
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2023

CoLeFunDa: Explainable silent vulnerability fix identification CoLeFunDa: Explainable silent vulnerability fix identification

Jiayuan ZHOU

Michael PACHECO

Jinfu CHEN

Xing HU

Xin XIA

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
ZHOU, Jiayuan; PACHECO, Michael; CHEN, Jinfu; HU, Xing; XIA, Xin; LO, David; and HASSAN, Ahmed E..
CoLeFunDa: Explainable silent vulnerability fix identification. (2023). Proceedings of the International
Conference on Software Engineering, Melbourne, May 15-16. 2565-2577.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8513

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jiayuan ZHOU, Michael PACHECO, Jinfu CHEN, Xing HU, Xin XIA, David LO, and Ahmed E. HASSAN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8513

https://ink.library.smu.edu.sg/sis_research/8513

CoLeFunDa: Explainable Silent Vulnerability Fix
Identification

Jiayuan Zhou∗, Michael Pacheco∗, Jinfu Chen∗, Xing Hu†‡, Xin Xia‖, David Lo§ and Ahmed E. Hassan¶
∗ Centre for Software Excellence, Huawei, Toronto, Canada

† School of Software Technology, Zhejiang University, Ningbo, China
‖ Huawei, China

§ School of Information Systems, Singapore Management University, Singapore
¶ Software Analysis and Intelligence Lab (SAIL), Queen’s University

{jiayuan.zhou1,michael.pacheco1,jinfu.chen1}@huawei.com,xinghu@zju.edu.cn, xin.xia@acm.org,

davidlo@smu.edu.sg, ahmed@cs.queensu.ca

Abstract—It is common practice for OSS users to leverage
and monitor security advisories to discover newly disclosed
OSS vulnerabilities and their corresponding patches for vulner-
ability remediation. It is common for vulnerability fixes to be
publicly available one week earlier than their disclosure. This
gap in time provides an opportunity for attackers to exploit
the vulnerability. Hence, OSS users need to sense the fix as
early as possible so that the vulnerability can be remediated
before it is exploited. However, it is common for OSS to adopt
a vulnerability disclosure policy which causes the majority of
vulnerabilities to be fixed silently, meaning the commit with the
fix does not indicate any vulnerability information. In this case
even if a fix is identified, it is hard for OSS users to understand
the vulnerability and evaluate its potential impact. To improve
early sensing of vulnerabilities, the identification of silent fixes
and their corresponding explanations (e.g., the corresponding
common weakness enumeration (CWE) and exploitability rating)
are equally important.

However, it is challenging to identify silent fixes and provide
explanations due to the limited and diverse data. To tackle this
challenge, we propose CoLeFunDa: a framework consisting of a
Contrastive Learner and FunDa, which is a novel approach for
Function change Data augmentation. FunDa first increases the fix
data (i.e., code changes) at the function level with unsupervised
and supervised strategies. Then the contrastive learner leverages
contrastive learning to effectively train a function change encoder,
FCBERT, from diverse fix data. Finally, we leverage FCBERT
to further fine-tune three downstream tasks, i.e., silent fix identi-
fication, CWE category classification, and exploitability rating
classification, respectively. Our result shows that CoLeFunDa
outperforms all the state-of-art baselines in all downstream
tasks. We also conduct a survey to verify the effectiveness of
CoLeFunDa in practical usage. The result shows that CoLeFunDa
can categorize 62.5% (25 out of 40) CVEs with correct CWE
categories within the top 2 recommendations.

I. INTRODUCTION

With the prevalent use of open-source software (OSS),

OSS users must manage OSS vulnerabilities (e.g., sensing

and fixing vulnerabilities) in time. Otherwise, OSS users

will be exposed to large security risks which may lead to

significant consequences. For example, with a late fix to

the CVE-2017-5638 vulnerability [1], Equifax, one of the

largest credit reporting agencies, suffered from a data breach,

‡Corresponding author.

resulting in a loss of more than $650 million [2]. For better

OSS vulnerability management, the Coordinated Vulnerability

Disclosure (CVD) process [3] is widely adopted [4], [5], [6],

[7], [8]. Following this process, a vulnerability should be

fixed first and then disclosed publicly. This allows OSS users

to start the remediation process immediately since the patch

is already available once the vulnerability is disclosed. To

limit the degree of dissemination of information related to the

vulnerability, CVD also suggests that vulnerabilities should

be fixed silently, for example, the commit message should not

carry any information that may reveal the vulnerability.

Due to various reasons (e.g., the limited human resource

or the long fix-to-integration release cycle [9]), the timing

of public disclosure does not closely align with the fixed

date. This time gap could vary from days to months (more

than one week in median [9], [10]). For example, Log4Shell

(CVE-2021-44228 [11]) is a vulnerability in Apache Log4J, a

Java logging framework. An adversary can utilize Log4Shell

to take complete control over the system by sending crafted

requests, making the vulnerability easily exploitable. Given

the popular use of Log4J in Java systems and the ease of

its exploitability, Log4Shell is considered one of the most

dangerous vulnerabilities. Log4Shell was first disclosed on

Dec. 10, 2021 [11]. However, the corresponding fix [12]

publicly existed 11 days earlier (Nov. 29, 2021). Such a time

gap may provide a window of opportunity for exploitation,

causing OSS users to be exposed to huge security risks

during the time gap. Given the transparent nature of OSS,

the malicious parties could easily uncover the fix and derive

the corresponding vulnerability for developing and deploying

exploits in advance. Hence, OSS users must sense silent fixes

as early as possible to start the remediation process as soon

as possible.

Moreover, we argue that identifying silent vulnerability fixes

is just the first step and that an explanation of them is also

important. The reason is that OSS users may not be experts on

every OSS they use, making it challenging to understand and

analyze silently fixed vulnerabilities. For example, “Restrict

LDAP access via JNDI” is the commit message of the fix [12]

for Log4Shell. Since no vulnerability information is provided

2565

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00214

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
02

14

(e.g., no security keywords), it is hard for general OSS users

to understand the fixed vulnerability. Due to such limited

information, even if a tool could identify this fix, OSS users

might ignore the fix because of the misunderstanding, making

such an early warning ineffective. Hence, after receiving an

alert of a silent fix, providing basic yet important information

(e.g., the CWE category and the exploitability rating) of the

corresponding fixed vulnerability could help OSS users to

understand and evaluate the impact of the vulnerability.

Providing explanations for silent fixes is another challenge

because of limited and diverse data. A previous study [10]

showed that the median percentage of vulnerability fixes in

OSS is only 0.35%. Moreover, fixed vulnerabilities are associ-

ated with a wide range of CWE categories [13], indicating the

diverse causes, behaviors, and consequences of vulnerabilities.

Given the extremely imbalanced class distribution combined

with diverse patterns of the fix data, it is difficult for traditional

machine learning and deep learning approaches to effectively

learn information from the data. The current state-of-the-

art, VulFixMiner [10], utilizes the added and removed code

snippets from entire commits to identify silent fixes. As

vulnerability fixing commits can contain mixed information

from the whole commit, and along with the lack of code

context information, it is hard for VulFixMiner to provide

explanations for diverse fixes.

To tackle these challenges, we propose a framework, CoLe-
FunDa (Figure 1), which consists of a contrastive learner

and a novel function change data augmentation component,

FunDa. FunDa first increases the fix data (i.e., code changes)

at the function-level. Then the contrastive learner [14], [15]

effectively learns the representations of the diverse fix data

by minimizing the distance between positives (i.e., similar

data representations) and maximizing the distance between

negatives (i.e., dissimilar data representations). More specifi-

cally, FunDa combines program slicing techniques [16], [17],

[18], [19], [20] and CWE category information to augment

function changes with unsupervised (i.e., the self-based) and

supervised (i.e., the group-based) strategies (Phase 1). Next,

the contrastive learner learns function-level code change rep-

resentations from the diverse fix data and trains the function

change encoder FCBERT (Phase 2). Based on the pre-trained

encoder, CoLeFunDa is then fine-tuned creating three models,

namely CoLeFunDafix, CoLeFunDacwe, and CoLeFunDaexp,

for three downstream tasks, i.e., automated silent fix identifi-

cation, CWE category classification, and exploitability rating

classification, respectively (Phase 3).

We conduct our experiments on 1,436 Java CVE patches

from 310 OSS projects. For the silent fix identification tasks,

CoLeFunDafix is evaluated under a practical setting (i.e., the

class distribution of the fixes is extremely imbalanced). The

evaluation result shows that CoLeFunDafix outperforms the

state-of-the-art baseline VulFixMiner from 11% to 14% in

terms of all effort-aware performance metrics (i.e., CostEf-

fort@5%, CostEffort@20%, and Popt), indicating the effec-

tiveness of CoLeFunDafix in identifying more vulnerabilities

with less manual inspection effort. In the CWE classification

task, the evaluation result shows that CoLeFunDacwe outper-

forms the best SOTA baseline by 6% to 72% in terms of macro

AUC, macro precision, macro recall, and macro F1 score.

For the exploitability rating classification task, the evaluation

result shows that CoLeFunDaexp outperforms the best SOTA

baseline by 24% to 54% in terms of macro AUC, macro

precision, macro recall, and macro F1 score.

Since not every CVE is well maintained, some CVEs do

not contain CWE category information (i.e. no-CWE CVEs).

To help OSS users better understand and evaluate the potential

risk of no-CWE CVEs, it is also practical to recommend the

corresponding CWE categories. We apply CoLeFunDacwe on

the patches of 40 no-CWE CVEs and conduct a user study

with 5 security experts. The result shows that the CWE of

37.5% (62.5%) of CVEs are correctly categorized within the

top one (two) recommendations, indicating the effectiveness

of CoLeFunDacwe in practical usage.

In summary, this paper makes the following contributions:

(1) We advocate the importance of explainable vulnerability

silent fix identification for better OSS vulnerability man-

agement. We propose a framework, CoLeFunDa, which sig-

nificantly outperforms all state-of-the-art baselines in three

explainable silent fix identification tasks.

(2) To the best of our knowledge, FunDa is the first approach

for function-level code change data augmentation. Specifically,

FunDa provides an unsupervised strategy for data augmenta-

tion that can be applied for large-scale general commit data

directly.

(3) To the best of our knowledge, we propose the first unsuper-

vised solution for function-level code change representation

learning. The solution can be applied for training general

function-level code change representation encoders, which is

important for many software tasks (e.g., just-in-time defect

prediction and commit message generation).

(4) We release the vulnerability fix dataset with the enhanced

CVE information (e.g., the CWE categories and exploitability

ratings) of our study [21].

II. BACKGROUND

In this section, we briefly introduce contrastive learning,

Common Vulnerabilities and Exposures (CVE), Common

Weakness Enumeration (CWE), Common Vulnerability Scor-

ing System (CVSS) and Exploitability Metrics.

A. Contrastive learning

Contrastive learning is widely used in Computer Vision [15]

(CV) and Natural Language Processing domains [22] (NLP).

The key characteristic of contrastive learning is data aug-

mentation, which generates new data from existing data. By

applying augmentation on a data point, two samples that are

different but semantically similar are generated. Contrastive

learning then tries to learn similar knowledge within the

samples from the same data points, and learn the differences

between samples generated from different data points. In

the NLP domain, data augmentation commonly consists of

manipulation of tokens (e.g., token reordering and similar

2566

Fig. 1: Overall framework of CoLeFunDa.

Fig. 2: The workflow of Function Change Data Augmentation (FunDa) in Phase 1.

token replacement). In the software engineering domain, prior

studies focus on data augmentation of source code based on

approaches from NLP. This includes sampling or augmentation

strategies based on a compilation mechanism to generate

source code samples [23] (e.g., code compression, identifier

modification, regularization). These approaches achieve good

performance in source code representation learning.

B. Common Vulnerabilities and Exposures (CVE) and com-
mon weakness enumeration (CWE)

Common Vulnerabilities and Exposure (CVE) database pro-

vides a reference-method for the disclosure, identification, and

management of publicly known vulnerabilities. NVD [24] is

a popular CVE database that provides enhanced vulnerabil-

ity information such as CWE. CWE provides a dictionary

of common weaknesses that can result in vulnerabilities in

software or hardware. They include various details regarding

several types of vulnerabilities. A CWE can be assigned to

CVEs, providing a way to categorize and provides additional

information about CVEs and their corresponding vulnerability.

CVEs can be assigned multiple CWEs depending on the nature

of the vulnerability, however CVEs without any assigned

CWEs exist in NVD.

C. CVSS and Exploitability Metrics

CVSS helps define and categorize vulnerabilities based on

their potential impact and risk. There are two CVSS versions,

i.e., CVSS 2.0 and 3.0. CVSS version 3.0 was released in

2015, and is used for CVEs disclosed from then on. CVEs

disclosed before 2015 have a CVSS 2.0 score [25] instead of

the CVSS 3.0 version. Therefore, we use CVSS version 2.0

in our study. Exploitability is one of the base group metrics

in CVSS, which is used to measure the risk of a vulnerabil-

ity being exploited. The more easily a vulnerability can be

exploited, the higher its exploitability score is. Therefore, the

exploitability metric is valuable for practitioners to prioritize

and fix the vulnerability.

III. PROPOSED APPROACH

The goal of CoLeFunDa is to learn function-level code

change representations from diverse and limited vulnerabil-

ity fixes to support explainable vulnerability silent fix early

sensing. In this section, we first introduce the overall frame-

work of CoLeFunDa (Figure 1). We then elaborate on the

details of each phase. Finally, we explain the applications of

CoLeFunDa.

CoLeFunDa has three phases: function change data aug-

mentation, function change representation learning, and down-

stream task fine-tuning. In phase 1, we propose a novel

approach, FunDa, to increase the amount of the vulnerability

fix patch data. Specifically, for one function change from a

patch, we augment it into a set of semantics-preserving func-

tion change samples (FCSamples). We then consider every

two semantically-similar or functionality-similar FCSamples

as a positive pair for contrastive learning in the next phase.

In phase 2, we leverage contrastive learning to further pre-

train a language model to recognize similar and dissimilar

FCSamples and to generate the function change encoder,

FCBERT. In phase 3, we leverage FCBERT to further fine-

tune a silent fix identification model (CoLeFunDafix), a CWE

classification model (CoLeFunDacwe), and an exploitability

rating classification model (CoLeFunDaexp), respectively.

A. Phase 1: Function Change Data Augmentation
Given the limited amount of vulnerability fixes in the dataset,

it is a challenge to effectively learn the representations of func-

tion changes of the fixes, especially since the CWE categories

of the corresponding fixes are diverse (see Section IV-B).

To tackle this challenge, we propose FunDa for augmenting

function change data. As shown in Figure 2, the workflow of

our approach contains four steps. In step 1, for each function

change, we generate function slices for original and modified

functions (i.e., OriFSlices and ModFSlices), respec-

tively. In step 2, we generate the function change description

(FCDesc) for each function change. In step 3, we generate

FCSamples by combining the FCDesc, OriFSlices, and

2567

Fig. 3: An example of function change description (FCDesc) from
the patch [29] for CVE-2013-1879 [30]. The patch fixed a Cross-site
scripting vulnerability in Apache ActiveMQ.

ModFSlices. In step 4, we construct positive sample pairs

by pairing every two semantically-similar or functionality-

similar FCSamples with unsupervised (i.e., the self-based)

and supervised (i.e., the group-based) strategies.

Step 1: Changed-variable-based function slicing. We lever-

age the program slicing technique to generate function slices

(FSlices) for the original function and modified function,

respectively. Since the changed code statements between the

original function and modified function actually fix the vul-

nerability, we consider the changed variables in the changed

code statement as our anchors for slicing. For slice generation,

we focus on comprehensive slices, which merge aspects of

both forward and backward slices [19], [20]. To compute

such slices, we leverage both control flow graphs (CFGs) and

data flow graphs (DFGs) [26], [17] since the combination of

such graphs maintains the structural integrity of the original

program, and extracts data relationships between variables in

the program. We first leverage a source code parsing tool,

namely TreeSitter [27], to generate CFG and DFG. Then for

each anchor, we traverse and combine their respective control

and data flow paths. Finally, for each anchor, we extract the

corresponding code statements from these paths to form up

a changed-variable based FSlices for the function. Figure 4

shows two examples of OriFSlices and ModFSlices for

original and modified function, respectively.

Note that not every changed function contains changed

variables. For example, some function changes are about

function call renaming or operator changing. In this case, the

function has no changed-variable based FSlices and we use

the full function without slicing.

Step 2: Function change description (FCDesc) generation.
Multi-modal pre-training can help text-based models learn

the implicit alignment between inputs of different modalities,

for example, between natural language and programming

language. We introduce the FCDesc and consider it as com-

plementary information to enhance the augmented function

change samples in Step 3. We leverage the GumTree Spoon

AST Diff tool [28] to generate a list of change operations for

each original and modified function pair. The GumTree tool

is capable of identifying insert and delete change operations,

along with renaming or moving operations, providing detailed

information of the change. Figure 3 shows an example of the

FCDesc for the patch [29] that fixed a cross-site scripting

vulnerability [30].

Step 3: Function change augmentation. In Step 1, for one

function change, we derive OriFSlices and ModFSlices
from its original and modified functions. In Step 2, we further

Fig. 4: An example of data augmentation on patch [31] for CVE-
2019-12741 [32]. The patch fixed a potential security vulnerability
by sanitizing input.

generate an FCDesc for the function change. In this step, we

construct augmented FCSamples for the function change as:

FCSampleij = FCDesc⊕OriFSlicei⊕ModFSlicej

where ⊕ is the concatenation operator, i and j are the ith

and the jth OriFSlices and ModFSlices, respectively.

To avoid the potential overfitting, for one function change,

we randomly select at most four FCSamples for correlated

sample pair construction (see step 4). Figure 4 shows two

examples of FCSamples (without FCDesc).

Step 4: Positive Function Change Sample Pair Construc-
tion. With the FCSamples and the CWE category informa-

tion of each function change (FC_CWE), the correlated sample

pair constructor generates the positive FCSamples pairs.

We consider two FCSamples as a positive function change

sample pair if they are correlated (i.e., their semantic meanings

are similar, or their functionality meanings are similar).

We construct positive pairs on two strategies: (1) The

unsupervised self-based strategy is similar to the general

data augmentation technique, which chooses two samples that

are transformed from the same data instance. For example,

two FCSamples belonging to the same function change

are composed into one positive sample pair, as we consider

they are semantically similar to each other. The function

change which failed to generate FCSamples cannot be used

in this strategy, as there are no samples that are directly

semantically which exist. (2) The supervised group-based
strategy, which leverages the FC_CWE information of function

changes to construct positive pairs. For example, for a group

of FCSamples belonging to different function changes which

fix the same type of vulnerability (i.e., the same FC_CWE),

we consider that the FCSamples within the same group are

functionality similar to the other. Hence, such FCSamples
can be used for creating a positive pair with any of the other

2568

Fig. 5: The workflow function change representation learning (con-
trastive learner) in Phase 2.

samples in the group. One benefit of this strategy is that the

function changes which failed to generate FCSamples (e.g.,

no changed variable for slicing) can still be paired with another

functionality-similar sample.

The output of Phase 1 in Figure 1 illustrates three cases of

constructed positive sample pairs. Note that we only apply the

group-based strategy for commits that contain one function

change only. This is because such a one-function commit

change is confirmed to fix a specific type of vulnerability, as

opposed to many function changes in a single commit.

B. Phase 2: Function change representation learning
To learn the representations of function changes, we employ

a contrastive learner, which can learn data representation

effectively by minimizing the distance between similar data

(positives) and maximizing the distance between dissimilar

data (negatives). Hence, with the constructed positive sam-

ple pairs from phase 1, the contrastive learning technology

can effectively learn the function change representation from

diverse vulnerability fixes. We first arrange inputs in a mini-

batch where all positive pairs within the mini-batch are related

to different CWE categories. In this way, any samples from one

pair are negatively correlated to any samples from other pairs

within a mini-batch. Next, we further pre-train an encoder

(FCBERT), to encode a function change to its embedding

representation vector. Then, a projection head maps the vector

to the space where a contrastive loss is applied. As illustrated

in Figure 5, contrastive learner contains the following four

major components: mini-batch arranger, pre-trained encoder,

projection head, and contrastive loss function. We introduce

each of them as follows:

Mini-batch Arranger that arranges n correlated sample pairs

from the candidate pairs where n is the batchsize/2. Since

we want to minimize the distances of samples within the same

correlated sample pair, and maximize the distances between

samples from different sample pairs, the mini-batch arranger

utilizes the FC_CWE to ensure each of the pairs in a single

mini-batch corresponds to different CWE categories.

Pretrained Encoder is used to encode each of the

FCSamples in the positive sample pairs to their corre-

sponding function change representation vectors. We define

our pretrained encoder as FCBERT, which uses the same

architecture and weights from CodeBERT [33].

A Nonlinear Projection Head helps improve the representa-

tion quality of the layer before it [15]. We use an MLP with

two hidden layers to project the function change representation

vector to the space where a contrastive loss is applied.

Contrastive Loss Function is defined for maximizing the

agreement of samples within the same correlated sample pair,

and minimizing the agreement between samples from different

sample pairs. We employ the Noise Contrastive Estimate

(NCE) loss function [15] to compute the loss.

C. Phase 3: Downstream task fine-tuning

For better vulnerability early sensing, the identification of

silent vulnerability fixes is only the first step. Additionally

providing an explanation for identified silent fixes are impor-

tant in the practical scenario. With this in mind, we design

the following three downstream tasks: silent fix identification,

CWE classification, and exploitability rating classification. As

shown in Figure 1, FCBERT is used as a pre-trained model, in

which the weights are transferred to initialize the FixEncoder,

CWEEncoder, and EXPEncoder for three downstream task,

respectively. We introduce each downstream task as follows:

Silent Fix Identification task: Similar to the prior work [10],

the goal of this task is to predict the probability that a commit

is for fixing a vulnerability. VulFixMiner [10] is the state-

of-the-art baseline, which achieved the best performance in a

real word setting (i.e., extremely imbalanced class distribution

of the fixes). VulFixMiner chose CodeBERT [33] as the pre-

trained model to fine-tune the task. In this fine-tuning task,

we reproduce the VulFixMiner and replace CodeBERT with

the FixEncoder. Except for the pre-trained model, we leave the

architecture of VulFixMiner and input construction untouched.

We refer CoLeFunDafix as to the silent fix identifier. The

input of the task is the general commit data and the patch data

(i.e., the commits that fixed vulnerabilities). For every commit,

CoLeFunDafix outputs a score indicating the probability of

the commit for fixing a vulnerability.

CWE Classification task: The goal of this task is to predict

the probability that a given function change in a patch is for

fixing a specific CWE category. The input of this fine-tuning

task is the function-level patch data. More specifically, the

function change description, the full original function, and the

full modified function source code. The input is first encoded

into a function change representation vector by CWEEncoder.

The vector is then fed into a two-layer neural network to

compute probability scores for each CWE category. Note

that since one patch could be used for fixing a vulnerability

assigned with multiple CWE categories, we consider this task

as a multi-label classification task and employ the binary cross

entropy as the loss function. We refer CoLeFunDacwe as to

the CWE classifier.

Exploitability Rating Classification task: The goal of this

task is to predict the probability of the exploitability rating

of the fixed vulnerability. The input and the process of fine-

tuning in this task are identical to the CWE classification task,

except for the loss function. Since one vulnerability only has

one exploitability rating, we consider this task as a multi-class

classification task and instead employ the cross entropy as the

loss function. We refer CoLeFunDaexp as to the exploitability

rating classifier.

2569

D. Applications

Silent fix identification: Given a set of commits,

CoLeFunDafix computes the probability scores (i.e., the

chance that the commit fixes a vulnerability) and outputs a

list of commits ranked by their predicted probability.

CWE classification: Given a commit that is confirmed for

fixing a vulnerability, for each function change within the

commit, CoLeFunDacwe computes a score for each CWE

category as CWEjScorei = CoLeFunDacwe(FCi) , where

FCi is the the ith function change of the commit, and

CWEjScorei is the score of the the jth CWE category. The

CWE scores of the commit is calculated as CWEjScore =
max
1�i�n

(CWEjScorei) , where n is the #total function change

within the commit. The CWE categories are ranked by their

scores, indicating the probability of the commit fixing that

specific category of CWE.

Exploitability rating classification: Given a commit that

is confirmed for fixing a vulnerability, for each function

change within the commit, CoLeFunDaexp computes the score

for each possible exploitability rating as EXPjScorei =
CoLeFunDaexp(FCi) , where EXPjScorei is the score of

the jth exploitability rating for the ith function change. The

commit-level scores of exploitability rating are calculated as

EXPjScore = max
1�i�n

(EXPjScorei) , where n is the #total

function change within the commit. The exploitability rating

categories are ranked by their scores, indicating the probability

of the commit fixing that specific exploitability rating.

Note that CoLeFunDafix, CoLeFunDacwe, and

CoLeFunDaexp can be used either separately or sequentially.

For better vulnerability early sensing, OSS users can integrate

CoLeFunDafix, CoLeFunDacwe, and CoLeFunDaexp into

an automatic pipeline to monitor OSS code repositories

chronologically. With this pipeline, when a new code change

is pushed to the public repository, CoLeFunDafix can first

identify whether the commit is for fixing a vulnerability. If

it is, CoLeFunDacwe and CoLeFunDaexp can further explain

the relevant CWE category of the vulnerability together with

the exploitability rating.

IV. EXPERIMENTS

In this section, we introduce our research questions, dataset,

baselines, evaluation metrics, and experiment setup. Finally,

we show results for each research question.

A. Research Questions

In this paper, we aim to answer the following RQs:

RQ1: How effective is CoLeFunDa in early vulnerability
sensing compared to the state-of-the-art baselines? We

argue that for better vulnerability early sensing, the silent

fix identification and the following vulnerability explanation

are equally as important in real-world usage. With this as

motivation, we evaluate the effectiveness of CoLeFunDa in

this RQ in explainable vulnerability silent fix sensing across

three tasks: silent fix identification, CWE classification, and

the exploitability rating classification.

RQ2: How effective is each component of CoLeFunDa?
FunDa is the foundation in CoLeFunDa. In this RQ, we

conduct an ablation study to verify the effectiveness of the

key design choices in FunDa: changed-variable-based function

slicing, incorporating function change descriptions (FCDesc),

and the group-based strategy for positive function code change

sample pair construction. We experiment with three variants

(i.e., CoLeFunDa w/o FCDesc, CoLeFunDa w/o Group, and

CoLeFunDa w/o Slicing), each lacking one key design of

CoLeFunDa.

B. Data Collection

Our dataset is leveraged primarily from a previous study [10]

and consists of commit information from a set of Java OSS.

We collect additional information to enhance this dataset to

conduct our study. We describe the data collection process in

more detail below.

Step 1. Collect Java CVEs, the corresponding fixes, and
the not-fix commits from related repositories. We collect

Java CVE data from the dataset used in a previous study [10]

available on Zenodo [34]. The Java portion of this dataset

includes 839 CVEs, which correspond to 1,436 vulnerability

fixes, and spans 310 OSS projects. The dataset also includes

839,682 not-fix commits, resulting in a total of 841,118 Java

commits and the distribution of the vulnerability fixes is

extremely imbalanced (1.71%).

Step 2. Retrieve function level changes from vulnerability
fixes. We use the commit IDs from vulnerability fixes in Step 1

to collect function-level changes performed in these fixes. We

leverage PyDriller [35] to collect the original and modified

versions of the code for the changed functions, which we

define as function change pairs. In total, we collect 8,423

function code pairs from the included patches.

Step 3. Enhance CVE with CWE category and exploitabil-
ity information. We collect the CWE and exploitability infor-

mation for each CVE from NVD [36]. We assign CWE and

exploitability information for patches according to the infor-

mation from their corresponding CVEs. In total, we collect

89 types of CWEs. There are approximately 92.3% (554 out

of 600) CVEs that have only one CWE category assigned.

We also observe that 52.8% of the CWE categories have less

than 3 CVEs, indicating how scattered and insufficient the

knowledge of different CWE categories is, and how it can be

difficult to learn.

Step 4. Collect CWE hierarchy information. Finally, we

collect the hierarchy information for CWE categories made

available by Mitre through the Research Concepts [13] view.

This hierarchical organization provides a method for catego-

rizing CWEs based on their characteristics and defining their

inter-dependencies. We compute a tree representation of all

CWE categories in our dataset based on this hierarchy, where

each node represents a CWE, and each edge represents a

parent-child relationship between two CWEs. The ancestor
CWE category is the top-level parent of a CWE in the

hierarchy tree.

2570

C. Data Preprocessing
In this subsection, we describe the steps taken to preprocess

our data. For the CWE classification and exploitability rating

classification task, the dataset only contains vulnerability fixes.

For the silent fix identification task, the dataset includes the

non-vulnerability fixing commits.
Step 1. Relabel CVEs with their ancestor CWE categories.
In our dataset, 52.8% of CWEs only correspond to one or two

CVEs, making it difficult to train models with such limited

data for these CWEs. Given the hierarchical relationship of

CWE categories, the CWEs of CVEs belonging to the same

parent CWE category are similar at a high level. Hence, we

consider patches from the CVEs that have the same ancestor

CWE category to contain similar knowledge. We use the

CWE hierarchical relationship information from the CWE-

1000 Research Concepts to locate and relabel the ancestor
CWE category for each CVE. This results in a total of 22

ancestor CWE categories.
Step 2. Clean the dataset. We follow a series of steps to

filter our dataset. Firstly we remove CVEs that have infrequent

(i.e., less than 5) ancestor CWE categories. After cleaning,

we have 11 ancestor CWE categories in total, and 40 CVE

without CWE information. We keep commits corresponding

to the unlabeled CVEs in a separate dataset.
Step 3. Categorize exploitability rating information. We

adopt the CVSS 3.0 severity rating criteria [37] to auto-

matically categorize the exploitability score into four rating

categories: low (0.1-3.9), medium (4.0-6.9), high (7.0-8.9),

and critical (9.0-10.0). After categorizing, there are 22, 46,

376, and 360 CVEs rated with low, medium, high, and critical

exploitability, respectively. Since the CVEs with low and

medium exploitability are less dangerous, we merge these two

categories into one category, namely the “low or medium”

category. Therefore, there are 68 CVEs with low or medium

exploitability ratings.
Step 4. Ancestor-CWE-based stratified data splitting. We

split our dataset into training (60%), validation (20%), and

test (20%) datasets. To balance the distribution of the ancestor

CWE categories across the three datasets, we conduct stratified

splitting based on the ancestor CWE category of patch data.

Table I describes #functions and #commits belonging to each

ancestor CWE in each dataset. To better utilize the patch data,

we keep the CVEs only with rare ancestor CWE categories

(which are filtered out in Step 2) in the training dataset.
Note that we use training data for function change repre-

sentation learning and all three datasets for the CWE classi-

fication and the exploitability rating tasks. For the silent fix

identification task, we also include the not-fix commits from

prior work [10] (see step 1 in Section IV-B). To make a fair

comparison with the state-of-the-art, VulFixMiner, we reuse

the same test dataset in [10] for evaluation. We further clean

the test data by removing the commits which also exist in our

training or validation dataset and re-evaluate VulFixMiner on

this cleaned test dataset.
Step 5. Data augmentation. Finally, we apply the approach

described in Section III-A to augment function changes in the

training dataset. Note that we only use training data for data

augmentation. Hence, CoLeFunDa does not take advantage

of test data during the evaluation process. As a result, we

generated 2,636 augmented function change samples from

the training dataset with 1,235 function changes. We further

construct 2,025 and 15,468 positive pairs from group-based

and self-based strategies, respectively.

D. Baselines

For the silent fix detection task, we only choose VulFixMiner

as our baseline as it outperforms several state-of-the-art base-

lines. We further adapt VulFixMiner to the CWE classification

and exploitability rating classification tasks, and also select

three widely-used deep learning models, TextCNN, BiLSTM,

and Transformer, as baselines.

VulFixMiner [10] is a transformer-based model. It learns

commit-level code change representation to identify silent

vulnerability fixes. This model achieves SOTA performance

compared to several baselines in a real-world scenario in-

volving an imbalanced test set. We also adapt VulFixMiner

to the CWE and exploitability rating classification tasks (i.e.,

VulFixMinercwe and VulFixMinerexp, respectively) by lever-

aging its commit-level code change encoder.

TextCNN [38] is a Convolutional Neural Network (CNN),

introducing the application of the CNN for natural language-

related tasks. TextCNN is used, and in some cases achieves

SOTA performance, on several NLP and software engineering

tasks [39], [40], [41].

BiLSTM [42], [43] consists of two Long short-term memory

(LSTM) networks [44], which are RNN-based models used to

represent the sequential information of code. In BiLSTM, one

LSTM consumes input in a forward manner, and the other in

a backward manner. BiLSTM is applied throughout various

software engineering studies [45].

Transformer [46] is a deep learning language model con-

sisting of encoder-decoder(s) and multi-head attention layers.

This model established the use of pre-trained models, and its

architecture continues to be used for a variety of programming

language processing tasks [47], [48].

E. Evaluation Metrics

We use a combination of effort-based metrics and canonical

classification metrics to evaluate downstream tasks. Similar to

the prior work [10], we evaluate the silent fix identification

task with AUC and effort-ware metrics (i.e., CostEffort@L

and Popt). We evaluate CWE classification and Exploitability

rating classification tasks with Precision, Recall, F1, and AUC.

AUC, the area under the receiver operating characteristic

(ROC) curve [49] measures the prediction performance of the

model for all possible classification thresholds (i.e., from 0 to

1). Compared to threshold-dependent metrics like precision,

recall, and F1 score, the AUC is robust in quantifying the

discriminative capability of a classifier, especially in imbal-

anced class distributions. This is due to its insensitivity toward

imbalances in class distirbutions [50], [51], [52]. Generally, an

2571

TABLE I: Data description of #Functions, #Commits after ancestor-CWE-based stratified data splitting at commit-level.

CWE-16 CWE-19 CWE-254 CWE-264 CWE-284 CWE-310 CWE-399 CWE-664 CWE-691 CWE-693 CWE-707

Train 11, 3 28, 10 17, 7 95, 27 137, 44 45, 10 9, 5 574, 163 19, 10 75, 17 229, 85

Val 6, 1 13, 3 6, 2 33, 10 19, 11 16, 3 1, 1 194, 58 12, 5 29, 7 81, 27

Test 13, 1 22, 3 3, 2 30, 9 49, 14 13, 4 22, 2 175, 56 4, 3 28, 7 77, 29

Total 30, 5 63, 16 26, 11 158, 46 205, 69 74, 17 32, 8 943, 277 35, 18 132, 31 387, 141

AUC between 0.7 and 1 defines a classifier to have achieved

acceptable performance [53].

CostEffort@L is an effort-aware metric used to evaluate

VulFixMiner [10]. VulFixMiner is evaluated on how many

vulnerabilities fixing commits it can identify within a limited

inspection effort, defined as the modified lines of code (LOC).

As a result, CostEffort@L is defined as the proportion of

inspected vulnerability fixes among all the actual vulnerability

fixes when L (LOC) of all commits are inspected. To evaluate

our models using the same downstream task, we also compute

CostEffort@5% and CostEffort@20% in our study.

Poptthe normalized version of the effort-aware performance

metrics [54], is also used to evaluate VulFixMiner. This metric

is a widely used effort-aware performance metric in defect

prediction [55], [56], [57], [58]. We also calculate this metric

when 5% and 20% of the LOCs are inspected, denoted as

Popt@5 and Popt@20, respectively [10].

Precision, Recall, F1 are canonical classification metrics in

defect prediction studies [59], [60], [61], [62], [63]. Our goal

is to evaluate our models in classification tasks, which involve

predicting between multiple classes. In such tasks, precision,

recall, and F1 evaluate models in terms of how well they

predict instances of each of the classes. We calculate the macro
version of these metrics, which are suitable for multi-class and

multi-label tasks.

F. Experiment Setup

For CoLeFunDa, an input consists of natural language (i.e.,

the function change description) and the code change (i.e., the

original function and the modified function). The maximum

input length of natural language and code change are 128

tokens and 256 tokens, respectively. We apply padding or

truncation on inputs to keep the same length (i.e., 384 tokens).

In the contrastive learner (Section III-B), we set the size of

the nonlinear projection head to 768. We use Adam [64] with

shuffled mini-batches. The learning rate of Adam is 1e-5 and

the batch size is 8. The temperature parameter of the NCE

loss is set to 0.7. We train FCBERT for 15 epochs and select

the model with the lowest NCE loss. In the downstream tasks

(Section III-C), for the silent fix identification, we reproduce

VulFixMiner with the same hyperparameter setting. For the

CWE and exploitability rating classification tasks, the sizes of

the hidden layers in the two-layer neural network are both set

to 768.

As for the baseline in the silent fix identification task,

we contact the author of VulFixMiner for the model and

evaluate the performance on the cleaned test data (see Step

4 in Section IV-C). In the CWE and Exploitability rating

classification tasks, the input is a combination of the original

function and the modified function, and the maximum length

TABLE II: Performance of CoLeFunDafix and VulFixMiner in the
silent fix identification task.

Model name CostEffort (5%,20%) Popt(5%,20%) AUC

VulFixMiner 0.52, 0.65 0.45, 0.56 0.79

CoLeFunDafix 0.59, 0.72 0.51, 0.63 0.80

of the input is 256 for all baselines. For VulFixMinercwe

and VulFixMinerexp, we follow [10], constructing two one-

layer neural network classifiers for CWE and exploitability

classification, respectively. For TextCNN baseline, we follow

the majority of hyperparameters of prior work [39], and set the

number of epochs to 15, embedding dimension length to 256,

the kernel size to 3, and the number of filters to 100. For the

transformer baseline, we set the same size of hidden states as

CoLeFunDa. As for the other hyperparameters, we follow the

same settings in [46]. For the BiLSTM baseline, we follow

[10], constructing a network with an unrolling length of 32

and a hidden unit size of 256. Our experiments use 8 cores of

Intel Xeon 2.7GHz CPU and a V100-32GB GPU [65].

G. Research Questions and Results

RQ1: CoLeFunDa vs. VulFixMiner
To determine how effective CoLeFunDa is in explainable

vulnerability early sensing compared to other SOTA models,

we use three downstream tasks: silent fix identification, CWE

classification, and exploitability rating classification. We ex-

plain the tasks and their results in more detail below.

Silent Fix Identification. One strenuous way to identify silent

fix is to inspect every commit manually. In this task, the goal is

to identify silent fixes with less effort earlier. Table II presents

the evaluation results of CoLeFunDafix and its baseline, i.e.,

VulFixMiner. CoLeFunDafix outperforms VulFixMiner in all

metrics, especially on the effort-aware metrics, CostEffort and

Popt. CoLeFunDafix achieves an improvement of 14%, 11%,

13%, and 11% in CostEffort@5%/10%, and Popt@5%/20%,

respectively. The slightly improved AUC and significantly

improved effort-aware metrics indicate that CoLeFunDafix
maintains the same high discriminative capability in such an

extremely imbalanced dataset, while dramatically decreasing

the inspection effort of identifying the vulnerability fixes for

developers.

CoLeFunDafix shows the highest performance in detecting

the fixes associated with CWE-264 (Permissions Privileges

and Access Controls) and CWE-310 (Cryptographic Issues),

with 0.71 and 0.67 recall, respectively. However, the approach

almost failed in detecting fixes associated with CWE-69

(Protection Mechanism Failure) and CWE-691 (Insufficient

Control Flow Management). We observe that the fix complex-

ity (i.e., #File involved) for CWE-693 and CWE-691 is 2 on

average, which is higher than that for CWE-264 and CWE-310

(1.35 on average). Since CoLeFunDafix is trained at function-

2572

TABLE III: Performance of CoLeFunDacwe and SOTA in the CWE
classification task.

Model name Precisionmacro Recallmacro F1macro AUC

BiLSTM 0.09 1.0 0.15 0.73

TextCNN 0.07 0.41 0.09 0.63

VulFixMinercwe 0.08 0.41 0.09 0.38

Transformer 0.27 0.39 0.29 0.80

CoLeFunDacwe 0.52 0.54 0.50 0.85

level and may not learn the semantic relationship among fixes

across files, hence, performance is poor in detecting complex

fixes. In the future study, we plan to enhance CoLeFunDafix
by considering such cross-file fixes (e.g., utilize static analysis

techniques to construct function dependency and merge co-

change functions as one function).

CWE Classification. Table III summarizes the performance

results of CoLeFunDacwe and the SOTA baselines for this task.

We observe that CoLeFunDacwe significantly outperforms the

BiLSTM model in all metrics except for the macro recall.

On manual inspection, we find that the BiLSTM predicts

all classes for each instance. This causes a macro recall of

1, and a very low macro precision. Compared to TextCNN

and VulFixMinercwe, CoLeFunDacwe outperforms both by

substantial margins in all metrics.

In general, Transformer model performs the best among all

baselines. Compared to the Transformer, CoLeFunDacwe has

an improvement of 93%, 39%, 72%, and 6% in terms of macro

precision, macro recall, macro F1, and AUC, respectively.

One possible explanation is that contrastive learner helps

FCBERT effectively learn knowledge from the diverse fix

data. So that FCBERT can encode function change into better

representation vectors than Transformer. We further discuss

FCBERT and Transformer in Section V-B.

Note that the CWE classification task is a multi-label

classification task and the dataset is imbalanced, thus the F1-

score of CoLeFunDacwe is good enough to predict types for a

vulnerability. In the test dataset, there are four minor CWE cat-

egories that only have no more than four fixes (i.e., CWE-16,

CWE-19, CWE-254, and CWE-310). CoLeFunDacwe achieves

a minimum F1 score of 0.67 for each of them, indicating the

effectiveness of CoLeFunDacwe in classifying CWE categories

even when the data sizes are small.

We also further evaluate the effectiveness of CoLeFunDacwe

in the real world scenario in Section V-A.

Vulnerability Exploitability Rating Classification. In this

task, the performance results of CoLeFunDaexp and the SOTA

baselines are summarized in Table IV. Among baselines,

Transformer model performs the best. However, compared to

the Transformer model, CoLeFunDacwe achieves an improve-

ment of 54%, 24%, 46%, and 27% in macro precision, macro

recall, macro F1, and AUC, respectively. VulFixMinerexp
performs the worst, which can be due to: (1) it only utilizes

the code changes and ignores the code context information;

(2) it mixes the information from the entire commit, which

we see in some not-fix code changes are noisy. CoLeFunDaexp
outperforms all baselines in all metrics by a substantial margin.

The results shown in Table IV illustrates that CoLeFunDaexp is

TABLE IV: Performance of CoLeFunDaexp and SOTA in vulnera-
bility exploitability rating classification task.

Model name Precisionmacro Recallmacro F1macro AUC

BiLSTM 0.32 0.43 0.37 0.68

TextCNN 0.39 0.47 0.41 0.76

VulFixMinerexp 0.38 0.13 0.16 0.65

Transformer 0.41 0.54 0.44 0.67

CoLeFunDaexp 0.63 0.67 0.64 0.85

effective for the vulnerability exploitability rating classification

task.

In terms of the classification performance in each ex-

ploitability class, CoLeFunDaexp outperforms all the baselines

in terms of classification performance in each exploitability

class. For example, the Transformer model, which performs

the best among baselines, achieves 0.21, 0.49, and 0.64 in

classifying the ”low or medium”, ”high”, and ”critical” cate-

gories respectively. As a comparison, CoLeFunDaexp achieves

an improvement of 48% (0.31), 41% (0.69), and 8% (0.69)

respectively, indicating the ability of CoLeFunDaexp in clas-

sifying exploitability class.

In summary, compared to the baselines CoLeFunDa can

support explainable silent fix sensing with the lowest manual

inspection effort in identifying silent fixes. It also provides

the best performance in categorizing the CWE category, and

exploitability rating for the fixed vulnerabilities.

RQ2: Impact of FunDa
Table V shows the performance of CoLeFunDa and its three

variants. We construct variants by removing function change

description (w/o FCDesc), group-based strategy for positive

sample construction (w/o Group), and generating function

slices for self-based strategy (w/o Slice), respectively. For

the CWE classification task, we can find that CoLeFunDa

has similar performance in the w/o Group setting. However,

the macro precision, macro recall, and macro F1 decrease

when removing the FCDesc and the Slicing components. Thus,

the FCDesc and the Slicing contribute to the performance

of CoLeFunDa on the CWE classification. Compared to the

Slicing, the FCDesc and the group-based strategy contribute

more to the vulnerability exploitability rating classification

task and silent fix detection task. Hence, the design of each

component effectively improves the overall performance.

V. DISCUSSION

A. Classifying CWE Categories for No-CWE CVEs

In practice, not all CVEs are assigned CWE category in-

formation. CVEs without CWEs lack crucial information

that practioners can use to quickly understand the CVE.

CoLeFunDacwe can be used to directly classify the CWE

category for the no-CWE CVEs. Therefore, we conduct a

user study to further evaluate the correctness of the CWE

classification provided by CoLeFunDa.

Experimental Tasks. We created tasks using all 40 no-

CWE CVEs from Step 2 in Section IV-C, 16 of which are

considered to be of critical severity. For each CVE (task),

CoLeFunDacwe outputs the probability of each ancestor CWE

category corresponding to the given CVE. We ranked the

2573

TABLE V: Performance of CoLeFunDa and its variants.

Model name CWE Classification Exploitability Rating Classification Silent Fix Detection

Precisionmacro Recallmacro F1macro AUC Precisionmacro Recallmacro F1macro AUC CostEffort (5%,20%) Popt (5%,20%) AUC

w/o FCDesc 0.48 0.50 0.46 0.84 0.45 0.60 0.51 0.80 0.57, 0.66 0.49, 0.59 0.78

w/o Group 0.51 0.50 0.49 0.83 0.45 0.64 0.53 0.79 0.50, 0.62 0.46, 0.55 0.75

w/o Slicing 0.46 0.49 0.44 0.85 0.48 0.64 0.55 0.79 0.57, 0.68 0.50, 0.60 0.78

CoLeFunDa 0.52 0.54 0.50 0.85 0.63 0.67 0.64 0.85 0.59, 0.72 0.51, 0.63 0.80

category of ancestor CWE based on their probabilities. Each

participant was given eight CVEs with the classification and

ranking results provided by CoLeFunDacwe. We randomized

the order of the CVEs for each participant. For each task, we

presented each participant with the CVE URL, the commits

that fix the given CVE, and the top five recommended ancestor

CWE categories provided by CoLeFunDacwe. The participants

were needed to read the CVE description and the commit

code changes and attempt to understand the true ancestor

CWE category of the given CVE. The participants were then

asked to answer (1) what is the exact ancestor CWE category

of the CVE and (2) whether the true category is in the

recommendations provided by our approach.
Participants. We invited five security experts from a promi-

nent IT enterprise with at least five years of experience in

software security to participate in our user study.
Results. Overall, our approach provides an effective ap-

proach for CWE category classification. First, practitioners

confirm that 92.5% of the CVEs involved with our user study

are classified into the correct CWE category recommended

by CoLeFunDacwe. Second, 37.5% (62.5%) of CVEs are

categorized into the top one (two) recommendations. This

implies that the top two recommended CWEs provided by

CoLeFunDacwe often cover the true CWE category. On the

other hand, we also find that our model CoLeFunDacwe

misclassified three CVEs. Particularly, participants fail to label

the CWE category of CVE-2012-3439 due to the large code

change of the commit. For the remaining two CVEs, CVE-

2015-0263 is labeled as CWE-707 due to the code change

fixing URL content. The reason given by the participant

highly corresponds to CWE-264 provided by CoLeFunDacwe,

a weakness related to permissions and privileges used to

perform access control. The last misclassified CVE, CVE-

2017-3156, is labeled with CWE-697 (Incorrect Comparison)

while classified into CWE-691 (Insufficient Control Flow

Management) by CoLeFunDacwe. The commit used to fix

CVE-2017-3156 changes source from “equals” to “isEqual”.

Such a change can be a condition change resulting in different

controls.

B. Visualization for Patch Function Change Representation
To understand and explain why the vectors produced by

FCBERT are better than others, we visualize the learned

representation space of vulnerability fixes. We randomly select

three CWE categories (i.e., CWE-16, CWE-19, and CWE-

310) and then use FCBERT to encode the function changes

of the selected CWE categories from the validation dataset.

We then apply UMAP [66] to reduce the dimensionality of

the vectors into two-dimensional space. Representations of

function changes of the same type of CWE are illustrated with

(a) FCBERT (b) Transformer

Fig. 6: Visualizations of function change representation learned by
FCBERT and Transformer.

the same color. Note in Figure 6a, FCBERT groups function

changes of the same type of CWE closely together. Conversely,

the representations learned by the transformer show more

overlap between different types of CWE (see Figure 6b). This

implies that FCBERT can learn the representation of patch

function changes better than the transformer in terms of CWE

classification task.

C. Usage scenario

One benefit of CVD is to provide maintainers a chance

and time to fix the vulnerability before the impact grows.

Due to various reasons (e.g., long fix-to-integration release

cycle), when the fixes are made, the vulnerabilities are not

disclosed in time (one-week latency in median). CoLeFunDa

could assist OSS users to sense the fixes at an early stage,

so they could have more time in defending against potential

attacks. Cybersecurity is always an arms race and often a

two-edged sword. Different from solutions used by malicious

parties, our solution will be open and is created with the intent

to protect. Our solution is the same as many other solutions

(e.g., Software composition analysis tools) that identify vul-

nerabilities. Those can be used by malicious parties and OSS

users. However, such research is still valuable as it empowers

OSS users to defend against potential attacks.

VI. THREATS TO VALIDITY

Internal validity. Ont threat is that we conduct our study

by leveraging function-level changes from vulnerability fixes

(commits) and it is possible that not all function changes

within a commit are for fixing the vulnerability and such

function changes will introduce bias. To reduce the bias, we

filter out the commits which have more than four function

changes (Section IV-C). Additionally, in our supervised aug-

mentation strategy, we only consider two function changes

as a functionality similar pair when they are for fixing the

same CWE and they are the only function change in the corre-

sponding commits. Future studies should investigate different

thresholds and filter approaches to reduce the bias caused by

noisy commits.

2574

One threat is the potential bias caused by the manual

CWE classification in the user survey. To conduct a more

reliable user study, the participants we invited are all senior

security experts with more than 5 years of industry experience.

To reduce the likelihood of biased answers, we provide the

“other” option, so that the participant can provide an out-

of-the-list CWE class according to their expertise. From the

responses we received, three participants provided their own

answers by choosing the “other” option.

Another threat is the quality of the FCDesc (i.e., the function

change description). Since GumTree generates descriptions

based on the edit script of the diff, the FCDesc generated

by GumTree can only contain the node types and the change

types, which are general. For example, it is possible that

several fixes which fixed different CWEs, respectively, have

the same the FCDesc generated by the GumTree. In such

cases, the model might be confused and cannot better learn

the corresponding knowledge of the fixes. We observe that

there are 14% of vulnerability fixes have the same FCDesc

with at least one other fix associated with different CWEs. One

possible way to improve the quality of FCDesc is to utilize the

human-annotated function change information. We encourage

future studies to extract FCDesc for a specific function change

from the commit message.

External validity. We conduct our experiment on Java

patches and our approach may not generalizable to other

programming languages. To mitigate the threat, to implement

the key designs (e.g., function change description generation

and program slicing) in our approach, we choose Gumtree AST
Spoon Diff and TreeSitter. Both tools support a wide range of

programming languages (i.e., 42 and 13, respectively) [67].

VII. RELATED WORK

Contrastive learning in software engineering. Much prior

research has proposed the application contrastive learning to

better learn representations of code [23], [68], [69], [70].

Jain et al. [23] proposed ContraCode that leveraged code

compression, identifier modification, and regularization to

generate functionally equivalent programs. Ding et al. [68]

presented BOOST, which uses contrastive learning to learn

code representations based on code structure. Wang et al. [69]

proposed SYNCOBERT that used symbolic and syntactic prop-

erties of the source code to better learn code representations.

Bui et al. [71] proposed Corder, which used different program

transformation operators (e.g., variable renaming and permu-

tation of statements) to generate different program variants

while preserving semantics. These studies have shown that

contrastive learning can be used to learn function-level source

code representations effectively on unlabelled datasets. In

contrast to these studies, our goal is to learn the function-

level code change representation. We propose a novel data

augmentation approach for function changes. Our approach

combines the programming language slicing techniques and

CWE category information to generate semantic-meaning

similar or functionality-meaning similar function-level code

changes.

Early vulnerability sensing. Early vulnerability sensing can

significantly reduce resources required to locate and fix the

vulnerability and avoid vulnerability exploitation. Zhou et

al. [10] proposed VulFixMiner, which is a Transformer-

based approach, capable of extracting semantic meaning

from commit-level code changes to identify silent fixes. Vul-

FixMiner incapable of providing an explanation for the iden-

tified fixes since it only utilizes the code change information

which is insufficient. DeepCVA [72] has been proposed to

assess commit-level software vulnerabilities to understand the

impact and severity of these vulnerabilities. DeepCVA used

an attention-based convolutional neural network to extract

features of code and surrounding context from vulnerable

commits and assess seven metrics of software vulnerability.

DeepCVA is incapable of early vulnerability sensing. Different

from these studies, we provide CoLeFunDa for explainable

silent vulnerability early sensing. With the identified silent

fixes, we can further provide OSS users with two basic yet im-

portant explanations, the CWE category and the exploitability

rating of the fixed vulnerability.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose a framework, CoLeFunDa, for

explainable vulnerability silent fix identification. CoLeFunDa

leverages a novel function change augmentation, FunDa, and

contrastive learning to learn function-level patch representa-

tions from limited and diverse patch data. CoLeFunDa is then

fine-tuned for downstream tasks (i.e., silent fix identification,

CWE category classification, and exploitability rating classi-

fication), to provide explainable automated silent fix identifi-

cation. We construct CoLeFunDa on 1,436 CVE patches and

839,682 non-vulnerability fixing commits belonging to 310

Java OSS projects. Evaluation results show that CoLeFunDa

outperforms the SOTA baseline models in all the downstream

tasks. We further applied CoLeFunDacwe to recommend a

CWE category for 40 real-world no-CWE CVEs, and conduct

a user study with 5 security experts to verify the correctness of

CoLeFunDacwe outputs. The results show that 62.5% of CVEs

are classified correctly within the top 2 recommendations,

indicating the effectiveness of CoLeFunDacwe in the practical

setting.

In future work, to provide a more comprehensive explana-

tion for identified silent fixes, we plan to extend our down-

stream tasks to predict CVSS vulnerability metrics (e.g., the

impact score and the severity level). We also plan to generalize

our approach to more programming languages like Python and

C/C++.

ACKNOWLEDGMENT

This project is supported by the National Key Research

and Development Program of China (No. 2021YFB2701102)

and the National Nature Science Foundation of China (No.

62141222 and No. U20A20173).

2575

REFERENCES

[1] “CVE-2017-5638,” https://nvd.nist.gov/vuln/detail/CVE-2017-5638,
2018.

[2] “Equifax to pay at least $650 million in largest-ever data
breach settlement,” https://www.nytimes.com/2019/07/22/business/
equifax-settlement.html, 2017, accessed: 2022-05-03.

[3] Wikipedia, “Coordinated vulnerability disclosure,” https://en.wikipedia.
org/wiki/Coordinated vulnerability disclosure, 2018.

[4] “Coordinated vulnerability disclosure policies in the eu,” 2022.
[Online]. Available: https://www.enisa.europa.eu/news/enisa-news/
coordinated-vulnerability-disclosure-policies-in-the-eu

[5] “Asf project security for committers (apache.org),” 2022. [Online].
Available: https://www.apache.org/security/committers.html

[6] “About coordinated disclosure of security vulnerabilities
- github docs,” 2022. [Online]. Available:
https://docs.github.com/en/code-security/repository-security-advisories/
about-coordinated-disclosure-of-security-vulnerabilities

[7] “Microsoft’s approach to coordinated vulnerability disclosure,” 2022.
[Online]. Available: https://www.microsoft.com/en-us/msrc/cvd

[8] “Project zero,” 2022. [Online]. Available: https://googleprojectzero.
blogspot.com/

[9] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2201–2215.

[10] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
Hassan, “Finding a needle in a haystack: Automated mining of silent
vulnerability fixes,” in Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2021, pp. 705–
716.

[11] “CVE-2021-44228,” https://nvd.nist.gov/vuln/detail/CVE-2021-44228,
2021.

[12] “Restrict ldap access via jndi,” https://github.com/apache/
logging-log4j2/commit/755e2c9, 2022.

[13] “CWE view: Research concepts,” http://cwe.mitre.org/data/definitions/
1000.html, 2022.

[14] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the 10th IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2. IEEE, 2006, pp. 1735–1742.

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proceedings of the
39th International conference on machine learning (ICML). PMLR,
2020, pp. 1597–1607.

[16] F. Tip, “A survey of program slicing techniques,” J. Program. Lang.,
vol. 3, 1995.

[17] M. Weiser, “Program slicing,” IEEE Transactions on software engineer-
ing, no. 4, pp. 352–357, 1984.

[18] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of
program slicing,” ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 2, pp. 1–36, 2005.

[19] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo,
W. Zou et al., “Mvp: Detecting vulnerabilities using patch-enhanced
vulnerability signatures,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1165–1182.

[20] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “μ vuldeepecker: A
deep learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224–2236, 2019.

[21] “Our replication package,” https://figshare.com/s/
840e1fb94bd972829c80, 2022.

[22] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.

[23] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. E. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in Proceedings of the 26th
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2021.

[24] “NVD,” https://nvd.nist.gov/, (Accessed on 04/08/2022).
[25] “Common vulnerability scoring system sig,” https://www.first.org/cvss,

(Accessed on 04/03/2022).
[26] K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph

in a software development environment,” ACM Sigplan Notices, vol. 19,
no. 5, pp. 177–184, 1984.

[27] “tree-sitter: An incremental parsing system for programming tools,”
https://github.com/tree-sitter/tree-sitter, (Accessed on 04/11/2022).

[28] “Computes the ast difference between two spoon java source
code abstract syntax trees,” https://github.com/SpoonLabs/
gumtree-spoon-ast-diff, (Accessed on 04/11/2022).

[29] Dejan Bosanac, “Fix xss in cron expressions,” https://github.com/apache/
activemq/commit/148ca81d, 2018.

[30] “CVE-2013-1879,” https://nvd.nist.gov/vuln/detail/CVE-2013-1879,
2021.

[31] HAPI FHIR, “Fix a potential security vulneability in the testpage
overlay,” https://github.com/hapifhir/hapi-fhir/commit/8f41159e, 2018.

[32] “CVE-2019-12741,” https://nvd.nist.gov/vuln/detail/CVE-2019-127418.
[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of EMNLP, September
2020.

[34] “Vulnerability fix dataset — zenodo,” https://zenodo.org/record/
5513051/export/hx#.YnY7TdrMI2w, (Accessed on 04/12/2022).

[35] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

[36] “NVD - data feeds,” https://nvd.nist.gov/vuln/data-feeds, (Accessed on
04/11/2022).

[37] “NVD - vulnerability metrics,” https://nvd.nist.gov/vuln-metrics/cvss.
[38] Y. Kim, “Convolutional neural networks for sentence classification,”

The 19th 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 08 2014.

[39] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
novel neural source code representation based on abstract syntax tree,”
in Proceedings of the 41st IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 783–794.

[40] M. Dong, Y. Li, X. Tang, J. Xu, S. Bi, and Y. Cai, “Variable convolution
and pooling convolutional neural network for text sentiment classifica-
tion,” IEEE Access, vol. 8, pp. 16 174–16 186, 2020.

[41] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 810–822.

[42] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[43] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing (TSP), vol. 45, no. 11,
pp. 2673–2681, 1997.

[44] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems (TNNLS), vol. 28, no. 10, pp. 2222–
2232, 2016.

[45] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for
software engineering,” arXiv preprint arXiv:2011.14597, 2020.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems (NIPS), 2017.

[47] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE), 2020,
pp. 1433–1443.

[48] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained
transformer models go?” in Proceedings of the 36th IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 70–80.

[49] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve.” Radiology, vol. 143,
no. 1, pp. 29–36, 1982.

[50] C. Tantithamthavorn and A. E. Hassan, “An experience report on defect
modelling in practice: Pitfalls and challenges,” in Proceedings of the
40th International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP). New York, NY, USA: Association
for Computing Machinery, 2018, p. 286–295.

[51] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 4, pp. 485–496, 2008.

2576

[52] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact
of using regression models to build defect classifiers,” in Proceedings
of the 14th IEEE/ACM International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 135–145.

[53] D. Romano and M. Pinzger, “Using source code metrics to predict
change-prone java interfaces,” in Proceedings of the 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). USA: IEEE
Computer Society, 2011, p. 303–312.

[54] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proceedings of the 14th European Conference on Software Maintenance
and Reengineering (CSMR). IEEE, 2010, pp. 107–116.

[55] X. Yu, K. E. Bennin, J. Liu, J. W. Keung, X. Yin, and Z. Xu, “An
empirical study of learning to rank techniques for effort-aware defect
prediction,” in Proceedings of the 26th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 298–309.

[56] Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction,” Empirical Soft-
ware Engineering (EMSE), vol. 24, no. 5, pp. 2823–2862, 2019.

[57] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering (TSE), vol. 39,
no. 6, pp. 757–773, 2012.

[58] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 24th
ACM SIGSOFT international symposium on foundations of software
engineering (FSE), 2016, pp. 157–168.

[59] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 2, pp. 181–196, 2008.

[60] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE transactions on software
engineering (TSE), vol. 33, no. 1, pp. 2–13, 2006.

[61] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 35th IEEE/ACM International Conference on Software Engineer-
ing (ICSE). IEEE, 2013, pp. 382–391.

[62] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2016, pp.
297–308.

[63] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR), 2014, pp. 182–191.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[65] NVIDIA, “Nvidia v100,” https://www.nvidia.com/en-us/data-center/
v100, (Accessed on 04/15/2022).

[66] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,”arXiv preprint
arXiv:1802.03426, 2018.

[67] J.-R. Falleri, “Gumtreediff/gumtree wiki,” https://github.com/
GumTreeDiff/gumtree/wiki/Languages.

[68] Y. Ding, L. Buratti, S. Pujar, A. Morari, B. Ray, and S. Chakraborty,
“Contrastive learning for source code with structural and functional
properties,” arXiv preprint arXiv:2110.03868, 2021.

[69] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation,” arXiv preprint arXiv:2108.04556,
2021.

[70] X. Wang, Q. Wu, H. Zhang, C. Lyu, X. Jiang, Z. Zheng, L. Lyu,
and S. Hu, “Heloc: Hierarchical contrastive learning of source code
representation,” in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension (ICPC), 2022.

[71] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), 2021,
pp. 511–521.

[72] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Deepcva: Automated
commit-level vulnerability assessment with deep multi-task learning,”
in Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 717–729.

2577

	CoLeFunDa: Explainable silent vulnerability fix identification
	Citation
	Author

	CoLeFunDa: Explainable Silent Vulnerability Fix Identification

