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Abstract
The k-center clustering algorithm, introduced over 35 years
ago, is known to be robust to class imbalance prevalent in
many clustering problems and has various applications such
as data summarization, document clustering, and facility lo-
cation determination. Unfortunately, existing k-center algo-
rithms provide highly suboptimal solutions that can limit their
practical application, reproducibility, and clustering quality.
In this paper, we provide a novel scalable and globally op-
timal solution to a popular variant of the k-center problem
known as generalized L1 k-center clustering that uses L1 dis-
tance and allows the selection of arbitrary vectors as clus-
ter centers. We show that this clustering objective can be re-
duced to a mixed-integer linear program (MILP) that facili-
tates globally optimal clustering solutions. However, solving
such a MILP may be intractable for large datasets; to remedy
this, we present a scalable algorithm that leverages constraint
generation to efficiently and provably converge to its global
optimum. We further enhance outlier handling through a sim-
ple but elegant extension to our MILP objective. We first eval-
uate our algorithm on a variety of synthetic datasets to better
understand its properties and then validate on 20 real bench-
mark datasets where we compare its performance to both tra-
ditional L1 distance k-center and k-medians baselines. Our
results demonstrate significant suboptimality of existing algo-
rithms in comparison to our approach and further demonstrate
that we can find optimal generalized L1 k-center clustering
solutions up to an unprecedented 1,000,000 data points.

1 Introduction
Clustering is a classical data analysis tool extensively used
in problems in unsupervised learning. It is found ubiqui-
tously in a varied range of machine learning and data min-
ing tasks, including pattern recognition, document cluster-
ing, image segmentation, medical and social sciences (Jain,
Murty, and Flynn 1999; Xu and Wunsch 2005; Xu and Tian
2015; Jain 2010). Clustering is often formulated as an opti-
mization problem to aggregate similar data observations into
clusters; formalizing this notion of similarity with different
objective functions leads to different clustering algorithms.

k-center clustering One of the most traditionally used
center-based clustering problems is the k-center problem. It
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is an essential and fundamental task in exemplar-based clus-
tering (Kaufman and Rousseeuw 2009) and has been a well-
studied formulation for metric clustering (Gonzalez 1985)
for over three decades. The key idea in the vertex k-center
problem is to choose a subset of k points from the data ob-
servations as the respective centers of k clusters such that
each point is assigned to its closest center. The objective of
the problem is to minimize the maximum distance from any
point to its nearest cluster center. The generalized variant of
the k-centers problem relaxes the centers to be arbitrary vec-
tors (Calik and Tansel 2013; Xu, Peng, and Xu 2018).

The k-center clustering problem has many real-world ap-
plications. Recently, k-center clustering was used for the un-
supervised learning task of detecting suspected spammers in
a dataset of Amazon reviews (Zhong, Tan, and Qu 2020).
Bateni et al. (2021) discuss the application of k-center clus-
tering in spam and fraud detection. Further use cases of k-
centers for online advertisement and document search are
also discussed in the literature (Wang et al. 2009).

We note that the k-centers problem is inherently immune
to cluster imbalance, e.g., when we have both dense and
sparse clusters in the data (cf. Figure 1). This is a result of the
objective minimizing the within-cluster worst-case distance
(or radius) (Bateni et al. 2021), making it insensitive to the
number of points that lie within this radius. This contrasts
with the minimum sum-of-squared error clustering (MSSC)
objective where the within-cluster sum of distances is con-
sidered (Fränti and Sieranoja 2018). In fact, imbalance in
cluster sizes is a common occurrence in many real-world use
cases for clustering, including medical diagnosis (Lin et al.
2017), financial fraud, and bioinformatics (Liang et al. 2012)
and hence k-centers is appropriate for such settings.

The vertex k-center problem is known to be NP-Hard in
the metric space and cannot be solved in polynomial time
within an approximation factor of less than 2 unless P =
NP (Gonzalez 1985). Some exact algorithms can be found
in the literature as discussed in Section 2. However, they
are mostly restricted to the vertex k-center problem and do
not extend to its generalized variant. Moreover, most algo-
rithms do not scale beyond 1,000’s of data points (cf. Sec-
tion 2). On the other hand, there exist several polynomial
time heuristic greedy algorithms that match the best pos-
sible 2-approximation bound (Gonzalez 1985; Hochbaum
and Shmoys 1985) that we discuss further in Section 2 and



(a) k-center Gon (b) k-center HS (c) Our optimal algorithm

Figure 1: A motivating example comparing k-center clustering with Gonzalez (1985) (Gon) and Hochbaum and Shmoys (1985)
(HS) algorithm, and our proposed optimal clustering for imbalanced clusters. The Gon and HS algorithms choose boundary
points of clusters as centers while our optimal algorithm results in perfect clustering with the L1 k−center objective.

compare to experimentally in this work. However, these ap-
proaches are sensitive to initialization and do not provably
converge to a globally optimal solution, hence risking poor
clustering and lack of consistency in results.

Proposed contributions In this work, we address these
shortcomings by designing a scalable and optimal algorithm
for the generalized k-center clustering problem. As men-
tioned, the minimax objective of the k-center problem is im-
mune to the class imbalance in the data and consequently
finds many applications in the real world. Hence, we choose
the generalized k-center objective for our clustering model.
However, unlike most k-center problems, we use the L1 dis-
tance metric in our objective instead of the commonly used
Euclidean metric, similar to Bajpai et al. (2021) and Angeli-
dakis et al. (2022). We use the L1 distance metric to exploit
its well-known robustness property over the Euclidean dis-
tance (Celebi, Kingravi, and Vela 2013); this partially allevi-
ates the issue of the objective’s sensitivity to outliers that is
a consequence of minimizing the within-cluster worst-case
distance (Charikar et al. 2001; Malkomes et al. 2015).

Our major contributions are as following:

• We show the generalized L1 k-center objective can be
elegantly reduced to a MILP, facilitating its optimal so-
lution. As solving the MILP may be intractable for large
datasets, we present a scalable algorithm that leverages
a constraint generation technique to efficiently and opti-
mally solve the MILP within a practically feasible time.

• Furthermore, we enhance outlier handling and account
for the objective’s sensitivity to outliers through a clever
constraint modification step to our MILP and constraint
generation algorithm. We demonstrate our model’s abil-
ity to identify ground-truth clusters in the presence of
outliers through experiments with synthetic data.

• We then demonstrate the efficacy of our algorithm
through rigorous simulation studies and experiments
with 20 real benchmark datasets. Through our experi-
ments, we demonstrate significant suboptimality of ex-
isting algorithms in comparison to our approach and fur-
ther demonstrate that we can find optimal generalized L1

k-center clustering solutions up to 1,000,000 data points.

2 Related Work
Greedy Algorithms It has been shown that the best possi-
ble polynomial time algorithm for the vertex k-center prob-
lem is a 2-approximation algorithm unless P = NP (Gonzalez
1985). Gonzalez (1985) and Hochbaum and Shmoys (1985)
are the most popular greedy algorithms with this best pos-
sible approximation bound. The Gonzalez (1985) algorithm
(kc-Gon) is O(kn) time complexity algorithm that selects
the first center at random and then chooses the farthest point
from the previously selected centers as the next center. In
contrast, the other popular algorithm (kc-HS) (Hochbaum
and Shmoys 1985) has a time complexity of O(kn log n)
and takes its formal characterization from the dominating
set problem in square graphs.

Researchers over the years have come up with other poly-
nomial time heuristic algorithms for the vertex k-center
problem that try to provide better empirical results (Robič
and Mihelič 2005; Garcia-Diaz et al. 2017; Rana and Garg
2008). However, none of these approaches provably con-
verge to a globally optimal solution. Nonetheless, among
the greedy algorithms, kc-Gon and kc-HS algorithms remain
popular as standard baselines due to their efficiency, simplic-
ity, and the best possible 2-approximation guarantee.

Optimal algorithms Exact algorithms for the metric k-
center problem can also be found in the literature. In one
of the earliest works, a set-covering based approach was
used to obtain the optimal solution for the problem (Minieka
1970). In a seminal work, Daskin (2000) iteratively solves
several maximal covering sub-problems with a binary search
procedure over possible solution values. For each radius
value from this search procedure, the total number of points
covered within the radius is maximized while the number
of centers (or facilities open) is restricted to k. Further,
Elloumi, Labbé, and Pochet (2004) proposed a new inte-
ger programming formulation for the set-covering problem.
They perform a binary search on the ordered list of distinct
distances between their proposed tighter lower and upper
bounds and solve a set covering problem for each selected
distance. It was the first optimal algorithm to solve a prob-
lem with 1817 nodes. Calik and Tansel (2013) improve on
the above formulation to provide tighter bounds and solve



problems up to 3038 nodes in the data. More recently, a gen-
eral constrained-clustering based clustering algorithm (Dao,
Duong, and Vrain 2017) was proposed to solve for up to
5000 samples in the dataset. Other recent works scale for
larger datasets (Shi et al. 2022; Aloise and Contardo 2018).
However, most of these exact solutions were proposed for
the vertex k-center problem and are not applicable to its gen-
eralized variant. Moreover, they are not practically feasible
for very large datasets.

3 Optimal Clustering via L1 k-center
3.1 L1 k-center problem as a MILP
As introduced previously, the k-center problem objective
minimizes the maximum radius around all the cluster cen-
ters. Consider that we have n observations xi with d dimen-
sions in the dataset X ∈ Rn×d where i ∈ N = {1, ..., n}.
The goal in hard-partitioning clustering is to assign each
of the n observations to one of the k clusters Cj where
j ∈ K = {1, ..., k}. Let zj represent the centroid for Cj

such that we minimize the following objective for the L1

k-center problem:
min
z

max
j∈K

max
xi∈Cj

∥xi − zj∥1 (1)

We can rewrite the above objective as a minimax mixed
integer linear program (MILP) using binary indicator vari-
ables cij that identify cluster assignments for all the obser-
vations. If a point i is associated with cluster Cj , then we
have cij = 1; cij = 0, otherwise. With this definition, we
can have a minimax MILP (but not pure MILP) formulation
in problem (2)
min
c,z

max
j∈K

max
i∈N
∥xi − zj∥1cij

s.t.
∑
j∈K

cij = 1, i ∈ N ; zj,1 < zj+1,1, j ∈ K\{k};

cij ∈ {0, 1}, i ∈ N, j ∈ K; zj ∈ Rd, j ∈ K

(2)

The product of binary variables cij with the distance term
in the above objective ensures that we only account for
distances from any observation to its corresponding center.
Moreover, the first set of constraints guarantee that every ob-
servation is associated with exactly one cluster. The second
set of constraints are symmetry-breaking constraints that en-
force that the k centers be found in increasing order of its
value along the first dimension. This makes sure that the
other permutations of point-cluster assignments are removed
from the feasible search space. The above minmax saddle
point optimization problem (2) can then be rewritten as a
bi-level MILP problem (3).

min
c,z,ε

ε

s.t. ε = max
j∈K

max
i∈N
∥xi − zj∥1cij ;∑

j∈K

cij = 1, i ∈ N ; zj,1 < zj+1,1, j ∈ K\{k};

cij ∈ {0, 1}, i ∈ N, j ∈ K; zj ∈ Rd, j ∈ K
(3)

We achieve this transformation to a bi-level optimization
problem by introducing an additional variable ε. We can fur-
ther relax the equality in the first constraint of Problem (3)
to ε ≥ maxj maxi ∥xi − zj∥1cij , which preserves opti-
mality since the minimization of ε guarantees that the con-
straint will be satisfied at equality. This realization permits
one further serendipitous transformation that allows us to re-
move the second level of the bi-level problem. Specifically,
we can further reduce this bi-level optimization problem to
a pure MILP formulation by introducing n× k logical con-
straints that guarantee {ε ≥ ∥xi − zj∥1cij} for all i and j
and hence also the maximum over all i and j as required by
the first constraint (ε = maxj∈K maxi∈N ∥xi − zj∥1cij)
in Problem (3). This leads us to the final form of our pure
MILP clustering problem (4):

min
c,z,ε

ε

s.t. cij = 1 =⇒ ε ≥ ∥xi − zj∥1 i ∈ N, j ∈ K;∑
j∈K

cij = 1, i ∈ N ; zj,1 < zj+1,1, j ∈ K\{k};

cij ∈ {0, 1}, i ∈ N, j ∈ K; zj ∈ Rd, j ∈ K

(4)

3.2 Constraint generation for scalable clustering
The above transformation gave us an elegant MILP in prob-
lem (4) that can be solved optimally with standard solvers;
however, such a procedure would be computationally pro-
hibitive, largely due to the size of this MILP. We have n× k
integer variables cij and logical constraints in this formu-
lation. Unfortunately, it would be practically infeasible to
solve the problem optimally for large datasets, and it would
seem like we have made little progress with this reformula-
tion. However, the key observation here is that we can po-
tentially scale if we reduce the number of variables and con-
straints while keeping the structure of the problem intact.

A crucial insight is that the objective function depends
only on a single variable ε, whose value is governed by the
logical constraints in the MILP. As mentioned previously,
ε essentially holds the value of the maximum distance from
any point to its corresponding cluster center. This means that
all points close to an optimal center do not impact the objec-
tive value and hence may be ignored during optimization.
This is especially useful since clusters often tend to have a
denser collection of points around the center, which is re-
flected in the implicit Gaussian data distribution assumption
underlying k-means clustering (Fränti and Sieranoja 2018).
This insight can be leveraged to design an efficient constraint
generation methodology that omits logical constraints corre-
sponding to points interior to the cluster boundaries.

We formally describe our constraint generation optimiza-
tion methodology we call kc-Opt through Algorithm 1 and
illustrate this approach with a synthetic example in Figure 2.
We broadly perform two operations iteratively, typical of the
main and sub-problem setting. We begin with a small set of
variables cij and constraints C corresponding to points in
I . We warm start the MILP with a strong upper bound by
initializing the cluster centers zj . We then solve the MILP
(with constraints in C) to obtain the current best solution ε∗
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Figure 2: We show the constraint generation process using a synthetic example where we start (left) with 9 constraints (denoted
with ×), add 3 constraints (denoted with +) in the first iteration corresponding to the extreme points from the centers (left), 1
constraint in second iteration (middle), and none in third iteration where we reach the optimal solution (right).

Algorithm 1: kc-Opt algorithm
Input Data xi , and k

1: ε∗ ← 0, ε̂←∞
2: I ̸= ∅, C ̸= ∅, z∗

j ←Warm-start
▷ Initial constraints C for points in I

3: ε∗, z∗
j , c

∗
ij ← Solve MILP subject to C

4: ĉij ← {1j=ĵ |ĵ = argminj ∥xi − z∗
j∥1},

▷ Assign points i ∈ N to their closest center
5: ε̂, I, C ← Add-Constraints()
6: if ε̂ > ε∗ then
7: go to line 3

▷ Re-solve MILP with augmented constraints set C and
points in I

8: end if
9: return ε∗, z∗

j , ĉij ▷ Optimal solution

(line 3 in Algorithm 1). Using the current centers z∗j , we ex-
plicitly assign all points to their closest centers and capture
these assignments in binary variables ĉij (line 4 in Algo-
rithm 1). This is an important step because the point-cluster
binary variables c∗ij are only available for points i ∈ I ⊂ N .
We then call subroutine Add-Constraints shown in Alg. 2.

In Algorithm 2, we evaluate the maximum distance from
the points to their centers ε̂ and compare it with ε∗. If found
greater than ε∗, it is clear that the solution is not optimal and
that we need to add lower bounding constraints correspond-
ing to points that are farther than ε∗ distance from their cen-
ters. We identify the farthest points per cluster, which are
equivalent to identifying the most violated constraint, and
add them to the constraint set C (line 7 in Algorithm 2). We
then re-solve the MILP with the additional constraints.

We stop this iterative process when ε̂ = ε∗, i.e., when
none of the points in the dataset incur a larger error than
ε∗ (right plot in Figure 2). At this point of termination, we
are guaranteed to have the optimal solution since adding fur-
ther constraints could only maintain or increase the objective
value; we know that the current solution satisfies all con-
straints at the current objective value, hence maintaining it

Algorithm 2: Add-Constraints subroutine
Input Data xi, z

∗
j , ĉij , I, C

1: ε̂ = maxi∈N, j∈K{∥xi − z∗
j∥1ĉij}

▷ Check whether current ε∗ represents the max distance
from points to their center

2: if ε̂ > ε∗ then
3: for j ∈ K do
4: Iadd ← {argmaxi ∥xi − z∗

j∥1ĉij}
▷ Add farthest point in clusters to I

5: I ← I ∪ Iadd
6: end for
7: C ← C ∪
{cij=1 =⇒ ε ≥∥xi−zj∥1, i ∈ Iadd, j∈K}

8: end if
9: return ε̂, I, C

and implying it is optimal w.r.t. all constraints. This opti-
mality guarantee is formalized in the following proposition,
where we establish that it is sufficient to use Algorithm 1 to
obtain the optimal solution for the MILP problem (4):

Proposition 1. The MILP formulation in problem (4) and
kc-Opt algorithm achieve the same objective value and op-
timal solution variable assignment.

We provide a full proof for Proposition 1 in the Appendix.
The equivalence of objective values follows from this proof
and the established provably convergent nature of constraint
generation methods in the case of finite constraints. We
also remark that the symmetry breaking constraints of the
MILP (4) ensure solution uniqueness.

As a concrete example of constraint generation, in Fig-
ure 2 (left), three points that were furthest from the centers
(marked as +) gave a ε̂ = max{2.32, 1.75, 2.14}which was
greater than ε∗ = 1.27 at the first iteration; hence we added
the nine constraints corresponding to these three points for
each of the three clusters. For example, for cluster 1 where
the 5th data point [0.44, 0.51]T is most violating, we add the

constraint {c5,1=1 =⇒ ε ≥
∥∥∥ [0.440.51

]
−z1

∥∥∥
1
}. In the exam-



ple of Figure 2, we continued the constraint generation for
two more iterations after which we had no more violated
constraints and hence we reach the optimal solution shown
in Figure 2 (right).

We conclude our discussion by observing that the algo-
rithm will provably always terminate and converge to the op-
timal solution in finite time since we are bounded by the fi-
nite number of points for which we can generate constraints.
The choice of L1 distance in the objective facilitates solv-
ing it as a MILP, which is usually computationally less ex-
pensive than solving MIQCPs with an L2 objective (Leyffer
2001). We empirically show in Section 4.1 that the number
of constraints we need to generate is significantly smaller
than the number of observations and generally increases lin-
early with the number of clusters k and dimensions d. Fortu-
itously, we also empirically demonstrate in Section 4.1 that
the number of constraints generated in some standard clus-
tering settings appears to increase very minimally as dataset
size n increases by orders of magnitude.

3.3 Extensions to the algorithm to handle outliers
The L1 objective of k-center problem provides some robust-
ness to outliers in comparison to Euclidean distance met-
ric. However, L1 k-center problem can still be sensitive to
outliers since it accounts for the worst-case distance be-
tween points and centers (Malkomes et al. 2015; Charikar
et al. 2001). A common strategy to deal with outliers in k-
clustering is to discard l number of observations during clus-
tering (Malkomes et al. 2015; Charikar et al. 2001; Chawla
and Gionis 2013), where l is a hyperparameter. Specifi-
cally, in the k-center case, it has been shown that the best
possible algorithm is a 3-approximation algorithm (k, z-
center) (Charikar et al. 2001).

We use the above strategy to handle outliers in our model.
We believe that having a tunable hyperparameter l is a clear
and systematic approach to clustering. Fortunately, this ap-
proach can be integrated into our MILP to obtain a guaran-
teed optimal solution for excluding the l worst outliers. We
have the following modified MILP:

min
c,z,ε

ε

s.t. cij = 1 =⇒ ε ≥ ∥xi − zj∥1, i ∈ N, j ∈ K ;∑
i∈N

∑
j∈K

cij = n− l;
∑
j∈K

cij ≤ 1, i ∈ N

zj,1 < zj+1,1, j ∈ K \ {k}
cij ∈ {0, 1}, i ∈ N, j ∈ K; zj ∈ Rd, j ∈ K

(5)

In problem (5), the constraints ensure that exactly l points
are not assigned to any of the k clusters. We accommo-
date the above MILP in our constraint generation scheme by
calling the Add-Constraints-Outliers subroutine presented in
Algorithm 3 at line 5 in Algorithm 1. We refer to this al-
gorithm as kc-OptOut throughout the paper. The subroutine
provides an updated set of points in I for which we generate
constraints C such that it also includes the l farthest points
(outliers). Additionally, here the value of ε̂ is computed as
the maximum distance from cluster centers to all non-outlier

Algorithm 3: Add-Constraints-Outliers subroutine
Input Data xi, z

∗
j , ĉij , I, C

1: Iout ← {argmaxA⊂N

∑
i∈A(∥xi − z∗

j∥1ĉij)}
▷ Where |A| = l to get l farthest (outlier) points

2: I ← I ∪ Iout
3: ε̂ = maxi∈N\Iout, j∈K{∥xi − z∗

j∥1ĉij}
4: if ε̂ > ε∗ then
5: for j ∈ K do
6: Iadd ← {argmaxi∈N\Iout

∥xi − z∗
j∥1ĉij}

7: I ← I ∪ Iadd
8: end for
9: C ← {cij = 1 =⇒ ε ≥ ∥xi−zj∥1, i ∈ I, j ∈ K}

10: end if
11: return ε̂, Iout, I, C

points (line 3). Furthermore, we provide a strategy to esti-
mate the value of hyperparameter l in the Appendix.

4 Empirical performance
We analyze the performance of our approach on an array of
synthetic datasets and real data benchmarks used to eval-
uate competing peer algorithms. We empirically compare
our algorithm with two popular k-center baselines: Gonza-
lez (1985) (kc-Gon) and Hochbaum and Shmoys (1985) (kc-
HS) algorithms. Both provide the best possible 2 approxi-
mation solution guarantees. Since the Gonzalez (1985) al-
gorithm is sensitive to initialization, we also report the mean
results from 10 independent runs (kc-GonAvg). We note that
we use the L1 objective variants for the above k-center al-
gorithms to provide a relevant comparison. We also com-
pare to the highly popular state-of-the-art initialization strat-
egy (Arthur and Vassilvitskii 2007) with k-medians (kmed)
from the pyclustering package (Novikov 2019) as an addi-
tional popular baseline that uses L1 distance. Although k-
medians does not optimize the k-centers objective, it pro-
vides insight into how much an alternate L1 clustering ob-
jective will comparatively impact the clustering results.

We present mean results from 10 independent runs. Since
our algorithm (kc-Opt) is optimal and deterministic, we re-
port this single value. As a scalable and optimal k-centers
algorithm is our key contribution in this work, we primarily
focus on comparing the optimal value of the k-centers ob-
jective obtained from our kc-Opt algorithm relative to that
of the other baselines as datasets and their sizes are varied.

All code is available to reproduce results in this paper.1
All experiments were conducted on a Macbook-Air lap-
top (8-core CPU at 3.2 GHz and 8 GB memory). Fur-
thermore, we employed the commercially available Gurobi
solver (Gurobi Optimization 2021) to execute our MILP.

4.1 Synthetic Experiments
We consider a series of experiments with simulated data to
examine the complexity of our approach and benchmark its
performance against the competing popular algorithms.

1https://github.com/Aravinthck/Optimal-KCenters
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Algorithm complexity The first set of experiments was
aimed at understanding the computational efficiency of the
constraint generation procedure of kc-Opt. The theoretical
worst-case complexity of our kc-Opt algorithm is trivially
bounded by the worst-case exponential running times for
solving the MILP at every iteration of the constraint gen-
eration procedure. However, modern MILP solvers are typi-
cally efficient when the number of constraints is limited and
we show empirically that the algorithm converges to the op-
timal solution in relatively few iterations after adding con-
straints for a small fraction of points (and in practically fea-
sible time). Specifically, we show that the maximum number
of constraints we had was≈ 450 for the case with 1,000,000
data points distributed in 15 clusters (cf. Figure 3).

Well-separated clusters We constructed synthetic
datasets (called Norm) similar to (Arthur and Vassilvitskii
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Figure 5: Comparison of outlier-aware k,z-center with our
optimal kc-OptOut on Norm-Out dataset; both are parame-
terized by the number of outliers to remove (x-axis).

2007; Chakraborty et al. 2020; Xu and Lange 2019), with
k ∈ {5, 10, 15} centers chosen uniformly at random from
a d ∈ {5, 10, 15} dimensional hypercube of side 500.
The number of observations n was varied from 1,000 to
1,000,000. These points were drawn from normal distribu-
tions with a standard deviation of 1 around the k centers to
generate well-separated Gaussian clusters.

We first studied the number of constraints (data points)
generated as well as the optimization time to understand our
algorithm’s ability to scale. We report the values we found
for 6 different k, d combinations for the Norm dataset in Fig-
ure 3 to examine the effect of varying the n, k and d values.
We ran the experiments to a maximum optimality gap of 5%
to provide a bound on the obtained solution.

It is evident from Figure 3 that the number of constraints
we had to add increased very minimally as we increased the
number of observations n for a specific combination of k, d.
Furthermore, we notice that the number of constraints we
need at the final solution scales linearly with k. We also re-
port the time taken to run these experiments in Figure 3.
Overall, this study illustrates our model’s ability to scale to
large datasets and obtain fast convergence irrespective of the
number of points n, especially when k is small.

All models recovered the ground truth clusters on this
controlled synthetic data. The farthest first traversal nature
of the k-center baselines and careful seeding of k-medians
contribute to this success for the baselines. However, we saw
that the objective value for baselines was not close to the
optimal value obtained with our algorithm but was within
an empirical approximation factor of 2. In Figure 4a, we re-
port the average ratio of the objective values obtained from
the baselines with our optimal solution across all n, k, and
d values for the Norm dataset. We also report the actual ob-
jective values obtained for the case of d = 15, k = 15 in
Figure 4b for more clarity. We provide plots for the remain-
ing k, d combinations in the Appendix, along with a similar
analysis with non-isotropic Gaussian clusters.

Clustering with outliers We now test the robustness
of our outlier-aware algorithm (kc-OptOut). Similar to
the previous two simulation studies, we constructed syn-
thetic datasets (Norm-Out) with Gaussian clusters in two-



Table 1: Comparative evaluation of objective values for our kc-Opt (optimal ε by definition, shown in bold) with baseline
methods on 20 datasets shown in the columns and ordered by number of data points (n) and split over two tables for readability.

Model Iris Wine Seeds Newthyroid Vertebral Ecoli Balance Australian Blood Mammographic

# data (n) 150 178 210 215 310 336 625 690 748 830
# dim (d) 4 13 7 5 6 7 4 14 4 5

kmed 3.7 473.1 7.3 78.1 464.5 1.1 7.4 31249.2 8240.4 57.2
kc-Gon 3.4 462.7 7.6 63.1 223.2 1.1 8.0 49925.7 4269.0 49.0
kc-GonAvg 3.6 397.0 8.4 69.4 226.2 1.1 8.0 50117.1 4919.3 52.9
kc-HS 3.1 312.6 7.1 66.4 196.3 1.0 7.0 49048.4 4279.0 54.0
kc-Opt (ε) 2.3 255.6 5.1 43.3 145.7 0.8 6.5 25064.3 3024.0 42.0

Model Banknote Winequality Banana Wallrobot Pendigits Census Shuttle Codrna Sepsis Skinsegment

# data (n) 1372 4898 5300 5456 10992 48842 58000 59535 129392 245057
# dim (d) 4 11 2 4 16 14 9 8 3 3

kmed 30.4 426.7 4.4 5.3 604.3 1237579.8 9480.8 1358.4 44.2 394.5
kc-Gon 24.9 131.5 4.6 4.6 531.0 732152.0 5085.0 680.0 47.0 395.0
kc-GonAvg 29.3 120.9 4.6 4.9 527.8 658588.3 4846.5 791.7 41.3 389.8
kc-HS 23.3 103.5 4.4 3.8 522.0 606000.0 4928.0 653.5 38.0 343.0
kc-Opt (ε) 18.3 74.9 3.4 3.1 517.5 391747.0 4318.5 482.9 27.5 318.5

dimensions (square of size 20) with n = 1000 and k ∈
{2, 3}. Following the design of experiments in (Chawla and
Gionis 2013; Gupta et al. 2017), we introduced outliers in
the data by sampling l points uniformly at random in the
same two-dimensional space. We inspect the optimal val-
ues ε obtained from kc-OptOut and the k,z-center base-
line (Charikar et al. 2001) as we increase the number of
outliers added to the data. From Figure 5, we see that ε
for the baseline is higher that than the optimal value from
kc-OptOut as expected. However, it has been noted in the
literature that the k,z-center algorithm’s ability to perform
well comes as the cost of scalability. Malkomes et al. (2015)
claim that it can take k,z-center algorithm ≈ 100 hours to
run for a dataset with 45,000 points.

In the absence of outlier handling, i.e., when we ran our
experiments just with the kc-Opt algorithm for Norm-Out
dataset, the optimal value was found to be much higher (as
seen in Figure 5). These high values with kc-Opt can be at-
tributed to the random nature in which we introduce outliers
throughout the two-dimensional box of size 20.

4.2 Real dataset experiments
We now move on from our controlled synthetic evaluations
to benchmark our kc-Opt model on 20 real datasets from
the UCI (Dua and Graff 2017), Keel (Alcalá-Fdez et al.
2011), and LibSVM (Chang and Lin 2011) machine learn-
ing repositories that are commonly used clustering bench-
marks (Malkomes et al. 2015; Chakraborty et al. 2020). We
follow standard procedure (Malkomes et al. 2015; Klein-
dessner, Awasthi, and Morgenstern 2019; Bateni et al. 2021)
and report objective values ε for the baselines and compare
them with our optimal algorithm (kc-Opt) in Table 1. We
present the optimal value ε obtained from kc-Opt. This pro-
vides an understanding of how well kc-Opt performs com-
pared to existing k-center methods as well as k-medians. We
do not compare the results from the outlier-aware models

since leaving out l outliers will always result in a lower k-
center objective value and thus would not provide a fair ob-
jective comparison to the algorithms presented here. Full de-
scriptive information regarding the datasets and comparative
running time of all methods is provided in the Appendix.

From Table 1, it is evident that the optimal objective value
ε obtained from the kc-Opt algorithm is much lower than all
baselines. We note that the difference in the objective values
of the baselines and kc-Opt gets larger as we increase the
number of data points n (exceptions are Pendigits and Shut-
tle datasets). This performance gap improvement as we in-
crease the size of the dataset again highlights kc-Opt’s abil-
ity to optimally scale to large datasets.

5 Conclusion and discussion

We presented the generalized L1 k-center clustering objec-
tive and an outlier-aware variant that both reduce to a mixed
integer linear program (MILP). We showed how to leverage
a constraint generation methodology to efficiently achieve
globally optimal results for large datasets up to an unprece-
dented 1,000,000 data points. We further demonstrated the
ability of the kc-Opt algorithm to practically scale by run-
ning experiments with 20 real-world benchmark datasets
and also note that the relative performance improvement
over baselines increased with the size of the datasets. As
with all clustering algorithms, inherent bias in the data and
its attributes along with potential misinterpretation of results
may have detrimental effects and thus all clustering results
must be handled cautiously. Nonetheless, our contribution
represents a novel optimization methodology for L1 k-center
clustering that performs well with imbalanced clusters that
are prevalent in a range of modern data exploration tasks
critical to both society and industry.
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Fränti, P.; and Sieranoja, S. 2018. K-Means Properties on
Six Clustering Benchmark Datasets. Applied Intelligence,
48(12): 4743–4759.
Garcia-Diaz, J.; Sanchez-Hernandez, J.; Menchaca-Mendez,
R.; and Menchaca-Mendez, R. 2017. When a Worse
Approximation Factor Gives Better Performance: A 3-
Approximation Algorithm for the Vertex K-Center Problem.
Journal of Heuristics, 23(5): 349–366.
Gonzalez, T. F. 1985. Clustering to Minimize the Maximum
Intercluster Distance. Theoretical Computer Science, 38:
293–306.
Gupta, S.; Kumar, R.; Lu, K.; Moseley, B.; and Vassilvitskii,
S. 2017. Local Search Methods for K-Means with Outliers.
Proc. VLDB Endow., 10(7): 757–768.
Gurobi Optimization, L. 2021. Gurobi Optimizer Reference
Manual.
Hochbaum, D. S.; and Shmoys, D. B. 1985. A Best Pos-
sible Heuristic for the k-Center Problem. Mathematics of
Operations Research, 10(2): 180–184.
Jain, A. K. 2010. Data Clustering: 50 Years Beyond K-
means. Pattern Recognition Letters, 31(8): 651–666. Award
winning papers from the 19th International Conference on
Pattern Recognition (ICPR).
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data Clus-
tering: A Review. ACM Comput. Surv., 31(3): 264–323.
Kaufman, L.; and Rousseeuw, P. J. 2009. Finding Groups
in Data: An Introduction to Cluster Analysis. John Wiley &
Sons.
Kleindessner, M.; Awasthi, P.; and Morgenstern, J. 2019.
Fair k-Center Clustering for Data Summarization. In Chaud-
huri, K.; and Salakhutdinov, R., eds., Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
3448–3457. PMLR.
Leyffer, S. 2001. Generalized outer approximationGeneral-
ized Outer Approximation, 787–794. Boston, MA: Springer
US. ISBN 978-0-306-48332-5.



Liang, J.; Bai, L.; Dang, C.; and Cao, F. 2012. The K-
Means-Type Algorithms Versus Imbalanced Data Distribu-
tions. IEEE Transactions on Fuzzy Systems, 20(4): 728–745.
Lin, W.-C.; Tsai, C.-F.; Hu, Y.-H.; and Jhang, J.-
S. 2017. Clustering-Based Undersampling in Class-
Imbalanced Data. Information Sciences, 409-410: 17–26.
Malkomes, G.; Kusner, M. J.; Chen, W.; Weinberger, K. Q.;
and Moseley, B. 2015. Fast Distributed k-Center Clustering
with Outliers on Massive Data. In Cortes, C.; Lawrence, N.;
Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 28.
Minieka, E. 1970. The m-Center Problem. SIAM Review,
12(1): 138–139.
Novikov, A. 2019. PyClustering: Data Mining Library. Jour-
nal of Open Source Software, 4(36): 1230.
Rana, R.; and Garg, D. 2008. The Analytical Study of K-
Center Problem Solving Techniques. Int. J. Inf. Technol.
Knowl. Manag, 1(2): 527–535.
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A Proof of the theoretical result in
Section 3.2

In this section, we restate the theoretical result in Section 3.2
and provide the proof.
Proposition 1. The MILP formulation in problem (4) and
kc-Opt algorithm achieve the same objective value and op-
timal solution variable assignment.

Proof. Let us assume that we have generated constraints in
C∗ for the candidate points whose indexes were in I∗ with
the constraint generation methodology described in Algo-
rithm 1. Also, assume that the current solution ε∗ corre-
sponds to the optimal objective value for the overall prob-
lem defined in problem (4). Here, ε∗ is the optimal solution
obtained with constraints C∗ of the form {cij = 1 =⇒
ε ≥ ∥xi − zj∥1, i ∈ I∗, j ∈ K}, where I∗ ⊆ N .
Note that we implicitly assume that constraints of the form
{
∑k

j=1 cij = 1, i ∈ I} and {zj,1 < zj+1,1, j ∈ K \ k}
as seen in problem (4) are also being added at each iteration
of constraint generation to complete the formulation.

To prove that ε∗ is the optimal solution when we have
constraints for all points in N , it is sufficient to show that ε∗
satisfies the indicator constraints {cij = 1 =⇒ ε∗ ≥ ∥xi−
z∗
j∥1, j ∈ K} for the remaining points i ∈ N \ I∗. In other

words, we simply need to show that {ε∗ ≥ ∥xi − z∗
j∥1 cij}

for i ∈ N \ I∗.
In Algorithm 1, we have two additional variables ε̂ and

ĉij . Here, variables ĉij defined as {ĉij ← {1j=ĵ |ĵ =

argminj ∥xi − z∗
j∥1}, i ∈ N} ensure that all points are

assigned to their closest cluster. Also, ε̂ is defined as ε̂ =
maxi∈N, j∈K{∥xi−z∗

j∥1ĉij} and is guaranteed to take the
value of the maximum distance from any point to its clus-
ter center. This directly implies that {ε̂ ≥ ∥xi − z∗

j∥1 ĉij}
for all values of i ∈ N . With this definition, we also have
ĉij = c∗ij for i ∈ I∗ because the optimality (with constraints
C∗ and points I∗) is achieved only when points in I∗ are
assigned to their closest centers.

Since we exit the constraint generation iterations only
when ε̂ = ε∗, from the above definition of ε̂ we directly
have {ε∗ ≥ ∥xi−z∗

j∥1 ĉij} for all values of i ∈ N , and not
just i ∈ N \ I∗. Hence, we show that we achieve the above
sufficient condition for ε∗ obtained from problem 1 to be the
optimal value for the original formulation in problem (4).

B Hyperparameter search methodology for
Section 3.3

In the formulation in problem (5), determining a value for
the hyperparameter l is a complex problem and remains
an open research question (Chawla and Gionis 2013). To
this end, we prescribe a search-based hyperparameter tun-
ing method based on an internal cluster evaluation criterion.

In the presence of outliers, the centers identified with
the standard L1 k-center objective without outlier handling
would be skewed towards the outlier points and away from
the true cluster centers since it optimizes for the worst-case

Algorithm 4: Outliers-Search subroutine
Input α,max outliers, tol

1: u← 0, v ← u+ α
2: l← 0, pre slope← 0

▷ Initialize the variables for search
3: SSEu ← get SSE(l = u)

▷ Find SSE after running the kc-OptOut algorithm
4: while v ≤ max outliers do
5: SSEv ← get SSE(l = v)
6: slope = (SSEu − SSEv)/α
7: if |slope| < tol ∗ prev slope then
8: l = u

▷ Found the elbow in the SSE curve
9: break

10: else
11: u = v
12: SSEu = SSEv

13: prev slope = slope
14: v = u+ α

▷ Continue the search with updated value for v
15: end if
16: end while
17: return l

distance from centers. This suggests that the sum-of-squared
error (SSE) computed for all points with these centers would
be much higher than the ground truth SSE. As we treat for
outliers by increasing the value of l in problem (5), we ex-
pect these centers to move closer to the true centers and the
SSE to drop. Further, if values of l larger than the actual
number of outliers were to be used, we expect the centers
not to shift considerably. This is because we would exclude
the furthest points of the ground truth clusters and expect
SSE to remain flat. This indicates the possibility of an elbow
curve for SSE as we increase the number of outliers. This is
illustrated with a synthetic dataset in Figure 6 where the op-
timal value ε (as defined in problem (5)) and SSE both drop
as we treat for outliers.

We leverage this critical insight to prescribe a fast search
methodology that efficiently identifies the elbow of the SSE
curve if it exists. We initially start with l = 0 and increase
its value with a pre-decided step size (α). We then compute
SSE at every step and the local slope of the curve between
each pair of points. We continue this process until we notice
a sudden drop in the slope value (up to a tolerance) com-
pared with the slope from the previous step. This could be
indicative of the elbow in the SSE curve. This is illustrated
in Figure 6 where a step size of 2 was used (points marked
as ×), and the actual elbow point was identified using this
prescribed methodology.

We formalize the above prescribed slope-based method-
ology to search for this elbow in the SSE curve and find the
best value for the hyperparameter l here with the following
pseudocode presented in Algorithm 4.

In the Outliers-Search subroutine shown in Algorithm 4,
we primarily search for the value of l at which we notice
a sharp change in the value of the slope when compared to
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Figure 7: The number of constraints we had to add in the kc-Opt algorithm as we increase both k and d with the Norm dataset
for a fixed n = 10, 000.

the previous slope value as we increase the number of out-
liers. We initially start from l = 0 and use variables u and
v to indicate two consecutive outlier values separated by a
predecided step size α. We use get SSE(l) function to re-
turn the value of SSE after running the kc-OptOut algorithm
with l outliers. We compute SSE at l equals u and v and find
the slope of the SSE curve between these points u and v. We
then compare the current value of the slope with that from
the previous step (with a predefined tolerance value tol) to
observe any sudden change in slope.

When the ratio of the current slope to the previous slope is
lower than the threshold defined by tol, i.e., when a sudden
change in the slope between the two pairs of u and v is ob-
served, we stop the search and assign the final value of l as
u (from the recent step); otherwise, we continue the search
by updating the value of both u and v by adding the value
of α to them. We continue this search until the value of v

reaches the maximum search value for the number of out-
liers max outliers. We decide this value heuristically by
factoring in the number of points in the actual data and the
number of points that are farther than six standard devia-
tions from the population mean of the point to cluster center
distances, where centers are taken from a greedy clustering
solution.

C Additional analysis with synthetic datasets
C.1 Additional complexity analysis with

well-separated clusters using Norm dataset
In Section 4.1, we provided a thorough analysis of the effec-
tiveness of our constraint generation optimization methodol-
ogy as we increased the number of observations n with dif-
ferent combinations of k, d. It was observed that the number
of constraints we had to add increased very minimally as we
increased the number of observations n for a specific combi-
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Figure 9: Comparison of the objective values from baselines with the optimal value from our algorithm on Norm dataset.

nation of k, d. Moreover, we discussed that increasing k and
d increases the complexity of the problem, and extremely
high values of k can potentially limit the model’s ability to
scale.

Here, we show additional plots with the Norm synthetic
dataset to more clearly examine the effect of increasing k
and d as we fix the number of observations n = 10000. In
Figure 7, we show the number of points for which we had

to generate constraints when we varied the values of k and
d. It is evident from the plot that the number of constraints
increases linearly with both dimensions d and the number of
clusters k. Furthermore, in Figure 8, we also show the time
it took to run the experiments. We can see from this plot
that the time taken increases exponentially when k increases,
which is expected behavior for an optimal MILP solution al-
though still within reasonable time bounds for practical use
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dataset.

5 10 15 20 25
Dense/Sparse ratio

0.80

0.85

0.90

0.95

1.00

AR
I

(k: 4)

5 10 15 20 25
Dense/Sparse ratio

(k: 8)

kmed
kmeans++

kc-Gon
kc-GonAvg

kc-HS
kc-Opt

Figure 11: Comparison of the kc-Opt algorithm with baselines based on ARI for imbalanced (Norm-Imb dataset) clusters.

for the sizes evaluated here.

C.2 Comparison of baselines and kc-Opt optimal
algorithm for Norm dataset

In Section 4.1, we compared the objective values obtained
from the baseline algorithms and our optimal algorithm kc-
Opt for a specific value of k, d with the Norm dataset. Here,
we supplement the analysis with plots for all combinations
of k, d. We report the results in Figure 9 where it is evident
that the kc-Opt algorithm, which is optimal by definition, has
the lowest objective value for all the different combinations
of n, k, and d. This again confirms our claim that we are
scalable and perform optimally as expected for datasets with
up to 1,000,000 data observations.

C.3 Experiments with non-isotropic Gaussian
clusters

We also conducted experiments with non-isotropic Gaussian
clusters, which were created to observe whether having non-
spherical clusters would affect the performance of the kc-
Opt algorithm. The dataset we constructed (called Norm-
Noniso) was similar to the synthetic examples containing

ellipsoid-shaped Gaussian clusters in Liu et al. (2016); Lu
and Wan (2012). The points were drawn from normal dis-
tributions with the standard deviations for the second half
of dimensions set to twice that of the first half of dimen-
sions. For example, with d = 5, the standard deviations
were σ = 1 along the first two axes, and σ = 2 along the
next 3 axes. These datasets were constructed using k = 5
centers chosen uniformly at random from a d dimensional
hypercube with side 500 and d ∈ {5, 10, 15}, while n was
varied from 1, 000 to 1, 000, 000 observations. The plots
in Figure 10 reaffirm that our optimal algorithm performed
best with the consistently lowest objective value as n varied
across all three configurations of k and d considered. More-
over, we observe that the objective value gap between the
kc-Opt algorithm and the baselines increases as we increase
the number of dimensions in the data.

C.4 Experiments with cluster imbalance
To study imbalanced clusters, we generated Gaussian clus-
ters (called Norm-Imb) with n = 5, 000, d = 2, and
k ∈ {4, 8} where one-half of the clusters were designed
to be dense and one-half sparse with the dense/sparse ratio



Table 2: Description and source of real datasets along with the run-times (s) for the baselines and the kc-Opt algorithm.

data n d k Data source kmed++ kc-Gon kc-GonAvg kc-HS Opt-Cg

Iris 150 4 3 UCI 0.00 0.02 0.01 0.01 0.62
Wine 178 13 3 UCI 0.01 0.01 0.01 0.01 4.40
Seeds 210 7 3 UCI 0.00 0.01 0.01 0.02 3.77
Newthyroid 215 5 3 Keel 0.00 0.01 0.01 0.02 0.58
Vertebral 310 6 3 UCI 0.01 0.02 0.02 0.03 1.65
Ecoli 336 7 8 UCI 0.01 0.02 0.02 0.03 2636.84
balance 625 4 3 UCI 0.01 0.04 0.03 0.05 7812.59
Australian 690 14 2 LibSVM 0.01 0.04 0.04 0.09 0.11
blood 748 4 2 UCI 0.01 0.04 0.04 0.08 0.27
Mammographic 830 5 2 UCI 0.02 0.06 0.04 0.09 0.18
Banknote 1372 4 2 UCI 0.03 0.07 0.07 0.28 0.80
Winequality 4898 11 7 UCI 0.22 0.26 0.25 3.08 7742.57
banana 5300 2 2 Keel 0.10 0.28 0.28 2.86 0.56
Wallrobot 5456 4 4 UCI 0.12 0.29 0.28 2.87 96.33
Pendigits 10992 16 10 UCI 0.67 0.60 0.59 9.76 1208.26
census 48842 14 2 UCI 2.05 2.62 2.62 14.30 3.89
shuttle 58000 9 7 UCI 2.29 3.20 3.17 293.36 1845.94
Codrna 59535 8 2 LibSVM 1.16 3.15 3.17 503.72 3.83
sepsis 129392 3 2 UCI 1.87 6.82 6.90 14.53 7.35
Skinsegment 245057 3 2 UCI 4.33 12.92 13.17 20.64 15.12

specified as a ratio of the total number of points in the dense
and sparse clusters. We compare the performance of the
baselines with our algorithm for values of dense/sparse ratio
ranging in [5, 25]. It is evident from the ARI values (Hu-
bert and Arabie 1985) in Figure 11 that the kc-Opt optimal
algorithm identified the true clusters (ARI equals 1) while
other baselines fail in some cases. Moreover, it is very evi-
dent from the plots that k-means++ (Arthur and Vassilvitskii
2007) and k-medians algorithm algorithms struggle to find
the true ground truth clusters. This is because when we have
dense and sparse clusters in the data, k-means type cluster-
ing, which relies on within-cluster sum-of-distances (and not
within cluster worst case distance), often produces clusters
with a similar number of points in them. This balancing ef-
fect (Liang et al. 2012) is a natural consequence of the sum-
mation term in the objectives, which makes it sensitive to the
number of points in the cluster. It is interesting to note that
the performance of k-means and k-medians dropped substan-
tially as we increased the dense/sparse ratio, even though
ARI weakly penalizes when a small number of points (in
sparse clusters) are incorrectly assigned.

D Details of experiments with real
benchmark datasets

D.1 Description of the real datasets
We now provide descriptions for the benchmark datasets we
used to evaluate the real-world performance of the kc-Opt
algorithm with the baselines. In Table 2, we list the num-
ber of observations n, dimensions d, and the true number of
clusters (or classes) k along with the information of the ma-
chine learning data repository from where we obtained the
dataset. Moreover, we mention that these datasets are stan-

dard benchmarks used to validate the performance of com-
peting clustering algorithms. We believe these datasets do
not contain any personally identifiable information or offen-
sive content.

D.2 Running time comparison
In Section 4.2, we reported the objective values we obtained
from the kc-Opt and the other baselines for the chosen real
datasets. In Table 2, we present the time it took for these ex-
periments for the different algorithms. We observe that the
time taken for the kc-Gon algorithm is the lowest among
the k-center algorithms, while kc-HS performs at compara-
ble speeds to our kc-Opt algorithm barring some exceptions.
This supports our claim that we are both scalable and opti-
mal.

References
Hubert, L. J.; and Arabie, P. 1985. Comparing Partitions.
Journal of Classification, 2: 193–218.
Liu, L.; Sun, L.; Chen, S.; Liu, M.; and Zhong, J. 2016. K-
PRSCAN: A Clustering Method Based on Pagerank. Neu-
rocomputing, 175: 65–80.
Lu, Y.; and Wan, Y. 2012. Clustering by Sorting Potential
Values (Cspv): A Novel Potential-Based Clustering Method.
Pattern Recognition, 45(9): 3512–3522. Best Papers of
Iberian Conference on Pattern Recognition and Image Anal-
ysis (IbPRIA’2011).


	Scalable and globally optimal generalized L1 K-center clustering via constraint generation in mixed integer linear programming
	Citation

	tmp.1705936064.pdf.IapwU

