
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

DistXplore: Distribution-guided testing for evaluating and DistXplore: Distribution-guided testing for evaluating and

enhancing deep learning systems enhancing deep learning systems

Longtian WANG

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Xiaoning DU

Meng TIAN

Qing GUO

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons

Citation Citation
WANG, Longtian; XIE, Xiaofei; DU, Xiaoning; TIAN, Meng; GUO, Qing; YANG, Zheng; and SHEN, Chao.
DistXplore: Distribution-guided testing for evaluating and enhancing deep learning systems. (2023).
Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, San Francisco, CA, United States of America, December 3-9, 2023.
68-80.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8516

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Longtian WANG, Xiaofei XIE, Xiaoning DU, Meng TIAN, Qing GUO, Zheng YANG, and Chao SHEN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8516

https://ink.library.smu.edu.sg/sis_research/8516

DistXplore: Distribution-Guided Testing for Evaluating and
Enhancing Deep Learning Systems

Longtian Wang
Xi’an Jiaotong University

China

Xiaofei Xie∗

Singapore Management University
Singapore

Xiaoning Du
Monash University

Australia

Meng Tian
Singapore Management University

Singapore

Qing Guo
IHPC and CFAR, Agency for Science,

Technology and Research
Singapore

Zheng Yang
TTE Lab, Huawei

China

Chao Shen∗

Xi’an Jiaotong University
China

ABSTRACT

Deep learning (DL) models are trained on sampled data, where

the distribution of training data di�ers from that of real-world

data (i.e., the distribution shift), which reduces the model’s robust-

ness. Various testing techniques have been proposed, including

distribution-unaware and distribution-aware methods. However,

distribution-unaware testing lacks e�ectiveness by not explicitly

considering the distribution of test cases and may generate redun-

dant errors (within same distribution). Distribution-aware testing

techniques primarily focus on generating test cases that follow the

training distribution, missing out-of-distribution data that may also

be valid and should be considered in the testing process.

In this paper, we propose a novel distribution-guided approach

for generating valid test cases with diverse distributions, which

can better evaluate the model’s robustness (i.e., generating hard-to-

detect errors) and enhance the model’s robustness (i.e., enriching

training data). Unlike existing testing techniques that optimize in-

dividual test cases, DistXplore optimizes test suites that represent

speci�c distributions. To evaluate and enhance the model’s robust-

ness, we design two metrics: distribution di�erence, which maxi-

mizes the similarity in distribution between two di�erent classes

of data to generate hard-to-detect errors, and distribution diversity,

which increase the distribution diversity of generated test cases for

enhancing the model’s robustness. To evaluate the e�ectiveness

of DistXplore in model evaluation and enhancement, we compare

DistXplore with 14 state-of-the-art baselines on 10 models across

4 datasets. The evaluation results show that DistXplore not only

detects a larger number of errors (e.g., 2×+ on average), but also

identi�es more hard-to-detect errors (e.g., 10.5%+ on average); Fur-

thermore, DistXplore achieves a higher improvement in empirical

∗Corresponding authors

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616266

robustness (e.g., 5.2% more accuracy improvement than the base-

lines on average).

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Neural networks.

KEYWORDS

Deep learning, software testing, distribution diversity, model en-

hancement

ACM Reference Format:

Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng

Yang, and Chao Shen. 2023. DistXplore: Distribution-Guided Testing for

Evaluating and Enhancing Deep Learning Systems. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,

2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3611643.3616266

1 INTRODUCTION

Deep learning (DL) has achieved great success in many applica-

tions such as autonomous driving [42], healthcare [47], face recog-

nition [18] and speech recognition [68]. It is widely known that

DL models su�er from the issue of poor robustness, making them

vulnerable to adversarial attacks. Therefore, it is crucial to systemati-

cally test DL systems before deployment, especially in safety-critical

scenarios.

Machine learning (ML) involves the process of learning a model

from sampled data (i.e., training data) to make decisions on a spe-

ci�c task. The general steps of ML tasks include data collection,

model training, model evaluation, and model deployment. Due to

the huge input space, it is impossible to collect all data for train-

ing, thus, high-quality data that follows a certain distribution is

collected for training. As shown in Fig. 1, for a speci�c task (e.g.,

digit classi�cation), there is a vast amount of task-relevant data

for digits (i.e., the valid data shown in the dashed rectangle) in the

whole input space (i.e., all data shown in the solid rectangle). The

task-irrelevant data (e.g., noisy data and non-digit data) is referred

to as invalid data (e.g., the dataset f in Fig. 1) with respect to the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

68

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3611643.3616266
https://doi.org/10.1145/3611643.3616266
https://doi.org/10.1145/3611643.3616266
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616266&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

…

…
 b

In-Distribution Data

Out–of-Distribution Data (Valid) Invalid Data
All Input Valid Input In-distribution Input

 a

 c
 d

 e f

Figure 1: Data sampling and an illustrative example of DL system

given task. A small subset of the valid data (e.g., the dataset a and b

in Fig. 1) is collected for training the model. However, the training

distribution is often di�erent from the distribution of valid data

(due to the distribution shift), which greatly a�ects the model’s ro-

bustness. A fundamental assumption is that the model is intended

to handle the in-distribution data (ID) that follows the distribution

of training data [4], but it is hard to correctly predict data (e.g.,

the dataset c, d, and e in Fig. 1) that does not follow the training

distribution, i.e., out-of-distribution data (OOD), which highlights

the need for testing before deployment.

DL testing aims to generate test cases that evaluate the robustness

of DL systems, i.e., discover the data that is valid but cannot be

predicted correctly (e.g., the dataset d and e in Fig. 1), and enhance

the robustness, i.e., retraining model by including test cases data

with diverse distribution (dataset c, d, and e in Fig. 1). Many studies

have been conducted for testing DL systems [9, 22, 46, 54, 57, 63],

where validity and distribution are two important properties of test

cases. A common approach to guarantee validity is to constrain the

degree of the mutation (e.g., the distance between the new test and

the original seed is constrained within a !? ball). However, existing

methods (e.g., DeepTest [54], DeepHunter [63], and TensorFuzz [43])

often ignore the distribution [4, 9], which limits their e�ectiveness

in evaluation and enhancement (e.g., redundant errors within the

similar distribution are generated). Recently, some studies [4, 9, 22,

55] have attempted to address this by incorporating distribution-

aware testing, which characterizes the training distribution via

Variational Auto-Encoder (VAE) or Generative Adversarial Network

(GAN). However, these methods only generate ID data while OOD

data is considered as “invalid”. We argue that the OOD data is just

data that does not follow the distribution of the collected training

data but could still be valid and should be handled properly in real-

world deployment environment. For example, as shown in Fig. 2,

for each dataset, the input on the right side in a row is mutated

from its left-side sample, the inputs on the right are considered

as “invalid” data by existing distribution-aware testing [9]. These

data could still be visually valid, even though they are identi�ed as

"invalid" data by VAE [9]. For example, although the distribution of

the images in Out-of-Distribution Data (Valid) in Fig. 1 is di�erent

from the distribution of the training data (e.g., the digits written

in very di�erent ways), they could still be the potential inputs to

the deployed DL systems. Therefore, it is crucial to test both in-

distribution (ID) and out-of-distribution (OOD) data that are valid

before deploying the DL system.

The quality of test cases depends on the testing goals, i.e., what

kind of data is more useful in robustness evaluation and enhance-

ment in this paper. For evaluating model’s robustness, although

OOD data is likely to trigger incorrect decisions of the model, they

SVHN MNIST Fashion MNIST

Figure 2: Examples of OOD data that are considered as invalid by [9].

Left: original inputs, Right: generated inputs

could also be easily detected by OOD detection methods. For exam-

ple, state-of-the-art testing techniques can easily generate a large

number of errors (e.g., thousands of errors in [46, 63]), but most of

them tend to be weak errors that can be detected or �ltered by ex-

isting defense techniques (e.g., adversarial example detection [58]).

It is similar to traditional software testing, where defenses such as

parsers and exception handling can �lter out weak errors. Thus, for

DL testing, it is important and challenging to discover strong errors

that can evade the state-of-the-art defenses. For model enhance-

ment, the general goal is to reduce the distribution shift between

the training data and real-world data. Hence, how to generate tests

with diverse distributions (e.g., covering 2 , 3 , 4) is another challenge.

These diverse tests can be added to the training data for improving

the model generalizability and robustness.

To this end, in this paper, we propose a novel distribution-guided

testing framework (named DistXplore) for better evaluating and

enhancing DL systems, i.e., to generate hard-to-detect and diverse

errors. DistXplore adopts the search-based approach to adaptively

generate test cases with the guidance of distribution. Unlike existing

techniques that optimize test cases individuality, the optimization

of DistXplore is performed on a test suite that represents a speci�c

distribution. Speci�cally, we leverage Maximum Mean Discrepancy

(MMD) [13] to measure the closeness between two distributions. For

model evaluation, DistXplore maximizes the distribution closeness

between the data in two di�erent classes for generating statistically

indistinguishable errors, which are di�cult to defend. To enhance

the model’s robustness, we propose a metric to measure the distri-

bution diversity of the test cases, guiding DistXplore to generate

test suites with various distributions. The test cases with diverse

distributions are more likely to cover a wider range of unseen data

and improve the model’s robustness.

We conduct a comprehensive evaluation to demonstrate the

usefulness and the e�ectiveness of DistXplore in evaluating and

enhancing the model’s robustness. Speci�cally, we select 10 mod-

els on 4 datasets, and compare DistXplore with 14 state-of-the-art

tools covering 4 di�erent types of techniques (i.e., adversarial at-

tacks, distribution-unaware testing, distribution-aware testing, and

robustness-oriented testing). The results demonstrate that 1) the

statistically indistinguishable errors generated by DistXplore are

harder to detect by two state-of-the-art defense techniques, e.g.,

the attack-as-defense [69] can only detect 66% errors generated

by DistXplore, but almost 100% errors from adversarial attacks and

distribution-aware testing. 2) DistXplore is more e�cient in detect-

ing errors, e.g., on average it detects 2×+ errors compared to the

best baseline. 3) The test cases generated by DistXplore are more

useful in improving the model’s robustness, e.g., 5.2%more accuracy

improvement than the baselines on average.

To summarize, this paper makes the following contributions:

• We �rst discuss the limitation of existing distribution-aware and

distribution-unaware testing techniques in terms of validity and

69

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Invalid Data

ID Data

Test suite 2Test suite 1

Test suite 3 Test suite 4

Training Data
in class 0

Distribution-guided Generation Training Data
in other classes

..

..

All Input Valid Input ID Input Generated Test Suite

……
OOD Data

(Valid)

..

.. ..

.. ..

Seed Suite

Figure 3: Illustration of test suite generation

distribution. Then we propose a novel distribution-guided testing

technique for generating hard-to-detect errors and diverse data

covering a wider range of unseen data. To the best of our knowl-

edge, this is the �rst distribution-guided testing for generating

test suites with diverse distributions.

• Technically, we design two distribution-based metrics (i.e., distri-

bution di�erence and distribution diversity) to guide the testing

for generating statistically indistinguishable errors and test cases

with diverse distributions, respectively.

• Wedemonstrate the usefulness ofDistXplore in discovering strong

errors and enhancing model’s robustness by comparing it with

14 state-of-the-art methods.

2 PRELIMINARY AND OVERVIEW

2.1 Preliminary

2.1.1 Deep Neural Network. A Deep Neural Network (DNN) can

be represented as a function 5 : - → . that maps an =-dimensional

input G ∈ - to an<-dimensional output ~ ∈ . . A DNN usually is

the composition of layers denoted as 5 = ;0 ◦ ;1 ◦ . . . ◦ ;: . We use

58 (G) to represent the output of the 8Cℎ layer, where 50 (G) = G and

5: (G) = ~. For example, the output~ in classi�cation is a probability

vector for< possible classes (e.g., 10 classes in CIFAR-10).

2.1.2 Data Validity. Let - be the whole input space with = di-

mensions (i.e., R=). We use / to denote all possible inputs that are

relevant to the given task (e.g., all images of digits 0-9). / is con-

sidered as valid data with respect to the task as they could be the

potential inputs when the trained model is deployed in real-world.

The inputs -\/ : {G : G ∈ - ∧G ∉ / } are invalid data, e.g., the data

of other tasks and low-quality data. It is di�cult to precisely de�ne

the validity of the data. In practice, the !? norm [40] is usually

used to guarantee the validity of the generated data by the existing

DL testing and adversarial attack techniques. Speci�cally, given

a valid input G , the new test case G ′ generated by adding some

perturbations on G is considered as valid if | |G ′ − G | |? < 3 , where 3

is a safe radius.

2.1.3 Data Distribution. Since valid inputs / can be in�nite, it is

not possible to collect all of them for training. In practice, a DNN

5 is usually trained from collected data) (i.e., training data) that

follows a distribution D) , called in-distribution (ID) data. Some

generative models such as variational autoencoders (VAE) [30] and

generative adversarial networks (GAN) [9] are used to approximate

the ID data distribution [22].

There is often a distribution shift between D/ and D) (i.e., the

training data cannot represent the real-world data), making that the

model underperforms on the out-of-distribution (OOD) data. Hence,

test cases with diverse distributions are more likely to reveal the

weaknesses of the model. On the other hand, the OOD test cases can

enrich the training data such that the distribution of new training

dataset is closer to the distribution of training data.

Note that the validity and the out-of-distribution of the data are

di�erent in this paper. The valid data is any potential inputs of the

model with respect to the task, and is usually of high quality. The

out-of-distribution data refers to the data that does not follow the

distribution of speci�c training data. The valid data can be ID or

OOD, depending on the training data collected. The OOD data can

also be valid or invalid, depending on the relevance and quality

of the data. To measure the validity, we adopt the widely used

measurement, i.e., !? norm. To measure the distribution di�erence,

we adopt the metric Maximum Mean Discrepancy de�ned below.

2.1.4 Maximum Mean Discrepancy. Maximum Mean Discrepancy

(MMD) is a common test statistic to measure the closeness between

two sets of samples drawn from two distributions. Assume we

have two sets of samples - = {G1, . . . , G<} and . = {~1, . . . , ~=}

drawn from two distributions D- and D. , MMD calculates the

distance between the two sets of samples in a universal reproducing

kernel Hilbert space (RKHS) [51]. The empirical estimation of MMD

between the two distributions in RKHS, denoted as ""� (-,.),

can be calculated as:

1

<2

<∑

8, 9=1

: (G8 , G 9) −
2

<=

<,=∑

8, 9=1

: (G8 , ~ 9) +
1

=2

=∑

8, 9=1

: (~8 , ~ 9)

where k is a measurable and bounded kernel of a RKHS, MMD is

zero if and only if D- = D. . As mentioned in [44] that Gauss-

ian and Laplace kernels are universal, we use Gasussian kernel to

calculate MMD. More details about MMD can refer to [14].

2.2 Overview of DistXplore

Fig. 3 shows the main idea of our approach. We mainly consider

classi�cation task in this paper. Speci�cally, DistXplore considers

the data distribution in each class separately, i.e., to generate test

cases with diverse distributions for each class. To measure the dis-

tribution diversity of the test cases, we calculate the distribution

di�erence (i.e., MMD) between the test suite from a class and the

training data in each of other classes, and then measure the di-

versity of these distribution di�erences. We consider distribution

di�erences between test cases and the data in di�erent classes, since

each input may be classi�ed into any class by a model, representing

the di�erent decision behaviors of the model. Therefore, we aim to

generate diverse test cases by considering the diversity of distribu-

tion di�erences between the generated test cases and training data

of di�erent classes.

As shown in Fig. 3, given the initial test suite sampled from the

training data of a class, which represents the training distribution of

the class, the goal is to generate new test suites that have di�erent

distribution distances with the training data in other classes (e.g.,

class 1, 2, 3). The distribution curve of the test suites (i.e., red curve)

shifts from the original distribution (i.e., blue curve) to the target

distribution (i.e., green or orange curve), thus DistXplore generates

test suites that are more likely to be predicted incorrectly. For

robustness evaluation, the goal is to generate errors that are hard to

70

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

Real-world
Train
PGD
DeepHunter
DistXplore
VAE

Figure 4: Diversity of data distribution on MNIST

detect. The more similar the distribution of the test suite (e.g., class

0) is to the distribution of the training data in the target class (e.g.,

class 1), the harder it is to detect the errors, because the errors are

statistically indistinguishable from the target class. For robustness

enhancement, DistXplore is used to generate test suites with diverse

distributions (instead of only hard-to-defend errors) that can enrich

the training data by adding unseen data, thus improving the model’s

robustness.

3 DISTRIBUTION-GUIDED TESTING

3.1 Testing Goals

In this paper, we mainly focus on two objectives: model evaluation

and enhancement. We design the objective functions that guide the

test case generation, i.e., optimize test suites.

3.1.1 Model Evaluation. To evaluate the model’s robustness, we

aim to generate the erroneous inputs that are hard to be detected

by existing defense techniques. Speci�cally, just as any dataset can

follow a speci�c distribution, the data within individual classes in

classi�cation tasks also possess their own distribution. Due to the

di�erences between these di�erent classes, their data distributions

are also very di�erent (e.g., dogs and birds). A well-trained model is

capable of accurately distinguishing the di�erences between these

classes. In Fig. 4, the blue areas represent the di�erent distributions

of data for di�erent classes in the MNIST dataset. Conversely, if the

data distributions between two classes are very similar, the model

may struggle to make accurate predictions. Thus, DistXplore aims

to generate test cases (in a class) that are statistically similar to the

training data in other classes.

Formally, given a DNN 5 and a test suite (2 belonging to a

source class 2 , we de�ne its distribution di�erence with respect to

the training data ()2′) in another target class 2′ as:

��5 ((2 , 2
′) = ""� (5; ((2), 5; ()2′))

where 5; refers to the output of the layer ; and 2′ ≠ 2 .

The distribution di�erence is measured on a speci�c layer of

the DNN. In this paper, we select the logits layer, i.e., the layer

before the softmax layer, which is frequently used in previous

works [26, 31, 70]. Intuitively, the smaller the value ��5 ((2 , 2
′), the

more di�cult it is for the model 5 to distinguish (2 and)2′ . Hence,

it is more likely to generate undetectable errors by minimizing their

distribution di�erence.

3.1.2 Model Enhancement. The model’s robustness can be im-

proved if the distribution of training data ()) is closer to the distri-

bution of real-world valid data (/), i.e., to add more unseen valid

data to training data. However, it is impossible to directly collect

all real-world data. Therefore, we could adjust the objective to

generate data that is as diverse as possible, aiming to make the

distribution of the generated data more closely resemble that of

real-world valid data (/). To provide a easy understanding of the

fundamental concept behind generating diverse data to enhance

model’s robustness, we conducted a qualitative analysis, as de-

picted in Fig. 4. In this visualization, we show the distribution of

training data (represented in blue) and the distributions of speci�c

errors generated by di�erent types of tools: adversarial attack tool

(PGD [37]), distribution-unaware testing tool (DeepHunter [63]),

distribution-aware testing tool (VAE [55]), and DistXplore. Addition-

ally, we include some real-world data examples, which represent a

wide range of possible data samples.

The results of this analysis highlight two key observations: 1) the

model is not robust due to the distribution shift between the training

data and real-world data. By utilizing various tools, we can generate

valid OOD data that helps reduce the distribution shift, and further

enhance the robustness by incorporating previously unknown data

into the training set. 2) The erroneous inputs generated by existing

tools exhibit limited diversity, while DistXplore aims to generate

test cases with diverse distributions, such that the distribution of

the generated data could be closer to real-world data distribution.

We propose a metric to measure the distribution diversity of

test suites, which can guide the generaton of diverse data. Given

a DNN 5 that performs the classi�cation on< classes (denoted as

�5), and a set of test suites)(2 in a class 2 , the distribution diversity

is de�ned as:

�8E ()(2) =

∑
2′∈�5 \2 |{B(��5 ((, 2

′)) |∀(∈)(2)}|

|�5 \2 | · :

where �5 \2 represents the other classes except 2 , B is an interval

abstraction function that maps a concrete MMD value to an interval,

and : is the number of intervals between 2 and each of other classes.

The basic idea is to measure the diversity of distribution dif-

ferences between the current test suites and the training data of

other classes. Since the di�erence between two distributions (i.e.,

MMD) is a continuous variable, we adopt the interval abstraction to

spilt its values into : intervals (i.e., : distributions). The numerator

and the denominator represent the number of intervals covered

and the total number of intervals between the current class 2 and

other classes, respectively. As shown in Fig. 3, the distribution ade-

quacy is measured from two perspectives: 1) Distribution Di�erence

Diversity: for a given target class 2′, multiple intervals between

the test suites and the training data of 2′ can be covered. 2) Target

Class Diversity: multiple classes (i.e., �5 \2) are used to guide the

test generation, which allows to consider the relationships between

every two classes.

Intuitively, the test suites in multiple intervals have di�erent

distributions. To enhance the model’s robustness, the training data

should cover the distributions as many as possible, i.e., to increase

the distribution diversity. Note that, only using the strong errors

(i.e., undetectable) is not su�cient to improve the whole robustness

as it cannot handle errors with di�erent distributions (see the results

in Section 4). In Fig. 3, the generated test suites (i.e., Test suite 1, 2,

3, 4) have diverse distributions (i.e., di�erent red curves), and are

added into the training data for retraining.

71

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

We select the classes in the same task as targets because the

classi�cation is based on their relationships, i.e., to choose a rela-

tively suitable class (with higher probability). These targets may be

incomplete in terms of characterizing the distribution diversity. We

can also select other targets to guide the test generation such as the

classes in other tasks as long as the generated tests are valid. For

example, we can select the classes in CIFAR-10 or Roman numerals

as the targets of MNIST task. We plan to evaluate the e�ects of

more di�erent targets in the future work.

3.2 Distribution-Guided Test Generation

To achieve both testing goals, we use a genetic algorithm (GA) to

solve the problem. Without loss of generality, the objective function

can be de�ned as ��5 ((2 , 2
′) ≈ E (i.e., to decrease ��5 ((2 , 2

′) until

it is close to a small value E), where (2 is the test suite belonging

to 2 , 2′ is a target class and E is a constant value. For the goal of

model evaluation, E is set as 0, i.e., to generate (2 that is statisti-

cally indistinguishable from the training data in 2′. For the goal

of model enhancement, DistXplore generates test suites that cover

more diverse intervals. Consider a target interval [E0, E1] that we

aim to cover, the objective function is de�ned as ��5 ((2 , 2
′) ≈ E ,

where E ∈ [E0, E1] can be any value within the range. The general

objective function can be:

argmin
(2

|��5 ((2 , 2
′) − E |

Algorithm 1 shows the search-based method to solve the objec-

tive function. The inputs include the DNN 5 , a seed test suite (2
from class 2 , a target class 2′ (2′ ≠ 2) and the target distribution dif-

ference E . The output is the new test suite that can reach the target

distribution di�erence. The seed test suite can be collected from

training dataset or testing dataset. We �rst construct a population

that contains< test suites (Line 1-3) by mutating the seed test suite

< times. Note that the chromosome is a test suite (including mul-

tiple inputs) instead of a single input. It repeatedly optimizes the

population (Line 4-16) for minimizing the distribution di�erence. In

each iteration, we �rst calculate the �tnesses of the updated popula-

tion (Line 6). Then we update the new population with the standard

crossover and mutation. If the best chromosome (in the population

satis�es the objective or timeout, then the optimization process

terminates (Line 9-10). The distribution di�erence decreases during

optimization until it is less than a pre-de�ned value n . For example,

n = 0 indicates that ��5 ((, 2
′) is equal to E . Note that ��5 ((, 2

′) is

decreasing for the two test goals, because the distribution of the

initial test suite is often far from the distribution of the training

data in the target class 2′.

We keep the chromosome that has the best �tness unchanged

(i.e., no crossover or mutation) to ensure that the optimization does

not get worse (Line 11). For others, we �rst select two chromosomes

based on the tournament strategy [39] (Line 13- 14). A uniform

crossover is performed between the selected two chromosomes

in the input level, i.e., genes in a chromosome are inputs of the

model 5 (Line 15). Each gene in the chromosome (can be selected

to mutate with a selection probability A (Line 16).

In this paper, we mainly focus on image classi�cation tasks. Dis-

tXplore can be easily extended to other domains. We select the di-

verse image transformations (e.g., translation, rotation, brightness)

Algorithm 1: Test generation

Input : 5 : the target DNN, (2 : a seed test suite from class 2 , 2′:

the target class, E: target distribution di�erence

Output :(′2 : the new test suite

Const :<: population size, C : tournament size, A : mutation rate

1 %>? := ∅;

2 for 8 ∈ [0,<) do

3 %>? := %>?
⋃
<DC0C4_402ℎ ((2) ;

4 while True do

5 for (∈ %>? do

6 5 8C(= ��5 ((, 2
′) − E;

7 for (∈ %>? do

8 if ∀$ ∈ %>?.5 8C(≤ 5 8C$ then

9 if 5 8C(≤ n or timeout then

10 return S;

11 continue;

12 else

13 (1 := C>DA_B4;42C (%>?, C) ;

14 (2 := C>DA_B4;42C (%>?, C) ;

15 (:= 2A>BB>E4A ((1, (2) ;

16 (:=<DC0C4_?A>1 ((, A) ;

used in DeepTest [54] and DeepHunter [63]. For each selected gene,

the mutation randomly selects a transformation function to mutate

it. To guarantee the validity of the generated inputs, we adopt the

conservative strategy [63] that constrains the transformation with

both !0 and !∞.

4 EVALUATION

We have implemented DistXplore in Python 3.6 based on DL frame-

work Keras (ver.2.3.1) with Tensor�ow (ver.1.15.2). To evaluate the

e�ectiveness of DistXplore in the model evaluation and model en-

hancement, we aim to answer the following research questions

(RQs), where RQ1 and RQ2 are to demonstrate the e�ectiveness in

model evaluation, RQ3 and RQ4 are to evaluate the model enhance-

ment, and RQ5 is to study the generalization of DistXplore.

• RQ1: How e�ective is DistXplore in detecting errors 1 that can

bypass the defense methods?

• RQ2: How e�cient is DistXplore for discovering valid errors?

• RQ3: How e�ective is DistXplore in improving the robustness of

the DL model under testing?

• RQ4: How useful are distribution di�erence diversity and target

class diversity in improving robustness?

• RQ5: Can DistXplore be generalized to other domains?

4.1 Setup

4.1.1 Datasets andDNNModels. We select four datasets (i.e., MNIST,

Fashion-MNIST, CIFAR-10, and SVHN) and six DNNs (i.e., LeNet-4,

LeNet-5, VGG16, ResNet-20, Inception-v3, and Inception-ResNet-v2)

that are commonly used in existing works [11, 16, 20, 33, 55, 60, 61].

4.1.2 Baselines. To evaluate the e�ectiveness of DistXplore, we

select 4 types of approaches including 14 state-of-the-art baselines

for the comparisons: 6 adversarial attacks, 4 distribution-unaware

1The error in the paper refers to the erroneous inputs that are missclassi�ed.

72

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

testing techniques, 3 distribution-aware testing techniques and 1

robustness-oriented testing.

• Adversarial Attack. We select 6 adversarial attack techniques, in-

cluding 3 classical ones i.e., BIM [29], PGD [37], and C&W [5], and

3 new ones, i.e., DI-2-FGSM (D2F) [60], SI-NI-FGSM (SNF) [33],

and TI-FGSM (TIF) [11] to generate adversarial examples and

compare them with the errors generated by DistXplore.

• Distribution-unaware Testing. We select DeepHunter [63], Neuron

Path Coverage (NPC) [62], and Combinatorial Testing (CT) [50]

as the baselines. DeepHunter is con�gured with two di�erent

coverage guidance, i.e., k-multisection Neuron Coverage (KMNC),

Neuron Boundary Coverage (NBC). KMNC and NBC are designed

to test the major function region and the corner-case region [35];

NPC is con�gured with Structure-based Neuron Path Coverage

(SNPC), which is designed to test the decision logic; CT takes the

relationships between neurons in adjacent layers into considera-

tion when testing DNN models.

• Distribution-aware Testing. We select three recent distribution-

aware testing techniques [22, 27, 55] as baselines. In [27], the test

selection criteria are proposed to measure the Surprise Adequacy

(SA) of test cases. We select the Likelihood-based SA (LSA) that

measures the training distribution with Kernel Density Estima-

tion as a baseline. In [55], a variational auto-encoder (VAE) is

used to speci�cally generate in-distribution test cases. In [22], a

hierarchical distribution-aware (HDA) testing is proposed based

on the global distribution and local distribution. We denote these

two baselines as VAE and HDA, respectively.

• Robustness-oriented Testing. To evaluate the robustness enhance-

ment, we select the state-of-the-art robustness-oriented testing

technique Robot [57] as our baseline.

4.1.3 Defense Methods. To evaluate the strengths of generated

errors by di�erent techniques, we select two state-of-the-art defense

methods that detect adversarial examples as follows:

• Dissector [56], which dissects the outputs of intermediate layers

and calculates a score for the given input. The score shows the

degree of similarity between the input and benign data. For LeNet-

4 and LeNet-5, we select the fully connected layers. For e�ciency,

�ve intermediate layers are selected for larger model. The details

are provided on our website [2].

• Attack as Defense (A2D) [69], which detects adversarial samples

based on the observation that adversarial samples are less robust

than benign ones. It measures the robustness of the given inputs

with existing adversarial attacks. We use JSMA [45] (that is dif-

ferent from baseline adversarial attacks) to calculate the attack

cost of each input for detecting whether it is abnormal input.

4.1.4 Experiment Setup.

Seed Selection. For each task, we randomly select 100 seed inputs

for each class from training dataset. Totally, we select 1,000 seeds

that are used by all baselines. Note that the HDA approach proposes

a distribution-aware strategy to select seeds, hence we con�gure

HDAwith two initial seed construction strategies: 1) using the same

1,000 seed inputs as used for other baselines for a fair comparison

(denoted as ���) and 2) using the HDA’s own seed selection to

select 1,000 initial seed inputs (denoted as ���>).

Con�guration of DistXplore. We use the 100 initial seeds selected

in each class as a seed test suite. For each class 2 , we run DistXplore

multiple times (i.e., 9) by setting di�erent target classes 2′ with

Algo. 1. Finally, for each model, we run DistXplore 90 times (i.e.,

10 source classes × 9 target classes). We set the �tness function as

minimizing the distribution di�erence (i.e., the values of E and n in

Algo. 1 are con�gured as 0). Note that, to calculate the di�erence ef-

�ciently, we randomly select another 100 samples from the training

data in class 2′ instead of all of them. We found that the distribu-

tion distance between the selected samples and the corresponding

class of training data is close to zero (MMD), which indicates that

the selected training samples can represent the distribution of the

whole training data.

For each run ofDistXplore, we limit the total number of iterations

in GA as 30. We empirically con�gured the population size, the

tournament size, and the mutation rate as as 100, 20, and 0.01,

respectively. Due to the limit of the space, the experiments about

the impact of the parameters are put on our Website [2]. For the

robustness enhancement, we do not explicitly generate test cases

for each interval (see �8E ()(2) in Section 3.1.2). Instead, we map

the distribution di�erence in each iteration (i.e., the �tness value)

to an interval. During the optimization process, the distribution

distance is decreasing in multiple iterations, covering di�erent

intervals. To ensure the validity of the generated test cases, we adopt

a more conservative con�guration compared to DeepHunter [63]

to constrain the mutation.

Con�guration of Baselines. For the three classic adversarial at-

tacks, we perform the target attack for each seed input by selecting

other classes as the targets, i.e., we generate 9 adversarial examples

for each seed input. For the three new adversarial attacks, as they

are not designed for target attacks, we perform untarget attack with

the default con�gurations provided.

Note that LSA is a test selection metric instead of a testing tool.

To perform the comparison, we develop a new testing tool based on

DeepHunter, i.e., using LSA as the guidance to generate test cases.

For others, we follow their default con�gurations to run Deep-

Hunter, CT, NPC, HDA, VAE, and Robot. Speci�cally, each model is

tested for 5,000 iterations by DeepHunter (KMNC and NBC), CT,

and NPC. Each seed is optimized with 50, 30, and 30 iterations by

HDA, VAE, and Robot, respectively. More detailed settings can be

found on our website [2].

RQ Setup. To demonstrate the capability of DistXplore in gen-

erating strong errors for model evaluation (RQ1), we collect the

test suite in the last iteration for every pair (2, 2′) (i.e., the best

chromosome returns from Algo 1). For each model, we collect a

total number of 90 chromosomes over 90 pairs, which are used

to evaluate the strength of these errors. The strength of errors is

measured by the success rate of bypassing defenses. In addition,

we also evaluate the e�ciency of DistXplore for discovering valid

errors (RQ2). To evaluate the e�ciency, we count all the errors

generated during the 30 iterations. Speci�cally, we select two met-

rics for the comparisons: the total number of errors and the success

rate of generating errors for each seed. To evaluate the validity of

generated errors, we perform a human study to manually check

the validity of the discovered errors.

73

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Results of bypassing the defense techniques on datasets MNIST (M), Fashion MNIST (FM), CIFAR-10 (C), and SVHN (S) and DNNs

LeNet-4 (L-4), LeNet-5 (L-5), VGG16 (V-16), ResNet-20 (R-20), Inception-ResNet-v2 (IR-V2), and Inception-v3 (I-V3).

DS Model Defense DistX BIM PGD C&W D2F SNF TIA KMNC NBC CT NPC LSA HDA ���> VAE

M

L-4
Dissector 0.97 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

A2D 0.58 1.00 1.00 1.00 0.99 0.81 0.99 0.87 0.88 0.73 0.69 0.67 1.00 1.00 1.00

L-5
Dissector 0.93 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.99 1.00 1.00

A2D 0.68 0.99 1.00 1.00 1.00 0.78 1.00 0.81 0.79 0.78 0.84 0.85 0.99 1.00 1.00

FM

L-4
Dissector 0.85 0.95 1.00 1.00 0.98 0.97 0.99 0.95 0.95 0.90 0.93 0.89 0.91 0.97 -

A2D 0.35 0.91 0.99 0.98 0.87 0.74 0.77 0.80 0.80 0.60 0.63 0.46 0.95 0.97 -

L-5
Dissector 0.82 0.96 0.96 0.99 0.93 0.89 9.95 0.89 0.87 0.85 0.95 0.87 0.86 0.96 -

A2D 0.44 0.87 0.89 0.97 0.85 0.87 0.88 0.55 0.59 0.53 0.94 0.60 0.92 0.99 -

C

V-16
Dissector 0.83 0.99 0.98 0.98 0.96 0.92 0.95 0.96 0.95 0.95 0.95 0.94 0.91 0.93 -

A2D 0.59 0.99 0.95 0.98 0.92 0.81 0.91 0.77 0.77 0.78 0.77 0.83 0.89 0.93 -

R-20
Dissector 0.89 0.99 0.99 0.99 0.94 0.93 0.94 0.89 0.89 0.92 - 0.92 0.90 0.90 -

A2D 0.39 0.96 0.95 0.78 0.93 0.95 0.83 0.56 0.56 0.89 - 0.97 0.91 0.89 -

IR-V2
Dissector 0.84 0.98 0.98 0.99 0.90 0.89 0.90 0.87 0.87 0.86 - 0.86 0.91 0.90 -

A2D 0.24 0.76 0.81 0.76 0.36 0.51 0.36 0.47 0.49 0.53 - 0.51 0.53 0.66 -

I-V3
Dissector 0.83 0.97 0.97 0.98 0.92 0.91 0.92 0.89 0.90 0.90 - 0.89 0.93 0.93 -

A2D 0.27 0.82 0.84 0.72 0.41 0.50 0.35 0.49 0.46 0.42 - 0.43 0.56 0.55 -

S

V-16
Dissector 0.86 0.99 0.99 0.99 1.00 0.96 0.99 0.98 0.99 0.95 0.96 0.94 0.94 0.96 0.99

A2D 0.36 0.95 0.97 0.98 1.00 0.91 0.99 0.62 0.75 1.00 1.00 0.57 0.57 0.90 0.97

R-20
Dissector 0.88 0.99 0.99 0.99 0.98 0.95 0.98 0.92 0.92 0.95 - 0.92 0.94 0.97 0.99

A2D 0.44 0.98 0.97 0.96 0.98 0.95 0.97 0.90 0.85 1.00 - 0.98 0.65 0.91 0.99

To demonstrate the capability in enhancing robustness, we select

test suites with diverse distributions (i.e., distribution di�erence

diversity and target class diversity). For each pair (2, 2′), we split the

distribution di�erence [��1, ��30] into 10 intervals, where ��=
represents the best �tness value in the =Cℎ iteration. Note that the

�tness values in multiple iterations may fall into the same interval.

To achieve the distribution di�erence diversity, we randomly select

an iteration from each interval and collect its best chromosome (i.e.,

10 chromosomes for each pair). To achieve the target class diversity,

we consider all of other classes as the targets (i.e., 9 targets for each

source). Finally, we collect 900 test suites (10 intervals× 90 pairs) for

�ne-tuning in RQ3 (e.g., Test suite 1, 2, 3, 4, . . . in Fig. 3). To conduct

a fair comparison, we collect the same number of test cases by

each baseline for retraining. Speci�cally, for adversarial attacks, we

con�gure di�erent parameters such that we can generate multiple

adversarial examples for each seed input. For testing tools, we �rst

generate a large number of errors, and then randomly select the

same number of inputs for retraining.

For RQ4, we evaluate the usefulness of distribution di�erence

diversity and target class diversity in robustness enhancement. We

collect two sets for retraining: 1) we only consider the distribution

di�erence diversity and ignore the target class diversity. We ran-

domly select one target class and collect multiple chromosomes

from each interval, denoted as DistXplore35 (e.g., Test suite 1, 2 in

Fig. 3). 2) We select all target classes for the target class diversity but

restrict their intervals. For each target class, we randomly select

some chromosomes from only one interval, denoted as DistXploreC .

(e.g., Test suite 1, 3 in Fig. 3). Note that, to make a fair comparison

with the results in RQ3, we control the number of test cases in

DistXplore35 and DistXploreC by collecting multiple chromosomes

from an interval, such that they have the same size with the data

using in RQ3 (i.e., 900 test suites).

For the robustness measurement in RQ3 and RQ4, we select the

empirical robustness that is commonly used in previous works [22,

57]. The empirical robustness is measured by the accuracy on a

validation dataset. To generate such a validation dataset, we select a

new set of initial seeds (1,000) that di�ers from the seeds in testing.

Then we runDistXplore and other baselines to generate errors based

on new seeds. These errors found by di�erent tools form a new

test set for evaluating empirical robustness. Considering that the

transformation strategies are di�erent in di�erent types of tools, we

try to construct a balanced dataset for a fair comparison, including

9,000 errors from each type of tool, i.e., adversarial attacks (3,000 for

each of BIM, PGD, and C&W), distribution-unaware testing (4,500

for each con�guration of DeepHunter), distribution-aware testing

(3,000 for each of LSA, VAE, and HDA), and distribution-guided

testing (100 for each source-target pair).

For RQ5, we evaluate the generalization ability of DistXplore by

adapting it to twoNLP classi�cation tasks: i.e., sentiment analysis on

IMDB [36] and news classi�cation on AG’s News [67]. We �ne-tune

the pre-trained model BERT [8] on the two datasets, respectively.

Due to the intrinsic di�erences between images and textual data,

we develop the text speci�c mutation strategies. The details about

the text mutation can be found on the Website [2]. As other testing

tools are mainly used in image domain, we select two NLP adver-

sarial attacks (i.e., PWWS [48] and TextFooler [23]) as the baselines.

Additionally, we select the state-of-the-art method WDR [41] as

the defense technique as Dissector and A2D are not suitable for

BERT pre-trained models.

We follow the existing work [63] and repeat each experiment

5 times to reduce the e�ect of the randomness during the test

generation.

4.2 Results

4.2.1 RQ1:Strength of Errors. We evaluated our method using

three metrics: the unique number of errors, the success rate, and the

strength of errors. The unique number of errors represents the total

number of erroneous inputs generated within a given time budget.

This metric is widely used in existing DL testing works [1, 3, 6, 10,

24, 34, 57, 65, 72, 73] and provides a measure of the e�ectiveness of

74

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

DL testing. The success rate measures the percentage of seed inputs

from which the testing tools can generate at least one erroneous

input. This metric has been employed in DL testing and adversarial

attack tools [3, 11, 33, 60, 65, 66]. A higher success rate indicates that

our method is capable of generating errors for a larger proportion of

seed inputs. The strength of errors quanti�es the severity or impact

of the erroneous inputs generated. We emphasize the importance

of generating strong errors, as weaker errors can be easily detected

by existing defense tools.

Table 1 shows the results on the strength of generated errors

by di�erent methods. For Dissector, we use AUROC to indicate the

capability on detecting errors. For Attack-as-Defense, we show the

proportion of errors that can be detected. The symbol - in column

NPC indicates that NPC cannot be used to test these DNNs since

the critical paths can not be extracted. The symbol - in column VAE

indicates that the VAE method does not work well on the selected

task as mentioned in [9].

The overall results show that DistXplore (column DistX) can

generate more strong errors that are di�cult to be detected by

defense techniques compared with baselines. Speci�cally, all errors

generated by adversarial attacks underperform DistXplore, which

may be because that they only add minor perturbations. We also

found that the new advrsarial attacks outperform the classic ad-

versarial attacks (i.e., BIM, PGD, C&W). Compared with testing

techniques, we can see that DistXplore performs better in most

cases. Comparing the results between distribution-unaware testing

(i.e., KMNC, NBC, CT, and NPC) and distribution-aware testing

(i.e., HDA/���> and VAE), we found that distribution-unaware

testing tends to perform better because it generates some OOD

data, indicating that ID errors (from distribution-aware testing)

are easier to detect. DistXplore explicitly considers the distribution

di�erence, which guides to generate statistically indistinguishable

errors that are more di�cult to detect.

Compared to other distribution-aware testing (i.e., HDA/���>

and VAE), we found that the errors generated by LSA are harder

to detect because LSA can also generate OOD data based on the

surprise guidance. DistXplore performs better than LSA since it

considers the distribution di�erence between each two classes and

optimizes each test suite, making the discovered errors statistically

indistinguishable compared with other classes.

Answers to RQ1-1: Compared with adversarial attacks and

existing DL testing techniques, DistXplore is more e�ective in

generating hard-to-detect errors. Existing distribution-aware

testing techniques mainly focus on generating in-distribution

data that could be easier to detect.

Fig. 5 shows the relationship between the distribution di�erence

and the strength of errors. Due to the space limit, other results are

put on our website [2]. For each pair (2, 2′), we collect the best

chromosome (after each iteration and calculate: 1) MMD_target:

the distribution di�erence between (and the training data of target

class 2′, 2) MMD_source: the distribution di�erence between (and

the training data of source class 2 , 3) Error Rate: the proportion

of errors in (, 4) Error_target Rate: the proportion of errors (in ()

predicted as the target class and, 5) Dissector and A2D: the results

0 10 20 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
MNIST

0 10 20 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Fashion-MNIST

MMD_target
MMD_source

Error Rate
Error_target Rate

Dissector
A2D

Figure 5: The average results during the optimization of DistXplore

(model: LeNet-5)

Table 2: Results of e�ciency on four datasets

DS Mod Metric DistX KMNC NBC LSA HDA VAE

M

L-4

Time (s) 257.7 737.9 471.4 1271.9 1937.8 1166.2

#Error 21,008.6 4655.4 8029.8 8985.2 58.8 32.8

Succ.R 1.00 0.65 0.96 0.96 0.59 0.33

L-5

Time (s) 159.4 1260.0 758.9 2200.0 1563.7 3810.0

#Error 9602.4 3414.4 6445.8 7132.4 8.8 43.4

Succ.R 0.89 0.61 0.95 0.96 0.09 0.43

FM

L-4

Time (s) 258.9 734.1 549.0 1002.8 1963.7 -

#Error 21,082.8 10,396.8 15,409.8 19,607.2 97.4 -

Succ.R 1.00 0.73 0.80 0.92 0.97 -

L-5

Time (s) 160.8 1810.4 1137.0 1234.0 1894.4 -

#Error 18,747.4 11,064.4 15,562.8 17,756.4 94.8 -

Succ.R 0.99 0.72 0.99 0.97 0.95 -

C

V-16

Time (s) 613.9 24,820.1 13316.1 3031.2 7255.9 -

#Error 26,131.4 5924.6 8510.6 10,853.2 81.4 -

Succ.R 1.00 0.79 0.94 0.93 0.82 -

R-20

Time (s) 605.6 4768.5 2956.1 2931.6 6102.5 -

#Error 30,016.8 8683.4 10,176.6 13,701.6 96.2 -

Succ.R 0.97 0.68 0.82 0.73 0.96 -

S

V-16

Time (s) 581.8 24,412.3 12,488.2 6903.4 6893.6 6448.1

#Error 29,793.4 2342.4 2856.2 3936.2 75.8 98.6

Succ.R 1.00 0.70 0.70 0.70 0.76 0.99

R-20

Time (s) 606.6 4435.4 2842.5 6645.7 6533.7 5749.1

#Error 29,627.4 4122.8 5508.6 9653.6 76.8 98.6

Succ.R 1.00 0.53 0.75 0.81 0.77 0.99

detected by the di�erent defense techniques. We average the results

from all pairs, and normalize the results from 0 to 1 except for Error

Rate and Error_target Rate for easier comparison.

The results show that, during the optimization, the distribution

of (is getting closer to the training distribution of the target class

(see MMD_target) and getting farther away from the source class

(see MMD_source). Meanwhile, Error Rate and Error_target Rate are

increasing, indicating that more errors are generated and gradually

become statistically indistinguishable between the original class

2 and target class 2′. The e�ect of indistinguishability can be fur-

ther con�rmed by the detection results (i.e., Dissector and A2D):

errors become indistinguishable and di�cult to detect while the

MMD_target decreases.

Answers to RQ1-2: The distribution di�erence is useful in

guiding the generation of statistically indistinguishable errors,

making them more di�cult to detect. Compared with others,

DistXplore generates more diverse errors.

75

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

4.2.2 RQ2: E�iciency of DistXplore. We further study the e�-

ciency of DistXplore in discovering errors, as shown in Table 2.

Note that we do not set the same time to run all tools as di�er-

ent tools have di�erent con�guration methods. We emphasize that

this paper mainly focuses on generating high-quality (i.e., hard-to-

detect) errors rather than merely comparing the total number of

errors within a set time, as many weak errors can be easily detected

by defense methods (see RQ1 results).

In Table 2, we show the time used for each tool under its con�g-

uration (Time (s)) and the total number of errors (#Error). Due to

the space limit, other results are put on our website [2]. We do not

show the results of adversarial attacks here because they di�er from

the settings of testing tools, i.e., they generate an adversarial exam-

ple for each seed. Overall, we can observe that DistXplore (column

DistX) generates more errors while uses the shortest time. We could

also observe that the existing distribution-aware testing tends to

be slower due to time-consuming distribution measurements, such

as the Kernel Density Estimation and VAE. Table 2 also shows the

success rate of generating errors for each seed. The results show

that DistXplore has a higher success rate than other baselines. We

also notice a exception that LSA achieves higher success rate on

MNIST LeNet-5. We conjecture that it is due to the optimization ob-

jective of DistXplore that minimizes the distribution distance, rather

than speci�cally guiding misclassi�cation for individual samples.

In some speci�c datasets, the optimization may not require errors

for certain seeds.

In order to evaluate the validity of the generated inputs, we

conducted a manual investigation by randomly selecting 10,000

erroneous inputs from the testing outputs of each model and calcu-

lating the average validity ratio. The validity ratios were found to

be 98.5%+, 96.5%+, 98.7%+, and 95.3%+ for MNIST, Fashion-MNIST,

CIFAR-10, and SVHN datasets, respectively. The results demon-

strate that DistXplore is capable of generating valid inputs with

high proportions. More details are provided on our website [2].

Answers to RQ2: Compared to other DL testing tools, DistX-

plore achieves the highest e�ciency in terms of the number of

errors generated per second and success rates. Moreover, Dis-

tXplore is more e�ective in terms of generating valid samples.

4.2.3 RQ3: Robustness Enhancement. For each tool, we �ne-tune

the original model 20 epochs following previous works [25, 38, 49]

by adding the new data generated from each tool, and evaluate the

empirical robustness of the new model on the validation dataset

we created. Note that all data in validation dataset is predicted

incorrectly by the original model. Table 3 shows the accuracy of

�ne-tuned models on the validation dataset. As expected, DistX-

plore outperforms the adversarial attacks, distribution-aware test-

ing, distribution-unaware testing, and robustness-oriented testing.

The overall results demonstrated the e�ectiveness of DistXplore in

improving robustness. In addition, LSA achieves the second best re-

sults which outperform the results of other baselines, because LSA

can generate some OOD test cases, increasing the diversity. The

three modern adversarial attack techniques perform worse than

the three classic techniques, because these techniques are designed

for untarget attack, which decrease the distribution diversity.

D-G Adv D-U D-A

DistXplore

BIM

PGD

C&W

KMNC

NBC

LSA

HDA

RobOT

0.59 0.75 0.38 0.83

0.07 0.95 0.09 0.53

0.07 0.95 0.09 0.53

0.07 0.95 0.10 0.53

0.36 0.66 0.37 0.73

0.30 0.58 0.31 0.70

0.47 0.55 0.28 0.80

0.04 0.60 0.06 0.51

0.07 0.80 0.11 0.52

CIFAR-10

0.2

0.4

0.6

0.8

D-G Adv D-U D-A

DistXplore
BIM
PGD
C&W
KMNC
NBC
LSA
HDA
VAE

RobOT

0.60 0.54 0.48 0.87
0.05 0.79 0.14 0.71
0.06 0.74 0.13 0.72
0.07 0.74 0.14 0.71
0.27 0.50 0.32 0.79
0.26 0.59 0.29 0.78
0.40 0.42 0.35 0.85
0.03 0.59 0.11 0.71
0.04 0.49 0.12 0.70
0.06 0.69 0.14 0.71

SVHN

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Accuracy on di�erent types of dataset (model: VGG16)

Answers to RQ3-1: Overall, DistXplore is e�ective in improv-

ing robustness by generating data with di�erent distributions.

Distribution-aware testing techniques only consider ID data,

making it perform poorly on errors generated by other tools.

To further interpret the results, we analyze the accuracy on dif-

ferent kinds of validation dataset, which is shown in Fig. 6. Other re-

sults are shown in the website [2]. Recall that our validation dataset

includes 9,000 errors from distribution-guided testing DistXplore

(i.e., D-G), 9,000 errors from adversarial attacks (i.e., Adv), 9,000 er-

rors from distribution-aware testing LSA, HDA, and VAE (i.e., D-A),

and 9,000 errors from distribution-unaware testing (i.e., D-U). Note

that the dataset D-G and D-U cover more diverse transformations

(e.g., rotation and translation) while the dataset Adv and D-A are

mainly created by the noise-based transformation. Speci�cally, the

image transformation directly determines the distribution of the

generated test cases[4] that further a�ects the accuracy evaluation.

Taking into account that these tools use di�erent transformations,

we build such a balanced validation dataset for a fairer comparison.

Not surprisingly, each tool usually achieves better accuracy on

the validation data generated by the same type of tools, because they

have similar distribution, while the data from other types of tools

are more likely to be OOD. For example, BIM, PGD, and C&W get

much higher accuracy on Adv dataset since the added training data

and the Adv data are very similar (i.e., adding minor perturbation).

However, the tools with only noise-based perturbation (i.e., BIM,

PGD, C&W, HDA, VAE, and RobOT) achieve much lower accuracy

on the data D-G and D-U that use very di�erent transformation.

Their accuracy on D-G (<0.09) is relatively lower than that on D-U

(>0.09), indicating some errors generated by DistXplore are harder

to predict.

Comparing the results between DeepHunter and DistXplore,

which use the same transformations, we found that DeepHunter

achieves lower accuracy than DistXplore on D-G data because Dis-

tXplore generates test cases with diverse distributions, which may

be OOD for DeepHunter. As for the data D-U generated by Dee-

pHunter, the accuracy of DistXplore is slightly higher than that

of DeepHunter, which indicates that the errors from DistXplore

could cover some distribution of the data generated by DeepHunter.

Considering the distribution-aware testing HDA and VAE, as they

only generate ID data, they perform much worse on other dataset.

Consider the results of distribution-aware testing (HDA and

VAE), adversarial attacks (BIM, PGD and C&W), and robustness-

oriented testing, which use the same transformation, we found that

HDA and VAE achieve lower accuracy (see Table 3), indicating that

76

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

Table 3: Results of robustness enhancement using the test cases generated by di�erent tools on four datasets

D M DistXplroe BIM PGD C&W D2F SNF TIF KMNC NBC CT NPC LSA HDA ���> VAE Robot

M
L-4 0.81 0.64 0.65 0.59 0.57 0.60 0.56 0.52 0.54 0.63 0.63 0.72 0.61 0.63 0.55 0.52

L-5 0.81 0.66 0.65 0.66 0.41 0.49 0.46 0.65 0.68 0.45 0.45 0.76 0.59 0.57 0.57 0.56

FM
L-4 0.73 0.56 0.60 0.59 0.59 0.57 0.60 0.61 0.61 0.57 0.61 0.71 0.61 0.60 - 0.48

L-5 0.80 0.58 0.58 0.55 0.49 0.54 0.53 0.54 0.56 0.55 0.50 0.75 0.55 0.58 - 0.41

C

V-16 0.83 0.53 0.53 0.53 0.30 0.33 0.30 0.73 0.70 0.36 0.36 0.80 0.51 0.55 - 0.52

R-20 0.76 0.61 0.61 0.62 0.45 0.46 0.46 0.60 0.60 0.53 - 0.70 0.62 0.64 - 0.62

IR-2 0.97 0.92 0.93 0.92 0.91 0.89 0.90 0.91 0.92 0.91 - 0.92 0.89 0.89 - 0.89

I-3 0.99 0.93 0.93 0.93 0.92 0.91 0.92 0.92 0.93 0.93 - 0.93 0.91 0.90 - 0.89

S
V-16 0.66 0.55 0.54 0.54 0.22 0.28 0.27 0.55 0.57 0.29 0.30 0.59 0.50 0.50 0.49 0.52

R-20 0.54 0.49 0.49 0.49 0.36 0.37 0.36 0.44 0.44 0.42 - 0.46 0.44 0.43 0.43 0.36

Table 4: Results of robustness with di�erent distribution diversity

Dataset Model DistXplore DistXplore35 DistXploreC

MNIST
LeNet-4 0.81 0.61 0.76

LeNet-5 0.81 0.63 0.74

FMNIST
LeNet-4 0.73 0.62 0.68

LeNet-5 0.80 0.65 0.72

CIFAR-10

VGG16 0.83 0.62 0.80

ResNet-20 0.76 0.63 0.74

IR-V2 0.97 0.87 0.93

I-V3 0.99 0.89 0.95

SVHN
VGG16 0.66 0.55 0.62

ResNet-20 0.54 0.42 0.47

only considering ID is less e�ective in improving the robustness,

especially on OOD data.

The data generated by di�erent testing tools may have di�er-

ent distributions, depending on their transformation and guidance

strategies. All these data could be the potential inputs in the real-

world deployment, and test cases generated by a tool may not cover

all distributions. For example, although DistXplore is designed to

increase the distribution diversity, it does not always cover the data

distribution from other tools. In general, it can cover more unseen

distributions if we gradually increase the distribution diversity.

Answers to RQ3-2: DistXplore can generate test cases with

diverse distributions, which can identify more unseen data for

further robustness improvement.

4.2.4 RQ4: Usefulness of Distribution Diversity. Table 4 shows the

results about the usefulness of the distribution di�erence diversity

and target diversity. DistXplore, DistXplore35 , and DistXploreC rep-

resents the accuracy of models �ne-tuned with di�erent data (see

more con�guration details in Section 4.1.4). Note that the number

of data used in DistXplore35 , DistXploreC , and DistXplore are the

same. Compared to the results DistXplore, we found that the accu-

racy drops if only considering the distribution di�erence diversity

(DistXplore35) or target diversity (DistXploreC), which indicates the

usefulness of both kinds of diversity in improving the robustness.

Answers to RQ4: Both distribution di�erence diversity and

target class diversity are useful in improving the robustness.

4.2.5 RQ5: Generalization Ability. Table 5 shows the results on the

strength of generated errors by di�erent methods, i.e., the percent-

age of errors that can be detected by existing detection methods.

The overall results show that DistXplore can still generate strong

errors than the selected baselines. Moreover, the results also demon-

strate the generalizability of DistXplore to other domains.

Discussion on application scope. This paper primarily focuses

on the classi�cation task, which is one of the most popular and

important machine learning tasks, and has been widely studied in

the research area of DL testing [21, 24, 27, 32, 35, 43, 50, 52, 54, 57,

59, 63, 64]. While there is much less work on testing generation

tasks in the literature due to the challenge of de�ning test oracles,

i.e., how to de�ne the errors. Recently, researchers proposed a

few metamorphic relations [17, 53] for machine translation tasks

to overcome the problem. It is noteworthy that the challenge of

test oracle is orthogonal to the problem we aim to solve in the

paper. Considering that none of the existing works look into data

distribution, we believe thatDistXplore could also play an important

role in generating test cases with better diversity for generation

tasks in view that data distribution is a fundamental concept for

general learning tasks.

Speci�cally, DistXplore can be extended to generation tasks by

modifying the feedback of distribution di�erences. Currently, in

classi�cation tasks, we select other classes as targets to guide the

generation of test suites for achieving diverse distributions due

to the classi�cation characteristics. For generation tasks that do

not have classes, suppose there is a generation model that can

generate human faces following a speci�c distribution (based on the

training samples), we can select other datasets, such as ImageNet [7],

CIFAR [28], or other image datasets, as the targets to guide the

generation of test suites such that the test suites can also have

diverse distributions. However, how to select the target distribution

and how e�ectively they can help with the testing require further

exploration and evaluation. We leave the extension to generation

tasks as our future work.

Answers to RQ5: DistXplore is also useful in testing NLP

models.

5 THREATS TO VALIDITY

There are some threats that could a�ect the validity of the results.

The selected models and datasets are threats to the validity. We

mitigate these threats by selecting the popular datasets and mod-

els that are used by existing DL testing works. The randomness

could be a threat, which is mitigated by generating a large number

of test cases over a relatively long time and running each tool 5

times in our experiments. In addition, we make our experimental

77

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 5: Results of bypassing the defense techniques for NLP tasks

Dataset Defense DistXplore PWWS TextFooler

IMDB WDR 0.19 0.96 0.94

AG’s News WDR 0.22 0.98 0.99

results publicly available. The selection of the seed inputs is a threat.

We mitigate it by selecting a large number seeds (1,000) that are

used by all baselines. The layer selected for calculating the MMD

could be a threat to a�ect the results. We mitigate this problem by

selecting the commonly used layer, i.e., logits layer. In the future,

we plan to evaluate DistXplore by selecting di�erent layers and

their combinations. Another threat is that the empirical robustness

depends on the validation dataset, and the transformations used

in selected tools are di�erent, which could be a threat to a�ect

the results. To mitigate this problem, we try our best to assemble

a balanced validation dataset comprised of data generated from

di�erent types of testing tools (9,000 inputs generated by each type

of tool). Moreover, we choose a new set of seeds to generate the

validation dataset in order to avoid the overlapping between the

new training dataset and validation dataset.

6 RELATED WORK

6.1 Distribution-Unaware Testing

Due to the di�erences between traditional software and deep neural

networks, some coverage criteria have been proposed. The general

idea is to de�ne metrics for measuring the behaviors of the target

DNNs while the distribution is not explicitly considered. The Neu-

ron Coverage [46] is the �rst DL coverage criterion that measures

the percentage of neurons activated by the given inputs. Ma et

al.[35] then extended the Neuron Coverage and proposed a set of

�ne-grained coverage criteria such as k-multisection Neuron Cover-

age (KMNC), Neuron Boundary Coverage (NBC), and Top-k Neuron

Coverage (TKNC). Although the distribution is not explicitly con-

sidered, there could be some implicit relationship between them.

For example, NBC de�nes the covered upper and lower corner case

regions, which is more related to OOD data. NPC [62] proposes

two path-based coverage criteria to measure the coverage on the

decision logic. A path represents a possible decision logic. Based on

the coverage criteria, some automated testing techniques have been

developed such as DeepXplore [46], DLFuzz [15], DeepTest [54],

DeepHunter [63], DeepStellar [12], and TensorFuzz [43]

Although these techniques could also generate test cases with

di�erent distributions, none of them explicitly considers the dis-

tribution. For example, a lot of errors are generated but they may

follow the similar distributions. In addition, the existing works do

not consider the strength of generated errors. Di�erently, DistX-

plore generates strong errors that are statistically indistinguishable

and enhances robustness with di�erent distributions.

6.2 Distribution-Aware Testing

Recently, some testing works start to discuss the e�ect of distribu-

tion for testing, which is based on the fact that a DLmodel is trained

on sampled training data following a speci�c distribution. Berend et

al.[4] conducted an empirical study on the relationships between

data distribution and existing testing techniques. They call for the

attention of data-distribution awareness when designing testing

methods. Zhou et al.[71] study the robustness of DNNs with distri-

bution awareness. Hu et al.[19] study the distribution-aware seed

selection methods for DNNs. Dola et al.[9] develop the distribution-

aware testing technique that basically generates the in-distribution

data by the Variational Autoencoders (VAEs). Toledo et al.[9] pro-

posed the distribution-aware veri�cation. It uses a generative model

to represent the data distribution of the trained model, and then

changes the original model such that all the inputs to the DNN fol-

low the learned distribution. The most recent work [22] proposed a

hierarchical distribution-aware testing method that measures both

of global distribution and local distribution.

Besides, Kim et al.[27] propose LSA and DSA to measure the

surprise adequacy (SA) of the test cases, i.e., the surprise degree of

a single test case compared with the training data. Although both

DistXplore and SA consider the distance between test case(s) and

training data, there are some key di�erences: 1) DistXplore mea-

sures the distribution di�erence between two sets of data while SA

measures the surprise of a single test case In addition, considering

the distance calculation, DistXplore is more e�cient. 2) DistXplore

is more �ne-grained and considers intra-class and inter-class dis-

tribution shifts while SA mainly considers the distance between

a test case and all training data. 3) The goals are not totally the

same. SA is a test selection method that mainly selects surprising

data. However, it is not clear whether the surprising data (from

SA) is e�ective in generating hard-to-detect errors or enhancing

model’s robustness, which is our main focus. The evaluation results

demonstrate that DistXplore is more e�ective.

7 CONCLUSION

In this paper, we propose a distribution-guided testing approach

to evaluate and enhance DL models. To the best of our knowledge,

this is the �rst work that explicitly generates test cases with diverse

distributions. We discussed the relationship between validity and

distribution, where valid out-of-distribution data is ignored by ex-

isting distribution-aware testing. We evaluated the e�ectiveness of

DistXplore on 10 models and compared it with 14 state-of-the-art

tools. The results demonstrate that DistXplore is e�cient and e�ec-

tive in discovering hard-to-defend errors and improving robustness.

Data Availability: We provide the source code and data on:

https://github.com/l1lk/DistXplore

ACKNOWLEDGMENTS

This research is partially supported by the National Research Foun-

dation, Singapore, and the Cyber Security Agency under its National

Cybersecurity R&D Programme (NCRP25-P04-TAICeN), the Lee

Kong Chian Fellowship, the National Research Foundation Singa-

pore and DSO National Laboratories under the AI Singapore Pro-

gramme (AISG Award No: AISG2-GC-2023-008), National Key R&D

Program of China (2020AAA0107702), National Natural Science

Foundation of China (U21B2018, 62161160337, 61822309, U20B2049,

61773310, U1736205, 61802166) and Shaanxi Province Key Industry

Innovation Program (2021ZDLGY01-02). Any opinions, �ndings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not re�ect the views of National

Research Foundation, Singapore and Cyber Security Agency of

Singapore.

78

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen

REFERENCES
[1] Zohreh Aghababaeyan, Manel Abdellatif, Mahboubeh Dadkhah, and Lionel

Briand. 2023. DeepGD: A Multi-Objective Black-Box Test Selection Approach
for Deep Neural Networks. arXiv preprint arXiv:2303.04878 (2023). https:
//doi.org/10.48550/arXiv.2303.04878

[2] Anonymous. 2022. DistXplore. https://sites.google.com/view/distxplore
[3] Muhammad Hilmi Asyro�, Zhou Yang, and David Lo. 2021. Crossasr++: A

modular di�erential testing framework for automatic speech recognition. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 1575–1579.
https://doi.org/10.1145/3468264.3473124

[4] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun
Zhao. 2020. Cats are not �sh: Deep learning testing calls for out-of-distribution
awareness. In Proceedings of the 35th IEEE/ACM International Conference on Auto-
mated Software Engineering. 1041–1052. https://doi.org/10.1145/3324884.3416609

[5] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee, 39–57.
https://doi.org/10.48550/arXiv.1608.04644

[6] Jaganmohan Chandrasekaran, Yu Lei, Raghu Kacker, and D Richard Kuhn.
2021. A combinatorial approach to testing deep neural network-based au-
tonomous driving systems. In 2021 IEEE International Conference on Software
Testing, Veri�cation and Validation Workshops (ICSTW). IEEE, 57–66. https:
//doi.org/10.1109/ICSTW52544.2021.00022

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255. https://doi.org/10.1109/
CVPR.2009.5206848

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/V1/N19-1423

[9] Swaroopa Dola, Matthew B Dwyer, and Mary Lou So�a. 2021. Distribution-
aware testing of neural networks using generative models. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 226–237.
https://doi.org/10.1109/ICSE43902.2021.00032

[10] Swaroopa Dola, Matthew B Dwyer, and Mary Lou So�a. 2023. Input Distribution
Coverage: Measuring Feature Interaction Adequacy in Neural Network Testing.
ACM Transactions on Software Engineering and Methodology 32, 3 (2023), 1–48.
https://doi.org/10.1145/3576040

[11] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading defenses to
transferable adversarial examples by translation-invariant attacks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4312–4321.
https://doi.org/10.1109/CVPR.2019.00444

[12] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
stellar: Model-based quantitative analysis of stateful deep learning systems. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 477–487.
https://doi.org/10.1145/3338906.3338954

[13] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex
Smola. 2006. A kernel method for the two-sample-problem. Advances in neural
information processing systems 19 (2006). https://doi.org/10.5555/2976456.2976521

[14] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723–773. https://doi.org/10.5555/2188385.2188410

[15] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dl-
fuzz: Di�erential fuzzing testing of deep learning systems. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 739–743. https:
//doi.org/10.1145/3236024.3264835

[16] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing
deep learning development and deployment across di�erent frameworks and
platforms. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 810–822. https://doi.org/10.1109/ASE.2019.00080

[17] Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su. 2020. Machine transla-
tion testing via pathological invariance. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. 863–875. https://doi.org/10.1145/3368089.3409756

[18] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William Christmas, Stan Z
Li, and Timothy Hospedales. 2015. When face recognition meets with deep
learning: an evaluation of convolutional neural networks for face recognition.
In Proceedings of the IEEE international conference on computer vision workshops.
142–150. https://doi.org/10.1109/ICCVW.2015.58

[19] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and
Yves Le Traon. 2022. An empirical study on data distribution-aware test selection
for deep learning enhancement. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31, 4 (2022), 1–30. https://doi.org/10.1145/3511598

[20] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, and Yves
Le Traon. 2023. LaF: Labeling-Free Model Selection for Automated Deep Neu-
ral Network Reusing. ACM Trans. Softw. Eng. Methodol. (jul 2023). https:
//doi.org/10.1145/3611666 Just Accepted.

[21] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, Lei Ma,
and Yves Le Traon. 2023. Aries: E�cient Testing of Deep Neural Networks via
Labeling-Free Accuracy Estimation. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 1776–1787. https://doi.org/10.1109/
ICSE48619.2023.00152

[22] Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang. 2022.
Hierarchical Distribution-Aware Testing of Deep Learning. arXiv preprint
arXiv:2205.08589 (2022). https://doi.org/10.1109/ICSE43902.2021.00032

[23] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is bert really
robust? a strong baseline for natural language attack on text classi�cation and
entailment. In Proceedings of the AAAI conference on arti�cial intelligence, Vol. 34.
8018–8025. https://doi.org/10.1609/AAAI.V34I05.6311

[24] Haibo Jin, Ruoxi Chen, Haibin Zheng, Jinyin Chen, Yao Cheng, Yue Yu, Tiem-
ing Chen, and Xianglong Liu. 2023. Excitement surfeited turns to errors: Deep
learning testing framework based on excitable neurons. Information Sciences 637
(2023), 118936. https://doi.org/10.1016/j.ins.2023.118936

[25] Jaeyoung Kang, Behnam Khaleghi, Tajana Rosing, and Yeseong Kim. 2022.
Openhd: A gpu-powered framework for hyperdimensional computing. IEEE
Trans. Comput. 71, 11 (2022), 2753–2765. https://doi.org/10.1109/TC.2022.3179226

[26] Yigitcan Kaya, Bilal Zafar, Sergul Aydore, Nathalie Rauschmayr, and Krishnaram
Kenthapadi. 2022. Generating distributional adversarial examples to evade statis-
tical detectors. (2022).

[27] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1039–1049. https://doi.org/10.1109/ICSE.
2019.00108

[28] Alex Krizhevsky, Geo�rey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[29] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples
in the physical world. In Arti�cial intelligence safety and security. Chapman and
Hall/CRC, 99–112. https://doi.org/10.48550/arXiv.1607.02533

[30] Jokin Labaien, Ekhi Zugasti, and Xabier De Carlos. 2021. DA-DGCEx: Ensuring
validity of deep guided counterfactual explanations with distribution-aware au-
toencoder loss. arXiv preprint arXiv:2104.09062 (2021). https://doi.org/10.48550/
arXiv.2104.09062

[31] Yandong Li, Lijun Li, LiqiangWang, Tong Zhang, and Boqing Gong. 2019. Nattack:
Learning the distributions of adversarial examples for an improved black-box
attack on deep neural networks. In International Conference on Machine Learning.
PMLR, 3866–3876. https://doi.org/10.48550/arXiv.1905.00441

[32] Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li.
2022. Robust Learning of Deep Predictive Models from Noisy and Imbalanced
Software Engineering Datasets. In 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–13. https://doi.org/10.1145/3551349.3556941

[33] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. 2019.
Nesterov accelerated gradient and scale invariance for adversarial attacks. arXiv
preprint arXiv:1908.06281 (2019). https://doi.org/10.48550/arXiv.1908.06281

[34] Yuying Liu, Pin Yang, Peng Jia, Ziheng He, and Hairu Luo. 2022. MalFuzz:
Coverage-guided fuzzing on deep learning-based malware classi�cation model.
Plos one 17, 9 (2022), e0273804. https://doi.org/10.1371/journal.pone.0273804

[35] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120–131. https:
//doi.org/10.1145/3238147.3238202

[36] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th annual meeting of the association for computational linguistics:
Human language technologies. 142–150. https://doi.org/10.5555/2002472.2002491

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
stat 1050 (2017), 9. https://doi.org/10.48550/arXiv.1706.06083

[38] Arun Mallya and Svetlana Lazebnik. 2018. Packnet: Adding multiple tasks to
a single network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 7765–7773. https://doi.org/10.1109/
CVPR.2018.00810

[39] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tourna-
ment selection, and the e�ects of noise. Complex systems 9, 3 (1995), 193–212.
https://doi.org/10.1162/evco.1996.4.2.113

[40] AH Money, JF A�eck-Graves, ML Hart, and GDI Barr. 1982. The linear re-
gression model: Lp norm estimation and the choice of p. Communications in

79

https://doi.org/10.48550/arXiv.2303.04878
https://doi.org/10.48550/arXiv.2303.04878
https://sites.google.com/view/distxplore
https://doi.org/10.1145/3468264.3473124
https://doi.org/10.1145/3324884.3416609
https://doi.org/10.48550/arXiv.1608.04644
https://doi.org/10.1109/ICSTW52544.2021.00022
https://doi.org/10.1109/ICSTW52544.2021.00022
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1145/3576040
https://doi.org/10.1109/CVPR.2019.00444
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.5555/2976456.2976521
https://doi.org/10.5555/2188385.2188410
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1145/3368089.3409756
https://doi.org/10.1109/ICCVW.2015.58
https://doi.org/10.1145/3511598
https://doi.org/10.1145/3611666
https://doi.org/10.1145/3611666
https://doi.org/10.1109/ICSE48619.2023.00152
https://doi.org/10.1109/ICSE48619.2023.00152
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1609/AAAI.V34I05.6311
https://doi.org/10.1016/j.ins.2023.118936
https://doi.org/10.1109/TC.2022.3179226
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.48550/arXiv.1607.02533
https://doi.org/10.48550/arXiv.2104.09062
https://doi.org/10.48550/arXiv.2104.09062
https://doi.org/10.48550/arXiv.1905.00441
https://doi.org/10.1145/3551349.3556941
https://doi.org/10.48550/arXiv.1908.06281
https://doi.org/10.1371/journal.pone.0273804
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.5555/2002472.2002491
https://doi.org/10.48550/arXiv.1706.06083
https://doi.org/10.1109/CVPR.2018.00810
https://doi.org/10.1109/CVPR.2018.00810
https://doi.org/10.1162/evco.1996.4.2.113

DistXplore: Distribution-Guided Testing for Evaluating and Enhancing Deep Learning Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Statistics-Simulation and Computation 11, 1 (1982), 89–109. https://doi.org/10.
1080/03610918208812247

[41] Edoardo Mosca, Shreyash Agarwal, Javier Rando-Ramirez, and Georg Groh.
2022. " That Is a Suspicious Reaction!": Interpreting Logits Variation to De-
tect NLP Adversarial Attacks. arXiv preprint arXiv:2204.04636 (2022). https:
//doi.org/10.18653/v1/2022.acl-long.538

[42] Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C.
de Albuquerque. 2021. Deep Learning for Safe Autonomous Driving: Current
Challenges and Future Directions. IEEE Transactions on Intelligent Transportation
Systems 22, 7 (2021), 4316–4336. https://doi.org/10.1109/TITS.2020.3032227

[43] Augustus Odena and Ian J. Goodfellow. 2019. TensorFuzz: Debugging Neural
Networks with Coverage-Guided Fuzzing. In ICML. https://doi.org/10.48550/
arXiv.1807.10875

[44] Liwen Ouyang and Aaron Key. 2021. Maximum Mean Discrepancy for Gener-
alization in the Presence of Distribution and Missingness Shift. arXiv preprint
arXiv:2111.10344 (2021). https://doi.org/10.48550/arXiv.2111.10344

[45] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Ce-
lik, and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372–387. https://doi.org/10.1109/EuroSP.2016.36

[46] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Auto-
mated whitebox testing of deep learning systems. In proceedings of the 26th Sym-
posium on Operating Systems Principles. 1–18. https://doi.org/10.1145/3361566

[47] Adnan Qayyum, Junaid Qadir, Muhammad Bilal, and Ala Al-Fuqaha. 2021. Secure
and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomed-
ical Engineering 14 (2021), 156–180. https://doi.org/10.1109/RBME.2020.3013489

[48] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating natu-
ral language adversarial examples through probability weighted word saliency.
In Proceedings of the 57th annual meeting of the association for computational
linguistics. 1085–1097. https://doi.org/10.18653/v1/P19-1103

[49] Sourjya Roy, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Anand Raghu-
nathan. 2020. Pruning �lters while training for e�ciently optimizing deep
learning networks. In 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, 1–7. https://doi.org/10.1109/IJCNN48605.2020.9207588

[50] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep
learning. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 85–88. https:
//doi.org/10.1109/ICSE-NIER.2019.00030

[51] Ingo Steinwart. 2001. On the in�uence of the kernel on the consistency of sup-
port vector machines. Journal of machine learning research 2, Nov (2001), 67–93.
https://doi.org/10.1162/153244302760185252

[52] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
109–119. https://doi.org/10.1145/3238147.3238172

[53] Zeyu Sun, Jie M Zhang, Yingfei Xiong, Mark Harman, Mike Papadakis, and
Lu Zhang. 2022. Improving machine translation systems via isotopic replace-
ment. In Proceedings of the 44th International Conference on Software Engineering.
1181–1192. https://doi.org/10.1145/3510003.3510206

[54] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Auto-
mated testing of deep-neural-network-driven autonomous cars. In Proceedings
of the 40th international conference on software engineering. 303–314. https:
//doi.org/10.1145/3180155.3180220

[55] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B Dwyer. 2021.
Distribution Models for Falsi�cation and Veri�cation of DNNs. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 317–329. https://doi.org/10.1109/ASE51524.2021.9678590

[56] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector:
Input validation for deep learning applications by crossing-layer dissection. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 727–738. https://doi.org/10.1145/3377811.3380379

[57] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. Robot: Robustness-oriented testing for deep learning
systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 300–311. https://doi.org/10.1109/ICSE43902.2021.00038

[58] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 1245–1256. https://doi.org/10.1109/ICSE.2019.00126

[59] Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S
Rosenblum, and Jin Song Dong. 2022. Self-checking deep neural networks for
anomalies and adversaries in deployment. IEEE Transactions on Dependable and
Secure Computing (2022). https://doi.org/10.1109/TDSC.2022.3200421

[60] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. 2019. Improving transferability of adversarial examples with
input diversity. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2730–2739. https://doi.org/10.1109/CVPR.2019.00284

[61] Xiaofei Xie, Hongxu Chen, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019.
Coverage-guided fuzzing for feedforward neural networks. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1162–
1165. https://doi.org/10.1109/ASE.2019.00127

[62] Xiaofei Xie, Tianlin Li, JianWang, Lei Ma, Qing Guo, Felix Juefei-Xu, and Yang Liu.
2022. NPC: N euron P ath C overage via Characterizing Decision Logic of Deep
Neural Networks. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 3 (2022), 1–27. https://doi.org/10.1145/3490489

[63] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146–157.
https://doi.org/10.1145/3293882.3330579

[64] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun Zhao.
2020. Deeprepair: Style-guided repairing for dnns in the real-world operational
environment. arXiv preprint arXiv:2011.09884 (2020). https://doi.org/10.1109/TR.
2021.3096332

[65] Daniel Hao Xian Yuen, Andrew Yong Chen Pang, Zhou Yang, Chun Yong
Chong, Mei Kuan Lim, and David Lo. 2023. ASDF: A Di�erential Testing
Framework for Automatic Speech Recognition Systems. In 2023 IEEE Con-
ference on Software Testing, Veri�cation and Validation (ICST). IEEE, 461–463.
https://doi.org/10.1109/ICST57152.2023.00050

[66] Jianping Zhang, Jen-tse Huang, Wenxuan Wang, Yichen Li, Weibin Wu, Xi-
aosen Wang, Yuxin Su, and Michael R Lyu. 2023. Improving the Transferabil-
ity of Adversarial Samples by Path-Augmented Method. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8173–8182.
https://doi.org/10.1109/CVPR52729.2023.00790

[67] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classi�cation. Advances in neural information processing systems
28 (2015). https://doi.org/10.5555/2969239.2969312

[68] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu
Jin, and Björn Schuller. 2018. Deep learning for environmentally robust speech
recognition: An overview of recent developments. ACMTransactions on Intelligent
Systems and Technology (TIST) 9, 5 (2018), 1–28. https://doi.org/10.1145/3178115

[69] Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, and Jun Sun. 2021.
Attack as defense: Characterizing adversarial examples using robustness. In Pro-
ceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 42–55. https://doi.org/10.1145/3460319.3464822

[70] Tianhang Zheng, Changyou Chen, and Kui Ren. 2019. Distributionally adversar-
ial attack. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 33.
2253–2260. https://doi.org/10.1609/aaai.v33i01.33012253

[71] Lingjun Zhou, Bing Yu, David Berend, Xiaofei Xie, Xiaohong Li, Jianjun Zhao,
and Xusheng Liu. 2020. An empirical study on robustness of DNNs with out-of-
distribution awareness. In 2020 27th Asia-Paci�c Software Engineering Conference
(APSEC). IEEE, 266–275. https://doi.org/10.1109/APSEC51365.2020.00035

[72] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021.
Deephyperion: exploring the feature space of deep learning-based systems
through illumination search. In Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. 79–90. https://doi.org/10.
1145/3460319.3464811

[73] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2023.
E�cient and e�ective feature space exploration for testing deep learning systems.
ACM Transactions on Software Engineering and Methodology 32, 2 (2023), 1–38.
https://doi.org/10.1145/3544792

Received 2023-02-02; accepted 2023-07-27

80

https://doi.org/10.1080/03610918208812247
https://doi.org/10.1080/03610918208812247
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.1109/TITS.2020.3032227
https://doi.org/10.48550/arXiv.1807.10875
https://doi.org/10.48550/arXiv.1807.10875
https://doi.org/10.48550/arXiv.2111.10344
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1145/3361566
https://doi.org/10.1109/RBME.2020.3013489
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.1109/IJCNN48605.2020.9207588
https://doi.org/10.1109/ICSE-NIER.2019.00030
https://doi.org/10.1109/ICSE-NIER.2019.00030
https://doi.org/10.1162/153244302760185252
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1145/3510003.3510206
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/ASE51524.2021.9678590
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1109/ICSE43902.2021.00038
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/TDSC.2022.3200421
https://doi.org/10.1109/CVPR.2019.00284
https://doi.org/10.1109/ASE.2019.00127
https://doi.org/10.1145/3490489
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1109/TR.2021.3096332
https://doi.org/10.1109/TR.2021.3096332
https://doi.org/10.1109/ICST57152.2023.00050
https://doi.org/10.1109/CVPR52729.2023.00790
https://doi.org/10.5555/2969239.2969312
https://doi.org/10.1145/3178115
https://doi.org/10.1145/3460319.3464822
https://doi.org/10.1609/aaai.v33i01.33012253
https://doi.org/10.1109/APSEC51365.2020.00035
https://doi.org/10.1145/3460319.3464811
https://doi.org/10.1145/3460319.3464811
https://doi.org/10.1145/3544792

	DistXplore: Distribution-guided testing for evaluating and enhancing deep learning systems
	Citation
	Author

	Abstract
	1 Introduction
	2 Preliminary and Overview
	2.1 Preliminary
	2.2 Overview of DistXplore

	3 Distribution-guided Testing
	3.1 Testing Goals
	3.2 Distribution-Guided Test Generation

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Threats to Validity
	6 Related Work
	6.1 Distribution-Unaware Testing
	6.2 Distribution-Aware Testing

	7 Conclusion
	Acknowledgments
	References

