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ABSTRACT

Deep learning (DL) models are trained on sampled data, where

the distribution of training data di�ers from that of real-world

data (i.e., the distribution shift), which reduces the model’s robust-

ness. Various testing techniques have been proposed, including

distribution-unaware and distribution-aware methods. However,

distribution-unaware testing lacks e�ectiveness by not explicitly

considering the distribution of test cases and may generate redun-

dant errors (within same distribution). Distribution-aware testing

techniques primarily focus on generating test cases that follow the

training distribution, missing out-of-distribution data that may also

be valid and should be considered in the testing process.

In this paper, we propose a novel distribution-guided approach

for generating valid test cases with diverse distributions, which

can better evaluate the model’s robustness (i.e., generating hard-to-

detect errors) and enhance the model’s robustness (i.e., enriching

training data). Unlike existing testing techniques that optimize in-

dividual test cases, DistXplore optimizes test suites that represent

speci�c distributions. To evaluate and enhance the model’s robust-

ness, we design two metrics: distribution di�erence, which maxi-

mizes the similarity in distribution between two di�erent classes

of data to generate hard-to-detect errors, and distribution diversity,

which increase the distribution diversity of generated test cases for

enhancing the model’s robustness. To evaluate the e�ectiveness

of DistXplore in model evaluation and enhancement, we compare

DistXplore with 14 state-of-the-art baselines on 10 models across

4 datasets. The evaluation results show that DistXplore not only

detects a larger number of errors (e.g., 2×+ on average), but also

identi�es more hard-to-detect errors (e.g., 10.5%+ on average); Fur-

thermore, DistXplore achieves a higher improvement in empirical
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robustness (e.g., 5.2% more accuracy improvement than the base-

lines on average).

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Neural networks.
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1 INTRODUCTION

Deep learning (DL) has achieved great success in many applica-

tions such as autonomous driving [42], healthcare [47], face recog-

nition [18] and speech recognition [68]. It is widely known that

DL models su�er from the issue of poor robustness, making them

vulnerable to adversarial attacks. Therefore, it is crucial to systemati-

cally test DL systems before deployment, especially in safety-critical

scenarios.

Machine learning (ML) involves the process of learning a model

from sampled data (i.e., training data) to make decisions on a spe-

ci�c task. The general steps of ML tasks include data collection,

model training, model evaluation, and model deployment. Due to

the huge input space, it is impossible to collect all data for train-

ing, thus, high-quality data that follows a certain distribution is

collected for training. As shown in Fig. 1, for a speci�c task (e.g.,

digit classi�cation), there is a vast amount of task-relevant data

for digits (i.e., the valid data shown in the dashed rectangle) in the

whole input space (i.e., all data shown in the solid rectangle). The

task-irrelevant data (e.g., noisy data and non-digit data) is referred

to as invalid data (e.g., the dataset f in Fig. 1) with respect to the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Data sampling and an illustrative example of DL system

given task. A small subset of the valid data (e.g., the dataset a and b

in Fig. 1) is collected for training the model. However, the training

distribution is often di�erent from the distribution of valid data

(due to the distribution shift), which greatly a�ects the model’s ro-

bustness. A fundamental assumption is that the model is intended

to handle the in-distribution data (ID) that follows the distribution

of training data [4], but it is hard to correctly predict data (e.g.,

the dataset c, d, and e in Fig. 1) that does not follow the training

distribution, i.e., out-of-distribution data (OOD), which highlights

the need for testing before deployment.

DL testing aims to generate test cases that evaluate the robustness

of DL systems, i.e., discover the data that is valid but cannot be

predicted correctly (e.g., the dataset d and e in Fig. 1), and enhance

the robustness, i.e., retraining model by including test cases data

with diverse distribution (dataset c, d, and e in Fig. 1). Many studies

have been conducted for testing DL systems [9, 22, 46, 54, 57, 63],

where validity and distribution are two important properties of test

cases. A common approach to guarantee validity is to constrain the

degree of the mutation (e.g., the distance between the new test and

the original seed is constrained within a !? ball). However, existing

methods (e.g., DeepTest [54], DeepHunter [63], and TensorFuzz [43])

often ignore the distribution [4, 9], which limits their e�ectiveness

in evaluation and enhancement (e.g., redundant errors within the

similar distribution are generated). Recently, some studies [4, 9, 22,

55] have attempted to address this by incorporating distribution-

aware testing, which characterizes the training distribution via

Variational Auto-Encoder (VAE) or Generative Adversarial Network

(GAN). However, these methods only generate ID data while OOD

data is considered as “invalid”. We argue that the OOD data is just

data that does not follow the distribution of the collected training

data but could still be valid and should be handled properly in real-

world deployment environment. For example, as shown in Fig. 2,

for each dataset, the input on the right side in a row is mutated

from its left-side sample, the inputs on the right are considered

as “invalid” data by existing distribution-aware testing [9]. These

data could still be visually valid, even though they are identi�ed as

"invalid" data by VAE [9]. For example, although the distribution of

the images in Out-of-Distribution Data (Valid) in Fig. 1 is di�erent

from the distribution of the training data (e.g., the digits written

in very di�erent ways), they could still be the potential inputs to

the deployed DL systems. Therefore, it is crucial to test both in-

distribution (ID) and out-of-distribution (OOD) data that are valid

before deploying the DL system.

The quality of test cases depends on the testing goals, i.e., what

kind of data is more useful in robustness evaluation and enhance-

ment in this paper. For evaluating model’s robustness, although

OOD data is likely to trigger incorrect decisions of the model, they

SVHN MNIST Fashion MNIST

Figure 2: Examples of OOD data that are considered as invalid by [9].

Left: original inputs, Right: generated inputs

could also be easily detected by OOD detection methods. For exam-

ple, state-of-the-art testing techniques can easily generate a large

number of errors (e.g., thousands of errors in [46, 63]), but most of

them tend to be weak errors that can be detected or �ltered by ex-

isting defense techniques (e.g., adversarial example detection [58]).

It is similar to traditional software testing, where defenses such as

parsers and exception handling can �lter out weak errors. Thus, for

DL testing, it is important and challenging to discover strong errors

that can evade the state-of-the-art defenses. For model enhance-

ment, the general goal is to reduce the distribution shift between

the training data and real-world data. Hence, how to generate tests

with diverse distributions (e.g., covering 2 , 3 , 4) is another challenge.

These diverse tests can be added to the training data for improving

the model generalizability and robustness.

To this end, in this paper, we propose a novel distribution-guided

testing framework (named DistXplore) for better evaluating and

enhancing DL systems, i.e., to generate hard-to-detect and diverse

errors. DistXplore adopts the search-based approach to adaptively

generate test cases with the guidance of distribution. Unlike existing

techniques that optimize test cases individuality, the optimization

of DistXplore is performed on a test suite that represents a speci�c

distribution. Speci�cally, we leverage Maximum Mean Discrepancy

(MMD) [13] to measure the closeness between two distributions. For

model evaluation, DistXplore maximizes the distribution closeness

between the data in two di�erent classes for generating statistically

indistinguishable errors, which are di�cult to defend. To enhance

the model’s robustness, we propose a metric to measure the distri-

bution diversity of the test cases, guiding DistXplore to generate

test suites with various distributions. The test cases with diverse

distributions are more likely to cover a wider range of unseen data

and improve the model’s robustness.

We conduct a comprehensive evaluation to demonstrate the

usefulness and the e�ectiveness of DistXplore in evaluating and

enhancing the model’s robustness. Speci�cally, we select 10 mod-

els on 4 datasets, and compare DistXplore with 14 state-of-the-art

tools covering 4 di�erent types of techniques (i.e., adversarial at-

tacks, distribution-unaware testing, distribution-aware testing, and

robustness-oriented testing). The results demonstrate that 1) the

statistically indistinguishable errors generated by DistXplore are

harder to detect by two state-of-the-art defense techniques, e.g.,

the attack-as-defense [69] can only detect 66% errors generated

by DistXplore, but almost 100% errors from adversarial attacks and

distribution-aware testing. 2) DistXplore is more e�cient in detect-

ing errors, e.g., on average it detects 2×+ errors compared to the

best baseline. 3) The test cases generated by DistXplore are more

useful in improving the model’s robustness, e.g., 5.2%more accuracy

improvement than the baselines on average.

To summarize, this paper makes the following contributions:

• We �rst discuss the limitation of existing distribution-aware and

distribution-unaware testing techniques in terms of validity and
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Figure 3: Illustration of test suite generation

distribution. Then we propose a novel distribution-guided testing

technique for generating hard-to-detect errors and diverse data

covering a wider range of unseen data. To the best of our knowl-

edge, this is the �rst distribution-guided testing for generating

test suites with diverse distributions.

• Technically, we design two distribution-based metrics (i.e., distri-

bution di�erence and distribution diversity) to guide the testing

for generating statistically indistinguishable errors and test cases

with diverse distributions, respectively.

• Wedemonstrate the usefulness ofDistXplore in discovering strong

errors and enhancing model’s robustness by comparing it with

14 state-of-the-art methods.

2 PRELIMINARY AND OVERVIEW

2.1 Preliminary

2.1.1 Deep Neural Network. A Deep Neural Network (DNN) can

be represented as a function 5 : - → . that maps an =-dimensional

input G ∈ - to an<-dimensional output ~ ∈ . . A DNN usually is

the composition of layers denoted as 5 = ;0 ◦ ;1 ◦ . . . ◦ ;: . We use

58 (G) to represent the output of the 8Cℎ layer, where 50 (G) = G and

5: (G) = ~. For example, the output~ in classi�cation is a probability

vector for< possible classes (e.g., 10 classes in CIFAR-10).

2.1.2 Data Validity. Let - be the whole input space with = di-

mensions (i.e., R=). We use / to denote all possible inputs that are

relevant to the given task (e.g., all images of digits 0-9). / is con-

sidered as valid data with respect to the task as they could be the

potential inputs when the trained model is deployed in real-world.

The inputs -\/ : {G : G ∈ - ∧G ∉ / } are invalid data, e.g., the data

of other tasks and low-quality data. It is di�cult to precisely de�ne

the validity of the data. In practice, the !? norm [40] is usually

used to guarantee the validity of the generated data by the existing

DL testing and adversarial attack techniques. Speci�cally, given

a valid input G , the new test case G ′ generated by adding some

perturbations on G is considered as valid if | |G ′ − G | |? < 3 , where 3

is a safe radius.

2.1.3 Data Distribution. Since valid inputs / can be in�nite, it is

not possible to collect all of them for training. In practice, a DNN

5 is usually trained from collected data ) (i.e., training data) that

follows a distribution D) , called in-distribution (ID) data. Some

generative models such as variational autoencoders (VAE) [30] and

generative adversarial networks (GAN) [9] are used to approximate

the ID data distribution [22].

There is often a distribution shift between D/ and D) (i.e., the

training data cannot represent the real-world data), making that the

model underperforms on the out-of-distribution (OOD) data. Hence,

test cases with diverse distributions are more likely to reveal the

weaknesses of the model. On the other hand, the OOD test cases can

enrich the training data such that the distribution of new training

dataset is closer to the distribution of training data.

Note that the validity and the out-of-distribution of the data are

di�erent in this paper. The valid data is any potential inputs of the

model with respect to the task, and is usually of high quality. The

out-of-distribution data refers to the data that does not follow the

distribution of speci�c training data. The valid data can be ID or

OOD, depending on the training data collected. The OOD data can

also be valid or invalid, depending on the relevance and quality

of the data. To measure the validity, we adopt the widely used

measurement, i.e., !? norm. To measure the distribution di�erence,

we adopt the metric Maximum Mean Discrepancy de�ned below.

2.1.4 Maximum Mean Discrepancy. Maximum Mean Discrepancy

(MMD) is a common test statistic to measure the closeness between

two sets of samples drawn from two distributions. Assume we

have two sets of samples - = {G1, . . . , G<} and . = {~1, . . . , ~=}

drawn from two distributions D- and D. , MMD calculates the

distance between the two sets of samples in a universal reproducing

kernel Hilbert space (RKHS) [51]. The empirical estimation of MMD

between the two distributions in RKHS, denoted as ""� (-,. ),

can be calculated as:

1

<2

<∑

8, 9=1

: (G8 , G 9 ) −
2

<=

<,=∑

8, 9=1

: (G8 , ~ 9 ) +
1

=2

=∑

8, 9=1

: (~8 , ~ 9 )

where k is a measurable and bounded kernel of a RKHS, MMD is

zero if and only if D- = D. . As mentioned in [44] that Gauss-

ian and Laplace kernels are universal, we use Gasussian kernel to

calculate MMD. More details about MMD can refer to [14].

2.2 Overview of DistXplore

Fig. 3 shows the main idea of our approach. We mainly consider

classi�cation task in this paper. Speci�cally, DistXplore considers

the data distribution in each class separately, i.e., to generate test

cases with diverse distributions for each class. To measure the dis-

tribution diversity of the test cases, we calculate the distribution

di�erence (i.e., MMD) between the test suite from a class and the

training data in each of other classes, and then measure the di-

versity of these distribution di�erences. We consider distribution

di�erences between test cases and the data in di�erent classes, since

each input may be classi�ed into any class by a model, representing

the di�erent decision behaviors of the model. Therefore, we aim to

generate diverse test cases by considering the diversity of distribu-

tion di�erences between the generated test cases and training data

of di�erent classes.

As shown in Fig. 3, given the initial test suite sampled from the

training data of a class, which represents the training distribution of

the class, the goal is to generate new test suites that have di�erent

distribution distances with the training data in other classes (e.g.,

class 1, 2, 3). The distribution curve of the test suites (i.e., red curve)

shifts from the original distribution (i.e., blue curve) to the target

distribution (i.e., green or orange curve), thus DistXplore generates

test suites that are more likely to be predicted incorrectly. For

robustness evaluation, the goal is to generate errors that are hard to
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Figure 4: Diversity of data distribution on MNIST

detect. The more similar the distribution of the test suite (e.g., class

0) is to the distribution of the training data in the target class (e.g.,

class 1), the harder it is to detect the errors, because the errors are

statistically indistinguishable from the target class. For robustness

enhancement, DistXplore is used to generate test suites with diverse

distributions (instead of only hard-to-defend errors) that can enrich

the training data by adding unseen data, thus improving the model’s

robustness.

3 DISTRIBUTION-GUIDED TESTING

3.1 Testing Goals

In this paper, we mainly focus on two objectives: model evaluation

and enhancement. We design the objective functions that guide the

test case generation, i.e., optimize test suites.

3.1.1 Model Evaluation. To evaluate the model’s robustness, we

aim to generate the erroneous inputs that are hard to be detected

by existing defense techniques. Speci�cally, just as any dataset can

follow a speci�c distribution, the data within individual classes in

classi�cation tasks also possess their own distribution. Due to the

di�erences between these di�erent classes, their data distributions

are also very di�erent (e.g., dogs and birds). A well-trained model is

capable of accurately distinguishing the di�erences between these

classes. In Fig. 4, the blue areas represent the di�erent distributions

of data for di�erent classes in the MNIST dataset. Conversely, if the

data distributions between two classes are very similar, the model

may struggle to make accurate predictions. Thus, DistXplore aims

to generate test cases (in a class) that are statistically similar to the

training data in other classes.

Formally, given a DNN 5 and a test suite (2 belonging to a

source class 2 , we de�ne its distribution di�erence with respect to

the training data ()2′ ) in another target class 2′ as:

��5 ((2 , 2
′) = ""� (5; ((2 ), 5; ()2′ ))

where 5; refers to the output of the layer ; and 2′ ≠ 2 .

The distribution di�erence is measured on a speci�c layer of

the DNN. In this paper, we select the logits layer, i.e., the layer

before the softmax layer, which is frequently used in previous

works [26, 31, 70]. Intuitively, the smaller the value ��5 ((2 , 2
′), the

more di�cult it is for the model 5 to distinguish (2 and )2′ . Hence,

it is more likely to generate undetectable errors by minimizing their

distribution di�erence.

3.1.2 Model Enhancement. The model’s robustness can be im-

proved if the distribution of training data () ) is closer to the distri-

bution of real-world valid data (/ ), i.e., to add more unseen valid

data to training data. However, it is impossible to directly collect

all real-world data. Therefore, we could adjust the objective to

generate data that is as diverse as possible, aiming to make the

distribution of the generated data more closely resemble that of

real-world valid data (/ ). To provide a easy understanding of the

fundamental concept behind generating diverse data to enhance

model’s robustness, we conducted a qualitative analysis, as de-

picted in Fig. 4. In this visualization, we show the distribution of

training data (represented in blue) and the distributions of speci�c

errors generated by di�erent types of tools: adversarial attack tool

(PGD [37]), distribution-unaware testing tool (DeepHunter [63]),

distribution-aware testing tool (VAE [55]), and DistXplore. Addition-

ally, we include some real-world data examples, which represent a

wide range of possible data samples.

The results of this analysis highlight two key observations: 1) the

model is not robust due to the distribution shift between the training

data and real-world data. By utilizing various tools, we can generate

valid OOD data that helps reduce the distribution shift, and further

enhance the robustness by incorporating previously unknown data

into the training set. 2) The erroneous inputs generated by existing

tools exhibit limited diversity, while DistXplore aims to generate

test cases with diverse distributions, such that the distribution of

the generated data could be closer to real-world data distribution.

We propose a metric to measure the distribution diversity of

test suites, which can guide the generaton of diverse data. Given

a DNN 5 that performs the classi�cation on< classes (denoted as

�5 ), and a set of test suites)(2 in a class 2 , the distribution diversity

is de�ned as:

�8E ()(2 ) =

∑
2′∈�5 \2 |{B(��5 ((, 2

′)) |∀( ∈ )(2 )}|

|�5 \2 | · :

where �5 \2 represents the other classes except 2 , B is an interval

abstraction function that maps a concrete MMD value to an interval,

and : is the number of intervals between 2 and each of other classes.

The basic idea is to measure the diversity of distribution dif-

ferences between the current test suites and the training data of

other classes. Since the di�erence between two distributions (i.e.,

MMD) is a continuous variable, we adopt the interval abstraction to

spilt its values into : intervals (i.e., : distributions). The numerator

and the denominator represent the number of intervals covered

and the total number of intervals between the current class 2 and

other classes, respectively. As shown in Fig. 3, the distribution ade-

quacy is measured from two perspectives: 1) Distribution Di�erence

Diversity: for a given target class 2′, multiple intervals between

the test suites and the training data of 2′ can be covered. 2) Target

Class Diversity: multiple classes (i.e., �5 \2) are used to guide the

test generation, which allows to consider the relationships between

every two classes.

Intuitively, the test suites in multiple intervals have di�erent

distributions. To enhance the model’s robustness, the training data

should cover the distributions as many as possible, i.e., to increase

the distribution diversity. Note that, only using the strong errors

(i.e., undetectable) is not su�cient to improve the whole robustness

as it cannot handle errors with di�erent distributions (see the results

in Section 4). In Fig. 3, the generated test suites (i.e., Test suite 1, 2,

3, 4) have diverse distributions (i.e., di�erent red curves), and are

added into the training data for retraining.
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We select the classes in the same task as targets because the

classi�cation is based on their relationships, i.e., to choose a rela-

tively suitable class (with higher probability). These targets may be

incomplete in terms of characterizing the distribution diversity. We

can also select other targets to guide the test generation such as the

classes in other tasks as long as the generated tests are valid. For

example, we can select the classes in CIFAR-10 or Roman numerals

as the targets of MNIST task. We plan to evaluate the e�ects of

more di�erent targets in the future work.

3.2 Distribution-Guided Test Generation

To achieve both testing goals, we use a genetic algorithm (GA) to

solve the problem. Without loss of generality, the objective function

can be de�ned as ��5 ((2 , 2
′) ≈ E (i.e., to decrease ��5 ((2 , 2

′) until

it is close to a small value E), where (2 is the test suite belonging

to 2 , 2′ is a target class and E is a constant value. For the goal of

model evaluation, E is set as 0, i.e., to generate (2 that is statisti-

cally indistinguishable from the training data in 2′. For the goal

of model enhancement, DistXplore generates test suites that cover

more diverse intervals. Consider a target interval [E0, E1] that we

aim to cover, the objective function is de�ned as ��5 ((2 , 2
′) ≈ E ,

where E ∈ [E0, E1] can be any value within the range. The general

objective function can be:

argmin
(2

|��5 ((2 , 2
′) − E |

Algorithm 1 shows the search-based method to solve the objec-

tive function. The inputs include the DNN 5 , a seed test suite (2
from class 2 , a target class 2′ (2′ ≠ 2) and the target distribution dif-

ference E . The output is the new test suite that can reach the target

distribution di�erence. The seed test suite can be collected from

training dataset or testing dataset. We �rst construct a population

that contains< test suites (Line 1-3) by mutating the seed test suite

< times. Note that the chromosome is a test suite (including mul-

tiple inputs) instead of a single input. It repeatedly optimizes the

population (Line 4-16) for minimizing the distribution di�erence. In

each iteration, we �rst calculate the �tnesses of the updated popula-

tion (Line 6). Then we update the new population with the standard

crossover and mutation. If the best chromosome ( in the population

satis�es the objective or timeout, then the optimization process

terminates (Line 9-10). The distribution di�erence decreases during

optimization until it is less than a pre-de�ned value n . For example,

n = 0 indicates that ��5 ((, 2
′) is equal to E . Note that ��5 ((, 2

′) is

decreasing for the two test goals, because the distribution of the

initial test suite is often far from the distribution of the training

data in the target class 2′.

We keep the chromosome that has the best �tness unchanged

(i.e., no crossover or mutation) to ensure that the optimization does

not get worse (Line 11). For others, we �rst select two chromosomes

based on the tournament strategy [39] (Line 13- 14). A uniform

crossover is performed between the selected two chromosomes

in the input level, i.e., genes in a chromosome are inputs of the

model 5 (Line 15). Each gene in the chromosome ( can be selected

to mutate with a selection probability A (Line 16).

In this paper, we mainly focus on image classi�cation tasks. Dis-

tXplore can be easily extended to other domains. We select the di-

verse image transformations (e.g., translation, rotation, brightness)

Algorithm 1: Test generation

Input : 5 : the target DNN, (2 : a seed test suite from class 2 , 2′:

the target class, E: target distribution di�erence

Output :( ′2 : the new test suite

Const :<: population size, C : tournament size, A : mutation rate

1 %>? := ∅;

2 for 8 ∈ [0,<) do

3 %>? := %>?
⋃
<DC0C4_402ℎ ((2 ) ;

4 while True do

5 for ( ∈ %>? do

6 5 8C( = ��5 ((, 2
′ ) − E;

7 for ( ∈ %>? do

8 if ∀$ ∈ %>?.5 8C( ≤ 5 8C$ then

9 if 5 8C( ≤ n or timeout then

10 return S;

11 continue;

12 else

13 (1 := C>DA_B4;42C (%>?, C ) ;

14 (2 := C>DA_B4;42C (%>?, C ) ;

15 ( := 2A>BB>E4A ((1, (2 ) ;

16 ( :=<DC0C4_?A>1 ((, A ) ;

used in DeepTest [54] and DeepHunter [63]. For each selected gene,

the mutation randomly selects a transformation function to mutate

it. To guarantee the validity of the generated inputs, we adopt the

conservative strategy [63] that constrains the transformation with

both !0 and !∞.

4 EVALUATION

We have implemented DistXplore in Python 3.6 based on DL frame-

work Keras (ver.2.3.1) with Tensor�ow (ver.1.15.2). To evaluate the

e�ectiveness of DistXplore in the model evaluation and model en-

hancement, we aim to answer the following research questions

(RQs), where RQ1 and RQ2 are to demonstrate the e�ectiveness in

model evaluation, RQ3 and RQ4 are to evaluate the model enhance-

ment, and RQ5 is to study the generalization of DistXplore.

• RQ1: How e�ective is DistXplore in detecting errors 1 that can

bypass the defense methods?

• RQ2: How e�cient is DistXplore for discovering valid errors?

• RQ3: How e�ective is DistXplore in improving the robustness of

the DL model under testing?

• RQ4: How useful are distribution di�erence diversity and target

class diversity in improving robustness?

• RQ5: Can DistXplore be generalized to other domains?

4.1 Setup

4.1.1 Datasets andDNNModels. We select four datasets (i.e., MNIST,

Fashion-MNIST, CIFAR-10, and SVHN) and six DNNs (i.e., LeNet-4,

LeNet-5, VGG16, ResNet-20, Inception-v3, and Inception-ResNet-v2)

that are commonly used in existing works [11, 16, 20, 33, 55, 60, 61].

4.1.2 Baselines. To evaluate the e�ectiveness of DistXplore, we

select 4 types of approaches including 14 state-of-the-art baselines

for the comparisons: 6 adversarial attacks, 4 distribution-unaware

1The error in the paper refers to the erroneous inputs that are missclassi�ed.
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testing techniques, 3 distribution-aware testing techniques and 1

robustness-oriented testing.

• Adversarial Attack. We select 6 adversarial attack techniques, in-

cluding 3 classical ones i.e., BIM [29], PGD [37], and C&W [5], and

3 new ones, i.e., DI-2-FGSM (D2F) [60], SI-NI-FGSM (SNF) [33],

and TI-FGSM (TIF) [11] to generate adversarial examples and

compare them with the errors generated by DistXplore.

• Distribution-unaware Testing. We select DeepHunter [63], Neuron

Path Coverage (NPC) [62], and Combinatorial Testing (CT) [50]

as the baselines. DeepHunter is con�gured with two di�erent

coverage guidance, i.e., k-multisection Neuron Coverage (KMNC),

Neuron Boundary Coverage (NBC). KMNC and NBC are designed

to test the major function region and the corner-case region [35];

NPC is con�gured with Structure-based Neuron Path Coverage

(SNPC), which is designed to test the decision logic; CT takes the

relationships between neurons in adjacent layers into considera-

tion when testing DNN models.

• Distribution-aware Testing. We select three recent distribution-

aware testing techniques [22, 27, 55] as baselines. In [27], the test

selection criteria are proposed to measure the Surprise Adequacy

(SA) of test cases. We select the Likelihood-based SA (LSA) that

measures the training distribution with Kernel Density Estima-

tion as a baseline. In [55], a variational auto-encoder (VAE) is

used to speci�cally generate in-distribution test cases. In [22], a

hierarchical distribution-aware (HDA) testing is proposed based

on the global distribution and local distribution. We denote these

two baselines as VAE and HDA, respectively.

• Robustness-oriented Testing. To evaluate the robustness enhance-

ment, we select the state-of-the-art robustness-oriented testing

technique Robot [57] as our baseline.

4.1.3 Defense Methods. To evaluate the strengths of generated

errors by di�erent techniques, we select two state-of-the-art defense

methods that detect adversarial examples as follows:

• Dissector [56], which dissects the outputs of intermediate layers

and calculates a score for the given input. The score shows the

degree of similarity between the input and benign data. For LeNet-

4 and LeNet-5, we select the fully connected layers. For e�ciency,

�ve intermediate layers are selected for larger model. The details

are provided on our website [2].

• Attack as Defense (A2D) [69], which detects adversarial samples

based on the observation that adversarial samples are less robust

than benign ones. It measures the robustness of the given inputs

with existing adversarial attacks. We use JSMA [45] (that is dif-

ferent from baseline adversarial attacks) to calculate the attack

cost of each input for detecting whether it is abnormal input.

4.1.4 Experiment Setup.

Seed Selection. For each task, we randomly select 100 seed inputs

for each class from training dataset. Totally, we select 1,000 seeds

that are used by all baselines. Note that the HDA approach proposes

a distribution-aware strategy to select seeds, hence we con�gure

HDAwith two initial seed construction strategies: 1) using the same

1,000 seed inputs as used for other baselines for a fair comparison

(denoted as ���) and 2) using the HDA’s own seed selection to

select 1,000 initial seed inputs (denoted as ���> ).

Con�guration of DistXplore. We use the 100 initial seeds selected

in each class as a seed test suite. For each class 2 , we run DistXplore

multiple times (i.e., 9) by setting di�erent target classes 2′ with

Algo. 1. Finally, for each model, we run DistXplore 90 times (i.e.,

10 source classes × 9 target classes). We set the �tness function as

minimizing the distribution di�erence (i.e., the values of E and n in

Algo. 1 are con�gured as 0). Note that, to calculate the di�erence ef-

�ciently, we randomly select another 100 samples from the training

data in class 2′ instead of all of them. We found that the distribu-

tion distance between the selected samples and the corresponding

class of training data is close to zero (MMD), which indicates that

the selected training samples can represent the distribution of the

whole training data.

For each run ofDistXplore, we limit the total number of iterations

in GA as 30. We empirically con�gured the population size, the

tournament size, and the mutation rate as as 100, 20, and 0.01,

respectively. Due to the limit of the space, the experiments about

the impact of the parameters are put on our Website [2]. For the

robustness enhancement, we do not explicitly generate test cases

for each interval (see �8E ()(2 ) in Section 3.1.2). Instead, we map

the distribution di�erence in each iteration (i.e., the �tness value)

to an interval. During the optimization process, the distribution

distance is decreasing in multiple iterations, covering di�erent

intervals. To ensure the validity of the generated test cases, we adopt

a more conservative con�guration compared to DeepHunter [63]

to constrain the mutation.

Con�guration of Baselines. For the three classic adversarial at-

tacks, we perform the target attack for each seed input by selecting

other classes as the targets, i.e., we generate 9 adversarial examples

for each seed input. For the three new adversarial attacks, as they

are not designed for target attacks, we perform untarget attack with

the default con�gurations provided.

Note that LSA is a test selection metric instead of a testing tool.

To perform the comparison, we develop a new testing tool based on

DeepHunter, i.e., using LSA as the guidance to generate test cases.

For others, we follow their default con�gurations to run Deep-

Hunter, CT, NPC, HDA, VAE, and Robot. Speci�cally, each model is

tested for 5,000 iterations by DeepHunter (KMNC and NBC), CT,

and NPC. Each seed is optimized with 50, 30, and 30 iterations by

HDA, VAE, and Robot, respectively. More detailed settings can be

found on our website [2].

RQ Setup. To demonstrate the capability of DistXplore in gen-

erating strong errors for model evaluation (RQ1), we collect the

test suite in the last iteration for every pair (2, 2′) (i.e., the best

chromosome returns from Algo 1). For each model, we collect a

total number of 90 chromosomes over 90 pairs, which are used

to evaluate the strength of these errors. The strength of errors is

measured by the success rate of bypassing defenses. In addition,

we also evaluate the e�ciency of DistXplore for discovering valid

errors (RQ2). To evaluate the e�ciency, we count all the errors

generated during the 30 iterations. Speci�cally, we select two met-

rics for the comparisons: the total number of errors and the success

rate of generating errors for each seed. To evaluate the validity of

generated errors, we perform a human study to manually check

the validity of the discovered errors.
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Table 1: Results of bypassing the defense techniques on datasets MNIST (M), Fashion MNIST (FM), CIFAR-10 (C), and SVHN (S) and DNNs

LeNet-4 (L-4), LeNet-5 (L-5), VGG16 (V-16), ResNet-20 (R-20), Inception-ResNet-v2 (IR-V2), and Inception-v3 (I-V3).

DS Model Defense DistX BIM PGD C&W D2F SNF TIA KMNC NBC CT NPC LSA HDA ���> VAE

M

L-4
Dissector 0.97 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

A2D 0.58 1.00 1.00 1.00 0.99 0.81 0.99 0.87 0.88 0.73 0.69 0.67 1.00 1.00 1.00

L-5
Dissector 0.93 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.99 1.00 1.00

A2D 0.68 0.99 1.00 1.00 1.00 0.78 1.00 0.81 0.79 0.78 0.84 0.85 0.99 1.00 1.00

FM

L-4
Dissector 0.85 0.95 1.00 1.00 0.98 0.97 0.99 0.95 0.95 0.90 0.93 0.89 0.91 0.97 -

A2D 0.35 0.91 0.99 0.98 0.87 0.74 0.77 0.80 0.80 0.60 0.63 0.46 0.95 0.97 -

L-5
Dissector 0.82 0.96 0.96 0.99 0.93 0.89 9.95 0.89 0.87 0.85 0.95 0.87 0.86 0.96 -

A2D 0.44 0.87 0.89 0.97 0.85 0.87 0.88 0.55 0.59 0.53 0.94 0.60 0.92 0.99 -

C

V-16
Dissector 0.83 0.99 0.98 0.98 0.96 0.92 0.95 0.96 0.95 0.95 0.95 0.94 0.91 0.93 -

A2D 0.59 0.99 0.95 0.98 0.92 0.81 0.91 0.77 0.77 0.78 0.77 0.83 0.89 0.93 -

R-20
Dissector 0.89 0.99 0.99 0.99 0.94 0.93 0.94 0.89 0.89 0.92 - 0.92 0.90 0.90 -

A2D 0.39 0.96 0.95 0.78 0.93 0.95 0.83 0.56 0.56 0.89 - 0.97 0.91 0.89 -

IR-V2
Dissector 0.84 0.98 0.98 0.99 0.90 0.89 0.90 0.87 0.87 0.86 - 0.86 0.91 0.90 -

A2D 0.24 0.76 0.81 0.76 0.36 0.51 0.36 0.47 0.49 0.53 - 0.51 0.53 0.66 -

I-V3
Dissector 0.83 0.97 0.97 0.98 0.92 0.91 0.92 0.89 0.90 0.90 - 0.89 0.93 0.93 -

A2D 0.27 0.82 0.84 0.72 0.41 0.50 0.35 0.49 0.46 0.42 - 0.43 0.56 0.55 -

S

V-16
Dissector 0.86 0.99 0.99 0.99 1.00 0.96 0.99 0.98 0.99 0.95 0.96 0.94 0.94 0.96 0.99

A2D 0.36 0.95 0.97 0.98 1.00 0.91 0.99 0.62 0.75 1.00 1.00 0.57 0.57 0.90 0.97

R-20
Dissector 0.88 0.99 0.99 0.99 0.98 0.95 0.98 0.92 0.92 0.95 - 0.92 0.94 0.97 0.99

A2D 0.44 0.98 0.97 0.96 0.98 0.95 0.97 0.90 0.85 1.00 - 0.98 0.65 0.91 0.99

To demonstrate the capability in enhancing robustness, we select

test suites with diverse distributions (i.e., distribution di�erence

diversity and target class diversity). For each pair (2, 2′), we split the

distribution di�erence [��1, ��30] into 10 intervals, where ��=
represents the best �tness value in the =Cℎ iteration. Note that the

�tness values in multiple iterations may fall into the same interval.

To achieve the distribution di�erence diversity, we randomly select

an iteration from each interval and collect its best chromosome (i.e.,

10 chromosomes for each pair). To achieve the target class diversity,

we consider all of other classes as the targets (i.e., 9 targets for each

source). Finally, we collect 900 test suites (10 intervals× 90 pairs) for

�ne-tuning in RQ3 (e.g., Test suite 1, 2, 3, 4, . . . in Fig. 3). To conduct

a fair comparison, we collect the same number of test cases by

each baseline for retraining. Speci�cally, for adversarial attacks, we

con�gure di�erent parameters such that we can generate multiple

adversarial examples for each seed input. For testing tools, we �rst

generate a large number of errors, and then randomly select the

same number of inputs for retraining.

For RQ4, we evaluate the usefulness of distribution di�erence

diversity and target class diversity in robustness enhancement. We

collect two sets for retraining: 1) we only consider the distribution

di�erence diversity and ignore the target class diversity. We ran-

domly select one target class and collect multiple chromosomes

from each interval, denoted as DistXplore35 (e.g., Test suite 1, 2 in

Fig. 3). 2) We select all target classes for the target class diversity but

restrict their intervals. For each target class, we randomly select

some chromosomes from only one interval, denoted as DistXploreC .

(e.g., Test suite 1, 3 in Fig. 3). Note that, to make a fair comparison

with the results in RQ3, we control the number of test cases in

DistXplore35 and DistXploreC by collecting multiple chromosomes

from an interval, such that they have the same size with the data

using in RQ3 (i.e., 900 test suites).

For the robustness measurement in RQ3 and RQ4, we select the

empirical robustness that is commonly used in previous works [22,

57]. The empirical robustness is measured by the accuracy on a

validation dataset. To generate such a validation dataset, we select a

new set of initial seeds (1,000) that di�ers from the seeds in testing.

Then we runDistXplore and other baselines to generate errors based

on new seeds. These errors found by di�erent tools form a new

test set for evaluating empirical robustness. Considering that the

transformation strategies are di�erent in di�erent types of tools, we

try to construct a balanced dataset for a fair comparison, including

9,000 errors from each type of tool, i.e., adversarial attacks (3,000 for

each of BIM, PGD, and C&W), distribution-unaware testing (4,500

for each con�guration of DeepHunter), distribution-aware testing

(3,000 for each of LSA, VAE, and HDA), and distribution-guided

testing (100 for each source-target pair).

For RQ5, we evaluate the generalization ability of DistXplore by

adapting it to twoNLP classi�cation tasks: i.e., sentiment analysis on

IMDB [36] and news classi�cation on AG’s News [67]. We �ne-tune

the pre-trained model BERT [8] on the two datasets, respectively.

Due to the intrinsic di�erences between images and textual data,

we develop the text speci�c mutation strategies. The details about

the text mutation can be found on the Website [2]. As other testing

tools are mainly used in image domain, we select two NLP adver-

sarial attacks (i.e., PWWS [48] and TextFooler [23]) as the baselines.

Additionally, we select the state-of-the-art method WDR [41] as

the defense technique as Dissector and A2D are not suitable for

BERT pre-trained models.

We follow the existing work [63] and repeat each experiment

5 times to reduce the e�ect of the randomness during the test

generation.

4.2 Results

4.2.1 RQ1:Strength of Errors. We evaluated our method using

three metrics: the unique number of errors, the success rate, and the

strength of errors. The unique number of errors represents the total

number of erroneous inputs generated within a given time budget.

This metric is widely used in existing DL testing works [1, 3, 6, 10,

24, 34, 57, 65, 72, 73] and provides a measure of the e�ectiveness of
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DL testing. The success rate measures the percentage of seed inputs

from which the testing tools can generate at least one erroneous

input. This metric has been employed in DL testing and adversarial

attack tools [3, 11, 33, 60, 65, 66]. A higher success rate indicates that

our method is capable of generating errors for a larger proportion of

seed inputs. The strength of errors quanti�es the severity or impact

of the erroneous inputs generated. We emphasize the importance

of generating strong errors, as weaker errors can be easily detected

by existing defense tools.

Table 1 shows the results on the strength of generated errors

by di�erent methods. For Dissector, we use AUROC to indicate the

capability on detecting errors. For Attack-as-Defense, we show the

proportion of errors that can be detected. The symbol - in column

NPC indicates that NPC cannot be used to test these DNNs since

the critical paths can not be extracted. The symbol - in column VAE

indicates that the VAE method does not work well on the selected

task as mentioned in [9].

The overall results show that DistXplore (column DistX ) can

generate more strong errors that are di�cult to be detected by

defense techniques compared with baselines. Speci�cally, all errors

generated by adversarial attacks underperform DistXplore, which

may be because that they only add minor perturbations. We also

found that the new advrsarial attacks outperform the classic ad-

versarial attacks (i.e., BIM, PGD, C&W). Compared with testing

techniques, we can see that DistXplore performs better in most

cases. Comparing the results between distribution-unaware testing

(i.e., KMNC, NBC, CT, and NPC) and distribution-aware testing

(i.e., HDA/���> and VAE), we found that distribution-unaware

testing tends to perform better because it generates some OOD

data, indicating that ID errors (from distribution-aware testing)

are easier to detect. DistXplore explicitly considers the distribution

di�erence, which guides to generate statistically indistinguishable

errors that are more di�cult to detect.

Compared to other distribution-aware testing (i.e., HDA/���>

and VAE), we found that the errors generated by LSA are harder

to detect because LSA can also generate OOD data based on the

surprise guidance. DistXplore performs better than LSA since it

considers the distribution di�erence between each two classes and

optimizes each test suite, making the discovered errors statistically

indistinguishable compared with other classes.

Answers to RQ1-1: Compared with adversarial attacks and

existing DL testing techniques, DistXplore is more e�ective in

generating hard-to-detect errors. Existing distribution-aware

testing techniques mainly focus on generating in-distribution

data that could be easier to detect.

Fig. 5 shows the relationship between the distribution di�erence

and the strength of errors. Due to the space limit, other results are

put on our website [2]. For each pair (2, 2′), we collect the best

chromosome ( after each iteration and calculate: 1) MMD_target:

the distribution di�erence between ( and the training data of target

class 2′, 2) MMD_source: the distribution di�erence between ( and

the training data of source class 2 , 3) Error Rate: the proportion

of errors in ( , 4) Error_target Rate: the proportion of errors (in ()

predicted as the target class and, 5) Dissector and A2D: the results
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Figure 5: The average results during the optimization of DistXplore

(model: LeNet-5)

Table 2: Results of e�ciency on four datasets

DS Mod Metric DistX KMNC NBC LSA HDA VAE

M

L-4

Time (s) 257.7 737.9 471.4 1271.9 1937.8 1166.2

#Error 21,008.6 4655.4 8029.8 8985.2 58.8 32.8

Succ.R 1.00 0.65 0.96 0.96 0.59 0.33

L-5

Time (s) 159.4 1260.0 758.9 2200.0 1563.7 3810.0

#Error 9602.4 3414.4 6445.8 7132.4 8.8 43.4

Succ.R 0.89 0.61 0.95 0.96 0.09 0.43

FM

L-4

Time (s) 258.9 734.1 549.0 1002.8 1963.7 -

#Error 21,082.8 10,396.8 15,409.8 19,607.2 97.4 -

Succ.R 1.00 0.73 0.80 0.92 0.97 -

L-5

Time (s) 160.8 1810.4 1137.0 1234.0 1894.4 -

#Error 18,747.4 11,064.4 15,562.8 17,756.4 94.8 -

Succ.R 0.99 0.72 0.99 0.97 0.95 -

C

V-16

Time (s) 613.9 24,820.1 13316.1 3031.2 7255.9 -

#Error 26,131.4 5924.6 8510.6 10,853.2 81.4 -

Succ.R 1.00 0.79 0.94 0.93 0.82 -

R-20

Time (s) 605.6 4768.5 2956.1 2931.6 6102.5 -

#Error 30,016.8 8683.4 10,176.6 13,701.6 96.2 -

Succ.R 0.97 0.68 0.82 0.73 0.96 -

S

V-16

Time (s) 581.8 24,412.3 12,488.2 6903.4 6893.6 6448.1

#Error 29,793.4 2342.4 2856.2 3936.2 75.8 98.6

Succ.R 1.00 0.70 0.70 0.70 0.76 0.99

R-20

Time (s) 606.6 4435.4 2842.5 6645.7 6533.7 5749.1

#Error 29,627.4 4122.8 5508.6 9653.6 76.8 98.6

Succ.R 1.00 0.53 0.75 0.81 0.77 0.99

detected by the di�erent defense techniques. We average the results

from all pairs, and normalize the results from 0 to 1 except for Error

Rate and Error_target Rate for easier comparison.

The results show that, during the optimization, the distribution

of ( is getting closer to the training distribution of the target class

(see MMD_target) and getting farther away from the source class

(see MMD_source). Meanwhile, Error Rate and Error_target Rate are

increasing, indicating that more errors are generated and gradually

become statistically indistinguishable between the original class

2 and target class 2′. The e�ect of indistinguishability can be fur-

ther con�rmed by the detection results (i.e., Dissector and A2D):

errors become indistinguishable and di�cult to detect while the

MMD_target decreases.

Answers to RQ1-2: The distribution di�erence is useful in

guiding the generation of statistically indistinguishable errors,

making them more di�cult to detect. Compared with others,

DistXplore generates more diverse errors.
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4.2.2 RQ2: E�iciency of DistXplore. We further study the e�-

ciency of DistXplore in discovering errors, as shown in Table 2.

Note that we do not set the same time to run all tools as di�er-

ent tools have di�erent con�guration methods. We emphasize that

this paper mainly focuses on generating high-quality (i.e., hard-to-

detect) errors rather than merely comparing the total number of

errors within a set time, as many weak errors can be easily detected

by defense methods (see RQ1 results).

In Table 2, we show the time used for each tool under its con�g-

uration (Time (s)) and the total number of errors (#Error). Due to

the space limit, other results are put on our website [2]. We do not

show the results of adversarial attacks here because they di�er from

the settings of testing tools, i.e., they generate an adversarial exam-

ple for each seed. Overall, we can observe that DistXplore (column

DistX ) generates more errors while uses the shortest time. We could

also observe that the existing distribution-aware testing tends to

be slower due to time-consuming distribution measurements, such

as the Kernel Density Estimation and VAE. Table 2 also shows the

success rate of generating errors for each seed. The results show

that DistXplore has a higher success rate than other baselines. We

also notice a exception that LSA achieves higher success rate on

MNIST LeNet-5. We conjecture that it is due to the optimization ob-

jective of DistXplore that minimizes the distribution distance, rather

than speci�cally guiding misclassi�cation for individual samples.

In some speci�c datasets, the optimization may not require errors

for certain seeds.

In order to evaluate the validity of the generated inputs, we

conducted a manual investigation by randomly selecting 10,000

erroneous inputs from the testing outputs of each model and calcu-

lating the average validity ratio. The validity ratios were found to

be 98.5%+, 96.5%+, 98.7%+, and 95.3%+ for MNIST, Fashion-MNIST,

CIFAR-10, and SVHN datasets, respectively. The results demon-

strate that DistXplore is capable of generating valid inputs with

high proportions. More details are provided on our website [2].

Answers to RQ2: Compared to other DL testing tools, DistX-

plore achieves the highest e�ciency in terms of the number of

errors generated per second and success rates. Moreover, Dis-

tXplore is more e�ective in terms of generating valid samples.

4.2.3 RQ3: Robustness Enhancement. For each tool, we �ne-tune

the original model 20 epochs following previous works [25, 38, 49]

by adding the new data generated from each tool, and evaluate the

empirical robustness of the new model on the validation dataset

we created. Note that all data in validation dataset is predicted

incorrectly by the original model. Table 3 shows the accuracy of

�ne-tuned models on the validation dataset. As expected, DistX-

plore outperforms the adversarial attacks, distribution-aware test-

ing, distribution-unaware testing, and robustness-oriented testing.

The overall results demonstrated the e�ectiveness of DistXplore in

improving robustness. In addition, LSA achieves the second best re-

sults which outperform the results of other baselines, because LSA

can generate some OOD test cases, increasing the diversity. The

three modern adversarial attack techniques perform worse than

the three classic techniques, because these techniques are designed

for untarget attack, which decrease the distribution diversity.
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Figure 6: Accuracy on di�erent types of dataset (model: VGG16)

Answers to RQ3-1: Overall, DistXplore is e�ective in improv-

ing robustness by generating data with di�erent distributions.

Distribution-aware testing techniques only consider ID data,

making it perform poorly on errors generated by other tools.

To further interpret the results, we analyze the accuracy on dif-

ferent kinds of validation dataset, which is shown in Fig. 6. Other re-

sults are shown in the website [2]. Recall that our validation dataset

includes 9,000 errors from distribution-guided testing DistXplore

(i.e., D-G), 9,000 errors from adversarial attacks (i.e., Adv), 9,000 er-

rors from distribution-aware testing LSA, HDA, and VAE (i.e., D-A),

and 9,000 errors from distribution-unaware testing (i.e., D-U ). Note

that the dataset D-G and D-U cover more diverse transformations

(e.g., rotation and translation) while the dataset Adv and D-A are

mainly created by the noise-based transformation. Speci�cally, the

image transformation directly determines the distribution of the

generated test cases[4] that further a�ects the accuracy evaluation.

Taking into account that these tools use di�erent transformations,

we build such a balanced validation dataset for a fairer comparison.

Not surprisingly, each tool usually achieves better accuracy on

the validation data generated by the same type of tools, because they

have similar distribution, while the data from other types of tools

are more likely to be OOD. For example, BIM, PGD, and C&W get

much higher accuracy on Adv dataset since the added training data

and the Adv data are very similar (i.e., adding minor perturbation).

However, the tools with only noise-based perturbation (i.e., BIM,

PGD, C&W, HDA, VAE, and RobOT) achieve much lower accuracy

on the data D-G and D-U that use very di�erent transformation.

Their accuracy on D-G (<0.09) is relatively lower than that on D-U

(>0.09), indicating some errors generated by DistXplore are harder

to predict.

Comparing the results between DeepHunter and DistXplore,

which use the same transformations, we found that DeepHunter

achieves lower accuracy than DistXplore on D-G data because Dis-

tXplore generates test cases with diverse distributions, which may

be OOD for DeepHunter. As for the data D-U generated by Dee-

pHunter, the accuracy of DistXplore is slightly higher than that

of DeepHunter, which indicates that the errors from DistXplore

could cover some distribution of the data generated by DeepHunter.

Considering the distribution-aware testing HDA and VAE, as they

only generate ID data, they perform much worse on other dataset.

Consider the results of distribution-aware testing (HDA and

VAE), adversarial attacks (BIM, PGD and C&W), and robustness-

oriented testing, which use the same transformation, we found that

HDA and VAE achieve lower accuracy (see Table 3), indicating that
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Table 3: Results of robustness enhancement using the test cases generated by di�erent tools on four datasets

D M DistXplroe BIM PGD C&W D2F SNF TIF KMNC NBC CT NPC LSA HDA ���> VAE Robot

M
L-4 0.81 0.64 0.65 0.59 0.57 0.60 0.56 0.52 0.54 0.63 0.63 0.72 0.61 0.63 0.55 0.52

L-5 0.81 0.66 0.65 0.66 0.41 0.49 0.46 0.65 0.68 0.45 0.45 0.76 0.59 0.57 0.57 0.56

FM
L-4 0.73 0.56 0.60 0.59 0.59 0.57 0.60 0.61 0.61 0.57 0.61 0.71 0.61 0.60 - 0.48

L-5 0.80 0.58 0.58 0.55 0.49 0.54 0.53 0.54 0.56 0.55 0.50 0.75 0.55 0.58 - 0.41

C

V-16 0.83 0.53 0.53 0.53 0.30 0.33 0.30 0.73 0.70 0.36 0.36 0.80 0.51 0.55 - 0.52

R-20 0.76 0.61 0.61 0.62 0.45 0.46 0.46 0.60 0.60 0.53 - 0.70 0.62 0.64 - 0.62

IR-2 0.97 0.92 0.93 0.92 0.91 0.89 0.90 0.91 0.92 0.91 - 0.92 0.89 0.89 - 0.89

I-3 0.99 0.93 0.93 0.93 0.92 0.91 0.92 0.92 0.93 0.93 - 0.93 0.91 0.90 - 0.89

S
V-16 0.66 0.55 0.54 0.54 0.22 0.28 0.27 0.55 0.57 0.29 0.30 0.59 0.50 0.50 0.49 0.52

R-20 0.54 0.49 0.49 0.49 0.36 0.37 0.36 0.44 0.44 0.42 - 0.46 0.44 0.43 0.43 0.36

Table 4: Results of robustness with di�erent distribution diversity

Dataset Model DistXplore DistXplore35 DistXploreC

MNIST
LeNet-4 0.81 0.61 0.76

LeNet-5 0.81 0.63 0.74

FMNIST
LeNet-4 0.73 0.62 0.68

LeNet-5 0.80 0.65 0.72

CIFAR-10

VGG16 0.83 0.62 0.80

ResNet-20 0.76 0.63 0.74

IR-V2 0.97 0.87 0.93

I-V3 0.99 0.89 0.95

SVHN
VGG16 0.66 0.55 0.62

ResNet-20 0.54 0.42 0.47

only considering ID is less e�ective in improving the robustness,

especially on OOD data.

The data generated by di�erent testing tools may have di�er-

ent distributions, depending on their transformation and guidance

strategies. All these data could be the potential inputs in the real-

world deployment, and test cases generated by a tool may not cover

all distributions. For example, although DistXplore is designed to

increase the distribution diversity, it does not always cover the data

distribution from other tools. In general, it can cover more unseen

distributions if we gradually increase the distribution diversity.

Answers to RQ3-2: DistXplore can generate test cases with

diverse distributions, which can identify more unseen data for

further robustness improvement.

4.2.4 RQ4: Usefulness of Distribution Diversity. Table 4 shows the

results about the usefulness of the distribution di�erence diversity

and target diversity. DistXplore, DistXplore35 , and DistXploreC rep-

resents the accuracy of models �ne-tuned with di�erent data (see

more con�guration details in Section 4.1.4). Note that the number

of data used in DistXplore35 , DistXploreC , and DistXplore are the

same. Compared to the results DistXplore, we found that the accu-

racy drops if only considering the distribution di�erence diversity

(DistXplore35 ) or target diversity (DistXploreC ), which indicates the

usefulness of both kinds of diversity in improving the robustness.

Answers to RQ4: Both distribution di�erence diversity and

target class diversity are useful in improving the robustness.

4.2.5 RQ5: Generalization Ability. Table 5 shows the results on the

strength of generated errors by di�erent methods, i.e., the percent-

age of errors that can be detected by existing detection methods.

The overall results show that DistXplore can still generate strong

errors than the selected baselines. Moreover, the results also demon-

strate the generalizability of DistXplore to other domains.

Discussion on application scope. This paper primarily focuses

on the classi�cation task, which is one of the most popular and

important machine learning tasks, and has been widely studied in

the research area of DL testing [21, 24, 27, 32, 35, 43, 50, 52, 54, 57,

59, 63, 64]. While there is much less work on testing generation

tasks in the literature due to the challenge of de�ning test oracles,

i.e., how to de�ne the errors. Recently, researchers proposed a

few metamorphic relations [17, 53] for machine translation tasks

to overcome the problem. It is noteworthy that the challenge of

test oracle is orthogonal to the problem we aim to solve in the

paper. Considering that none of the existing works look into data

distribution, we believe thatDistXplore could also play an important

role in generating test cases with better diversity for generation

tasks in view that data distribution is a fundamental concept for

general learning tasks.

Speci�cally, DistXplore can be extended to generation tasks by

modifying the feedback of distribution di�erences. Currently, in

classi�cation tasks, we select other classes as targets to guide the

generation of test suites for achieving diverse distributions due

to the classi�cation characteristics. For generation tasks that do

not have classes, suppose there is a generation model that can

generate human faces following a speci�c distribution (based on the

training samples), we can select other datasets, such as ImageNet [7],

CIFAR [28], or other image datasets, as the targets to guide the

generation of test suites such that the test suites can also have

diverse distributions. However, how to select the target distribution

and how e�ectively they can help with the testing require further

exploration and evaluation. We leave the extension to generation

tasks as our future work.

Answers to RQ5: DistXplore is also useful in testing NLP

models.

5 THREATS TO VALIDITY

There are some threats that could a�ect the validity of the results.

The selected models and datasets are threats to the validity. We

mitigate these threats by selecting the popular datasets and mod-

els that are used by existing DL testing works. The randomness

could be a threat, which is mitigated by generating a large number

of test cases over a relatively long time and running each tool 5

times in our experiments. In addition, we make our experimental
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Table 5: Results of bypassing the defense techniques for NLP tasks

Dataset Defense DistXplore PWWS TextFooler

IMDB WDR 0.19 0.96 0.94

AG’s News WDR 0.22 0.98 0.99

results publicly available. The selection of the seed inputs is a threat.

We mitigate it by selecting a large number seeds (1,000) that are

used by all baselines. The layer selected for calculating the MMD

could be a threat to a�ect the results. We mitigate this problem by

selecting the commonly used layer, i.e., logits layer. In the future,

we plan to evaluate DistXplore by selecting di�erent layers and

their combinations. Another threat is that the empirical robustness

depends on the validation dataset, and the transformations used

in selected tools are di�erent, which could be a threat to a�ect

the results. To mitigate this problem, we try our best to assemble

a balanced validation dataset comprised of data generated from

di�erent types of testing tools (9,000 inputs generated by each type

of tool). Moreover, we choose a new set of seeds to generate the

validation dataset in order to avoid the overlapping between the

new training dataset and validation dataset.

6 RELATED WORK

6.1 Distribution-Unaware Testing

Due to the di�erences between traditional software and deep neural

networks, some coverage criteria have been proposed. The general

idea is to de�ne metrics for measuring the behaviors of the target

DNNs while the distribution is not explicitly considered. The Neu-

ron Coverage [46] is the �rst DL coverage criterion that measures

the percentage of neurons activated by the given inputs. Ma et

al.[35] then extended the Neuron Coverage and proposed a set of

�ne-grained coverage criteria such as k-multisection Neuron Cover-

age (KMNC), Neuron Boundary Coverage (NBC), and Top-k Neuron

Coverage (TKNC). Although the distribution is not explicitly con-

sidered, there could be some implicit relationship between them.

For example, NBC de�nes the covered upper and lower corner case

regions, which is more related to OOD data. NPC [62] proposes

two path-based coverage criteria to measure the coverage on the

decision logic. A path represents a possible decision logic. Based on

the coverage criteria, some automated testing techniques have been

developed such as DeepXplore [46], DLFuzz [15], DeepTest [54],

DeepHunter [63], DeepStellar [12], and TensorFuzz [43]

Although these techniques could also generate test cases with

di�erent distributions, none of them explicitly considers the dis-

tribution. For example, a lot of errors are generated but they may

follow the similar distributions. In addition, the existing works do

not consider the strength of generated errors. Di�erently, DistX-

plore generates strong errors that are statistically indistinguishable

and enhances robustness with di�erent distributions.

6.2 Distribution-Aware Testing

Recently, some testing works start to discuss the e�ect of distribu-

tion for testing, which is based on the fact that a DLmodel is trained

on sampled training data following a speci�c distribution. Berend et

al.[4] conducted an empirical study on the relationships between

data distribution and existing testing techniques. They call for the

attention of data-distribution awareness when designing testing

methods. Zhou et al.[71] study the robustness of DNNs with distri-

bution awareness. Hu et al.[19] study the distribution-aware seed

selection methods for DNNs. Dola et al.[9] develop the distribution-

aware testing technique that basically generates the in-distribution

data by the Variational Autoencoders (VAEs). Toledo et al.[9] pro-

posed the distribution-aware veri�cation. It uses a generative model

to represent the data distribution of the trained model, and then

changes the original model such that all the inputs to the DNN fol-

low the learned distribution. The most recent work [22] proposed a

hierarchical distribution-aware testing method that measures both

of global distribution and local distribution.

Besides, Kim et al.[27] propose LSA and DSA to measure the

surprise adequacy (SA) of the test cases, i.e., the surprise degree of

a single test case compared with the training data. Although both

DistXplore and SA consider the distance between test case(s) and

training data, there are some key di�erences: 1) DistXplore mea-

sures the distribution di�erence between two sets of data while SA

measures the surprise of a single test case In addition, considering

the distance calculation, DistXplore is more e�cient. 2) DistXplore

is more �ne-grained and considers intra-class and inter-class dis-

tribution shifts while SA mainly considers the distance between

a test case and all training data. 3) The goals are not totally the

same. SA is a test selection method that mainly selects surprising

data. However, it is not clear whether the surprising data (from

SA) is e�ective in generating hard-to-detect errors or enhancing

model’s robustness, which is our main focus. The evaluation results

demonstrate that DistXplore is more e�ective.

7 CONCLUSION

In this paper, we propose a distribution-guided testing approach

to evaluate and enhance DL models. To the best of our knowledge,

this is the �rst work that explicitly generates test cases with diverse

distributions. We discussed the relationship between validity and

distribution, where valid out-of-distribution data is ignored by ex-

isting distribution-aware testing. We evaluated the e�ectiveness of

DistXplore on 10 models and compared it with 14 state-of-the-art

tools. The results demonstrate that DistXplore is e�cient and e�ec-

tive in discovering hard-to-defend errors and improving robustness.

Data Availability: We provide the source code and data on:

https://github.com/l1lk/DistXplore
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