Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2023

On the sustainability of deep learning projects: Maintainers'
perspective

Junxiao HAN
Jiakun LIU

David LO
Singapore Management University, davidlo@smu.edu.sg

Chen ZHI

Yishan CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

HAN, Junxiao; LIU, Jiakun; LO, David; ZHI, Chen; CHEN, Yishan; and DENG, Shuiguang. On the
sustainability of deep learning projects: Maintainers' perspective. (2023). Journal of Software: Evolution
and Process. 1-20.

Available at: https://ink.library.smu.edu.sg/sis_research/8481

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8481&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Junxiao HAN, Jiakun LIU, David LO, Chen ZH], Yishan CHEN, and Shuiguang DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8481

https://ink.library.smu.edu.sg/sis_research/8481

On the Sustainability of Deep Learning Projects: Maintainers’ Perspective

Junxiao Han®*, Jiakun Liu®*, David Lo®, Chen Zhi¢, Shuiguang Dengd, Minghui Wu?

“School of Computer “& Computing Science Hangzhou City University Hangzhou China
bSchool of Information Systems Singapore Management University Singapore
¢School of Software Technology Zhejiang University Ningbo China
College of Computer Science and Technology Zhejiang University Hangzhou China

Abstract

Deep learning (DL) techniques have grown in leaps and bounds in both academia and industry over the past few
years. Despite the growth of DL projects, there has been little study on how DL projects evolve, whether maintainers
in this domain encounter a dramatic increase in workload, and whether or not existing maintainers can guarantee the
sustained development of projects. To address this gap, we perform an empirical study to investigate the sustainability
of DL projects, understand maintainers’ workloads and workloads evolution in DL projects, and compare them with
traditional OSS projects. In this regard, we first investigate how DL projects evolve, then, understand maintainers’
workload in DL projects, and explore the workload evolution of maintainers as DL projects evolve. After that, we
mine the relationships between maintainers’ activities and the sustainability of DL projects. Eventually, we compare
it with traditional OSS projects. Our study unveils that although DL projects show increasing trends in most activities,
maintainers’ workloads present a decreasing trend. Meanwhile, the proportion of workload maintainers afford in DL
projects is significantly lower than in traditional OSS projects. Moreover, there are positive and moderate correlations
between the sustainability of DL projects and the number of maintainers’ releases, pushes, and merged pull requests.
Our findings shed lights that help understand maintainers’ workload and growth trends in DL and traditional OSS

projects, and also highlight actionable directions for organizations, maintainers, and researchers.

1. Introduction

Deep learning (DL) has grown in leaps and bounds
in both academia and industry over the past few years,
producing a wide variety of deep learning algorithms
for various applications such as image processing (Cire-
gan et al.| (2012); He et al.| (2016); |Acuna et al.| (2019),
speech recognition [Hinton et al.| (2012)); [Nassif et al.
(2019), autonomous driving |Chen et al.| (2015)); Huval
et al.| (2015); [Tian et al.| (2018), disease diagnosis and
drug discovery [Chen et al.[(2018)); Oktay et al.| (2018);
Petersen et al.| (2019), and financial fraud detection Roy
et al.| (2018). However, compared with open-source
software (OSS) projects, DL projects have an additional
set of DL-specific issues Wan et al.|(2019). For exam-
ple, DL projects encode the network structure of a satis-
fying DL model and use a large amount of data to train

*Corresponding authors
Email addresses: junxiaohan@zju.edu.cn (Junxiao Han),
jkliu@smu.edu.sg (Jiakun Liu), davidlo@smu.edu. sg
(David Lo), zjuzhichen@zju.edu. cn (Chen Zhi),
dengsgl@zju.edu.cn (Shuiguang Deng),
mhwu@zucc.edu.cn (Minghui Wu)

Preprint submitted to Elsevier

the task-solving model, while traditional OSS projects
directly encode the model to solve a target problem
Zhang et al| (2018). To facilitate the development of
DL projects, software engineering researchers have de-
voted significant effort Sonnenburg et al.| (2007); |Guo
et al| (2019); Han et al.| (2020a)); Zhang et al. (2020);
Cambronero et al. (2019); Mathew and Stolee| (2021));
Wei et al.| (2019); [Pradel and Sen| (2018).

The popularity of DL projects has given rise to
a widespread trend: while the development and de-
ployment of DL systems are relatively fast and cost-
effective, their sustainability proves to be challenging
and costly|Wan et al.|(2019)); Penzenstadler et al.| (2012)).
The concept of sustainability is certainly multifaceted
and no general definition exists. In this study, we
adopted the terminology of sustainability and its indi-
cator introduced in Valiev et al. |Valiev et al. (2018)) and
Zhang et al.’s |[Zhang et al.| (2022) studies, where they
consider a project is dormant when it did not receive
any commit for more than six months after its last com-
mit. To better analyze the relationships between main-
tainers’ activities and the sustainability of DL projects

April 19, 2023

over time, we changed this term from a static state to a
dynamic state (see Section , and used the number of
commits to characterize the sustainability of projects.

Intuitively, the maintenance of a project is related
to its sustainability. According to the definition of
ISO/IEC 25051 (ISO/IEC, 2014), maintainers modify
a software system or component after delivery to cor-
rect faults, improve performance or other attributes, or
adapt to a changed environment to maintain the project.
However, maintainers may have a heavy workload so
that they cannot deal with tasks in time. As illustrated
in Figure[T} a contributor from a DL project complained
that the maintainers were so busy that the pull request
he raised had not been noticed and replied to for a long
timeE] As DL projects continue to expand, the projects
draw increasing numbers of participants and accumu-
late a growing body of pull requests. We would like
to understand: is the workload of maintainers steadily
increasing? Can maintainers in DL projects effectively
manage and sustain the rapid development of DL sys-
tems?

Despite numerous studies characterizing the work of
maintainers in DL projects|[Zhou et al.|(2017); Tan et al.
(2020a), their focus has been limited to technical as-
pects, such as the number of files maintained, commits
committed, and authors managed. However, a compre-
hensive understanding of maintainers’ work is crucial
for ensuring the long-term sustainability of DL projects
and may also offer valuable guidance to other OSS
projects.

To fill the gap, in this paper, we characterize main-
tainers’ activity in DL projects. To compare the dif-
ferences between DL and traditional OSS projects in
terms of maintainers’ activity, we collect 19 popular
DL projects and 19 popular traditional OSS projects.
Then, we holistically understand how to characterize the
workload of maintainers (i.e., including not only techni-
cal works but also non-technical works) in DL projects,
along with understanding the evolution of projects and
maintainers’ workload. Our preliminary study shows
that besides technical tasks (e.g., commits committed),
maintainers also write comments under issues and write
WiKis to sustain the coordination and collaboration of
participants. To understand how the DL and traditional
OSS projects evolve and whether the evolution is sus-
tainable, we assemble all activities (i.e., events identi-
fied via GitHub API) of these projects to answer the fol-
lowing research questions:

RQ1. How to characterize the workload of maintain-
ers holistically in DL projects?

) https://github.com/fastai/fastai/issues/575

Our findings show that we can employ the number of
issues, closed issues (i.e., issues that are solved by main-
tainers), issue comments, commits, commit comments,
pushes, pull requests, merged pull requests (i.e., pull re-
quests that are merged by maintainers), pull request re-
views, pull request review comments, and releases to
characterize the workload of maintainers holistically.
RQ2. How do DL projects evolve and how do the
overall workloads of maintainers evolve in this pro-
cess?

We observe that there is a significant difference in
the evolution of most activities between DL and tradi-
tional OSS projects. Meanwhile, although the overall
workload of most activities is increasing in DL projects,
the maintainers’ workload of most activities is decreas-
ing. In contrast, in traditional OSS projects, the overall
workload and the maintainers’ workload are both sta-
ble. Statistical test results indicate that the proportion
of workload that maintainers afford on many activities
in DL projects is significantly lower than those in tradi-
tional OSS projects.

RQ3. How does the average workload of maintainers
evolve as DL projects grow?

On average, maintainers in both DL and traditional
OSS projects are experiencing an increasing workload
in some activities, such as Pull Requests, merged Pull
Requests, Pull Request Review Comments, and Re-
leases. However, the Commit Comment activity per
maintainer performed is the only activity that shows a
significant difference in growth rates between DL and
traditional OSS projects. Additionally, when it comes
to each project, most DL projects demonstrate signif-
icant differences in growth rates across various activi-
ties of maintainers, while traditional OSS projects with
a larger size tend to show no significant differences in
growth rates across various activities for maintainers.
RQ4. What are the relationships between maintain-
ers’ activities and the sustainability of DL projects?

We observe that the sustainability of DL projects is
positively and moderately correlated with the number
of releases, pushes, and merged pull requests of main-
tainers. However, the number of releases of maintainers
shows no significant correlation with the sustainability
of traditional OSS projects.

Based on our findings, we suggest that GitHub or
project owners propose new gamification systems to en-
courage maintainers to maintain DL projects. For exam-
ple, maintainers could be rewarded with a DL-specific
badge or a certain number of points for each release,
push, and merged pull request. Moreover, we sug-
gest that organizations, developers, maintainers, and re-
searchers should be aware of the significant differences

Performing some experiments, | noticed (Feb 3, 2018) that the LR Finder didn't work on small dataset.

| reported the issue in this blog post: http://forums.fast.ai/t/lesson-1-my-experiments-with-resnet34-and-some-questions/10857

Jeremy kindly encouraged me (as he often does with practitioners) in modifying, with his help, the code so that the finder could

run more epochs in case of small dataset.

| did it and reported the full code later in the same thread (proposing some other modification ideas).

Mo one acknowledged, but the bosses are pretty busy boys/girls, so | just waited.

Then, on 20 March 2018 | wrote a PM to Jeremy. It was viewed but not answered. Probably he cannot answer to all the PMs he

gets, so | waited.

A week ago, | wrote another forum post, tagging Jeremy, Rachel, and Reshama. | waited, but no one answered.

Yersterday (19 June 2018) | decided to open a pull reguest.In those last months | obviously maintained my environment up to date.

So | opened learner.py to check the code for such a pull request, and doh! My proposed modification to the code was there, just

with other names for functions and params (e.g num_it instead of run_for).!

Mow like | said | don't want to complain, and cbviously | do not have any claim upon the code (I'm just a student), but why not to

say Just "Hey boy, we put it into the code.”

Mo matter how little my contribution, It would have been reason of immense satisfaction for me.

Figure 1: An issue in fastai project. This example shows that the DL project maintainers did not respond to a pull request for a long time.

in the evolution of activities between DL and traditional
OSS projects, as well as the significant differences in
workload ratios that maintainers afford in DL and tradi-
tional OSS projects. This awareness will help them dif-
ferentiate projects from different domains in their work
processes.

In summary, we make the following contributions to
this paper:

e To the best of our knowledge, we are the first to
explore the sustainability of DL projects from the
maintainers’ perspective. By comparing with tra-
ditional OSS projects, we understand the speci-
ficity of the evolution of DL projects, the speci-
ficity of DL maintainers’ workload and its evolu-
tion. Moreover, we also expound on the specific re-
lationships between maintainers’ activities and the
sustainability of DL projects.

e We highlight some practical implications for or-
ganizations, maintainers, and researchers in both
the DL and other OSS domains. We help orga-
nizations, maintainers, and researchers recognize
the significant differences in the evolution of DL
and traditional OSS projects. We also help them
develop a more comprehensive understanding of
maintainers’ workloads in DL and traditional OSS
projects. Additionally, by pointing out the rela-
tionships between maintainers’ activities and the
sustainability of DL projects, we provide valuable

suggestions to maintainers for ensuring the sus-
tained development of DL projects and shed light
on researchers for further research.

The rest of this paper is organized as follows. Sec-
tion [2] describes the research methodology. Section [3]
presents the findings and insights of our research ques-
tions. Section [introduces the related works and dis-
cusses the difference between our work and other papers
that are close to ours. Section [3 discusses the threats to
the validity of our findings. Finally, Section[6|concludes
this paper, gives directions to future work, and provides
replication packages.

2. Methodology

In this section, we introduce how we construct our
dataset, including how we determine targeted projects,
the process to obtain activity data, the approach to iden-
tify maintainers, and the approach to identify maintain-
ers’ workload.

2.1. Collecting Data

To characterize the differences between DL and tra-
ditional OSS projects regarding maintainers’ activities,
we need to collect both DL and traditional OSS projects.
To safeguard the quality of the dataset, we use the fol-
lowing rules to select targeted projects: 1) projects must
be large enough and have maintained relatively long

traceable records on GitHub (at least 500 commits, 10
contributors, and survived for 2 years), 2) DL projects
that are tutorials, examples, courses, handbooks, or
learning notes were excluded (by manually observing),
3) the selected OSS projects are with a wide range of
tech stacks and application domains, such as a web
development framework (react), a team collaboration
tool (zulip), and a database (tidb). As a result, 19 DL
projects and 19 traditional OSS are collected.

Table [I] and [list the project names, and
detailed descriptions are publicly available at
https://github.com/HIJXPaperData/
SustainabilityofDL. The average duration of
the collected DL projects is 6 years, accompanied by
an average of 28,905 stars, 163,624KB of sizes, 13,325
commits, and 576 contributors. In comparison, the
collected traditional OSS projects have been opera-
tional for 8 years on average, boasting 28,588 stars,
186,448KB of sizes, 11,889 commits, and 536 con-
tributors. These statistics suggest a relative similarity
between the two constructed datasets.

After collecting the targeted projects, we employed
Google BigQuery to extract all the histories of activi-
ties for each project. GH Archive provides most of the
activity events such as issues, issue comments, pull re-
quests, and pull request reviews for each project |Arc
(2021), and is available as a public dataset on Google
BigQuery Big| (2021). We ran SQL-like queries over
the entire dataset to collect activity events that are per-
formed in each targeted project from January 2015 to
April 2022 |Arc| (2021); [Wang et al| (2020). Conse-
quently, we obtained 15 activity types with about 12GB
for the 19 DL projects and about 16GB for the 19 tradi-
tional OSS projects. The 15 activity types are Issues, Is-
sue Comments, Commit Comments, Pull Requests, Pull
Request Review, Pull Request Review Comments, Push,
Release, Gollum (editing wiki), Watch, Member, Pub-
lic, Fork, Create, and Deleteﬂ

2.2. Characterizing the Project Sustainability

The definition of sustainability is multi-faceted
Coelho and Valente|(2017);|Valiev et al.[(2018)); Mendez
et al.| (2018)); [Q1u et al.| (2019); Manotas et al.| (2016);
Noman et al.| (2022); Trinkenreich et al. (2021). For
instance, the sustainability of OSS projects can be re-
garded as the success of OSS projects (Crowston et al.
(2006); \Coelho and Valente (2017); Valiev et al.| (2018)
from the technical perspective and the cooperation per-
spectiveNoman et al.|(2022); Trinkenreich et al.|(2021).

2https://docs.github.com/en/developers/
webhooks—-and-events/events/github-event-types

More specifically, Valiev et al. [Valiev et al.| (2018) and
Zhang et al. |[Zhang et al.| (2022)) considered a project is
dormant (i.e., unsustained) if a project did not receive
a new commit for more than six months after its last
commit. However, the sustainability in prior studies|Va-
liev et al.| (2018); [Zhang et al.| (2022)) is static, which
cannot be simply applied to our study. Since we tend
to analyze the relationships between maintainers’ activ-
ities and the dynamic sustainability of DL projects over
time, we thus changed this term from a static state to
a dynamic state, and also used the number of commits
to characterize the sustainability of projects. This mo-
tivates us to investigate the correlations between main-
tainers’ monthly works and project sustainability (de-
tailed in Section 323).

2.3. Identifying Maintainers

Maintainers are different from ordinary developers in
OSS projects: they devote a significant proportion of
their work to maintaining the OSS projects. Maintain-
ers in smaller projects are usually core developers, while
in bigger projects, they may need to excel in many other
activities beyond coding |Dias et al.| (2021)), e.g., com-
munications with other developers and users. To obtain
the list of maintainers, Zhou et al. Zhou et al.| (2017) get
the maintainers for the Linux kernel ecosystem from the
file named MAINTAINERS. MAINTAINERS contains
information about maintainers, including the names of
Linux kernel’s subsystems, people who maintain it, and
the files associated with different subsystems. However,
in our dataset, the organization membership is unavail-
able from GitHub. Therefore, we cannot get the list of
maintainers from GitHub directly. Nevertheless, Zhou
et al. observed that maintainers are some of the con-
tributors that can commit to projects directly. This mo-
tivates us to identify maintainers from all contributors
that can commit to projects directly.

To do so, we collected all the committers of our tar-
geted projects and surveyed them to understand how
they define a maintainer. Consequently, we obtained
2,615 committers for DL projects and 2,166 committers
for traditional OSS projects. After that, we surveyed
them and asked /) “We defined maintainers as the con-
tributors who have the commit privilege to projects. Do
you agree with that?”, and 2) “In your opinion, how do
you define maintainers?” As a result, we received 30
responses from DL committers and 21 responses from
traditional OSS committers. Out of those, 10 out of 30
DL committers and 7 out of 21 traditional OSS com-
mitters disagreed with the definition. We then applied
open card sorting Tan et al.| (2020b); Han et al.| (2021)

https://github.com/HJXPaperData/SustainabilityofDL
https://github.com/HJXPaperData/SustainabilityofDL
https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types
https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types

to analyze the responses of those committers to the sec-
ond question using the following steps: 1) the first au-
thor and a Ph.D. candidate separately read the answers
to the second question, 2) they generated the initial cod-
ing schema separately, 3) searching if the cards have
already existed, 4) classifying the generated cards into
potential themes for the theme similarity (as described
in LaToza et al.’s study |[LaToza et al.| (2006))), 5) dis-
cussing and determining the final themes. We then com-
puted the Cohen’s Kappa value |Cohen| (1960) to ex-
amine the agreement between the two labelers. Con-
sequently, the Kappa value is 0.89, which indicates an
excellent agreement. Results to the second question re-
veal that, among DL and traditional OSS committers,
about 40% of them believed that maintainers are those
contributors who also have the merge privilege.

According to the definition of maintainers in ISO/IEC
25000 (ISO/IEC, 2014) and the definition of main-
tenance in ISO/IEC 25051:2014 (see Section [I), we
thus defined maintainers as contributors possessing both
merge and commit privileges. This resulted in 155
maintainers for DL projects and 266 maintainers for tra-
ditional OSS projects.

2.4. Identifying of Maintainers’ activities

To understand why maintainers need the merge priv-
ilege and the commit privilege, we characterize main-
tainers’ activities. In Section [2.1] we have gathered 15
types of activities from both DL and traditional OSS
projects from GitHub. However, it is unclear whether
maintainers only perform these activities in practice and
what are their most common activities.

To understand maintainers’ activities, we surveyed
the maintainers, listed all types of activities, and asked
“Among these activities, which activities can be con-
sidered as maintainers’ workload in their maintenance
progress?” and “Apart from these activities mentioned
above, do you afford other workloads in your mainte-
nance process?”.

As a result, for the first question, more than half of
both DL and traditional OSS respondents believe that
maintainers’ workload includes: Issue Comment, Pull
Request Review, Pull Request Review Comment, Re-
lease, Commit, Pull Request, Issue, Push, and Com-
mit Comment. Regarding the second question, it was
found that among the 30 DL respondents, 10 did not
provide any answers, 7 gave ambiguous answers, and
6 indicated that the activities mentioned in the first
question had already covered their workload. Among
the remaining DL respondents, several mentioned that
they “use the forum and slack to collaborate with other

9 LEINNT3

maintainers”, “put proposals for new work”, “promote

ELINT3 [LIT3

their projects”, “update libraries”, “solve issues”, and
“merge pull requests”. Simultaneously, among the 21
traditional OSS respondents, 6 did not provide any an-
swers to this question, and 3 believed that the activi-
ties identified in the first question had already covered
their workload. Among the remaining traditional OSS

ELINT3

respondents, they stated that they “solve issues”, “merge
pull requests”, “plan roadmaps for projects”, and “man-
age forums, documentation, and contributors”. This in-
dicates that maintainers need the commit privilege to
“solve issues” and need the merge privilege to “merge
pull requests” to maintain the projects. The solved is-
sues and the merged pull requests can be used to correct
faults and improve performance (corresponding to the
definition of maintainers in ISO/IEC 25000 (ISO/IEC,
2014) and the definition of maintenance in ISO/IEC
(25051:2014)).

Based on the responses from maintainers, we use
the number of issues, closed issues (i.e., issues that are
solved by maintainers), issue comments, commits, com-
mit comments, push, pull requests, merged pull requests
(i.e., pull requests that are merged by maintainers), pull
request reviews, pull request review comments, and
releases, to characterize the workload of maintainers
holistically. This answers RQ1.

Notably, we do not consider communication on fo-
rums and other channels, as well as project promotion
and planning in our work. This is because we aim to
mine the development data hosted on GitHub, and the
information hosted outside the github.com website (e.g.,
forums and other channels) is hard to monitor.

3. Results

This section presents the results for RQ2-4.

3.1. RQ2: How do DL projects evolve and how do
the overall workloads of maintainers evolve in this
process?

Motivation: Here, we would like to have a basic un-
derstanding of how DL projects evolve (i.e., the sustain-
ability of these projects). Meanwhile, we would like to
have a first impression of how much the workload is af-
forded by maintainers among various activities in DL
projects evolve. More specifically, considering there
are various participants during the life cycle of a soft-
ware project, we also compare the growth trends of the
number of maintainers, the number of authors the main-
tainers were obligated to deal with, and the number of
newcomers attracted between DL and traditional OSS
projects.

Approach: To this end, we explore the growth trends
of various activities in DL projects and compare them
with those of traditional OSS projects. To do so, we
count the number of each type of activity in each month
for both DL and traditional OSS projects. Afterward,
we performed the Kolmogorov-Smirnov test Massey Jr
(1951) to examine whether there exist significant dif-
ferences in the distribution of various activities between
DL and traditional OSS projects. The null hypothesis
is that DL and traditional OSS projects have the same
distribution in various activities.

Besides, we also explore the growth trends of the
workload that is afforded by maintainers in DL projects
and compare them with those of traditional OSS
projects. To do so, for each type of activity, we count
the number of activities that are conducted by maintain-
ers who have participated in the activity each month
respectively. Then, for both DL and traditional OSS
projects, for each type of activity, we calculate the pro-
portion of activities that are conducted by maintainers
among all activities respectively. Meanwhile, we ran
the Kolmogorov-Smirnov test to check whether there
exist significant differences in the distribution of work-
load ratios of maintainers between DL and traditional
OSS projects, and the null hypothesis is that maintain-
ers in DL and traditional OSS projects have the same
distribution of workload ratios.

Furthermore, we also explore the growth trends of
maintainers, authors, and newcomers in DL projects,
and compare them with those of traditional OSS
projects. To do so, we depict the number of maintainers,
authors, and newcomers each month for both DL and
traditional OSS projects. We also ran the Kolmogorov-
Smirnov test to check whether there exist significant dif-
ferences in the distribution towards the number of main-
tainers, authors, and newcomers in DL and traditional
OSS projects, and the null hypothesis is that the distri-
butions of maintainers, authors, and newcomers are the
same in DL and traditional OSS projects.

Result: We observe that (1) there are significant differ-
ences between DL and traditional OSS projects in the
evolution of 8 out of 11 types of activities, i.e., Push,
Commit Comment, Issue Comment, Release, Pull Re-
quest, merged Pull Request, Pull Request Review, and
Pull Request Review Comment. Besides, (2) there are
significant differences between DL and traditional OSS
projects in terms of the proportion of workload that is
afforded by maintainers for 10 out of 11 types of activ-
ities (except for Release). To better understand the dif-
ferences between DL and traditional OSS projects, we
take activities Commit, PullRequest, Issue, IssueCom-
ment, and Release as examples. Fig. [2]to Fig. [6] depict

the trend lines of sampled activities in DL and tradi-
tional OSS projects, along with the proportion of work-
load handled by maintainers.

For example, Fig. 2] shows the number of commits
in DL and traditional OSS projects per month, as well
as the proportion of workload that is afforded by main-
tainers. Our statistical test results highlight a significant
difference in the distribution of commit activity between
DL and traditional OSS projects. The number of com-
mits in DL projects shows almost linear growth before
the beginning of 2019 and becomes relatively stable af-
ter early 2019. However, the number of commits in
traditional OSS projects appears to have a decreasing
trend at the end of 2017 and keeps relatively stable dur-
ing 2018 and 2022. Meanwhile, we also find that the
proportion of commits that maintainers afford all has a
decreasing trend over time, while maintainers in tradi-
tional OSS projects have a higher ratio of commits than
maintainers in DL projects. However, no significant dif-
ference is found in workload ratios between maintainers
in DL and traditional OSS projects.

1.0
Commit (DL)
Commit (non-DL)
40001 —— Maintainers' ratio (DL) 0.8
Maintainers' ratio (non-DL) :
& '
A BAFY i
v RV 1
@ 3000 ANl Y i 0.6
a i)
c Y it =1
i
> [ANV LI EEIRES 1k e
Z2000 I I 0.4
* ! | M
i v
i i
LRI NN
1000 ih It i 0.2
AN UHR
BOEULH R | LA \
i TR R AR
iV
0 0.0

1 13 25 37 49 61 73 85
Number of months

Figure 2: Number of commits in DL and traditional OSS projects,
along with the proportion of workload that is afforded by maintainers.

1.0
4000 PullRequest (DL)
PullRequest (non-DL)
—— Maintainers' ratio (DL)
~~ Maintainers’ ratio (non-DL) 0.8
3000 WAL A
. DRAYES AT
[} \ ’ 4 | I\ | 0.6
o \ {IATIA | b 64
€ ! { S
52000 | ke
z s | 104
| WM |
1000 i til
i [oj0.2
|
i
i
0 0.0

1 13 25 37 49 61 73 85
Number of months

Figure 3: Number of pull requests in DL and traditional OSS projects,
along with the proportion of workload that is afforded by maintainers.

Fig. [3illustrates the number of pull requests in DL
and traditional OSS projects per month, as well as the
proportion of workload that is afforded by maintainers.
Our statistical test results show a significant difference
in the distribution of pull request activity between DL

1.0
5000 Issues (DL)
Issues (non-DL)
—— Maintainers' ratio (DL) 0 8
4000 —-— Maintainers' ratio (non-DL) .
< !
] | 0.6
23000{ I o
€ LA “y A ! =
E] IRV VR A 1 I K
= Vsl VoA A Sy ‘
\ i Ak, T L UHA LN i .
%20000 Y MTNA G A vl kb A 0.4
\ ! A A i
. /) N
Vi N i i
VTN A A il i
1000 LTt K AT 0.2
] U A
Tl
1!

0413 25 37 49 61 73 85 0O
Number of months

Figure 4: Number of issues in DL and traditional OSS projects, along
with the proportion of workload that is afforded by maintainers.

1.0
IssueComment (DL)
IssueComment (non-DL)
—— Maintainers' ratio (DL) 0.8
15000] —— Maintainers' ratio (non-DL) :
o
a ,‘\ " s 0'6.9
£€10000 SAWARNY \ A \ . At 11 ©
S VLAY A T N i il [
2 ¢ R M VARl 1.4
z TR TN HAEREI .
Y T | i
5000 { i\ I " i
ul i SRl 0-2
¢ it It et
y i
i
0 : 0.0

1 13 25 37 49 61 73 8
Number of months

Figure 5: Number of issue comments in DL and traditional OSS
projects, along with the proportion of workload that is afforded by
maintainers.

— T T 1.0
T hedieabd opl 1 1]
oo SR 1
——: Maintainers' rati \
i ettt WA . los
801 i .
5 A \l\ﬂH" o |
B0 i it
S o nl :‘!i:i;:: oy L [06,
€ i b . =1
3 EREIY A | . IS
= it G] ! 0.4
40 i ‘l‘: H‘:H i i .
I T L
[ty |
20 o |02
w0 |
R |
Y a5 0.0

Number of months

Figure 6: Number of releases in DL and traditional OSS projects,
along with the proportion of workload that is afforded by maintainers.

and traditional OSS projects, and there also exists a sig-
nificant difference in workload ratios of maintainers be-
tween DL and traditional OSS projects. As illustrated
in Fig. [3] the number of pull requests in DL projects in-
creases almost consistently, while the proportion of pull
requests maintainers afford in DL projects decreases
in this process. This phenomenon indicates that more
and more authors and users are joining DL projects,
and have made more and more contributions. Mean-
while, the number of pull requests in traditional OSS
projects experiences fluctuations, with a pronounced in-
crease before the end of 2016, followed by a decline
until the beginning of 2019, and a subsequent upsurge.

During this period, the proportion of pull requests main-
tainers afford in traditional OSS projects remains rela-
tively stable and high, with an average ratio of approx-
imately 0.6. This phenomenon implies that maintain-
ers in traditional OSS projects are still burdened with
a considerable workload in managing the project. Re-
markably, maintainers in DL projects exhibit a lower
workload ratio concerning pull requests than those in
traditional OSS projects.

Fig. [] depicts the number of issues in DL and tradi-
tional OSS projects per month, as well as the proportion
of workload that is afforded by maintainers. Our sta-
tistical test results indicate that there is no significant
difference in the evolution of issue activity between DL
and traditional OSS projects. However, there is a sig-
nificant difference in the workload ratios of issue activ-
ity for maintainers in DL and traditional OSS projects.
Fig. @reveals that both DL and traditional OSS projects
show an increasing number of issues, where the growth
trend is slower for traditional OSS projects compared to
DL projects. Simultaneously, the proportion of issues
handled by maintainers is relatively stable in traditional
OSS projects, while it exhibits a decreasing trend in DL
projects, indicating that more and more issues are be-
ing handled by common authors and other users in DL
projects. Remarkably, maintainers in DL projects show
a lower ratio of issues than maintainers in traditional
OSS projects.

As for issue comments, our statistical test results
show a significant difference in the distribution of is-
sue comment activity between DL and traditional OSS
projects, and there also exists a significant difference in
the workload ratios of maintainers in DL and traditional
OSS projects. Results in Fig. [5|show that maintainers in
DL projects have a lower ratio of issue comments than
those in traditional OSS projects. We can also observe
that DL projects have almost linear growth before the
end of 2020, then a decrease after the beginning of 2021.
Conversely, traditional OSS projects show an increasing
trend in the number of issue comments. Especially, the
proportion of issue comments maintainers afford in tra-
ditional OSS projects fluctuates over time but remains
relatively stable, while it shows a decreasing trend for
maintainers in DL projects.

Fig. [f displays the number of releases in DL and
traditional OSS projects per month, as well as the pro-
portion of workload that is afforded by maintainers. It
shows that the number of releases is small for both DL
and traditional OSS projects before the end of 2019.
However, in the last two years of our studied period,
the release frequency increased substantially, with DL
projects exhibiting a higher number than traditional

OSS projects. During this time, maintainers in DL
projects accounted for a higher proportion of releases
than maintainers in traditional OSS projects. Our statis-
tical test results further confirm a significant difference
in the distribution of release activity between DL and
traditional OSS projects. However, there is no signif-
icant difference in the workload ratios of maintainers
between DL and traditional OSS projects.

Since we have presented a comprehensive analysis of
the evolution of DL projects, and compared them with
traditional OSS projects. Specifically, we also depicted
the monthly changes in the number of maintainers, au-
thors, and newcomers for both DL and traditional OSS
projects, as shown in Fig. [7]to Fig. [0} Our findings
in Fig. [/|indicate that traditional OSS projects have a
higher number of maintainers than DL projects during
the studied period. Moreover, the number of maintain-
ers in traditional OSS projects exhibits a more dynamic
pattern than in DL projects. In terms of the number of
authors in Fig. [§] we observe a sharp increase in DL
projects before the middle of 2020, whereas the num-
ber of authors in traditional OSS projects grows sharply
only until 2017, after which it remains relatively con-
stant. These findings confirm that DL projects are grow-
ing fast and have attracted more and more contributions
from various authors [Han et al.| (2020Db).

Regarding the number of newcomers, as illustrated
in Fig. [0 we can observe that although the inflow of
newcomers fluctuates, it exhibits a long-term increas-
ing trend in DL projects. Notably, the growth trend of
authors is steeper than the growth trend of newcomers
in DL projects, suggesting that an increasing number of
newcomers are joining DL projects and staying to make
consistent contributions over time. In contrast, the in-
flow of newcomers in traditional OSS projects also fluc-
tuates but exhibits a relatively stable trend in the long
run. Based on the results of our statistical tests, we
found a significant difference in the number of main-
tainers between DL and traditional OSS projects, while
there was no significant difference observed in the num-
ber of authors and newcomers between the two types of
projects.

In summary, the results obtained in this study reveal
significant differences in the evolution of most activities
between DL and traditional OSS projects. Additionally,
there also exist significant differences in the workload
ratios of maintainers across almost all activities between
DL and traditional OSS projects. Specifically, main-
tainers’ workload ratios in DL projects are significantly
lower than those in traditional OSS projects, and they
show a decreasing trend for most activities. Further-
more, the number of maintainers in DL projects is also

significantly lower than that in traditional OSS projects,
and it exhibits a fluctuating trend.

20 V\/Jﬂ‘\/\r\\/‘v 1“ M AV .
o q |

2015 2016 2017 2018 2019 2020 2021 2022

Figure 7: Number of maintainers in DL and traditional OSS projects.

700
600
500

8400

£

2300
200
100

20152016 2017 2018 2019 2020 2021 2022

Figure 8: Number of authors in DL and traditional OSS projects.

200
175
150

H'\h/“

N
|
““w‘i‘\ A

i

no
o ‘m U
2125 0 ,v‘ '\
25100 \ “M* f\/ '{“ 'ﬂmw ; '
= W
v'\\J

25

2015 2016 2017 2018 2019 2020 2021 2022

Figure 9: Number of newcomers in DL and traditional OSS projects.

3.1.1. Implications.

Organizations and developers: Organizations and
developers who are planning to undertake DL projects
should be aware of the significant differences in the
evolution of activities between DL and traditional OSS
projects, as well as the significant differences in work-
load ratios that maintainers afford in DL and traditional
OSS projects. Especially, as maintainers in DL projects
tend to have a lower workload compared to those in tra-
ditional OSS projects, therefore, organizations should
consider this point when planning and allocating re-
sources for DL projects, and developers should consider
this point when choosing OSS projects in different do-
mains to contribute to.

Maintainers: Maintainers in both DL and traditional
OSS projects should be aware of this phenomenon,
closely monitor their workload ratios in various activ-
ities and try their best to maintain a healthy workload
distribution. Meanwhile, given the rapid influx of au-
thors and newcomers observed in DL projects, to alle-
viate the workload of maintainers in user management,
we recommend maintainers in DL projects provide DL-
specific workflows and detailed readme files to authors
and newcomers, making the development process of
their managed projects clear and precise. Additionally,
we suggest that maintainers examine and identify out-
standing authors and integrate them into their group to
ensure the long-term sustainability of DL projects from
maintainers’ perspectives.

Researchers: Meanwhile, researchers in the software
engineering domain should recognize the significant
discrepancies discussed above between DL and tradi-
tional OSS projects, and be cautious when selecting
open-source projects in different areas for their studies.
Furthermore, the decreasing trend in the workload ratios
of maintainers in DL projects for most activities should
be further investigated by researchers to identify the rea-
sons behind this trend. They can also investigate the
factors contributing to the differences in the evolution
of various activities between DL and traditional OSS
projects.

Moreover, the number of maintainers in DL projects
is significantly lower than the number of maintainers in
traditional OSS projects and shows a fluctuating trend.
Hence, it highlights the need for further investigation
into the factors that influence the number of maintainers
in DL projects. Researchers could check the impact of
factors such as project goals, company domination pat-
terns, and project complexity on the number of main-
tainers in DL projects. Researchers can also explore
practical strategies to help attract more maintainers. In
this way, researchers can help ensure the long-term sus-
tainability of DL projects from maintainers’ perspec-
tives.

There is a significant difference in the evolution
of most activities between DL and traditional OSS
projects, and there is also a significant difference in
workload ratios of maintainers in DL and traditional
OSS projects. Specifically, maintainers’ workload ra-
tios on many activities in DL projects are significantly
lower than those in traditional OSS projects, and they
show a decreasing trend for most activities.

3.2. RQ3: How does the average workload of maintain-
ers evolve as DL projects grow?

Motivation: Findings in RQ2 reveal a decreasing trend
in the workload ratios of maintainers across many activ-
ities in DL projects. Meanwhile, the number of main-
tainers is also showing a fluctuating trend. Therefore,
further investigation is required to explore the evolution
of the average workload per maintainer afford. More-
over, given the continuous influx of authors and new-
comers in DL projects, it remains unclear whether ex-
isting maintainers in DL projects can handle the ever-
increasing authors and newcomers. Hence, in this RQ,
we analyze historical data to investigate the dynamic
evolution of maintainers’ workload during their main-
tenance process. Understanding the evolution of main-
tainers’ workloads can help us better understand the sus-
tainability of their work.

Approach: To determine if the workload per main-
tainer afford has increased with the development of DL
and traditional OSS projects, we pictured the monthly
changes in the average workload per maintainer af-
ford in our sampled projects. Subsequently, to exam-
ine whether there exist significant differences in growth
rates of various activities for maintainers in DL and tra-
ditional OSS projects, we applied a one-way ANOVA
Heiberger and Neuwirth| (2009) test to verify it. The
null hypothesis is that the growth rates of various activ-
ities for maintainers in DL and traditional OSS projects
are identical.

Then, to gain insights into the growth trends of main-
tainers’ various activities within each project, we de-
rived the monthly changes in the average workload of
maintainers in each sampled project. Due to space con-
straints, we only present the growth trends for two sam-
pled projects. Take the complex DL project - Tensor-
flow, and the complex traditional OSS project - React,
as examples. We depicted the monthly changes in the
average workload of maintainers in these two projects,
as shown in Fig. [IT]and Fig. [12] respectively.

Subsequently, we further calculated the average
monthly growth rates of various activities per main-
tainer for each project. Accordingly, we have 11
growth rates for each sampled project (comprising 19
DL projects and 19 traditional OSS projects). We then
performed a one-way ANOVA test again to verify if
there is any difference in the 11 growth rates of main-
tainers for each sampled project. In this way, we can
gain a better understanding of whether there exist signif-
icant differences in the average workload of maintainers
across various activities.

Result: Our findings indicate that there almost exist
no significant differences in the growth rates of average

workload on various activities per maintainer between
our sampled DL and traditional OSS projects. Figure
displays the monthly changes in average workload
per maintainer for our sampled projects. On average,
DL project maintainers show increasing workloads in
Pull Requests, merged Pull Requests, Pull Request Re-
view Comments, Releases, and Pushes, with a sharp in-
crease during 2020 and 2022. Meanwhile, traditional
OSS project maintainers show increasing workloads in
Issue Comments, Pull Requests, merged Pull Requests,
Pull Request Review Comments, and Releases. No-
tably, we find that maintainers in DL projects release
new versions more frequently than those in traditional
OSS projects during 2020 and 2022, which is consis-
tent with previous findings that ML libraries release new
versions more frequently Dilhara et al.|[(2021)). Specifi-
cally, it is worth noting that different scales are used to
emphasize trend similarities among various activities.
For instance, the commit number is multiplied by 10,
and the number of commit comments is multiplied by
100. Our statistical test results show that there only ex-
ists a significant difference (F(1,1709) = 3.717, p < 0.05)
in the growth rate of Commit Comment for maintainers
between DL and traditional OSS projects.

The monthly changes in the average workload of
maintainers in Tensorflow and React are shown in Fig.
[[T] and Fig. [I2] Results in Fig. [II] demonstrate that
maintainers in Tensorflow experienced a high average
workload across various activities from 2016 to 2018.
However, their workload appears to drop at the begin-
ning of 2019. This finding is in line with the evolution-
ary history of Tensorflow Han et al.| (2020b)), where the
project was first released in November 2015. Therefore,
in its initial stages, most works tend to be accomplished
by the project’s maintainers. As the project grew, more
developers and contributors joined, resulting in a de-
crease in the average workload per maintainer.

In contrast, Fig. [I2]shows that there exist fluctuating
trends of the average workload of maintainers in React.
In general, per maintainers’ average workload in React
are stable for most activities during the studied period,
while their average workload on Issue Comment, Pull
Request, merged Pull Request, and Pull Request Re-
view Comment fluctuates dramatically during this pe-
riod. Nevertheless, it still presents a decreasing pattern
in the long run.

Table [I] uncovers that there indeed have significant
differences in the growth rates across various activi-
ties of maintainers in most DL projects, with 14 out
of 19 (74%) DL projects demonstrating significant dif-
ferences. The remaining DL projects, such as Trans-
formers, Keras, MMdnn, PyTorch-Lightning, and Ten-

10

sorFlow, are mostly DL frameworks or tools. This indi-
cates that maintainers in these projects present relatively
even growth rates on various activities. This finding is
consistent with the findings in Fig. [TT] Meanwhile,
Table [2] reveals that significant differences exist in the
growth rates across various activities of maintainers in
most traditional OSS projects, with 11 out of 19 (58%)
showing significant differences. The remaining projects
are mostly platforms or frameworks with a larger size or
a larger number of maintainers.

Table 1: Statistical Tests for Growth Rates across Various Activi-
ties of Maintainers in Each Sampled DL Project. The Second and
Third Columns show F-values and P-values for Average Growth Rates
across Various Activities.

Project F-value P-value
caffe 2.088 <0.05 (*)
fastai 3.042 <0.001 (%)

transformers 1.609 >0.05
gocv 5.756 <0.001 (*#*%*)
autokeras 4.472 <0.001 (**%*)

keras 1.004 >0.05

Lasagne 5.428 <0.001 (**%*)

MMdnn 1.808 >0.05

DeepSpeech 5.957 <0.001 (***)
DIGITS 4.035 <0.001 (%)
mmdetection 4.136 <0.001 (**%*)
photoprism 3.932 <0.001 (%)
fairseq 2.001 <0.001 (+**)
pytorch 2.139 <0.05 (*)
pytorch-lightning 0.977 >0.05
pytorch-image- 5.787 <0.001 (***)
models
ncnn 4.527 <0.001 (%)
tensorflow 1.322 >0.05
Theano 10.23 <0.001 (+**)

3.2.1. Implications.

Maintainers: Maintainers working on both DL and tra-
ditional OSS projects should recognize that, except for
the Commit Comment activity, there are no significant
differences in the monthly changes of average workload
across most activities. Therefore, maintainers who tend
to contribute to both types of projects can utilize simi-
lar approaches to manage their workload. In addition,
as shown in Fig. [I0] maintainers in DL and traditional
OSS projects all experience an increasing workload in
activities related to pull requests, such as submitting,
merging, reviewing, and commenting on them. There-
fore, maintainers must be mindful of the growth rates
of pull request-related activities and identify outstand-
ing contributors to integrate into their team, so that they
can ensure the long-term sustainability of their manage-
ment works. Maintainers can also adopt automatic tools
to help them deal with some management tasks, e.g.,

17.5 18
n Pul IRequest-DL
100 Commit-DL*10 » Merge-DL
Conmi t-0S5*10 15.0 PulRequest-0SS , 16 Merge-0SS
Commi tComment-DL¥100 Pul IRequestReview-DL fig X
= 80 . _ ©12.5] ==+ PullRequestReview-0ss o, 14 Pul IRequestRev i ewComment-DL
2 ~ =) CofimitComnent035*100 2 “” 8 49] ==+ PullRequestRevieuComtent-0SS
5 Wi £ T
2 60 210.0 "LH: 210 i 'l‘\:nn' ‘\‘,"‘:.l‘
o) I o) Y n | U
2 4 275 I T AP T Y
g W 2 n 5 6 e g ho no oy 1
2 > 50 i g wd ARy i
2 f < ’ i 2 Ny yoa g il
20 ‘,l 2.5 H\,W 4 | HLNIN |II l|ll 1 '/\'\}. “:
. ; \ soom | 1 v
0 A 'l‘—-q\ 0.0 - Y H ul 21 Je /vwlil \/\’/\—«-/\,/I !
2015 2016 2017 2018 2019 2020 2021 2022 2015 2016 2017 2018 2019 2020 2021 2022 02015 2016 2017 2018 2019 2020 2021 2022
(a) Commit & Commit Comment (b) Pull Request & Pull Request Review (c¢) merged-Pull Request & Pull Request Re-
view Comment
175
Release-DL*100 —— Issues-DL 17.5{ —— Closed|ssues-DL
150 Re | ease-0S5*100 30 Issues-08S 15.0 Closed| ssues-0SS
; 125 Push-DL*10 B 251 T I ssueComment-DL GL) .
2 — =+ Push-0SS¥10] — == IssueComment-0SS £12.5
2100) 220 Iy Z10.0
\ e "
87 A A go R, %75
¢ [‘hid v ’
L A N PV SRR) siof AVVT W At S 5.0
< J Vel I [z | ,Jf W 2
251 . 7 WU ,' i 5] o 2.5 ARAANTA)VAVV\\.
o] & ke -‘,“, A \,‘VJV\/VI'I ol = ATV Pl 50 o W, P [

2015 2016 2017 2018 2019 2020 2021 2022
(d) Release & Push

2015 2016 2017 2018 2019 2020 2021 2022

(e) Issues & Issue Comment

201520162017 2018 2019 2020 2021 2022

(f) closed-Issues

Figure 10: Comparison of the trends of an average number of activities conducted by per maintainer in DL and OSS projects. Notably, different
scales are used to emphasize trend similarities among various activities. For instance, the commit number is multiplied by 10, and the number of

commit comments is multiplied by 100.

80 |
5 \
260 Ql.::
S ‘llI
P
i A

b‘f llll'v,l'“‘h\'"‘,v
220, |3 v
<

0 a.y\v'\hm A

\
}r

14
Commit Pul IRequest
Commi tComment 12 Merge
| ssues*10 [Pul IRequestReview
= = closedl|ssues*10 _8 10
== |ssueComment £ Release
Push = 8
[0}
an
w 6
ol
o
2 4
M <
h 4
Y“'??":\“ & 2
0

20152016201720182019202020212022
(a) Activity Setl

= = Pul IRequestReviewComment

20152016201720182019 202020212022
(b) Activity Set2

Figure 11: Trends of maintainers’ average workload on various activities in Tensorflow.

50 !
54 h
S30 y

A l|||’ll 1
o Ly
S AR
S I\Iu“l I:l
<107 Ny llw

0 W‘/“/"’ 1

20152016201720182019202020212022
(a) Activity Setl

30
= Commit
Commi tComment
I'ssues j 25
= = closedlssues o
e}
== IssueComment £ 20
Push é
0 515
o h 10
1L, fikh 1y e
A, ey UL =
l|’ LA R VAV| 5
i AR AN IS AN
0

= Pul |Request

Merge

Pul IRequestReview

= = Pul |RequestReviewComment
Release

2015201620172018201920202021 2022
(b) Activity Set2

Figure 12: Trends of maintainers’ average workload on various activities in React.

adopting GitHub’s new detailed code review toolsﬂ to

3https:// github.com/features/code-review/

tackle pull request review and review comments.

Although the monthly changes in the average work-

11

Table 2: Statistical Tests for Growth Rates across Various Activities
of Maintainers in Each Sampled Traditional OSS Project. The Second
and Third Columns show F-values and P-values for Average Growth
Rates across Various Activities.

Project F-value P-value
aframe 4.575 <0.001 (*##%*)
goaccess 6.278 <0.001 (**%*)
airflow 1.058 >0.05
openwhisk 2.486 <0.001 (%)
superset 1.601 >0.05
zookeeper 8.576 <0.01 (**)
fresco 6.445 <0.001 (***)
jest 3.23 <0.001 (*¥*%*)
react 1.103 >0.05
gardener 4.006 <0.001 (¥**)
ExoPlayer 0.843 >0.05
ZeroNet 17.17 <0.01 (**)
manageiq 0.783 >0.05
Moya 4.261 >0.05
tidb 0.935 >0.05
rclone 4.51 <0.001 (***)
tesseract 2.489 <0.01 (**)
zulip 1.279 >0.05

load of maintainers for different activities almost
have no significant differences between DL and OSS
projects, when it comes to the individual perspective,
we found significant differences in the growth rates of
maintainers’ average workload for different activities
within individual projects. In this regard, a proportion
of 74% DL projects confirmed the above findings, com-
pared to 58% in traditional OSS projects (see Table
and [2). Therefore, maintainers in DL projects should
pay more attention to their workload distribution on var-
ious activities over time, and tailor maintenance strate-
gies accordingly.

Besides, as illustrated in Fig. there is also a rising
workload of issue comment activities for maintainers in
traditional OSS projects. Therefore, we emphasize the
importance that maintainers should provide clear and
actionable documentation for practitioners. In this way,
more and more practitioners will become familiar with
the details of OSS projects, which in turn, reduces the
number of issues and also reduces maintainers’ work-
load on issue comments.

Researchers: Researchers in the software engineering
domain should recognize the significant differences in
the growth rates of maintainers’ average workload for
different activities within individual projects, especially
in individual DL projects. They should be cautious
when selecting open-source projects in different do-
mains to study maintainers’ works. Furthermore, they
could consider a larger scale of DL and traditional OSS
projects to verify if this finding is also applicable to

12

most DL and traditional OSS projects.

Moreover, to alleviate maintainers’ workload in pull
request-related activities, researchers can explore the
development of automatic code generation tools based
on existing studies [Hu et al| (2019); Bernaschina et al.
(2019); IL1u et al.| (2020), derive automatic code review
tools on top of existing studies |(Chen and Zhou| (2018]),
and help to process code comments automatically. Fur-
thermore, they can also contribute to generating usable
models that help maintainers find available contributors
to engage in dealing with management tasks, such as the
multiple-committer model adopted in the Linux kernel
community [Tan et al.| (2020al).

Except for the activity of Commit Comment, there are
no significant differences in the growth rates of av-
erage workload on various activities per maintainer
between sampled DL projects and traditional OSS
projects. Regarding each project, our findings show
that most DL projects demonstrate significant differ-
ences in growth rates across various activities of main-
tainers, and traditional OSS projects with a larger size
tend to show no significant differences in growth rates
across various activities for maintainers.

3.3. RQ4: What are the relationships between main-
tainers’ activities and the sustainability of DL
projects?

Motivation: Maintainers perform various activities

when they maintain DL projects, and their activities

may influence the sustainability of DL projects. There-
fore, we investigate the relationships between main-

tainers’ monthly activities and the sustainability of DL

projects, and how the evolution of maintainers’ activi-

ties influences the sustainability of DL projects.

Approach: In this section, we use the metric defined

in Section [2.2]to assess project sustainability. We then

conduct a Spearman’s rank correlation test [Sedgwick

(2014); |Borges et al.| (2016) to examine the correla-

tion between maintainers’ monthly activities and project

sustainability in DL projects. We also compare these re-
sults with those of traditional OSS projects.

Results: Our findings uncover that the relationships

between project sustainability and maintainer activi-

ties differ significantly between DL and traditional OSS
projects. Specifically, only one type of maintainer ac-
tivity, i.e., the number of pull request review comments
made by maintainers, exhibits a similar correlation with
sustainability in both DL and OSS projects. Other
maintainer activities all have different correlations with
project sustainability in DL and OSS projects. For in-
stance, the number of pull requests merged by maintain-

ers, the number of releases and pushes made by main-
tainers are positively and moderately correlated with
the sustainability of DL projects. However, the num-
ber of pull requests merged by maintainers only has
a low correlation with the sustainability of traditional
OSS projects, and the number of releases has no cor-
relation with the sustainability. Fig. [13]illustrates the
monthly changes in the number of commits for DL and
traditional OSS projects, and Fig. [[4(a)| and Fig. [T4(b)]
show the relationships between the number of commits
and maintainers’ activities in DL and traditional OSS
projects, respectively.

Fig. [T4(a)| reveals that there is a high positive corre-
lation between the number of commits in DL projects
and the number of pushes made by maintainers, and a
moderate correlation between the number of commits
and the number of pull requests merged by maintainers
and the number of releases made by maintainers. This
implies that maintainers’ push, merge, and release activ-
ities have a positive and relatively high effect on the sus-
tainability of DL projects. However, there only exists a
low correlation between the number of commits and the
number of issues, closed issues, pull requests, pull re-
quest reviews, and pull request review comments. Addi-
tionally, there is no significant relationship between the
sustainability of DL projects and the number of commit
comments and issue comments made by maintainers.

By comparing with traditional OSS projects, we also
obtained the relationships between the indicators of sus-
tainability and maintainers’ activities in traditional OSS
projects, which is shown in Fig. [[4(b)] We can observe
that the number of commits is positively and moder-
ately correlated with the number of commit comments,
issues, closed issues, pull requests, and pushes made by
maintainers. However, there only exists a low correla-
tion between the number of commits and the number of
issue comments, pull requests merged by maintainers,
and pull request review comments made by maintain-
ers. This result is somewhat different from DL projects,
where pull requests merged by maintainers have a mod-
erate correlation with DL projects’ sustainability. In ad-
dition, there is no significant relationship between the
sustainability of DL projects and the number of pull re-
quest reviews and releases made by maintainers.

3.3.1. Implications.

Maintainers: Based on the findings, it is important for
maintainers to consider the differences between DL and
traditional OSS projects in terms of project sustainabil-
ity. For example, through maintaining a high number
of pull requests merged, releases, and pushes, maintain-
ers in DL projects can positively and highly impact the

13

=== Commit (DL)
=== Commit (non-DL)
4000 Ay
V
o 3000
Q2
S
3 "
% 2000
1000+

20152016201720182019202020212022

Figure 13: Sustainability of DL and traditional OSS projects, using
the metric of the number of commits.

sustainability of DL projects. However, these activi-
ties made by maintainers may not be effective in tra-
ditional OSS projects. Hence, maintainers in DL and
traditional OSS projects may need to focus on specific
activities that are effective in improving the sustainabil-
ity of projects. In this way, they can ensure the long-
term sustainability of projects from maintainers’ per-
spectives.

Researchers: Results in this RQ derive empirical ev-
idence of the relationships between maintainers’ activ-
ities and the sustainability of DL and traditional OSS
projects. These preliminary results call for further in-
vestigations to establish definitive causal relationships
between the indicators of sustainability and maintain-
ers’ activities. Researchers can delve deeper into var-
ious other factors that may impact the sustainability
and compare DL projects with traditional OSS projects.
By doing so, we can gain a better understanding of
how maintainers can effectively contribute to sustain-
able projects.

Furthermore, as previous studies |Dilhara et al.| (202 1))
stated that the proportion of new Python projects that
depend on ML libraries has increased from 2% in 2013
to 50% in 2018; hence, we recommend software engi-
neering researchers use our findings as a starting point
to investigate the fine-grained tasks that maintainers
faced, and explore the sustained maintenance practices
specific to DL projects. By doing so, we can better
understand the unique challenges and opportunities in
managing DL projects, promote sustainable develop-
ment of DL projects, and also provide guidance to many
other OSS projects.

PullRequestReviewComment

Commit_Number
CommitComment
Issues
closedIssues
PullRequest
mergedPullRequest
PullRequestReview
Release

>< IssueComment
Push

Commit_Number |1.00) 0.750.68
CommitComment 1.00 X >< X >< X X X
Issues 1.000.99 0.870.770.73 0.59/0.58
closedissues 1.00 0.850.740.71 0.53 0.57
IssueComment |1.000.76 0.70 X 0.63
PullRequest 1.000.97/0.490.83 0.770.68 0
mergedPullRequest [1.00 0.52 0.81/0.790.70
PullRequestReview 11.000.57 0.59 0.61
PullRequestReviewComment |1.00 0.67 0.56
Push 1.000.86

Release 1.00

(a) DL

€
S
£
£
5
O
® z =2
5 E R
o ey o
g £ , 5 . & & ¢
S5 E o £ B = B B
z o 2 E & 5 8 o
- 8 $ 5 34 3 3 o
= 2 o 2
S o 7] o » S ® 5 35 S []
(6] O 2 T 2 £E 4o o a
1
Commit_Number 1.00 >< O.GAX
0.8
CommitComment 1.00 X X X X X0 X X
Issues 1.000.97 0.820.750.730.320.68 0.720.52 |i ¢
closedissues '1.000.780.700.68 0.2% 0.61 0.69 0.49 | [%4
IssueComment |1.000.940.950.50 0.85 0.750.55 | [0-2

PullRequest 1.000.98 0.88 0.830.52 0

mergedPullRequest 1.00 0.88 0.790.55

XX

PullRequestReviewComment |1.00 0.69 0.57
Push 1.00 X
Release 1.00

PullRequestReview 1.00

(b) OSS

Figure 14: Relationships between the sustainability of projects (i.e., the number of commits) and maintainers’ activities in DL and OSS projects.
The blue color indicates a positive correlation, and the red color indicates a negative correlation. The darker the color is, the stronger the correlation
is. “X” implies that the correlation is insignificant[Dong et al| (2020). An absolute value of correlation that is less than 0.4 means a low correlation,
an absolute value of correlation that ranges from 0.4 to 0.7 means a moderate correlation, an absolute value of correlation that ranges from 0.7 to
0.9 means a high correlation, and an absolute value of correlation that great than 0.9 means a very high correlation [Guilford| (1950).

The study reveals that the correlation between project
sustainability and maintainer activities differs sub-
stantially between DL and traditional OSS projects.
For instance, the number of pull requests merged, the
number of releases and pushes made by maintainers
are positively and moderately correlated with the sus-
tainability of DL projects, while the number of pull re-
quests merged by maintainers only has a low correla-
tion with the sustainability of traditional OSS projects,
and the number of releases has no correlation with the
sustainability of traditional OSS projects.

4. Related Work

In this section, we describe the related works regard-
ing the behaviors and works of maintainers, the evolu-
tion and sustainability of open source projects, and the
particular analyses of deep learning projects.

4.1. The behaviors and works of maintainers

A tremendous amount of research effort has focused
on studying developers’ works and the evolution of de-

veloper communities [Sonnentag| (1995)); Mockus et al/|
(2000); [Zhou and Mockus| (2010} [2012); [Bao et al
(2019);|Wang et al.| (2020). Closely related to our work,
Wang et al. [Wang et al] (2020) conducted an empirical

14

study to investigate elite developers’ fine-grained activ-
ities in open source projects, and studied the impacts
of these activities on projects’ quality and productivity.
Although they revealed a set of tasks performed by elite
developers, it is unclear whether these elite developers
are maintainers or not.

Hence, there is still little research on the observation
of maintainers and maintainers’ works. Among them,
Dias et al. [Dias et al| (2021) investigated to unveil
the unique attributes that great OSS maintainers might
have. Eghbal et al. analyzed the OSS
maintenance process and found that some hidden costs
of maintaining OSS projects exist. Zhou et al.
reported an empirical study to understand
the scalability of the Linux Kernel and paid more at-
tention to characterizing the workload of maintainers.
Although Zhou et al.’s work is closely related to ours,
their paper only focused on the technical works (i.e.,
the number of commits, files, authors, and new joiners)
of maintainers, but neglected the fact that maintainers
are also responsible for many other tasks. Hence, in this
study, we study maintainers’ activities from various di-
mensions to deeper understand maintainers’ tasks in DL
projects and traditional OSS projects.

4.2. The evolution and sustainability of open source
projects

As open source software evolves continuously, it be-
comes increasingly large and complex [Lehman et al.
(1997). Due to its longevous evolution, there have
yielded a considerable body of studies to investigate
the evolution and sustainability of software evolution.
Among them, Lehman et al. [Lehman et al.| (1997)
initially elaborated on the laws of software evolution,
whereas Scacchi et al. [Scacchi| (2003) conducted a
study to examine whether and how the evolution of open
source software conforms to the laws of traditional soft-
ware evolution. Mockus et al. Mockus et al.| (2000)
examined the development process of the Apache web
server. By extracting data from email archives and issue
reports, they generated several critical views of the OSS
project, including developer participation, core team
size, code ownership, defect density, productivity, and
problem resolution interval.

Prior works are concentrated on the evolution and
sustainability of open source projects, whereas our
study focuses on maintainers’ activities and the sustain-
ability of DL prjects, and compares with traditional OSS
projects, which has not been investigated in previous
studies.

4.3. The analyses of deep learning systems

Deep learning techniques grow at a rapid pace, which
has led to a tremendous amount of empirical research
effort. Among them, a considerable body of literature
puts their effort into studying bugs, failures, and faults
of deep learning projects [Thung et al.| (2012)); Zhang
et al.| (2018); [[slam et al.| (2019} 2020); Zhang et al.
(2020); Humbatova et al.| (2020). For instance, Thung
et al. [Thung et al.| (2012) conducted an empirical study
on the bugs in machine learning systems, to find a sam-
ple set of bugs and corresponding fixes. Zhang et al.
Zhang et al.| (2018) collected program bugs existed in
deep learning projects that depend on TensorFlow and
endeavored to determine the root causes and symptoms
of these bugs.

Simultaneously, there also exist some empirical stud-
ies exploring the migration process of deep learning li-
braries. Han et al. Han et al.|(2020a) put their effort into
dependency networks of deep learning libraries. They
studied the dependency degrees that projects depend on
deep learning libraries, the update behaviors, and rea-
sons when updating deep learning libraries, and the ver-
sion distributions of deep learning projects. Dilhara et
al. [Dilhara et al.| (2021) examined to mine how devel-
opers in Software-2.0 use deep learning libraries, and

15

whether or not the deep learning library evolution af-
fects their code. Moreover, they also expounded on the
challenges of DL library evolution by performing a sur-
vey on developers involving deep learning libraries.

Most prior studies focused on the program bugs/fail-
ures/faults of deep learning projects or the migration
process of DL libraries. However, these prior stud-
ies have not explored maintainers’ activities, the evolu-
tion of maintainers’ activities, not to mention the evolu-
tion of DL projects and the relationships between main-
tainers’ activities and the sustainability of DL projects,
which is studied in our paper.

5. Threats to Validity

Internal Threats. One potential threat can be at-
tributed to the selection of DL and traditional OSS
projects. To mitigate this threat, in this study, we se-
lect 5 popular DL frameworks and 14 other DL soft-
ware projects to compose our DL dataset. We also se-
lect 19 traditional OSS projects with diverse applica-
tion domains to make a comparison. Another threat
may be the number of selected projects. Although hav-
ing more projects is desirable, practically, to ensure the
feasibility of manual observations and generate reason-
able statistical results, we comply with rules defined in
Kalliamvakou et al.’s study [Kalliamvakou et al.| (2014)
and GitHub’s annual report|git (2020). In this regard, we
select projects that are representative in DL and tradi-
tional OSS domains and have sufficient records to trace
in GitHub. We also manually check the uniqueness and
verify the correctness of the extracted data, where our
results declare the correctness of our dataset.

The other internal threat is related to the determina-
tion of maintainers’ workload. To alleviate this threat,
we surveyed maintainers and asked for their help choos-
ing activities they performed in their maintenance pro-
cess. After that, we analyzed their responses and de-
termined the maintainers’ main workload according to
their choices.

External Threats. The uniqueness of DL projects lim-
its external validity. As we gather DL projects to study
their evolution and sustainability, therefore, our find-
ings focused on DL projects may not be generalizable
to other OSS projects. However, we compare the find-
ings in DL projects with traditional OSS projects, there-
fore, the findings in traditional OSS projects can also be
generalizable to other OSS projects. Hence, we believe
that our findings can be helpful to both DL and OSS
projects.

Construct Threats. Since there are multiple definitions
of the sustainability of OSS projects, researchers who

investigated the sustainability of OSS projects from dif-
ferent angles would adopt different definitions. Some
studies |(Crowston et al.| (20006); |Valiev et al.| (2018));|Y1n
et al.| (2021) employed the success of OSS projects as
the indicator of the sustainability of OSS projects. How-
ever, there also exist many other indicators such as tran-
scribing the sustainability of OSS projects to metrics of
productivity and popularity |Yin et al.| (2021), and tran-
scribing the sustainability of the open source commu-
nity to the attraction and retention of newcomers in the
community Valiev et al.|(2018). To mitigate the threat of
determining the definition of sustainability, we adopt the
indicator — the number of commits submitted, to charac-
terize the sustainability of DL projects. In this way, we
can characterize the sustainability of DL projects dy-
namically.

6. Conclusion and Future Work

In this paper, we conduct an empirical study to ex-
plore maintainers’ workload in DL projects, investigate
the evolution and sustainability of DL projects, under-
stand the workload evolution of maintainers, and com-
pare them with traditional OSS projects. To achieve
that, we collect 19 DL projects and 19 traditional
OSS projects, and extract all the histories of activi-
ties of these projects to characterize the workload of
maintainers holistically (RQ1), the evolution of DL
projects (RQ2), and the workload evolution of maintain-
ers (RQ3), as well as the relationships between main-
tainers’ activities and the sustainability of DL projects
(RQ4). Our analysis uncovers the following findings:
1) there exists a significant difference in the evolu-
tion of most activities between DL and traditional OSS
projects, and maintainers in DL projects afford signif-
icantly lower workloads than maintainers in traditional
OSS projects; 2) although DL projects show increasing
trends on most types of activities, maintainers’ work-
load on most activities show a decreasing trend, which
is quite different with traditional OSS projects; 3) there
only exists a significant difference in the growth rates of
average workload on Commit Comment of maintainers
between DL and traditional OSS projects; 4) there ex-
ist positive and moderate correlations between the sus-
tainability of DL projects and maintainers’ releases and
pushes as well as the number of pull requests merged by
maintainers. However, the number of releases of main-
tainers does not correlate with the sustainability of tra-
ditional OSS projects.

In the future, we plan to consider more DL projects
with various sizes to expand the generalization of our
results. Moreover, we also encourage further studies

16

to extend our work, e.g., to find the definitive causali-
ties between the sustainability of DL projects and other
factors, to generate actionable tools that can recom-
mend proper contributors to maintainers in DL projects,
etc. To facilitate replications or other types of fu-
ture work, we make the data and scripts used in this
study publicly available at https://github.com/
HJXPaperData/SustainabilityofDL.

References

, 2020. Github annual report.
github.com/.

,2021. Gh archive. URL: https://www.gharchive.org/

,2021. Google bigquery. URL: https://cloud.google.com/
bigquery/docs.

Acuna, D., Kar, A, Fidler, S., 2019. Devil is in the edges: Learning
semantic boundaries from noisy annotations, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 11075-11083

Bao, L., Xia, X., Lo, D., Murphy, G.C., 2019. A large scale study of
long-time contributor prediction for github projects. IEEE Trans-
actions on Software Engineering .

Bernaschina, C., Falzone, E., Fraternali, P., Gonzalez, S.L.H., 2019.
The virtual developer: Integrating code generation and manual de-
velopment with conflict resolution. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 28, 1-38.

Borges, H., Hora, A., Valente, M.T., 2016. Understanding the factors
that impact the popularity of github repositories, in: 2016 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), IEEE. pp. 334-344.

Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S., 2019. When
deep learning met code search, in: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
pp. 964-974.

Chen, C., Seff, A., Kornhauser, A., Xiao, J., 2015. Deepdriving:
Learning affordance for direct perception in autonomous driving,
in: Proceedings of the IEEE international conference on computer
vision, pp. 2722-2730.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T., 2018.
The rise of deep learning in drug discovery. Drug discovery today
23, 1241-1250.

Chen, Q., Zhou, M., 2018. A neural framework for retrieval and sum-
marization of source code, in: 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE. pp.
826-831.

Ciregan, D., Meier, U., Schmidhuber, J., 2012. Multi-column deep
neural networks for image classification, in: 2012 IEEE conference
on computer vision and pattern recognition, IEEE. pp. 3642-3649.

Coelho, J., Valente, M.T., 2017. Why modern open source projects
fail, in: Proceedings of the 2017 11th Joint meeting on foundations
of software engineering, pp. 186—196.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Edu-
cational and psychological measurement 20, 37-46.

Crowston, K., Howison, J., Annabi, H., 2006. Information systems
success in free and open source software development: Theory and
measures. Software Process: Improvement and Practice 11, 123—
148.

Dias, E., Meirelles, P., Castor, F., Steinmacher, 1., Wiese, 1., Pinto, G.,
2021. What makes a great maintainer of open source projects?,
in: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), IEEE. pp. 982-994.

URL: https://octoverse.

https://github.com/HJXPaperData/SustainabilityofDL
https://github.com/HJXPaperData/SustainabilityofDL
https://octoverse.github.com/
https://octoverse.github.com/
https://www.gharchive.org/
https://cloud.google.com/bigquery/docs
https://cloud.google.com/bigquery/docs

Dilhara, M., Ketkar, A., Dig, D., 2021. Understanding software-
2.0: a study of machine learning library usage and evolution.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 1-42.

Dong, Y., Zhang, P, Wang, J., Liu, S., Sun, J., Hao, J., Wang, X.,
Wang, L., Dong, J., Dai, T., 2020. An empirical study on corre-
lation between coverage and robustness for deep neural networks,
in: 2020 25th International Conference on Engineering of Com-
plex Computer Systems (ICECCS), IEEE. pp. 73-82.

Eghbal, N., 2020. Working in public: the making and maintenance of
open source software. Stripe Press.

Guilford, J.P., 1950. Fundamental statistics in psychology and educa-
tion .

Guo, Q., Chen, S., Xie, X., Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao,
J., Li, X., 2019. An empirical study towards characterizing deep
learning development and deployment across different frameworks
and platforms, in: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE. pp. 810-822.

Han, J., Deng, S., Lo, D., Zhi, C., Yin, J., Xia, X., 2020a. An empirical
study of the dependency networks of deep learning libraries, in:
2020 IEEE International Conference on Software Maintenance and
Evolution ICSME), IEEE. pp. 868-878.

Han, J., Deng, S., Lo, D., Zhi, C., Yin, J., Xia, X., 2021. An empirical
study of the landscape of open source projects in baidu, alibaba,
and tencent, in: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-
SEIP), IEEE. pp. 298-307.

Han, J., Shihab, E., Wan, Z., Deng, S., Xia, X., 2020b. What do
programmers discuss about deep learning frameworks. Empirical
Software Engineering 25, 2694-2747.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning
for image recognition, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778.

Heiberger, R.M., Neuwirth, E., 2009. One-way anova, in: R through
excel. Springer, pp. 165-191.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al., 2012.
Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal processing
magazine 29, 82-97.

Hu, X., Men, R., Li, G., Jin, Z., 2019. Deep-autocoder: Learning
to complete code precisely with induced code tokens, in: 2019
IEEE 43rd Annual Computer Software and Applications Confer-
ence (COMPSAC), IEEE. pp. 159-168.

Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A.,
Tonella, P., 2020. Taxonomy of real faults in deep learning sys-
tems, in: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, pp. 1110-1121.

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil,
J., Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R.,
etal., 2015. An empirical evaluation of deep learning on highway
driving. arXiv preprint arXiv:1504.01716 .

Islam, M.J., Nguyen, G., Pan, R., Rajan, H., 2019. A comprehensive
study on deep learning bug characteristics, in: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, pp. 510-520.

Islam, M.J.,, Pan, R., Nguyen, G., Rajan, H., 2020. Repairing deep
neural networks: Fix patterns and challenges, in: 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE),
IEEE. pp. 1135-1146.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D.M., Damian, D., 2014. The promises and perils of mining
github, in: Proceedings of the 11th working conference on min-

ing software repositories, pp. 92—-101.
LaToza, T.D., Venolia, G., DeLine, R., 2006. Maintaining mental

17

models: a study of developer work habits, in: Proceedings of the
28th international conference on Software engineering, pp. 492—
501.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, WM.,
1997. Metrics and laws of software evolution-the nineties view, in:
Proceedings Fourth International Software Metrics Symposium,
IEEE. pp. 20-32.

Liu, F, Li, G., Zhao, Y., Jin, Z., 2020. Multi-task learning based pre-
trained language model for code completion, in: Proceedings of
the 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 473-485.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sad-
owski, C., Pollock, L., Clause, J., 2016. An empirical study of
practitioners’ perspectives on green software engineering, in: 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), IEEE. pp. 237-248.

Massey Jr, FJ., 1951. The kolmogorov-smirnov test for goodness of
fit. Journal of the American statistical Association 46, 68—78.

Mathew, G., Stolee, K.T., 2021. Cross-language code search using
static and dynamic analyses. arXiv preprint arXiv:2106.09173 .

Mendez, C., Padala, H.S., Steine-Hanson, Z., Hilderbrand, C., Hor-
vath, A., Hill, C., Simpson, L., Patil, N., Sarma, A., Burnett, M.,
2018. Open source barriers to entry, revisited: A sociotechnical
perspective, in: Proceedings of the 40th International Conference
on Software Engineering, pp. 1004—1015.

Mockus, A., Fielding, R.T., Herbsleb, J., 2000. A case study of open
source software development: the apache server, in: Proceedings
of the 22nd international conference on Software engineering, pp.
263-272.

Nassif, A.B., Shahin, L., Attili, I., Azzeh, M., Shaalan, K., 2019.
Speech recognition using deep neural networks: A systematic re-
view. IEEE access 7, 19143-19165.

Noman, H., Mahoto, N.A., Bhatti, S., Abosaq, H.A., Al Reshan, M.S.,
Shaikh, A., 2022. An exploratory study of software sustainability
at early stages of software development. Sustainability 14, 8596.

Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Mi-
sawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B.,
et al., 2018. Attention u-net: Learning where to look for the pan-
creas. arXiv preprint arXiv:1804.03999 .

Penzenstadler, B., Bauer, V., Calero, C., Franch, X,
2012. Sustainability in software engineering: a sys-
tematic literature review, in: 16th International Confer-

ence on Evaluation & Assessment in Software Engineer-
ing (EASE 2012), IET, Ciudad Real, Spain. pp. 32-41.
URL: https://digital-library.theiet.org/
content/conferences/10.1049/1c.2012.0004,
doiz10.1049/1ic.2012.0004.

Petersen, J., Jager, P.F, Isensee, F., Kohl, S.A., Neuberger, U., Wick,
W., Debus, J., Heiland, S., Bendszus, M., Kickingereder, P., et al.,
2019. Deep probabilistic modeling of glioma growth, in: Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer. pp. 806-814.

Pradel, M., Sen, K., 2018. Deepbugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming
Languages 2, 1-25.

Qiu, H.S., Nolte, A., Brown, A., Serebrenik, A., Vasilescu, B., 2019.
Going farther together: The impact of social capital on sustained
participation in open source, in: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE), IEEE. pp.
688-699.

Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., Beling, P,
2018. Deep learning detecting fraud in credit card transactions,
in: 2018 Systems and Information Engineering Design Sympo-
sium (SIEDS), IEEE. pp. 129-134.

Scacchi, W., 2003. Understanding open source software evolution.

https://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
https://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
http://dx.doi.org/10.1049/ic.2012.0004

applying, breaking and rethinking the laws of software evolution.

Sedgwick, P, 2014. Spearman’s rank correlation coefficient. Bmj
349.

Sonnenburg, S., Braun, M.L., Ong, C.S., Bengio, S., Bottou, L.,
Holmes, G., LeCunn, Y., Muller, K.R., Pereira, F., Rasmussen,
C.E,, et al., 2007. The need for open source software in machine
learning .

Sonnentag, S., 1995. Excellent software professionals: Experience,
work activities, and perception by peers. Behaviour & Information
Technology 14, 289-299.

Tan, X., Zhou, M., Fitzgerald, B., 2020a. Scaling open source
communities: an empirical study of the linux kernel, in: 2020
IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), IEEE. pp. 1222-1234.

Tan, X., Zhou, M., Sun, Z., 2020b. A first look at good first issues
on github, in: Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 398—409.

Thung, F., Wang, S., Lo, D., Jiang, L., 2012. An empirical study of
bugs in machine learning systems, in: 2012 IEEE 23rd Interna-
tional Symposium on Software Reliability Engineering, IEEE. pp.
271-280.

Tian, Y., Pei, K., Jana, S., Ray, B., 2018. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars, in: Proceedings
of the 40th international conference on software engineering, pp.
303-314.

Trinkenreich, B., Guizani, M., Wiese, 1., Conte, T., Gerosa, M.,
Sarma, A., Steinmacher, 1., 2021. Pots of gold at the end of the
rainbow: What is success for open source contributors? IEEE
Transactions on Software Engineering 48, 3940-3953.

Valiev, M., Vasilescu, B., Herbsleb, J., 2018. Ecosystem-level deter-
minants of sustained activity in open-source projects: A case study
of the pypi ecosystem, in: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pp. 644—655.

Wan, Z., Xia, X., Lo, D., Murphy, G.C., 2019. How does machine

18

learning change software development practices? IEEE Transac-
tions on Software Engineering 47, 1857-1871.

Wang, Z., Feng, Y., Wang, Y., Jones, J.A., Redmiles, D., 2020.
Unveiling elite developers’ activities in open source projects.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 29, 1-35.

Wei, B, Li, G., Xia, X., Fu, Z., Jin, Z., 2019. Code generation as a
dual task of code summarization. arXiv preprint arXiv:1910.05923

Yin, L., Chen, Z., Xuan, Q., Filkov, V., 2021. Sustainability forecast-
ing for apache incubator projects. arXiv preprint arXiv:2105.14252

Zhang, R., Xiao, W., Zhang, H., Liu, Y., Lin, H., Yang, M., 2020. An
empirical study on program failures of deep learning jobs, in: 2020
IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), IEEE. pp. 1159-1170.

Zhang, Y., Chen, Y., Cheung, S.C., Xiong, Y., Zhang, L., 2018. An
empirical study on tensorflow program bugs, in: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 129-140.

Zhang, Y., Stol, K.J., Liu, H., Zhou, M., 2022. Corporate dominance
in open source ecosystems: a case study of openstack, in: Pro-
ceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering, pp. 1048—1060.

Zhou, M., Chen, Q., Mockus, A., Wu, E,, 2017. On the scalability of
linux kernel maintainers’ work, in: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pp. 27-37.

Zhou, M., Mockus, A., 2010. Developer fluency: Achieving true mas-
tery in software projects, in: Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of software
engineering, pp. 137-146.

Zhou, M., Mockus, A., 2012. What make long term contributors:
Willingness and opportunity in oss community, in: 2012 34th In-
ternational Conference on Software Engineering (ICSE), IEEE. pp.
518-528.

	On the sustainability of deep learning projects: Maintainers' perspective
	Citation
	Author

	Introduction
	Methodology
	Collecting Data
	Characterizing the Project Sustainability
	Identifying Maintainers
	Identifying of Maintainers' activities

	Results
	RQ2: How do DL projects evolve and how do the overall workloads of maintainers evolve in this process?
	Implications.

	RQ3: How does the average workload of maintainers evolve as DL projects grow?
	Implications.

	RQ4: What are the relationships between maintainers' activities and the sustainability of DL projects?
	Implications.

	Related Work
	The behaviors and works of maintainers
	The evolution and sustainability of open source projects
	The analyses of deep learning systems

	Threats to Validity
	Conclusion and Future Work

