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Abstract—Identifying security patches via code commits to
allow early warnings and timely fixes for Open Source Software
(OSS) has received increasing attention. However, the existing
detection methods can only identify the presence of a patch (i.e.,
a binary classification) but fail to pinpoint the vulnerability type.
In this work, we take the first step to categorize the security
patches into fine-grained vulnerability types. Specifically, we
use the Common Weakness Enumeration (CWE) as the label
and perform fine-grained classification using categories at the
third level of the CWE tree. We first formulate the task as
a Hierarchical Multi-label Classification (HMC) problem, i.e.,
inferring a path (a sequence of CWE nodes) from the root of
the CWE tree to the node at the target depth. We then propose
an approach named TREEVUL with a hierarchical and chained
architecture, which manages to utilize the structure information
of the CWE tree as prior knowledge of the classification task.
We further propose a tree structure aware and beam search
based inference algorithm for retrieving the optimal path with
the highest merged probability. We collect a large security patch
dataset from NVD, consisting of 6,541 commits from 1,560
GitHub OSS repositories. Experimental results show that TREE-
VUL significantly outperforms the best performing baselines, with
improvements of 5.9%, 25.0%, and 7.7% in terms of weighted
F1-score, macro F1-score, and MCC, respectively. We further
conduct a user study and a case study to verify the practical value
of TREEVUL in enriching the binary patch detection results and
improving the data quality of NVD, respectively.

Index Terms—Software Security, Vulnerability Type, CWE

I. INTRODUCTION

Nowadays, software products heavily rely on open-source
softwares (OSS). The rapidly increasing number of software
vulnerabilities (SV) poses a significant threat to OSS. The
National Vulnerability Database (NVD) recorded 20,061 new
SVs in 2021, a 9.3% increase over the prior year [1].

Security patches play a crucial role in the SV remediation.
Developers can apply the patch to fix an SV and estimate its
impact (e.g., identify the affected software components) [2].
In practice, an SV is often (almost 70% in OSS [3]) publicly
disclosed with relevant information (e.g., patches and meta-
data) after it has been patched for a while (as suggested by
the coordinated disclosure policy [4]). Such a delay creates a
window of opportunity for attackers, as given the public nature
of OSS, attackers could probe for SVs by monitoring develop-
ment activities, while downstream users may remain unaware
and not take any mitigation [3], [5]. Thus, many approaches
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have been proposed to detect new SV fixes committed to OSS
codebases, aiming to help OSS users be aware of patches in
time, so that they can start remediation earlier [6]–[9].

However, the existing approaches only detect the existence
of an SV-fixing commit (i.e., a binary classification of fixing
or non-fixing), but do not provide any following analysis
(e.g., type). Applying patches is not straightforward, e.g.,
the OSS components have usually been customized to meet
certain requirements of the production system [10], requiring
prioritization based on the assessment of the SV severity [11].
To guide the following remediation process, it is necessary to
first analyze the type of the detected patch [11]–[13], which
presents an overview of the SV that the patch is targeted
to address. SV type is leveraged by the security community
as a standard (i.e., CWE [14]) to understand the root cause,
possible impact, and types of mitigation to deploy. Well-known
SV databases (e.g., NVD [1], vulnDB [15]) all adopt the CWE
classification to provide users with essential insights of SVs.

Although the existing detection methods can automatically
filter security patches, it still requires extensive manpower to
analyze and categorize numerous detected patches. Sometimes,
it may be difficult and time-consuming for practitioners to
understand and analyze the detected patch, e.g., lacking experi-
ence with certain SVs, checking patches with lots of noise (i.e.,
non fixing-related code changes) [2]. The process of manual
analysis also brings considerable delay before taking effective
mitigation, compromising the value of early remediation.

Thus, we aim to propose an automated approach to further
classify the detected patches into fine-grained SV types. With
the insights illustrated by the SV type, practitioners can
better analyze the detected patch (see Section II-B for a
motivating example). Additionally, practitioners can retrieve
well-summarized SV information (e.g., consequences, miti-
gation) on the CWE website using type as an index. This
information can ease the following remediation process, e.g.,
taking temporary mitigation, assessing the severity. Moreover,
as shown in Section VI-A, fine-grained SV types provide more
actionable feedback and can better help the practitioners.

The automated SV type analysis can also help to improve
the quality of CWE metadata provided by NVD. NVD assigns
each Common Vulnerabilities and Exposures (CVE) record
with a CWE identifier to provide users with an overview of the
SV nature and risk [16]. However, (1) The manual analysis of



SV metadata brings delay to its publishment after disclosure.
The timeliness of such analysis is important, as practitioners
rely on these metadata to assess and react to new SVs [17].
(2) The CWE metadata suffers from quality issues. Roughly
31% of all CVE records miss valid CWE metadata (e.g., NVD-
CWE-noinfo) [12]. We observe a new quality issue, i.e., part
of the assigned CWE categories are not precise enough. We
show in our preliminary study (see Section II-C) that 21% of
the assigned CWE categories are at depth 1 or 2, which does
not follow the good mapping practice suggested by CWE [18],
i.e., mapping to the lowest entry in the CWE tree hierarchy
(see Figure 1). These observations present the challenges NVD
faces in providing in-time and high-quality analysis against the
skyrocketing number of SVs, as well as the value of adopting
automated approaches to reduce human efforts and biases on
manual SV analysis (see Section VI-B for a case study).

In this study, we propose an approach named TREEVUL to
classify security patches into fine-grained SV types. TREEVUL
manages to leverage the structure information of the CWE
tree as the prior knowledge of the classification task, aiming
to improve the performance. Specifically, we first formulate
the task as an Hierarchical Multi-label Classification (HMC)
problem, i.e., inferring a path (a sequence of CWE nodes) from
the root of the CWE tree to the target node (see Figure 1 for an
example). Then, we design a hierarchical and chained model
architecture, which exploits the internal relations between the
classification tasks at different depths of the CWE tree. Finally,
based on the defined path probability, we propose a tree-
structure aware and beam-search based inference algorithm.
Besides, we also propose to combine both coarse (hunk-level)
and fine grained (token-level) change information for encoding
commits. We collect a large and up-to-date security patch
dataset from NVD, consisting of 6,541 commits from 1,560
GitHub OSS repositories. We conduct evaluations under the
task of predicting categories at the third level of the CWE
tree using our collected dataset. Experimental results show
that TREEVUL significantly outperforms the baselines, with
improvements of 5.9%, 25.0%, and 7.7% in terms of weighted
F1-score, macro F1-score, and MCC, respectively. We further
conduct a user study and a case study to verify the practical
value of TREEVUL in enhancing the early remediation work-
flow and improving the data quality of NVD, respectively. In
summary, our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to introduce

the task of classifying security patches into fine-grained SV
types. We collect a large and up-to-date patch dataset from
NVD, consisting of 6,541 commits from 1,560 GitHub OSS.
We label patches with categories at the third level of the
CWE tree. We provide a replication package of our dataset
and the proposed approach, which is available at [19].

• We formulate the task as an HMC problem and propose
an automated approach named TREEVUL. TREEVUL has
a hierarchical and chained architecture to incorporate the
knowledge of the CWE tree structure.

• Experimental results show that TREEVUL outperforms base-
lines substantially.
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Fig. 1: Inference of the CWE path from the root node
(CWE-1000) to the target node (CWE-79). Nodes out of the
rectangles are pruned based on the parent node.

II. MOTIVATION AND PRELIMINARIES

In this section, we first introduce the background of our
paper. Then, we provide a motivating example, and conduct a
preliminary study on CWE categories.

A. Background
Here, we describe some important terms used in our study:

Hierarchical Multi-label Classification (HMC) Multi-label
classification deals with tasks where each sample x is associ-
ated with a set of lables Y , where Y ⊆ L. In a Hierarchical
Multi-label Classification (HMC) task, the labels are required
to be ordered in a predefined structure (e.g., tree) [20].
Common Weakness Enumeration (CWE) is a list of com-
mon software and hardware weakness types [21]. Each CWE
entry represents a single SV type. CWE entries are orga-
nized in a tree hierarchy of multiple levels of abstraction
(Figure 1). There are three views of CWE hierarchies avail-
able. VIEW-1000 (Research Concepts) [22] is for research
of inter-dependencies between CWE entries. Both VIEW-
699 (Software Development) [23] and VIEW-1194 (Hardware
Design) [24] organize entries from development perspectives.
Specifically, VIEW-699 is only 2-levels deep, with the top
level containing categories of developer-friendly concepts
(e.g., API/Function Errors), which should not be mapped but
only help developers quickly navigate [18]. In this study,
we focus on VIEW-1000, which is also adopted by previ-
ous works [25]–[27]. Specifically, TREEVUL utilizes VIEW-
1000’s deep tree structure to perform the top-down search from
abstract categories to specific ones.

B. Motivating Example
Considering an application scenario where OSS users apply

the existing patch detection techniques [6], [7] to monitor the
new fixes committed to target OSS codebases, and check the
detected patches regularly, to facilitate early remediation. The
user may be interested or assigned to first check common
and dangerous SVs, such as cross-site scripting (XSS) (CWE-
79 [28]). Automated SV type analysis is essential to support
such an application scenario, which groups similar SVs to fa-
cilitate management and the reuse of known security practices.

Moreover, SV type can help users analyze the detected
patches. Figure 2 presents an example from CVE-2021-
25964 [29]. This SV was fixed over one month before being



CVE-2021-25964
In “Calibre-web” application, v0.6.0 to v0.6.12, are vulnerable to Stored XSS in “Metadata”. An attacker 
that has access to edit the metadata information, can inject JavaScript payload in the description field. Wh
en a victim tries to open the file, XSS will be triggered.
Disclosure Date: Oct. 4, 2021

Commit Message: Added lxml to needed requirements. Improved displaying of series title, 
book of series, comments and custom comments
Commit Date: Aug 27, 2021

CWE ID: CWE-79
CWE Name: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
Extended Description: … The web application dynamically generates a web page that contains unt
rusted data. … does not prevent the data from containing content that is executable by a web browser. A v
ictim visits the generated web page … Type 2: Stored XSS (or Persistent) …

Likelihood of Exploit: High
Potential Mitigations: Use an application firewall that can detect attacks against this weakness, … , 
as an emergency prevention measure while more comprehensive software assurance measures are applied, 
or to provide defense in depth.

Common Consequences: Confidentiality, Read Application Data

7 changed files with 21 additions and 12 deletions

+ < p > { {  …  (u r l_ fo r (… ) |e sc a p e d l in k (e n t ry . se r ie s [0 ] .n a m e ) ) |s a fe )} } < /p >

− <p>{{ … ("<a href='" + url_for(…) + " '>"  + entry.series[0].name + "</a>") |safe)}}</p>

…

+ re tu rn "< a  h re f= '{ } '> { } < /a > " . fo rm a t(u r l ,  e sc a p e ( te x t ) )

…

− b o o k .c o m m e n ts [0 ] . te x t  = c o m m e n ts

i f b o o k .c o m m e n ts [0 ] . te x t  != c o m m e n ts :

…

+ d e f e sc a p e d l in k _ f i l te r (u r l ,  te x t ) :

+ @ jin j ia . a p p _ te m p la te _ f i l te r ( 'e sc a p e d l in k ' )

+ b o o k .c o m m e n ts [0 ] . te x t  = c le a n _ h tm l(c o m m e n ts )

…

+ f ro m lx m l .h tm l .c le a n im p o r t c le a n _ h tm l

+ <p>{{ … (url_for('web.books_list’, …, book_id=entry.series[0].id)|escapedlin
k(entry.series[0].name))|safe)}}</p>

− <p>{{ … ("<a href='" + url_for('web.books_list’, … , book_id=entry.series[0].
id) + "'>" + entry.series[0].name + "</a>")|safe) }}</p>

…

camera

Fig. 2: A motivating example from CVE-2021-25964

publicly disclosed on NVD. The patch detection techniques
can early inform OSS users of the occurrence of such a
commit. However, before taking further remediation, users still
need to manually analyze this commit to identify the type of
SV that is fixed, understand the logic of code revisions and
assess the severity. It can be difficult for OSS users who lack
skills and experience to understand this patch [30] at the first
glance, let alone making further analysis. According to the
commit message, this commit is about feature enhancing (i.e.,
improving the display of the website). The major code changes
within this commit are about cleaning the overburdened web
page using LXML [31]. The hunks that related to SV-fixing
are buried in the middle of this large commit (i.e., adding
escapedlink to filter invalid inputs in the name attribute). Such
a commit can confuse the OSS users.

However, if OSS users are informed that this commit fixes
an SV of XSS, they can refer to the typical causes of such
SVs, thus locating the hunks that are related to the SV-
fixing and understanding the rationale behind code changes
more quickly. Also, considering it is an XSS SV in the web
application, OSS users will likely prioritize its remediation as
such SVs can be easily exploited by attackers. Additionally,
OSS users can retrieve the well-summarized SV information
from CWE website (see Figure 2) based on the predicted SV
type, which benefits further analysis: First, they can know
the typical behaviours and causes of this type of SV. Second,
CWE summarizes the common consequences of the SV, which
can help OSS users quickly assess the potential impacts (e.g.,
exploitability), thus deciding the priorities of fixing it. Third,
CWE usually gives suggestions to mitigate this type of SV. For
instance, the webpage of CWE-79 provides several potential

mitigations, e.g., using an application firewall. Thus, OSS
users can take temporary actions to remediate this SV as the
official release with security patches is not ready.
C. Preliminary Study

We perform a preliminary study to understand the character-
istics of CWE categories in NVD. Based on the observations,
we find a new type of quality issue that part of the assigned
CWE categories are not precise enough (i.e., classified at a
coarse-grained level). We also explain the motivation of lever-
aging the CWE tree structure in fine-grained classification.

We get 8,275 security patches after preprocessing our col-
lected data (see Section IV-A). These security patches are
classified at different depths of the CWE tree (see Figure 3).
A large number of security patches (i.e., 1,734) are classified
at a coarse-grained level, i.e., depth 1 or 2. Among them, 86
security patches are even classified at depth-1, which is the
most abstract type of weakness in CWE. The remaining 6,541
security patches are classified at a more fine-grained level, i.e.,
the CWE category is located at depth≥3.

The official mapping guidance of CWE encourages analysts
to map to the lowest-level CWE entry (i.e., as specific as
possible), since precise mappings offer better-quality data and
help to coalesce community standards [32]. However, CWE
category of each CVE record is assigned by different security
experts, whose skill and experience differences can introduce
biases. The granularity of the classification directly affects the
usefulness of the type information, as well as the practical
value of the automated tool. The fine-grained classification
provides developers with more detailed information, putting
them in a better position to mitigate risks most effectively [18].

Therefore, we aim to propose an automated approach to
classify security patches at a fine-grained level. Moreover, such
an approach can also be used to fill the fine-grained CWE
categories for the existing CVE records, improving the overall
data quality (see Section VI-B for a case study). Specifically,
we choose to assign CWE categories at depth-3. Although
CWE suggests practitioners to assign the lowest category they
can, only a few practitioners prefer or are capable of mapping
at depth>3 [18]. We rely on mappings conducted by NVD
analysts to supervise the training of TREEVUL. Besides, some
depth-3 categories (e.g., CWE-1236) do not have children.

However, the fine-grained classification also brings the
following challenges: The 6,541 security patches in our dataset
belong to 78 CWE categories (at depth-3). Additionally, the
distribution of these CWE categories is highly imbalanced.
CWE-119 has the most instances (i.e., 1,641), while several
categories have less than 10 instances (e.g., CWE-838). Thus,
the task of fine-grained classification is extremely challenging.

Inspired by the good mapping practice, we observe some
opportunities in utilizing the CWE tree structure information
to tackle this challenging task. In practice, as suggested by
CWE [18], analysts should navigate the hierarchy to under-
stand the relations between weaknesses and perform a top-
down search. Specifically, the model should also exploit the
relations between categories defined by the CWE tree and
follow the same top-down way to infer the fine-grained CWE
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categories. That is, we start from the root CWE node and
progressively predict one CWE node at the lower level until
reaching the target depth (see Figure 1). At the coarse-grained
level, classification is considerably easier with fewer categories
(the number of CWE categories at depth 1 and 2 in our
dataset are 7 and 28, respectively) and more generic concepts.
Thus, we can utilize the classification results of the upper
levels to ease the difficulties of the lower ones, i.e., prune
invalid branches from the CWE tree. Furthermore, since the
classification tasks at different levels of the CWE tree are
highly correlated (i.e., classify at different granularities), we
can benefit from the multitask learning paradigm, i.e., training
related tasks simultaneously using a shared model, which has
been proven effective for various applications [33].

These observations motivate us to recast the classification
task of fine-grained type prediction into a Hierarchical Multi-
label Classification (HMC) task, and further incorporate the
information of CWE tree structure as prior knowledge of the
task to build the prediction model.

III. APPROACH

In this section, we introduce our approach, named TREE-
VUL. We first define the task of identifying the fine-grained
CWE category for security patches as an HMC problem. We
then present the details of our proposed model. Finally, we
introduce the steps of inference.

A. Task Definition
This work aims to automatically predict the fine-grained

CWE category for an input security patch (i.e., a GitHub code
commit in this work). Since the CWE categories are organized
in a tree-like hierarchy, the abstraction level of the predicted
CWE category is decided by the given depth d, i.e., predicting
CWE category yd at the dth level of the tree (yd ∈ Ld).
Specially, for a given commit c, we do not directly map it
to yd as a typical multi-class classification task. Instead, we
formulate this task as an HMC problem (see Section II-A),
i.e., map c to a sequence of labels (y1, . . . , yd) which should
align with the CWE tree structure (motivations are discussed
in Section II-C). The goal of this work is to find a method F :

F (c, d) = Y

s.t., Y = (y1, . . . , yd),∀i ∈ {1, . . . , d},
yi ∈ Li and yi ∈ children(yi−1)

(1)

F takes the commit c and the target depth d (controls the
granularity of the predicted category) as inputs and outputs a
sequence of d CWE categories, denoted as Y . Y should be a

valid path starting from the root node of the CWE tree to the
node at the target depth d, i.e., each yi should be one of the
CWE categories at depth i (yi ∈ Li) and one of the children
of the pre-node yi−1.

B. Model Architecture
We propose an automated approach, named TREEVUL,

to tackle the HMC problem defined in Section III-A. The
overview of TREEVUL is presented in Figure 4. Generally, it
is composed of a shared commit embedding module, together
with d depth-specific prediction heads. Each head is for the
classification task at depth i, i.e., fi(c) = yi. These tasks are
highly co-related, which motivates us to train them simulta-
neously with a shared model using multi-task learning [33].
Besides, we organize the depth-specific prediction heads in a
hierarchy and apply chain classifiers (i.e., the output of the
parent classifier is used as input to the child classifier) [34].

Compared with a model that directly maps the commit c into
yd (CWE category at the target depth), the design of TREEVUL
under the HMC setting brings the following benefits:
• TREEVUL leverages the structure information of the

classification schema (i.e., CWE tree). CWE tree illustrates
the expert-refined relations (i.e., similarities and differences)
between various weaknesses. Thus, its structure information
is valuable prior knowledge for the classification task.

• TREEVUL fully utilizes the label information to provide
hierarchical supervision during the training. TREEVUL
not only uses the CWE category at the target depth yd, but
also its ancestors {y1, . . . , yd−1} along the path. The model
is trained in a hierarchical way to introduce an inductive
bias by supervising elementary tasks at the bottom layers
and more complex ones at the top layers [35].

• TREEVUL explicitly exploits the relations of the CWE
category with its ancestors in the hierarchy. The category
at each depth yi should align with the parent to conform
to the CWE tree structure. TREEVUL explicitly incorpo-
rates the information from the parent using chain classi-
fiers, which benefits the lower-level classifications (invalid
branches can be pruned based on the parent node).
1) Commit Embedding Module: The commit embedding

module is used to represent the input commit. The imple-
mentation of this module can be arbitrary as long as it
takes a commit as input and outputs its embedding. We
implement our embedding module based on CodeBERT [36],
a Transformer-based pretrained language model, which has
been proven effective in the latest work regarding security
patch detection [6]. First, the hunk-level code changes are
extracted from the diff file. Then, the rem-code and add-
code segments from the extracted code changes are tokenized
using the CodeBERT tokenizer, separately. The CodeBERT is
naturally (Transformer-based) a powerful encoder for a pair
of sequences. The input is constructed as [CLS] rem-code
[SEP] add-code [EOS] (see Figure 4). The [CLS] and the
[EOS] are special tokens used to represent the start and end
of the input sample, respectively. The [SEP] token is used
to separate the pair of rem-code and add-code. Such input is
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Fig. 4: Overview of TREEVUL (with the target depth set to 3)
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Fig. 5: Construct token-level code changes. This patch (CVE-
2018-10887) updates the if statement by adding condition 1,
updating condition 2, and leaving condition 3 unchanged.

constructed at the hunk-level, as the model is only explicitly
informed that the sequence before the middle [SEP] token is
replaced by the one after in the updated code segments.

We argue that the model can benefit from more fine-grained
change information. The token-level change information is
proven effective in the task of just-in-time comment updat-
ing [37], [38], which also requires to capture the semantics of
code change. We believe the token-level change information
is also effective regarding security patch classification, as se-
curity patches often introduce changes on operators, operands,
and condition statements [39], [40]. For example, typical fixes
for SVs regarding Improper Restrictions of Buffer Boundary
(CWE-119 [41]) include changing an operator < into ≤ or an
operand n into n − 1. Thus, we further introduce the token-
level change information as an extra input to the CodeBERT.
The implementation consists of two steps:
❶ Extract token-level change information. Figure 5 presents
the overview of this step. We use the approach proposed by
Liu et al. [37] to extract the token-level change information.
First, the extracted rem-code and add-code sequences are
tokenized using the CodeBERT tokenizer separately. Then,
the token sequences are automatically aligned using a diff
tool [42] and some heuristics following Liu et al. [37]. Finally,
the token-level change (i.e., edit) can be inferred from the
pair ⟨remi, addi⟩. There are four types of edits, i.e., equal,
replace, insert, and delete. Figure 5 presents an
example of security patch for CVE-2018-10887 [43], which
is an Out-of-bounds Read (CWE-125 [44]) SV. The patch
modifies the If statement by adding a new condition, updating
an existing one, and leaving the left one unchanged. Explicitly
providing the token-level change information can help the

model better capture and focus on these change details.
❷ Incorporate the token-level change information into
CodeBERT. Supplying CodeBERT with token-level change
information is implemented by adding an additional edit
embedding for each input token (See Figure 4). Specifically,
based on the constructed edit sequence, the input token be-
comes a tuple of code token (i.e., the original CodeBERT
token) and the corresponding edit token. We add an extra
embedding module to transform the edit tokens, where the
embeddings are randomly initialized and optimized during the
training. The token embedding becomes the element-wise ad-
dition of code embedding (i.e., the original CodeBERT token
embedding) and the edit embedding. In this way, we keep the
power of CodeBERT in encoding hunk-level ⟨rem, add⟩ pairs
(i.e., the input pair structure is unchanged) while providing
token-level change information. We argue that the encoder can
benefit from both coarse and fine grained change information.

2) Depth-specific Prediction Heads: There are d depth-
specific heads attached upon the shared commit embedding
module, each corresponds to a classification task at depth i,
i.e., fi(c) = yi. The heads are composed of:
❶ Hierarchical Bi-LSTM encoders. The CWE categories are
organized in a tree hierarchy for multiple levels of abstraction.
Categories at deeper levels of the CWE tree require more
fine-grained information to differentiate. For example (Fig-
ure 4), both CWE-74 and CWE-116 are related to Improper
Neutralization as they belong to the same parent (CWE-707).
What differentiates these two categories is the target that being
improper neutralized, i.e., the output of the current component
for CWE-116 and the input from an upstream component for
CWE-74. The features used for predictions at lower levels are
based on those from upper levels and further add more details.

Thus, we organize the Bi-LSTM encoders into a hierarchy
to capture depth-specific features, i.e., each encoder further
encodes beyond the representation produced by the previous
one (see Figure 4). We regard the representation produced by
the Commit Embedding Module as the most basic feature, and
directly use it for the lowest-level classification. We average
the outputs of the Bi-LSTM encoder at every time step as
the final representation of the input hunk. Since one commit
may compose of multiple hunks, we further average the
representations of every hunk to get the final representation of
input commit. We choose AVG pooling instead of sophisticated



Seq2Vec modules based on the opinion that the order of
hunks within a commit should not affect the output embedding.

❷ Chain classifiers. Since the category at each depth should
align with the parent to conform to the CWE tree hierarchy,
TREEVUL explicitly exploits this relation by incorporating the
information of the parent node in prediction. Specifically, the
predicted CWE category at the upper level is transformed into
an embedding and merged with the depth-specific commit
embedding using element-wise addition. Each CWE has a
short title (attribute Name) that summarizes the core behaviour
of this type of SVs. Inspired by the label embedding (how
to describe a class) [45], [46], we utilize this side informa-
tion from label (i.e., textual descriptions) in classification by
transforming the short title into the embedding of each CWE
category using CodeBERT. Compared with randomly initial-
ized embedding, this embedding already contains semantic
information (similar categories share similar embeddings).

We implement each classifier using a one-layer fully con-
nected feed forward module, which takes the merged embed-
ding and predicts the CWE category at the corresponding
depth. The loss used to train TREEVUL is defined as the
average of the cross-entropy losses of d tasks:

loss =

d∑
i=1

cross-entropy(ŷi, yi) (2)

C. Path Inference
The goal of TREEVUL is to find an optimal path from the

root of the CWE tree to the target node (see Eq. 1). We first
define the probability of a given path (y1, . . . , yd) using a
merging rule, i.e., the sum of the logarithms of the predicted
probabilities (transferred from the product of probabilities) on
the CWE nodes along the path:

logP (y1, . . . , yd | c) =
d∑

i=1

logP (yi | y1, . . . , yi−1, c) (3)

Based on the defined path probability, we perform a top-
down inference (see Figure 4). We start from the root CWE
node and progressively choose one node at the next depth until
reaching the target depth. Our designed inference algorithm
has two key points: ❶ Tree structure aware: the node at the
next depth is only chosen from the children of the current
node. We make sure the inferred path is valid, i.e., aligns with
the CWE tree hierarchy. ❷ Beam search based: to alleviate the
possible error propagation from the upper levels to the lower
ones, we apply beam search (i.e., consider top k nodes at
each depth) instead of greedy search and choose the path with
the highest probability in the final. The pseudo-code of our
inference algorithm can be found in an online Appendix [19].

The designed path inference algorithm further demonstrates
the following advantages of incorporating CWE tree structure
information with a HMC task setting: ❶ Classifications at
the upper levels of the hierarchy are considerably less error-
prone. During inference, TREEVUL makes good use of the
upper-level classification results to reduce the error of lower
ones, i.e., prunes invalid branches from the CWE tree. ❷ The

chained architecture makes TREEVUL naturally more inter-
active, which is essential with the scenario of human-in-the-
loop (e.g., partial path is available). Specifically, TREEVUL
can better utilize the expert-curated classification results at the
upper levels to perform the predictions at lower levels.

IV. EXPERIMENT SETUP

In this section, we first introduce our data collection proce-
dure. Then, we describe our experiment settings.
A. Data Collection

To develop models for classifying security patches into fine-
grained SV types, we build a dataset of security patches and
label them with the corresponding CWE IDs from NVD. We
also collect the CWE entries with relevant information from
the CWE website and organize them into a tree-like hierarchy.
Step 1: Collecting vulnerability-relevant information. We
first collect all CVE records from NVD (on Oct. 19, 2021).
We then crawl the CWE entries from the CWE website based
on the CWE IDs assigned to the collected CVE records. Each
CVE record has a references field, which lists the external
links related to the vulnerability. We try to retrieve the links
tagged with patch and filter out those not from GitHub.
Step 2: Collecting commit data. For OSS repositories hosted
on GitHub, the patch (i.e., commit) is identified with a unique
hash value, and can be retrieved using the URL: https://github.
com/{owner}/{repo}/commit/{hash}.patch. We mainly focus
on three types of patch-related URL links (i.e., commit,
issue and pull request) and filter them out using the regular
expressions. For links of issues and pull requests, we write
custom crawling scripts to further retrieve the related commits.
Finally, we crawl the commit data based on the extracted patch
links, including the diff file and the metadata (e.g., commit
date and commit message). We use the corresponding CWE
IDs to label the collected commits.

As a result, we collect 10,037 security patches, spanning
across 2,260 OSS projects and corresponding to 6,384 CVE
records. Different from the existing datasets [6], [47], [48]
that assign binary labels (for distinguishing security patches
from non-security ones), we label security patches with CWE
categories of the SVs being fixed for our type classification
task. Besides, every existing dataset is restricted to one certain
programming language (i.e., C/C++, Java or Python), while
ours is not restricted and is thus much larger.

B. Data Preparation
Filtering the patch data. First, we remove duplicate commits
and commits whose CWEs are invalid (e.g., missing, dis-
carded). Then, we remove large commits with more than 100
files and 10,000 lines of code following the practice of [49],
[50]. Next, we infer the file type based on the extension. We
remove files without source code (e.g., data, documentation)
or written in programming languages that appear less than 1%
times (i.e., 301 files) in our collected dataset. The top 3 pro-
gramming languages in our dataset are C/C++, PHP and Java,
respectively. We further decide the CWE path for each commit
and remove those associated with multiple CWEs. After this
cleaning step, there are 8,275 commits left. Finally, since we



aim to perform the fine-grained classification using categories
at the third level of the CWE tree (see Section II-C), we
filter out commits assigned with CWE categories at depth<3.
As a result, the dataset used for experiments contains 6,541
commits (14,658 changed files), spanning across 1,560 OSS
projects and corresponding to 4,253 CVEs.
Processing of code changes. we parse the diff file of each
collected commit using a Python tool named unidiff [51].
Based on the parsed results, we extract the code revision at
the hunk level. Specifically, for each hunk within a commit,
we extract the removed and added code lines, respectively. We
perform the same code segment preprocessing as CodeBERT.
Building the CWE tree. We utilize two attributes of each
CWE entry: ❶ Name, short descriptions of the core behaviours
of the SV type. It is used by TREEVUL to generate the
label embedding. ❷ Related Weaknesses, relations with other
CWE entries. We use the parent-child relation to organize the
collected CWE entries into the tree hierarchy. Other types
of relations (e.g., PeerOf) are not used in our study (see
Section VI-C for more discussions). Based on the built CWE
tree, we generate the ground truth path for each CWE entry.
Specifically, we decide the unique (i.e., the most commonly-
used) parent/path for CWE categories with multiple parents/-
paths (account for 22.6% of CWEs and 16.5% of commits
in our dataset). VIEW-1000 is intended to be theoretically
comprehensive, but only a subset of categories are frequently
used in practice [16], [52], [53]. Taking CWE-425 [54] as
an example, it has three parents (i.e., CWE-288, CWE-424,
and CWE-862) in VIEW-1000 with minor differences. Only
CWE-862→CWE-425 is listed in the commonly-used CWEs
suggested by the CWE team [52], VIEM-699 (Software De-
velopment) [23], or Top-25 weaknesses [53].

C. Experiment Setting
The experimental environment is a server with the NVIDIA

GTX 3090 GPU, Intel Xeon 6226R CPU, running Ubuntu OS.
Implementation Details. The target depth is set to three
(see Section II-C), i.e., we build and evaluate the model to
classify security patches into categories at the third level of
the CWE tree. We use the pre-trained CodeBERT model from
the Hugging Face Transformer library [55]. We use 768-
dimensional embeddings (same as CodeBERT [36]) for the
edit token. The hidden states of all Bi-LSTM modules are
384 dimensions; thus, the output is 768-dimensional. All the
Bi-LSTMs have only one layer. Classifiers are implemented
using one layer fully connected feed-forward module with the
hidden layer size set to 512.

We use AdamW [56] as the optimizer. The learning rate
is set to 5e−5 for the CodeBERT encoder following [36]
and 1e−3 for other modules. During the training, the learning
rate linearly warm-ups over the first 3,000 steps (roughly five
epochs) and decays in the remaining steps. In addition, to
avoid overfitting, we apply dropout [57] with the drop rate set
to 0.1 and early stopping with patience set to 10. The beam
size used in inference is set to five. The hunk-level removed
and added code sequences are both truncated by 128 tokens,

which covers 85% cases in our dataset. The maximum number
of hunks to consider within a commit is set to eight since 85%
of commits in our dataset change less than eight hunks.
Baselines. We adopt the following machine learning classifiers
as our baselines: Random Forest (RF), LR (Linear Regression),
SVM (Support Vector Machine), XGB (XGBoost), KNN (K-
Nearest Neighbour). These methods are adopted in the latest
works regarding security patch detection [6] and commit-level
SV assessment [49]. For the above machine learning baselines,
we follow [6], [49] to apply bag-of-words (BoW) as features
and limit the vocabulary size to 10K.

We also include the following deep learning (DL) based
approaches as our neural baselines: CodeBERT [36] and Bi-
LSTM [58]. Zhou et al. [6] fine-tuned the CodeBERT to
model code-changes, which achieved the best performance
in identifying security patches. They also included a Bi-
LSTM model as a baseline. We adopt the CodeBERT variant
proposed by them in our experiments. For Bi-LSTM, we also
set the vocabulary size to 10K following [6], [49]. We use the
pretrained 300-dimensional Glove word embedding [59].
Evaluation Metrics. To evaluate the performance of classi-
fying security patches into fine-grained CWE categories (i.e.,
a multi-class classification problem), we utilize the metrics
including weighted F1-score, macro F1-score, and Matthews
Correlation Coefficient (MCC) [60]. These metrics are com-
monly used in the literature regarding SV severity assessment
(classifying security patches into different severity levels) [49],
[61], [62]. Also, these metrics are suitable for our data where
the classes are highly imbalanced (refer to section II-C for
more details) [63]. Weighted F1-score is the average F1-score
of all classes weighted by their support, i.e., the number of
samples of each class in the test set. Macro F1-score is the
unweighted mean of F1-score of all classes. MCC can also
be regarded as a balanced measure despite the very different
class sizes. Both F1-scores range from 0 to 1, while MCC
ranges from -1 to 1. All three metrics have the best value of 1.
However, there is no direct proportional relationship between
F1-scores and MCC.

Although our task is to predict the CWE categories at depth-
3, we also present the metrics of upper levels (i.e., depth 1 and
2) to provide more comprehensive insights of model perfor-
mance. For example, assuming the correct category at depth-3
of the input sample is CWE-79, model A and B predict it as
CWE-1236 and CWE-117, respectively. Although both models
make wrong predictions, we argue that model A is better
since CWE-1236 and CWE-79 share the same parent (CWE-
74), suggesting it has a closer relation to the ground truth
(see Figure 4). To explicitly consider the relations between
categories based on the CWE hierarchy in the evaluation, we
define a new metric named Path Fraction (PF). For each test
sample, we calculate the fraction of the predicted CWE path
Ŷj (i.e., a sequence of CWE categories) which are actually
part of the true path Yj .

PF =
1

N

N∑
j=1

∣∣∣Ŷj ∩ Yj

∣∣∣
|Yj |

(4)



TABLE I: Description of datasets used in experiments

# Commits # Files # Projects

Training Set 5,233 11,729 1,367
Validation Set 654 1,492 355
Testing Set 654 1,437 364

V. EXPERIMENT RESULTS

In this paper, we aim to answer these two RQs:
• RQ1: How effective is TREEVUL compared to baselines

for fine-grained SV type (i.e., depth-3 CWE) prediction?
• RQ2: How effective are the key designs of TREEVUL?

A. RQ1. The Effectiveness of TREEVUL

Method. We compare the performance of TREEVUL with
both ML and DL baselines that are commonly adopted in the
relevant tasks (see Section IV-C for more details). We split
the collected dataset into train set, validation set, and test set
with a ratio of 8:1:1. Specifically, the dataset is divided using
stratified random sampling, with each subset preserving the
original distribution of CWE categories (at depth-3). Table I
presents the statistics of the datasets used in the experiments.
Results. Table II presents the performance comparisons be-
tween TREEVUL and baselines for depth-3 CWE category
prediction (see Section IV-C for the motivation of includ-
ing depth-1&2 metrics). The best results are highlighted in
bold. Regarding ML baselines, KNN, as an unsupervised
approach, performs much worse than the supervised counter-
parts. Among the supervised baselines, the performances of
LR and XGB are close and much better than RF and SVM. The
performances of DL baselines are generally better than the ML
baselines. However, we observe a drop in the macro F1-score.
We suspect that Bi-LSTM and CodeBERT are prone to the
large categories, thus achieving better weighted performances
while suffering on macro metrics.

TREEVUL yields the best performances on all metrics for
classifications at all three depths. At depth 3, TREEVUL
achieves the best weighted F1-score, macro F1-score and
MCC of 0.72, 0.50, and 0.70, improving the best-performing
baselines by 5.9%, 25.0%, and 7.7%, respectively. These
results verify the effectiveness of TREEVUL on fine-grained
commit-level SV type prediction. Furthermore, we find that
the improvements on macro F1-scores are generally more
significant than those on weighted F1-scores. That is because
the weighted F1-score is mainly determined by the model
performances on large categories. As discussed in Section II-C,
the CWE categories in our dataset are highly imbalanced. Per-
formance improvements on small categories do not have much
impact on the weighted F1-score. A classifier that is addicted
to the large categories may still achieve satisfactory weighted
F1-scores while lacking discriminative power. Thus, we argue
the macro F1-score is more indicative in measuring the dis-
criminative power of approaches. In the literature regarding
commit-level SV assessment, which has a similar task setting
with ours (i.e., multiclass classification with imbalanced class
distribution), the macro F1-score is also preferred over the
weighted version for model evaluation [49], [62]. Moreover,

when comparing the performance improvements at different
depths, we find the improvements for lower levels are more
significant than those for upper levels, e.g., the improvement of
macro F1-score at depth-3 is 25.0% (from 0.40 to 0.50) while
is only 8.7% at depth-1 (from 0.69 to 0.75). This is because
(1) the classification tasks at upper levels are easier with much
fewer categories and more generic concepts; (2) the power of
the hierarchical and chained model design of TREEVUL lies
in the classifications at lower levels of the CWE tree, where
we can exploit more structural information. Considering that
fine-grained categories offer more specific insights and action-
able feedbacks about SVs (see Section II-C), TREEVUL has
larger practical values over the baselines. Besides, TREEVUL
also achieves the best performance (0.79) on the PF metric,
indicating that TREEVUL is capable of correctly predicting
2.4/3 CWE nodes along the correct path on average.

RQ-1: TREEVUL outperforms baselines for fine-grained
SV type (i.e., CWE categories at depth-3) prediction, with
improvements of 5.9%, 25.0%, and 7.7% in weighted F1-
score, macro F1-score, and MCC, respectively.

B. RQ2. The Key Designs of TREEVUL

Method. In RQ1, we have verified that TREEVUL boosts
the performance of baselines by a large margin. RQ2 aims
to further provide insights into the effectiveness of the key
designs of TREEVUL: ❶ the design of incorporating the
token-level change information in commit embedding (Sec-
tion III-B1); ❷ the design of a hierarchical and chained
model architecture, which exploits the CWE tree structure
information (Section III-B2). We compare the performances of
TREEVUL with two variants (i.e., TREEVUL-t and TREEVUL-
h) for depth-3 CWE category prediction, each lacking one
of the aforementioned key designs. Specifically, TREEVUL-t
removes the token-level change information in commit em-
bedding. TREEVUL-h replaces the Depth-specific Prediction
Heads in Figure 4 with a single classification layer, which
directly predicts the CWE category at depth-3 instead of
inferring a path from the root. TREEVUL-h adopts the same
Commit Embedding Module with TREEVUL.
Results. Table III presents the performance comparisons be-
tween TREEVUL and two variants for depth-3 CWE cat-
egory prediction. The best results are highlighted in bold.
TREEVUL achieves the best performances across all metrics
for classification tasks at all three depths. Comparing the
performance of TREEVUL with TREEVUL-t, the weighted F1-
score, macro F1-score, and MCC at depth-3 are improved by
1.4%, 8.7%, and 2.9%, respectively. As discussed before, the
macro F1-score is preferred regarding the measurement of the
model’s discriminative power. The results verify that explicitly
incorporating the fine-grained code change information can
benefit the prediction of certain SV types (see Section III-B1).

The core novelty of TREEVUL lies in the design of adopting
an HMC task setting, and further proposing a hierarchical
and chained model architecture. This design leverages the
CWE tree structure information as the prior knowledge of



TABLE II: The performance comparisons between TREEVUL and baselines for depth-3 CWE category prediction

Model
Depth-1 Depth-2 Depth-3

PFWeighted F1 Macro F1 MCC Weighted F1 Macro F1 MCC Weighted F1 Macro F1 MCC

RF 0.77 0.62 0.63 0.64 0.47 0.60 0.59 0.35 0.57 0.69
LR 0.76 0.66 0.62 0.67 0.48 0.61 0.63 0.40 0.59 0.69
SVM 0.71 0.55 0.54 0.56 0.30 0.51 0.49 0.21 0.47 0.62
XGB 0.77 0.68 0.64 0.67 0.46 0.62 0.63 0.39 0.61 0.71
KNN 0.63 0.50 0.40 0.48 0.32 0.40 0.44 0.26 0.38 0.53

Bi-LSTM 0.79 0.66 0.67 0.70 0.46 0.64 0.64 0.36 0.61 0.71
CodeBERT 0.81 0.69 0.69 0.72 0.43 0.68 0.68 0.37 0.65 0.74

TREEVUL 0.85 0.75 0.76 0.76 0.58 0.73 0.72 0.50 0.70 0.79

TABLE III: The performance comparisons in the ablation study

Model
Depth-1 Depth-2 Depth-3

PFWeighted F1 Macro F1 MCC Weighted F1 Macro F1 MCC Weighted F1 Macro F1 MCC

TREEVUL-t 0.84 0.75 0.74 0.76 0.50 0.72 0.71 0.46 0.68 0.77
TREEVUL-h 0.81 0.71 0.69 0.71 0.44 0.67 0.69 0.42 0.66 0.74
TREEVUL 0.85 0.75 0.76 0.76 0.58 0.73 0.72 0.50 0.70 0.79

the classification task. The experimental results also verify
the importance of this design as a key factor contribut-
ing to the performance improvement. TREEVUL outperforms
TREEVUL-h by 4.3%, 19.0%, and 6.1% in terms of weighted
F1-score, macro F1-score, and MCC at depth-3.

RQ-2: Both designs of incorporating token-level change
information and CWE tree structure information benefit the
TREEVUL. The latter one is the key factor contributing to
the performance improvement.

VI. DISCUSSION

In this section, we discuss two practical applications of our
approach and the threats to the validity of our work.
A. User Study

We conduct a small-scale user study to investigate the
practical value of including fine-grained SV type information
to enhance the workflow of early remediation. Considering
a practical application pipeline, developers first apply the
existing patch detection techniques [6], [7] to filter commits.
Then, for the detected patch-related commits, TREEVUL fur-
ther predicts fine-grained SV types, providing more insights
and information to help following analysis.
Experiment Tasks. We randomly select nine commits from
three types (three per type): a) patches whose true CWEs are
within the top five categories recommended by TREEVUL;
b) patches whose true CWEs are not within the top five
recommended categories; c) non SV-fixing commits that are
falsely predicted as patches in the proceeding binary detection
step. We use the same commits from [6] where they sampled
false positives (FP) of the proposed patch detection technique
for the manual analysis. For each commit, we provide the top
five CWE categories recommended by TREEVUL as hints. For
each CWE category, we present its Name, Description, and
direct URL to the CWE website. We ask following questions:
• Q1: Is this commit a vulnerability-fixing commit?
• Q2: How difficult is it to make the above judgement?
• Q3: If the answer to Q1 is yes, what type of vulnerability

does this commit fix? (briefly describe the reasons)

For Q1 and Q2, we aim to investigate the usefulness of
providing CWE categories to help participants understand and
verify the patch detection results. We use 5-point likert scale
to measure the difficulties. With Q3, we further evaluates
participants’ deeper understandings of the detected patch by
asking them to assign a specific SV type. We provide 11
options corresponding to the top 10 frequent SVs [3], [6] (plus
an Other option). A correct understanding of the SV nature
can better guide the following remediation process.

In practice, FP patches from the preceding detection step are
inevitable. Providing irrelevant CWE categories to these non
SV-fixing commits may mislead the participants. We include
FP patches in user study to explore the possible side effects
(Type C). Besides, we also include patches with wrongly
recommended categories (Type B). We want to investigate
when does our approach fail and how will the wrong cate-
gories impact participants’ analysis. The top-1/3/5 accuracy
of TREEVUL on our test set are 0.73, 0.84, and 0.87.
Participants. We invite nine security experts from a promi-
nent IT company with three to five years of experience in
software security as our participants. We divide participants
into three groups (three per group): ❶ the experimental group
provided with the CWE categories (at depth-3) recommended
by TREEVUL as hints. We present the complete path from
the root of the CWE tree to the predicted node; ❷ the control
group provided with the parents (at depth-1) of the predicted
CWE categories; ❸ the blank control group with no hints.

From Group 3 to 1, we gradually add more detailed SV
type information. By comparing these three groups, we can
have a comprehensive view of gains and losses of providing
fine-grained SV categories in real applications.
Results. Table IV presents the correctness (Q1 and Q3) and
difficulties (Q2) for each task (i.e., sum of the Likert scores
given by the three participants) of the experimental group and
two control groups. For patches with correctly recommended
CWE categories (Type A), the experimental group generally
has higher correctness and reports less difficulties for com-
pleting the tasks. We collected feedback from participants



TABLE IV: Results of our user study
Tasks Type A Type B Type C

T1 T7 T9 T3 T5 T8 T2 T4 T6

Q1
(# Correct)

G1 2 3 3 3 2 0 2 2 2
G2 1 2 1 3 1 1 3 2 2
G3 0 2 2 3 2 1 3 2 3

Q2
(Difficulty)

G1 13 5 8 4 12 5 9 11 8
G2 12 8 11 7 8 8 12 9 7
G3 11 7 14 7 10 9 11 7 9

Q3
(# Correct)

G1 2 3 3 1 1 0 - - -
G2 0 2 1 3 1 0 - - -
G3 0 1 2 3 2 1 - - -

in the blank control group who struggled to make correct
judgements. They stated that they were unfamiliar with or
failed to recall the typical features of certain SV types.
Regarding the control group with CWE categories at depth-
1, we find its performance is worse than the experimental
group, and is almost similar to the the blank control group.
This observation indicates that providing coarse-grained type
information may not be helpful. For example (T1), the patch
of CVE-2020-23995 [64] fixes an Information Exposure [65]
SV caused by the improper generation of error message which
leaks the upload data path. The patch changes 4 files with 7
additions and 12 deletions, while only one hunk buried in the
middle is directly related to the SV. TREEVUL recommends
the correct CWE, the website of which [65] clearly lists the
“Generation of Error Message Containing Sensitive Infor-
mation” as one of the specific cases and provides a similar
demonstrative example. However, the parent CWE at depth-1
is too abstractive (Improper Control of a Resource Through
its Lifetime) [66] to provide useful hints for this specific case.

For patches with wrongly recommended CWE categories
(Type B), we find: (1) The wrong categories may closely relate
to the correct one, thus misleading the experimental group in
understanding the SV details. For example (T3), the patch of
CVE-2019-17177 [67] fixes a Memory Leak [68] SV by adding
free statements, while the predicted CWE category is Use
After Free [69]. (2) Some of these patches are really difficult
to understand, even for human analysts (e.g., T5, T8).

For FP patches (Type C), providing irrelevant CWE cat-
egories does not necessarily mislead the participants. These
commits are sometimes deceptive as they confused the de-
tection model. For example (T6), the commit [70] updates
the verification mechanism and the recommended CWE is
Improper Certificate Validation [71]. However, the commit
actually adds support to allow to skip verification under certain
circumstances. We observed that participants who were likely
to be misled by the irrelevant CWE categories were those not
careful enough (i.e., they felt the tasks were easier). For those
not affected, they said that after examining the commit details,
they could understand why the model was deceived and thus
were confident with their judgements.

B. Improve the Quality of CWE Metadata in NVD
We conduct a case study to present the applications of

TREEVUL in 1) updating the existing upper-level CWEs into
more fine-grained ones. We discuss in Section III-C that the
design of TREEVUL brings particular advantages in applica-
tion scenarios with human-in-the-loop (i.e., parent categories
are curated by analysts); 2) filling the missing CWEs. We

TABLE V: CVEs with updated CWEs in the case study
CVE ID Old CWE New CWE Publish - Update Date Severity(CVSS)

CVE-2020-15255 CWE-74 CWE-1236 2020.10.16 - 2021.11.18 HIGH (7.3)
CVE-2021-21305 CWE-74 CWE-94 2021.02.08 - 2022.04.26 HIGH (8.8)
CVE-2021-27185 CWE-74 CWE-77 2021.02.10 - 2022.04.29 CRITICAL (9.8)
CVE-2021-28122 CWE-287 CWE-306 2021.03.10 - 2022.07.12 CRITICAL (9.8)
CVE-2021-32620 CWE-285 CWE-863 2021.05.28 - 2022.08.05 HIGH (8.8)
CVE-2021-34825 CWE-311 CWE-319 2021.06.17 - 2022.07.12 HIGH (7.5)
CVE-2018-6954 - CWE-59 2018.02.13 - 2022.01.31 HIGH(7.8)
CVE-2021-33880 - CWE-203 2021.06.06 - 2022.02.09 MEDIUM(5.9)
CVE-2021-37848 - CWE-203 2021.08.02 - 2022.07.12 HIGH(7.5)
CVE-2021-38606 - CWE-330 2021.08.12 - 2022.07.12 CRITICAL(9.8)

crawl the latest SV data from NVD (on Aug. 10th, 2022) and
match them with those used in our experiments (on Oct. 19th,
2021). We find six CVE records with assigned CWEs updated
from depth 1 or 2 into lower ones, and four CVE records
re-assigned with valid CWEs (see Table V). The updates are
made 416 days later on median, and the severity of these CVEs
are all above HIGH (except for one) with an average CVSS
score of 8.3/10. These results show that NVD tries to fix low-
quality CWE mappings with high-severity SVs as priorities,
and the current practice faces significant delay in updates.

We apply TREEVUL to update the CWE category of the first
six CVE records (at depth 1 or 2), i.e., continue the inference
of the complete path (to depth 3) based on the old CWE (see
Section III-C). In all six cases, the correctly updated CWEs can
be retrieved within the top two CWE categories recommended
by TREEVUL. In case 3/4/6, the first recommended CWE is
correct. For the latter four CVE records with missing CWEs,
TREEVUL correctly predicts the CWEs for the first three.
These results show the potential of applying TREEVUL to
reduce human efforts and biases on manual SV type analysis.

C. Threats to Validity
Threats to internal validity refer to the experiment biases and
errors. The first threat comes from the collection of security
patch dataset. A patch may contain noise (i.e., non fixing-
related code changes) [2]. For files within a commit, we infer
its type based on the extension. We remove files that do not
contain source code (e.g., documentation) or are written in
less commonly used programming languages. Threats related
to our approach are ❶ The construction of token-level code
changes. The removed and added code sequences may not be
perfectly aligned, leading to wrongly inferred token change
information. ❷ TREEVUL only leverages parent-child relations
of CWE to perform top-down search from abstract categories
to specific ones. Parent-child is the most important relation in
the CWE hierarchy [27]. There are other types of relations
(e.g., PeerOf) that TREEVUL may benefit from. However,
including these relations will turn CWE tree into a graph.
While the idea of inferring a path under the HMC task setting
is still applicable (Section III-A), specific implementations
need adjustments and will become more complicated. ❸ Our
task is to assign depth-3 CWE categories, however, some
important categories may be located at depth>3, we plan
to optimize TREEVUL to allow it automatically decide the
appropriate level to end the top-down search (e.g., confidence
is below a threshold) for each specific input in the future work.
Threats to external validity refer to the generalizability
of our approach. We collect SV-fixing commits only from



the projects hosted on GitHub, which might not represent
all security patches. Nevertheless, the security patches in
our dataset cover various OSS projects written in different
programming languages. Besides, we only consider patch as
the model input following [6], [40]. The commit message
may also contain useful information, though according to
the coordinated disclosure, commit messages should hide
the intention of SV fixing [6], [40]. For example, Apache
suggests commit messages should not make any reference to
any security-related nature [72]. However, we argue the key
unique design of TREEVUL (i.e., leveraging the CWE tree
structure using a hierarchical and chained model architecture)
is generalizable to automate fine-grained type analysis for
other SV-related artifacts (e.g., commit message, SV-inducing
commit, and report). The only necessary change is to replace
the Commit Embedding Module of TREEVUL (see Figure 4)
with the corresponding encoders, while the Depth-specific
Prediction Heads are generic. Another threat is that TREEVUL
is designed to identify CWE categories by leveraging its
tree structure. Thus, TREEVUL might not be compatible with
other classification schemes (i.e., without hierarchy). However,
CWE is the most widely used standard for classifying SVs.
Threats to construct validity refer to the suitability of evalu-
ation measures. We mainly adopt the same metrics following
a recent work regarding commit-level SV assessment [49],
which shares similar task settings with ours. Besides, we pro-
pose a new metric named PF (Section IV-C), which may have
some latent limitations, since the traversal path to some CWEs
are not distinct. We try to minimize this bias by choosing the
most commonly-used path for CWEs with multiple parents.
In most cases (like CWE-425 discussed in Section IV-B), the
PF is not affected as not-selected parents (i.e., CWE-288 and
CWE-424) do not appear in our dataset, i.e., we can regard the
selected parent (CWE-862) as a merged node of all parents.

VII. RELATED WORK

In this section, we describe two aspects of the related work:
Security Patch Detection. Many approaches have been pro-
posed to detect security patches to allow early warnings and
timely remediation of SVs [6], [7], [9], [40]. Sabetta and
Bezzi [9] consider the code changes as bags of words (BoW)
and build an SVM model to identify SV fixes. Zhou et
al. [7] implement a DL-based patch identification approach,
utilizing both commit message and code revision with two
separate network components. Wang et al. [40] point out the
importance of detecting silent SV fixes (i.e., without explicit
indications) to prevent 0-day attack. They manually identify
61 code features and further propose a machine learning based
classification approach. Recently, Zhou et al. [6] propose
VulFixMiner, leveraging CodeBERT to represent commit-level
code changes, to identify silent SV fixes. Different from the
existing studies targeting at patch detection, we are the first to
focus on enriching the practical value of the binary detection
results by providing fine-grained SV type information.
SV Type Prediction. Most of the existing studies focus on
classifying experts-curated SV descriptions into CWE cate-

gories to better understand the SV nature and risk [13], [73],
[74]. Na et al. [74] utilize Naı̈ve Bayes classifier to categorize
CVE descriptions into the 10 most frequent CWE categories.
Ruohonen et al. [73] propose an information retrieval tech-
nique for mapping the SV description from NVD and Synk to
the most similar CWE category. They apply cosine similarity
based on the tf-idf feature of the text description. To the
best of our knowledge, there is only one approach, namely
µVulDeePecker [25], predicts SV type by analyzing the source
code (i.e., vulnerable functions). However, this model is only
capable of classifying C/C++ functions into 40 selected CWE
categories. Different from the existing studies, we are the first
to 1) automate type prediction by analyzing commit-level code
revisions, 2) leverage the CWE tree structure to perform fine-
grained classifications (e.g., depth-3 CWE categories).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we take the first step to categorize the detected
security patches into fine-grained SV types. We leverage the
CWE tree structure to propose an approach named TREEVUL.
TREEVUL recasts the prediction task into an HMC problem,
i.e., inferring a path (a sequence of CWE nodes) from the root
of the CWE tree to the target category (at depth-3) of the input
patch. TREEVUL exploits the relations between categories in
the CWE tree hierarchy by the design of a hierarchical and
chained model architecture. We evaluate the effectiveness of
TREEVUL on a dataset containing 6,541 security patches from
1,560 GitHub OSS repositories. The experimental results show
that TREEVUL outperforms the best performing baseline, and
verify the effectiveness of the key designs. Finally, we conduct
a user study and a case study to verify the practical value of
TREEVUL in enhancing the workflow of early remediation and
improving the data quality of NVD, respectively.

We plan to extend TREEVUL to other SV-related artifacts
(e.g., SV-inducing commit) to provide an all-in-one solution to
automate fine-grained type analysis throughout SV lifecircle.
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