled uni-

formly over video

6: Initialize {tp(Sk), tn(Sk)} with the prediction in Q
7: Iteratively refine {tp(Sk), tn(Sk)} with network F
8: Push {tp(Sk), tn(Sk)} into Q
9: end for

10: return {tp, tn} in queue Q

{yp, yn} and for regression {tp, tn}, we formulate the over-

all loss function:

L = (Lcls(yp, ỹp) + Lcls(yn, ỹn))+

λ
(

Lreg(tp, t̃p) + Lreg(tn, t̃n)
)

,
(3)

where Lcls is the cross-entropy loss after softmax and Lreg

is the smooth L1 regression loss [23]. {t̃p, t̃n} is the rep-

etition ground truth with the parameterizations of scale-

invariant center translation and the log-space cycle-lengths

shifting [9]. {ỹp, ỹn} is the classification label that equals

to 1 if intersection-over-union (IoU) of double-cycle predic-

tion and ground truth is greater than 0.5, and 0 otherwise.

λ is the weighting factor that empirically set to 50. Dur-

ing inference, the objective {tpr(i), tnr(i)} is equal to the

regression output of the anchor which has the highest clas-

sification score.

3.4. Coarse­to­Fine Double­cycle Refinement

Since the network extracts the features from the context

determined by the original double-cycle {tp(i), tn(i)}, a

good initialization will be helpful to improve localization.

To this end, we propose a hierarchical pipeline to provide

initialization by determining the double-cycle in a coarse-

to-fine manner. The key idea of the proposed pipeline is the

cycle length variation between different frames can be over-

come by regression, especially for the neighboring frames.

Therefore each stage we refine the results on the uniformly

sampled positions across the video, so that the initialization

of the next stage can benefit from the neighboring predic-

tion of the previous stage. As illustrated in the right part of

Figure 2, in the kth stage, we predict {tp(i), tn(i)} on the

uniformly sampled position i = {N/2k, 3N/2k, ..., (2k −
1)N/2k}. The prediction for each position consists of two

process, the initialization and refinement. Algorithm 1 il-

lustrates the initialization and refinement pipeline.
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(a) Cutting

0.12-3.00 (s)

(b) Hammering

0.24-1.88 (s)

(c) Shaving Beard

0.24-3.16 (s)

(d) Hula Hoop

0.32-0.92 (s)

(e) Soccer Juggling

0.32-2.08 (s)

(f) Trampoline Jumping

0.60-1.56 (s)

(g) Biking

0.64-2.08 (s)

(h) Table Tennis Shot

0.64-3.20 (s)

(i) Hand Stand Pushups

0.88-4.04 (s)

(j) Rowing

1.16-4.12 (s)

Figure 3: 10 examples from different categories of the UCFRep benchmark. We annotate the minimum and maximum

cycle-length of each category below the image, indicating the cycle-length variation.

Initialization. For the first stage, we let the double-cycle

of the middle position, {tp(N/2), tn(N/2)}, equal to the

value sampled from the large scale [µ1, N/µ2], and then

determine the initialized scale by the network classification

confidence. In the other stages, we propagate the predic-

tion from the previous stage as initialization, following the

arrow direction in the right part of Figure 2. In particular,

each position finds the previous refined neighbors for ini-

tialization. If only one neighbor is available (the first/last

position of the current stage), we use it as the initialization

directly. Otherwise, we merge the two observations from

the previous neighbor and next neighbor averagely. Under

this scheme, we do the heavy computation search only one

time in the first stage, and effectively utilize the refined re-

sults for the initialization of all the frames.

Refinement. After initialization, we refine the double-

cycle estimation for the given position i. With the re-

fined results {tpr(i), tnr(i)} from the regression network,

we update the observation on position i with the expo-

nential moving average mechanism. In other word, we

update the estimation with the equation {tp(i), tn(i)} =
β{tp(i), tn(i)} + (1 − β){tpr(i), tnr(i)}, where β is the

decay factor set as 0.5 empirically. Note that the refinement

can be performed iteratively to achieve more precise results.

After the coarse-to-fine refinement, we obtain the cy-

cle length prediction on uniformly sampled positions. To

count the action by sampling 2K−1 points rather by all the

N frames, we use the prediction of the final stage to present

the prediction of all the frames by modifying Equation 2:

c =

2K−1

∑

i=1

N

2K−1

(

0.5

tp(s)
+

0.5

tn(s)

)

, s =

⌊

(2i− 1)N

2K

⌋

,

(4)

where Kth stage is the final stage.

3.5. UCFRep Benchmark

The previous repetition datasets YTsegments [14] and

QUVA Repetition [25] contain only 100 videos for evalu-

ation. Due to the lack of labeled data, the previous deep

learning work [14] trains their model on synthesis data. De-

spite the tailored design of the simulation, the domain gap

between synthesis data and real data is unneglectable. Moti-

vated by this, we present an action repetition dataset, called

UCFRep benchmark, aiming to provide an environment for

training and evaluate the data-driven model. All the data

in the proposed benchmark are collected from the widely

used action recognition dataset UCF101 [28]. Therefore,

the proposed benchmark focuses on evaluating the repeti-

tion counting performance of human action. Despite all the

data is labeled with category, we find that the proposed net-

work trained on the benchmark is general enough to per-

form well on the previous unseen dataset YTsegments and

QUVA Repetition in experiments. We mainly introduce the

benchmark from three aspects, data collection, repetition la-

beling, and dataset statistic.

Data collection. The original UCF101 [28] is an action

recognition data set of action videos. 13320 videos are col-

lected from YouTube and further classified into 101 action

categories. Videos in each category are grouped into 25

groups according to whether they share common features,

such as similar backgrounds, viewpoints, etc. We check all

the 101 categories from the dataset and select 23 categories

in which the action is taken cyclically. Examples of 10 cat-

egories are shown in Figure 3.

Repetition labeling. We annotate the temporal bound of

repetitions similar to the principle in QUVA Repetition [25].

Two human annotators are invited to mark out the interval

contain repetitions and the repetitive frames in each video.

First, from each group in the original UCF101, we ask the
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YTSeg QUVA Ours

Num. of Videos 100 100 526

Duration(s) 1487 1754 3500

Num. of Counts 1080 1246 3506

Count Min/Max 4/51 4/63 3/54

Min of Cycle(s) - 0.20 0.12

Max of Cycle(s) - 7.69 6.76

Max/Min of Cycle - 38.76 56.33

Cycle Variation 0.22 0.36 0.42

Table 1: Dataset statistic of YTsegments [14], QUVA Repe-

tition [25] and the proposed UCFRep. Our dataset is larger

than the previous datasets in terms of the number of videos,

total duration and number of annotations. The wide range of

cycle length between videos and large variation within the

video also indicate that our benchmark is more challenges.

The cycle variation is the average value of the absolute dif-

ference between minimum and maximum cycle length di-

vided by the average cycle length.

annotators to choose one video with the clearest repetitions.

If no repetitions can be founded, all the videos in this group

will be abandoned. As a result, 49 groups cannot find any

repetition and 23 ·25−49 = 526 videos are collected in our

benchmark. With these videos, we let the annotators deter-

mine the repetition interval.We consider the first frame of

the interval as the reference, and ask the annotators to mark

all the repetitive frames of reference within the interval. Fi-

nally we use the average value of their annotations as the

final label, and the number of repetitive frames determine

the repetition counts.

Dataset statistic. We summarize the dataset statistic in

Table 1. In the proposed benchmark, we provide totally 526

videos containing 3500 seconds. 3506 cycle bounds are an-

notated in our benchmark to provide abundant data for train-

ing and evaluation. The benchmark also has a larger varia-

tion compared with the previous datasets. The Max/min of

Cycle indicates the difficulty from the diverse time-scale be-

tween different types of the repetitions, and the cycle varia-

tion shows the cycle-length variation within the video.

4. Experiments

Implementation Details. We implement the proposed

network using Pytorch, and test it with an NVIDIA Geforce

GTX1080Ti GPU. All input video frames of the network are

resized to 112×112, and we construct a 2M = 32 frames

sequences. For training, we use Adam optimizer [12] with

a fixed learning rate of 0.00005 and batch size of 24. We

train our network on the UCFRep with 100 epochs.

We train our network with the same pipeline of the pro-

posed coarse-to-fine refinement. Data augmentation is used

to extend the annotations: if the variation of two consecu-

tive repetitions is less than 0.3, we assume they are periodic.

Then we add annotations within the interval automatically

by linear interpolation.

During testing, we perform the coarse-to-fine refinement

with K = 5 stages. Our initial exhaustive searching is per-

formed with 30 scales (ranging from 4 to N/2), and conduct

4 times refinement in the 1st and 2nd stages, 2 times in the

3rd stage, and 1 time in the 4th to 5th stages, leading to

30 + 4 · (1 + 2) + 2 · 4 + 8 + 16 = 74 forwards of the es-

timation network. The running time of our method depends

on the times of the network forwards, and it takes averagely

1.8 seconds to process a video.

Evaluation Datasets. We evaluate our method on the

three video datasets: the existing datasets YTsegments [14]

and QUVA Repetition [25], as well as the proposed bench-

mark UCFRep. Both the YTsegments and QUVA Repetition

contain 100 videos with a wide range of repetitions, like

sports of humans and animal behaviors. We consider all

the videos from YTsegments dataset and QUVA Repetition

dataset as testing set, and all the training and the validation

is done on the proposed UCFRep benchmark. As a result,

we split the videos in UCFRep benchmark into the training

set and validation set according to the group number from

UCF101. 421 videos with group numbers 1-20 are split into

the training set, and 105 videos with group numbers 21-25

are in the validation set.

Evaluation Metric. Following the previous works [14,

26], we evaluate the proposed method by counting accu-

racy. For each dataset, we report the mean absolute error

(MAE) and off-by-one-accuracy (OBOA) given K videos

MAE =
1

K

K
∑

i=1

|c̃i − ci|

c̃i
, (5)

OBOA =
1

K

K
∑

i=1

[|c̃i − ci| ≤ 1] , (6)

where c̃ is the ground truth repetition counts. The mean

absolute error is a widely used metric to directly evaluate

counting errors. The off-by-one-accuracy can counts the

rounding error and show the possible cycle cut-offs at both

ends of the video as introduced in [26].

4.1. Comparison with Other Methods

The comparison with the existing methods for tempo-

ral repetition counting is shown in Table 2. We compare

our method with two hand-crafted feature methods [21, 26]

and one deep learning-based method [14]. As the com-

plete source codes of [21, 26] are unavailable, we com-

pare to them on two previous testing datasets QUVA Rep-

etition and YTsegments. We can observe that our method

can outperform all the previous methods. It demonstrates

that our method trained on the UCFRep is general enough
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Method
QUVA Repetition [25] YTsegments [14] UCFRep (Ours)

MAE↓ OBOA↑ MAE↓ OBOA↑ MAE↓ OBOA↑

Pogalin et al. [21] 0.385 ± 0.376 0.49 0.219 ± 0.301 0.68 - -

Levy and Wolf [14] 0.482 ± 0.615 0.45 0.065 ± 0.092 0.90 - -

Levy and Wolf∗ [14] 0.237 ± 0.339 0.52 0.142 ± 0.231 0.73 0.286 ± 0.574 0.68

Runia et al. [25] 0.232 ± 0.344 0.62 0.103 ± 0.198 0.89 - -

Runia et al. [26] 0.261 ± 0.396 0.62 0.094 ± 0.174 0.89 - -

Ours-Resnet18 0.190 ± 0.327 0.70 0.062 ± 0.125 0.91 0.213 ± 0.343 0.69

Ours-Resnet50 0.167 ± 0.293 0.75 0.081 ± 0.261 0.94 0.190 ± 0.288 0.74

Ours-Resnet101 0.148 ± 0.290 0.75 0.066 ± 0.170 0.94 0.187 ± 0.303 0.77

Ours-Resnext101 0.163 ± 0.311 0.76 0.053 ± 0.115 0.95 0.147 ± 0.243 0.79

Table 2: Comparison with the existing methods on YTsegments, QUVA Repetition and UCFRep for temporal repetition

counting. The method with ∗ is the re-implementation version by us trained on our UCFRep benchmark.
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Figure 4: Evaluation on the robustness to acceleration 1x,

2x and 4x on the YTsegments dataset following the exper-

iments in [25]. Compared to a previous scale-insensitive

method [25], our method is more robust to the time-scale.

to the common repetitions from other datasets. Especially

for the non-stationary dataset QUVA Repetition, our method

obtains improvement on MAE with 6.9% and OBOA with

14%, indicating that our scale-insensitive framework can

better handle the videos with varied cycle-length.

To demonstrate these improvements are brought mainly

by the proposed framework rather than the new dataset,

we fine-tune the learning-based method [14] on the new

benchmark using our train/validation protocol. Note that

the other two competitors [21, 26] are training-free meth-

ods. The original implementation [14] uses a simple 3D

network to learn on synthesis data with 20 50×50 images as

input. We replace their network with Resnext101 to extract

information from 32 112×112 frames for adapting to the

higher-dimensional data. We remove their ROI detection

to keep the inference sequence similar to the training data,

and the other implementations follow the published official

code. Not surprisingly, because of the increased number

of training data, the re-trained model on UCFRep bench-

mark shows better performance compared with the original

implementation on the QUVA Repetition dataset. However,

it cannot perform well on the periodic dataset YTsegments,

MAE↓ OBOA↑ Iterations

Stage 3 0.157 ± 0.284 0.78 50

Stage 4 0.156 ± 0.254 0.78 58

Stage 5 0.147 ± 0.243 0.79 74

Stage 6 0.151 ± 0.254 0.79 106

Table 3: Ablation study of the proposed coarse-to-fine re-

finement method on the UCFRep benchmark validation set.

MAE↓ OBOA↑

Fixed 0.177 ± 0.280 0.70

Fixed+mAnchor 0.171 ± 0.249 0.71

Free 0.157 ± 0.243 0.76

Free+mAnchor 0.147 ± 0.243 0.79

Table 4: Ablation study of the proposed context-aware esti-

mation network on the UCFRep benchmark validation set.

this is because their synthesis data is created following the

restrict periodic assumption, while our dataset shows vari-

ous types of repetitions. Compared with both the finetuned

and original versions, our method outperforms them on all

the datasets, as their network is designed to consider only

a fixed scale of action. These results also demonstrate the

success of our tailored context-aware and scale-insensitive

framework.

We further evaluate the robustness to time-scale of our

method. We follow [25] to manually speed up the video

to achieve different time-scales. As shown in Figure 4,

when the video is processed with different speeds, it poses

a challenge to the fixed time-scale method [14] (6.5% on

1x and 17.3% on 2x). Compared with the results (10.3%
on 1x and 14.7% on 2x) from the existing scale-insensitive

method [25], our method is more robust to speed variations

(5.3% on 1x, 6.2% on 2x and 8.0% on 4x), which implies

that our method can detect the repetitions with different

time-scales.

4.2. Ablation Study

We conduct the ablation study on UCFRep validation set.

In Table 3, we compare the performance of our system uti-
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Figure 5: Multi-stage cycle length visualization of a video from the QUVA Repetition dataset. In this video, a man is painting

(unseen during training), our coarse-to-fine strategy can progressively refine the cycle lengths.

Metric All HulaHoop Biking Hammering Soccer

MAE-avg 0.147 0.120 0.123 0.154 0.168

MAE-std 0.243 0.240 0.062 0.170 0.111

Table 5: Performance variations with respect to different

action classes on the UCFRep benchmark validation set.

lizing different stages as the final stage in the coarse-to-fine

refinement. The process with 6 stages will involve 32 itera-

tions in the final stage, thus it overall needs 74 + 32 = 106
iterations. The results in this table indicate that involving

more stages and computations in the refinement process can

improve the results. We balance the trade-off between ac-

curacy and speed, and choose stage 5 as the final stage.

We also compare the performance of our context-aware

network with the other network designs in Table 4. We first

compare the performance of using double time-scales for

the two consecutive repetitions (Free) or single time-scale

shared by the consecutive repetitions (Fixed). The results

with double time-scales are better than those with a sin-

gle time-scale, which demonstrates that the free time-scales

help to tackle the diverse cycle length. In addition, the

multi-anchors design (mAnchor) achieves the best perfor-

mance integrated with the double time-scales. This implies

that the regression can refine the cycle length with a large

range, and thus benefitted from the multi-anchors prediction

focusing on the diverse time-scales.

In Table 5, we further show the performance variations

with respect to different action classes. We can see that the

variations within the same action class are relatively small,

indicating that our model is instance and class insensitive.

4.3. Refinement Results Visualization

To show the process of coarse-to-fine refinement, we vi-

sualize the prediction of the 1st stage, 3rd stage and the 5th

stage over a video from QUVA Repetition dataset in Fig-

ure 5. We set the each repetition prediction equal to the

rounded mean value of the cycle length from the closet sam-

pled position. From the results, we can find that we give

an identical estimation to all the positions in stage 1 since

it only involves one local prediction. In the 3rd stage and

5th stage, the predictions after propagation and refinement

achieve high overlap with the ground truth, showing that the

proposed coarse-to-fine refinement can overcome the varia-

tion between consecutive repetitions.

5. Conclusion

In this paper, we present a novel context-aware and

scale-insensitive framework for temporal repetition count-

ing. To tackle the challenges posed by the diverse cycle-

lengths between videos and within repetitions, we propose

a coarse-to-fine cycle refinement scheme. Instead of de-

tecting the repetition with fixed time-scales, we search the

time-scale with a wide range locally at the beginning and

refine the scales for each temporal location in a coarse-to-

fine manner. We further propose a context-aware regression

network to learn contextual features for recognizing previ-

ous and future repetitions. The proposed network is de-

signed to extract the context-aware features from two con-

secutive repetitions, and a anchor-based backend is tailored

for detecting double-error or half-error. The proposed tem-

poral repetition counting framework is evaluated and com-

pared with state-of-the-art methods and achieves better re-

sults in the existing benchmarks as well as our newly pro-

posed dataset.
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