
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

Refinement-based Specification and Analysis of Multi-core ARINC Refinement-based Specification and Analysis of Multi-core ARINC

653 Using Event-B 653 Using Event-B

Feng ZHANG

Leping ZHANG

Yongwang ZHAO

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
ZHANG, Feng; ZHANG, Leping; ZHAO, Yongwang; LIU, Yang; and SUN, Jun. Refinement-based
Specification and Analysis of Multi-core ARINC 653 Using Event-B. (2023). Formal Aspects of Computing.
35, (4), 1-29.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8480

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

24

Refinement-based Specification and Analysis of Multi-core

ARINC 653 Using Event-B

FENG ZHANG, Jiaxing Research Institute, Zhejiang University, China

LEPING ZHANG, School of Computer Science and Engineering, Beihang University, China

YONGWANG ZHAO, School of Cyber Science and Technology, College of Computer Science and

Technology, Zhejiang University, China

YANG LIU, School of Computer Science and Engineering, Nanyang Technological University, Singapore

JUN SUN, School of Computing and Information Systems, Singapore Management University, Singapore

ARINC 653 as the de facto standard of partitioning operating systems has been applied in many safety-critical

domains. The multi-core version of ARINC 653, ARINC 653 Part 1-4 (Version 4), provides support for services

to be utilized with a module that contains multiple processor cores. Formal specification and analysis of

this standard document could provide a rigorous specification and uncover concealed errors in the textual

description of service requirements. This article proposes a specification method for concurrency on a

multi-core platform using Event-B, and a refinement structure for the complicated ARINC 653 Part 1-4 pro-

vides a comprehensive, stepwise refinement-based Event-B specification with seven refinement layers and

then performs formal proof and analysis in RODIN. We verify that the errors discovered in the single-core

version standard (ARINC 653 Part 1-3) also exist in the ARINC 653 Part 1-4 during the formal specification

and analysis.

CCS Concepts: • Security and privacy→ Logic and verification; • Computer systems organization→
Real-time operating systems; • Software and its engineering→ Software verification and validation;

Additional Key Words and Phrases: Multi-core ARINC 653, Event-B, refinement, formal specification and

analysis

ACM Reference format:

Feng Zhang, Leping Zhang, Yongwang Zhao, Yang Liu, and Jun Sun. 2023. Refinement-based Specification

and Analysis of Multi-core ARINC 653 Using Event-B. Form. Asp. Comput. 35, 4, Article 24 (November 2023),

29 pages.

https://doi.org/10.1145/3617183

This work has been supported in part by the Natural Science Foundation of China under Grant 62132014 and Zhejiang

Science and Technology Plan Project under Grant No. 2022C01045.

Authors’ addresses: F. Zhang, Jiaxing Research Institute, Zhejiang University, China; email: zhangfeng@jrizju.com; L.

Zhang, School of Computer Science and Engineering, Beihang University, China; email: zhangleping@buaa.edu.cn; Y. Zhao

(Corresponding author), School of Cyber Science and Technology, College of Computer Science and Technology, Zhejiang

University, China; email: zhaoyw@zju.edu.cn; Y. Liu, School of Computer Science and Engineering, Nanyang Technolog-

ical University, Singapore; email: yangliu@ntu.edu.sg; J. Sun, School of Computing and Information Systems, Singapore

Management University, Singapore; email: junsun@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0934-5043/2023/11-ART24 $15.00

https://doi.org/10.1145/3617183

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

https://orcid.org/0000-0002-1058-0139
https://orcid.org/0009-0005-5120-1093
https://orcid.org/0000-0002-2284-1383
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-3545-1392
https://doi.org/10.1145/3617183
mailto:permissions@acm.org
https://doi.org/10.1145/3617183
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617183&domain=pdf&date_stamp=2023-11-21

24:2 F. Zhang et al.

1 INTRODUCTION

Partitioning Operating Systems (POSs) [33] can provide hard guarantees of temporal and spa-
tial partitioning and isolation. These guarantees can ensure that the effects of any misbehavior are
confined to their own components. The SAE-ITC promotes the ARINC 653 standard [5], which
standardizes the interface between POSs and application software as well as the system function-
ality of POSs. ARINC 653 is actually the de-factor standard of POSs. Many ARINC 653-compliant
productions, such as the commercial VxWorks653 [37], INTEGRITY-178B [21], LynxOS-178 [38],
PikeOS [39], and the open-source production, e.g., POK [13], have been widely applied in many
domains from aerospace to automotive.

The ARINC 653 Part 1-4 (Version 4) [5] standardizes APIs for multiprocessor platforms. However,
the standard document is described using informal textual language and diagrams, which makes
it hard to analyze the consistency and correctness of the standard itself.

A rigorous and machine-checkable specification and analysis of ARINC 653 can help to ensure
the correctness of this standard. For concurrency [8] on multi-core platforms, the formal proof
of seL4 [9, 16, 25, 40] using Isabelle/HOL [29] is based on the coarse-grained locking [32]. The
CertiKOS [18, 19] using Coq [15] builds certified, fine-grained locking concurrent OS kernels
that support interleaved execution of kernel/user modules across different layers of abstraction.
Nonetheless, CertiKOS doesn’t support the POS policy.

There are some works on the single-core ARINC 653 [10, 31, 36, 42]. We have utilized Event-B
to construct formal specifications and perform analysis on ARINC 653 [44, 46]. Zhao et al. [46]
propose a specification method with seven refinement layers, provide a comprehensive model,
and then perform analysis using Rodin [4]. Nevertheless, this article presents the first work that
provides a comprehensive, stepwise refinement-based formalization for the multi-core ARINC 653.

The reasons we select Event-B to conduct formalization are as follows: First, the “guard-action”
programming of Event-B is appropriate to represent the nested “if-else” frames of ARINC 653.
Its structural grammar utilizes many nested “if-else” frames, each of which defines one or
several service actions. We can naturally split a service into several atomic events in Event-B.
Furthermore, the service actions after an “if-else” judge can be organized as one event, and the
“if-else” judgment can be represented as a guard condition. Second, Rodin [4], the IDE of Event-B,
supports proof obligations to be automatically generated and provides excellent automatic proof
function associated with set theory, which can markedly reduce our proof burden. Lastly, the
inductive verification approach avoids the state-space explosion of automatic approaches (e.g.,
model checking) when verifying complex POSs. Therefore, Event-B has been successfully applied
in some industry cases [23, 28].

There are three main challenges in our work. First, a generic method needs to be developed for
specifying process concurrencies on a multi-core platform using atomic Event-B events. Second,
a specification method needs to be constructed that can model the comprehensive ARINC 653
system, including its various components, communication channels, and a suitable refinement
structure for its different modules. Lastly, constructing a comprehensive and complicated model
that conforms to the highly complicated ARINC 653 P1-4 standard, which uses over 110 pages of
textual descriptions to describe 67 services, will require a significant amount of manpower.

This article presents the following technical contributions:

(1) We propose a generic method to specify process concurrencies on multi-core platforms us-
ing atomic Event-B events. We define the core configuration, recognize racy [30] processes
that concurrently execute to compete for shared resources, split an ARINC 653 service into
several sub-procedures, model each sub-procedure using an Event-B event, and give each
event an execution location to denote the execution sequence in a service.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:3

(2) We present a comprehensive, fine-grained, refinement-based Event-B specification for
the multi-core ARINC 653 P1-4, which contains seven refinement layers, 300 lines of
context code, and more than 8,760 lines of model code in the last-layer machine. This
specification covers the system functionality and all the 67 services. As far as we know,
this specification is the most comprehensive and complicated formal specification in the
literature.1

(3) We formally verify a substantial number of safety properties that are specified as 157
invariants and 3,814 proof obligations. We verify that the critical errors disclosed in the
single-core ARINC 653 P1-3 (presented in the literature [44]) also exist in ARINC 653 P1-4.

The rest of this article is organized as follows: Section 2 introduces ARINC 653, Event-B, and
RODIN. Section 3 proposes a specification method for concurrencies on a multi-core platform for
the first challenge, Section 4 proposes the refinement structure and method for the second chal-
lenge, Section 5 introduces the Event-B specification of ARINC 653 P1-4 for the third challenge,
Section 6 describes project evaluation, proof obligations, and verification results, and Section 7
introduces the current research status. Finally, Section 8 gives the conclusion and the future work.
Additionally, we present a notation list and a operator list in Event-B in the appendix.

2 PRELIMINARY

2.1 Arinc 653

ARINC 653 specifies the basic operating environment for application software used within In-

tegrated Modular Avionics (IMA). The multi-core ARINC 653, ARINC 653 Part 1-4 (Version
4), is an extension of the original ARINC 653. It defines a general-purpose APEX (APplica-
tion/EXecutive) interface between the Operating System (OSs) and the application software. It
provides support for the APEX services to be utilized with a core module that contains single or
multiple processor cores.

Like the single-core version, the ARINC 653 Part 1–4 also defines a partitioning architecture
for safety-critical systems on a computing platform. The major functionalities of POSs are parti-
tion and process management, timing management, inter- and intra-partition communication, and
health monitoring. It contains the interface requirements between application software and POSs,
and services that allow the application software to control the scheduling, communication, and
status information of its internal processing elements.

The ARINC 653 Part 1–4 describes the interface requirements using 45 pages of natural language
associated with diagrams. And it defines 67 APEX services using 70-page descriptions, which use
a specification grammar of a structural natural language. The structural language uses the “if-else”
and “error-normal” format, which is illustrated in Table 1.

Each partition in ARINC 653 consists of one or multiple processes that run concurrently and
share access to processor cores and other resources. When a partition is assigned multiple cores,
multiple processes within this partition can run concurrently on the assigned cores.

ARINC 653 Part 1–4, published in 2015, supports only multiple processes in one partition

that executes concurrently on different processor cores but can’t support that multiple par-
titions execute on different cores or that multiple processes in different partitions execute on dif-
ferent processor cores concurrently. In one word, this type of concurrency supports that the only
various processes in the same partition execute concurrently on different cores, and we call it
process-level concurrency.

1The Event-B code of the project can be found at https://github.com/zf-zhangfeng/MultiCore653-EventB

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

https://github.com/zf-zhangfeng/MultiCore653-EventB

24:4 F. Zhang et al.

Table 1. The ARINC 653 Service SUSPEND_SELF

1. procedure SUSPEND_SELF

2. Input: TIME_OUT; Output: RETURN_CODE

3. error

4. when (current process owns a mutex or current process is error handler process)⇒
5 RETURN_CODE := INVALID_MODE;

6. when (TIME_OUT is out of range)⇒ RETURN_CODE := INVALID_PARAM;

7. when (process is periodic) =⇒ RETURN_CODE := INVALID_MODE;

8. normal

9. if (TIME_OUT is zero) then RETURN_CODE := NO_ERROR;

10. else set the current process’s state to WAITING;

11. if (TIME_OUT is finite) then initiate a time counter with duration TIME_OUT;

12. end if ;

13. ask for process scheduling;

14. if (expiration of the time-out) then RETURN_CODE := TIMED_OUT;

15. else RETURN_CODE := NO_ERROR;

16. end if ;

17. end if ;

18. end SUSPEND_SELF;

2.2 Event-B & RODIN

Event-B [3] is a formal specification and proof method based on state machines. It utilizes set
theory as a modeling notation. Furthermore, it uses the formal refinement to represent systems
at different abstraction levels and mathematical proofs to verify consistencies between layers of
refinements.

RODIN [4] is the IDE for Event-B, which provides a well-supported environment for system
specification, refinements, and proof. It is an industrial-strength tool for creating and analyzing
Event-B models. It contains a proof-obligation generator and supports for interactive and auto-
mated theorem proving.

The refinement mechanism is the key characteristic of Event-B. Refinement is a verifiable trans-
formation of an abstract specification into a concrete specification and further into implementation.
The refinement proof can formally connect the top abstract model with the concrete model, such
that the properties of the abstract analysis are formally held by the deployed implementation. Each
model in the hierarchy is formally connected to the model above directly via refinement proofs.

Event-B models are described in terms of contexts and machines. Machines contain the dy-

namic parts, which consist of variables, invariants, theorems, variants, and events, whereas con-
texts contain the static parts, which consist of carrier sets, constants, axioms, and theorems (see
Section 5.1.1 in [3]). Machines also contain a conjoined list of predicates (invariants) to constrain
variables, and state transitions (called Events).

Given a machine M, seeing a context C containing sets s and constants c, an event E of the
machine M is represented as Equation (1). E is the event name, x is a list of parameters in
the event, v is a list of variables in the machine, G(s, c, v, x) are guards of the event, and v :|
BA(s, c, v, x, v’) are actions that define how the state variables evolve when the event occurs.
Refinement of machines in Event-B provides a means for introducing details about the dynamic

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:5

properties.
E =̂ any x

where G (s, c,v,x)

then v :| BA(s, c,v,x ,v ′)

(1)

3 A SPECIFICATION METHOD FOR CONCURRENCY ON MULTIPLE CORES

3.1 Basic Elements

Services in ARINC 653 consist of components, attributes, constraints, and actions. These basic ele-
ments are represented in Event-B as sets, variables, constants, events, and invariants, respectively.
The policy described in this section is similar to that for single-core ARINC 653 [44, 46].

Components are specified as sets. The main components in ARINC 653 are processor cores,
partitions, processes, communicating components (ports and channels for interpartition communi-
cations; buffer, blackboard, semaphore, event, and mutex for intrapartition communications), wait-
ing queues, error handlers, and so on. Partitions, the health monitor (a set of configured tables, e.g.,
MultiPartitionHMTable, PartitionHMTable), and interpartition communication components (e.g.,
Port, Channel) are statically configured and initialized during the system/partition initialization
phase. Processes and intrapartition communication components (e.g., buffer, semaphore, black-
board, event) are created at system compile time. All these components can be specified using sets

in the Event-B context.
Attributes of components are specified as axioms. Attributes are restrictions on compo-

nents, and they are specified as one or several axioms on their components. For example, parti-
tions and cores in ARINC 653 are specified as sets PARTITIONS and CORES, respectively, each of
which contains one or multiple partitions and cores. Meanwhile, there are some constraints on
these two sets. For instance, the set PARTITIONS should be finite and contains partitions more
than 1 and less than 256. This constraint is specified using two axioms: finite(PARTITIONS), and
card(PARTITIONS) > 0 ∧ card(PARTITIONS) < 256.

Relations between components are specified as functions, which may be partial or total
functions. For example, a process’s current execution state is specified as a partial function: pro-

cess_state �→ PROCESS_STATES, in which the �→ indicates a partial function, and PROCESS_STATES

is a set representing process execution states of processes. This partial function indicates that some
processes may not have a current execution state because they have not been created yet when
the containing partition is in initialization mode.

The relation that each partition has at most one error handler process is specified as a partial
function errorhandler_ of_partition ∈ PARTITIONS �� processes; the �� is a partial injection relation.

Actions of components are specified as relations of Event-B sets. In Event-B, a relation is
a set of ordered pairs representing a many-to-many mapping between sets. Actions of components
describe the behaviors conducted on the sets of elements they operate on, and these actions can
be specified as a set of relations.

For example, the action of sending a queuing message msg from a queuing port with a
message capacity can be specified as a union operation on the set of messages in the port. This
can be represented as msgs_of_queuports(port) := msgs_of_queuports(port) ∪ {msg �→ t}. Here,
the natural number t is the length of the msg, and msgs_of_queuports is a function of type:
msgs_of_queuingports ∈ queuing_ports → (MESSAGES �→ N), and queuing_ports is of type
queuing_ports ∈ P (QueuingPorts).

3.2 Core Configurations

The core configuration consists of the core assignment for partitions and the core affinity for
processes.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:6 F. Zhang et al.

Core assignment for partitions. In the ARINC 653 standard, a partition can be assigned a set
of processor cores and is provided exclusive access to the cores assigned to this partition.

One or more processor cores can be assigned to a partition that represents an application
and contains one or multiple services. This can be modeled in Event-B as an axiom axm_

assigned_cores_of_part:

Cores_of_Partition ∈ PARTITIONS→P1(cores), where P1 (cores) represents non-empty subsets of
cores . Essentially, this specification indicates that each partition must own at least one processor
core assigned to it. By assigning multiple cores to a partition, processes within the partition can ex-
ecute concurrently on different cores. This allows for better utilization of resources and improved
performance in multi-core systems.

This article complies with the ARINC 653 Part 1–4, which only considers the “use of multiple

processes within a partition scheduled to execute concurrently on different processor cores.” However,
ARINC 653 Part 1–4 does not provide the “definition of scheduling behaviors associated with multi-

ple partitions scheduled to execute concurrently on different processor cores.” This means that there
is only one currently executing partition at a moment and only processes within this currently
executing partition can run concurrently on different processor cores assigned to this partition.

To achieve this characteristic, we introduce the variable currently executing partition repre-
sented by current_partition ∈ PARTITIONS. This variable ensures that only one partition is cur-
rently executing at a given time, and only processes within this partition can run concurrently
on different processor cores assigned to the partition. In essence, the variable current_partition

specifies that the current running partition has exclusive access to the cores assigned to it.
Core affinity for processes. A partition can contain multiple processes that run concurrently

to provide application functions. When multiple processor cores are assigned to a partition, the
partition should determine on which processor core each specific process can run. This is known
as the Process Core Affinity (PCA) in the standard.

The assignment of cores to processes (PCA) is defined as processes_of_cores ∈ processes �→
CORES, where processes and CORES are sets of processes and processor cores, respectively. The
variable current_processes_flag of type CORES × BOOL determines if a core can execute a specific
process.

The PCA identifies the processor core a process can run on. The PCA for a specific processor
core is used to restrict processes to be eligible for scheduling only on their assigned processor
cores. The cores assigned to processes should only be the ones assigned to the partition that the
processes belong to. All the processes in a partition should run only on the cores assigned to their
partition, which is constrained by an invariant inv_cores_imply_procandpart as follows. The pro-

cesses_of_partition ∈ processes �→ PARTITIONS represents the partition to which a process belongs.
∀proc ·
proc ∈ processes ∧ proc ∈ dom(processes_o f _cores) ∧ proc ∈ dom(processes_o f _partition ⇒
processes_o f _cores (proc) ∈ Cores_of_Partition(processes_of_partition(proc))).

3.3 Execution Locations of Services

In order to specify the current execution phase, i.e., the location, of a service on a given processor
core, we introduce the concept of the execution locations for services.

First, we divide a service into several sub-procedures and model each sub-procedure as an event.
In the ARINC 653 standard, one service consists of several actions defined textually; each action
is described with one clause or adjacent actions with several clauses organized by if-else or other
structures. These can be specified as one Event-B event, each of which defines one or several
actions described by sentences in natural language.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:7

Fig. 1. Specify a service using multiple events.

Second, we identify the execution location of each sub-procedure in a service. We need two
parameters: the execution location of a sub-procedure on its assigned core and the execution

status of a core for a service.
This execution location is used to denote which sub-procedure of a service is currently executing

and defined in Event-B as location_of_service ∈ CORES �→ (Services × Location). The Location is a
set in Event-B that denotes the current execution location of the service. It is defined as partition

(Location, {loc_i}, {loc_1}, {loc_2}, {loc_3}, . . . ,{loc_r}), in which loc_i represents the initialization and
loc_r represents the return action (i.e., the last action) of a service. The loc_1, loc_2, loc_3, and so
on up to loc_n is a sequence of intermediate procedures of service, and the number n is determined
by the number of sub-procedures.

The execution status is defined as finished_core ∈ CORES → BOOL. It denotes whether a core
is running a service. finished_core(core) = False indicates that the core is currently running a sub-
procedure of a service, and it cannot run another service until the return event (identified by loc_r)
of the current service is completed.

3.4 Criteria of the Specification Method

A general structure of a service in the APEX grammar is illustrated in the left part of Figure 1.
The error part describes error handling due to incorrect values of actual input parameters, which
are robust handling. ARINC 653 uses textual language associated with diagrams to explain the
service actions. These textual descriptions use compound statements “if-else” and “SEQUENCE”
to describe complex structures, and simple actions are described in natural language.

Then, we propose a criterion of the specification method that derives from our previous work
for the single-core ARINC 653 [42, 44, 46].

First, an Event-B event is used to describe a single action in the ARINC 653 service. A description
in an ARINC 653 service can serve as a single action. For example, in Table 2, the description “set

the process state to DORMANT” can be modeled by the Event-B event “create_process_dormant,”
illustrated in Table 4. Similarly, each of the other sentences in the ARINC 653 service can also be
modeled by an event.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:8 F. Zhang et al.

Second, the “guard-action” structure of Event-B is used to represent the nested “if-else” frames
of the ARINC 653 services. The structural grammar of the ARINC 653 uses many nested “if-else”
frames, each of which defines one or several service actions. For example, in Figure 1, only if the
error conditions are negative and the judgments ¬ cond_1 and cond_10 hold will the action act_10

be triggered. The triggering conditions of an event correspond to the “if-else” frames of the ARINC
653 services.

Third, a service is split into several atomic Event-B events with the above two policies. The
service action after an “if-else” judgment can be organized as one event, and the “if-else” judgment
can be represented as a guard condition.

Lastly, an APEX service with multiple actions is decomposed into a set of events with non-
intersect guards.

For the essence of the “if-else” semantics, one “if-else” clause uses one location because only
one guard will hold and only one action will be enabled. This policy is present in the example in
Figure 1; we can see that the actions act_10, act_11, and act_2 share one execution location loc_0.
Only one action (e.g., act_10, act_11, or act_2) can execute when its corresponding guards hold.
So we can use an event to represent an action in an “if-else” clause. The parameters as service
inputs are packed into the any part. Conditions (grd_0, grd_1, etc.) in the error part indicate
incorrect inputs of parameters, and the negations these conditions are represented as guards in
Event-B.

3.5 Fine-grained Concurrency

The specification method in our work demonstrates the fine-grained concurrency.
First, services of a partition can execute in parallel with each other across all processor cores

if they do not compete for shared resources. This is made possible through the core assignment
mechanism for partitions and the core affinity mechanism for processes, as described in Section 3.2.
The core configuration allows a partition to be assigned a set of cores. Although there is only one
currently executing partition at a moment, different processes within a partition can run in parallel
on their respective assigned cores.

Second, racy [30] services attempting to compete for shared resources execute concurrently.
Processes are considered racy if they attempt to access the same shared resources at the same time.
Otherwise they are race-free. When a running service attempts to access an unavailable shared
resource, this service will be suspended and the OS will invoke the scheduler to allow another
eligible service to preempt execution. Once the shared resource becomes available, the suspended
service can resume its execution.

For example, let us consider the service SEND_BUFFER. If the message buffer is full and the wait-
time argument is not zero, a process (named P0) that calls this service will be blocked. The OS will
insert this process in the buffer’s process queue. Once another process receives and removes some
messages from this buffer, thereby freeing up space, the blocked process P0 will be resumed and
execute the remaining actions. This mode is described in detail in Section 4.4. Another example
is the service SUSPEND_SELF outlined in Table 1. In this case, the current process will be sus-
pended until either the timeout value expires or another process resumes this suspended process.
Subsequently, the OS asks for rescheduling to allow another eligible process to preempt execution.

Based on the execution semantics, services such as SEND_BUFFER, SUSPEND_SELF, and similar
ones should be split into at least two parts at the point of scheduling: the first part implements the
actions before scheduling, including the scheduling itself, while the second part implements the
actions after scheduling, excluding the scheduling.

Lastly, in fact, we employ a more fine-grained approach to split and model all ARINC 653
services.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:9

Table 2. The Service CREATE_PROCESS

procedure CREATE_PROCESS
(in: ATTRIBUTES; out: PROCESS_ID, RETURN_CODE)

error
...
normal
create a new process with the process attributes - ATTRIBUTES;
set the process state to DORMANT ;
initialize process context, unique process index, and stack;
set the process’s core affinity to the core affinity value;
PROCESS_ID := unique ID assigned to the created process;
RETURN_CODE := NO_ERROR;

Table 3. The Event create_process_init

create_process_init =̂ any part proc core service
where

...
@grd006: finished_core(core) = TRUE
@grd007: service = Create_Process

then
@act001: finished_core(core) := FALSE
@act002: location_of_service(core) := service �→ loc_i
@act003: processes := processes ∪ {proc}
@act004: processes_of_partition(proc) := part
...

Table 4. The Event create_process_dormant

create_process_dormant =̂ any part proc core
where

...
@grd004: finished_core(core) = False
@grd005: location_of_service(core) = Create_Process �→ loc_i
...

then
@act001: location_of_service(core) := Create_Process �→ loc_1
@act002: process_state(proc) := PS_Dormant
...

Table 5. The Event create_process_return

create_process_return =̂ any part proc core
where

...
@grd004: finished_core(core) = False
@grd005: location_of_service(core) = Create_Process �→ loc_2
...

then
@act001: location_of_service(core) := Create_Process �→ loc_r
@act002: finished_core(core) = True
...

We utilize atomic Event-B events to describe individual statements or actions within an ARINC
653 service, as explained in Sections 3.3 and 3.4. For example, the SUSPEND_SELF shown in Table 1
is modeled by 5 combined Event-B events, while the SEND_BUFFER utilizes 10 combined Event-B
events as illustrated in Figure 8 and described in Section 4.4.

3.6 An Example

We illustrate an example using the service CREATE_PROCESS in Table 2. In this example, we focus
on the concurrency-related elements only and ignore the functionality of a service.

(1) Construct an initialization event for the first clause to identify the entry of a service with the
suffix _init and located at loc_i. For example, the initialization event create_process_init, illustrated
in Table 3, serves two main purposes:

First, it checks whether the core can execute this service by verifying if finished_core(core) =

True holds (3.grd006). If not, it means the core is currently running another service and cannot run
this one.

Second, it sets the status of the core to indicate that this core is running this service. This consists
of two actions. It first sets finished_core(core) (Table 3.act001) to False to denote that the core is
running a service and can’t run other services. Then, it sets the execution location of the current
service to loc_i (Table 3.act002). The other actions (act003 and act004 in Table 3) are related to the
functionality of the service CREATE_PROCESS.

(2) To model the intermediate actions of a service, we use an event and identify its execution
location with a sequence number such as loc_1, loc_2, loc_3, and so on. For example, the interme-
diate functional event create_process_dormant in Table 4 models the second-line description “set
the process state to DORMANT” in the example service in Table 2.

To handle these intermediate actions, we need to address two issues:
First, verify whether the core can execute this intermediate service by checking the fin-

ished_core(core) and location_of_service. Unlike an initialization event with finished_core(core)

= True, on the contrary, the finished_core(core) for an intermediate event should be False
(Table 4.grd004). Additionally, the execution location, location_of_service, should indicate whether
the core is running the previous event. For example, if the candidate event is the first intermediate

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:10 F. Zhang et al.

Fig. 2. The APEX2EvB translation algorithm.

event, the current location should be loc_i (Table 4.grd005), and if the candidate event is the
second intermediate event, the current location should be loc_1.

Second, set the status of the core to indicate that it is running an intermediate event. In this
example, we should set the execution location to loc_1 (Table 4.act001) to indicate that the core is
running the first intermediate event of the service.

(3) Model the return action of a service by an event whose name is suffixed with _return and
whose location is identified as loc_r. For example, the return event create_process_return illustrated
in Table 5 corresponds to the fifth and sixth lines in the example service CREATE_PROCESS.

The return action needs to tackle two affairs: (1) it should check whether the core can run this
return action, i.e., check that whether the finished_core(core) is false (grd004) and whether loca-

tion_of_service denotes the last intermediate event (in this example, the last intermediate event’s
location is loc_2 in grd005), and (2) it needs to set the core’s status to a value denoting the comple-
tion of all actions of the current service and allows it to run other services. This needs to set the
execution location to loc_r (Table 5.act001).

3.7 Translating Methods from ARINC 653 to Event-B

We designed an algorithm to guide translations from APEX services to Event-B models as shown
in Figure 2. We first give a simple abstract syntax for APEX service requirements in the above
expression, where “ACT act” is a simple action, and “c; c” is a sequential composition statement:

c ::= ACT act |
c; c |
IF cond THEN c |
IF cond THEN c ELSE c .

(2)

In this algorithm, the function TRANSLATE_STMT is from our prior work [44, 46].
The function CHECK_CORE_AFFINITY_STATUS is to check out the core affinity for processes

and the running status of cores.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:11

Fig. 3. Structure of the multi-core ARINC 653 along with its Event-B specification [44, 46].

The function SET_CORE_STATUS is to set the core’s status at a corresponding value after exe-
cuting a service.

An event is a tuple 〈ι,p,σ ,α〉, in which ι is the name of the event, p is a list of parameters, σ is a
list of guards, and α is a list of actions. We duplicate each event into evts ′ for each “IF” statement
and translate the “IF” conditions as guards.

The function TRANSLATE_SERVICE translates a service requirement spec into a final set of
events in Event-B by invoking the above sub-functions. A service requirement can be abstracted
into a tuple spec: <ζ , P, E, S>, where ζ is the service name, P is the input parameter list of this
service, E represents error conditions in the error part, and S is a statement of the service’s normal
action part. The TRANSLATE_SERVICE assigns the parameters of a service to the parameter list
of each event and adds the negation of the conditions of the error part to the guard list in the
Event-B machine.

4 A REFINEMENT STRUCTURE

The ARINC 653 Part 1–4 standard uses more than 110 pages of textual descriptions to describe its
67 services; it should be formalized with refinement-based methods.

4.1 Refinement Structure for the Entire System

We first introduce the refinement structure in our work, illustrated in Figure 3 (which derives from
[44, 46]). This refinement structure is built according to the structure of the standard document.

In the standard, Section 1 and Sections 2.1, 2.2, and 3.1 provide an overview of ARINC 653
from different perspectives. Sections 2.3 and 2.4 describe the functionality of the ARINC 653 and
its interface toward application software. Section 3 specifies service requests corresponding to the
functionality. Sections 2.5 and 5 define the information and data format of the system configuration
for integration and deployment.

The first machine M_Part_Trans specifies the partition operating modes, namely COLD_START,
WARM_START, NORMAL, and IDLE. The abstract mode transitions are demonstrated in Section
2.3.1.4 and Figure 2.3.1.4 in the standard.

The second machine M_PartProc_Trans models process states, namely Dormant, Ready, Wait-

ing, Suspend, WaitandSuspend, Running, and Faulted. Note that the states Waiting, Suspend, and

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:12 F. Zhang et al.

WaitandSuspend are refined from the state Waiting in the standard. The reasonability of the in-
troduction of these three states is described in Section 5.2.1. Moreover, this layer specifies state
transitions under certain partition modes as described in Section 2.3.1.4.2.2 in the standard. For ex-
ample, a process at state Ready in a partition at Normal mode can progress to Dormant or Suspend.

The third machine M_PartProc_withEvents introduces process periods and specifies period-
related process actions. Meanwhile, this machine specifies start, stop, resume, and so forth, multi-
ple services for processes. This layer mainly describes (i.e., refines) the abstract state transitions
defined in the second layer. For example, the service stop_self in the third layer models only that
this service will turn the current running process in a normal partition into dormant.

The fourth machine M_PartProc_Manage introduces process priorities along with the specific
service (set_priority), a concrete two-level scheduling policy for partitions and processes, timing
management services, and so on.

The fifth machine M_IPC_Conds introduces sampling and queueing modes for interpartition
communications. Meanwhile, this layer introduces the blackboard and buffer for intrapartition
communications.

The sixth machine M_IPC supplements semaphore, event, and Mutex for control-flow commu-
nications, which are used for process synchronization or process concurrencies. Furthermore, it
introduces the refresh periodic for sampling ports, queuing discipline for interpartition communi-
cation ports and events and buffers.

The last machine M_HM introduces health monitoring services. Then, the refinement structure is
completed.

4.2 Refinement Structure for Partition Managements

Partition management services affect not only partition modes but also processes, inter- and intra-
partition communications, and other resources in the operated partition. Therefore, we regard the
partition management as the core module and construct the partition module first.

The refinement of the partition module through the top three layers is illustrated in Figure 4.
Once the third layer has been reached, we do not introduce new events for partition management
services. We only refine existing partition elements gradually, such as partition time windows,
partition core assignments, and processes in partitions.

The first layer uses an event partition_mode_transition to specify abstract partition mode tran-
sitions described on page 10 of ARINC 653 P1–4. In the second layer, nine events are introduced
to describe concrete partition mode transitions with partition core assignments and process core
affinities. The third layer introduces events to model the service SET_PARTITION_MODE with pe-
riodic and aperiodic processes. Subsequent layers refine the partition service gradually by adding
processes, inter- and intrapartition communications, health monitoring, and other factors.

4.3 Refinement Structure for Process Managements

The second layer introduces the process. This layer consists of events that are used to model pro-
cess scheduling and process state transitions. This layer also models the service SET_PRIORITY
using the specification method for process concurrencies described in Section 3.3. The third layer
models some other process management services, such as STOP, SUSPEND, RESUME, and so forth.
All these services also refine the process-state-transition event. The third layer has not yet intro-
duced the process priority, and we will introduce the service SET_PRIORITY in the fourth layer.

For example, the service SUSPEND, illustrated in Figure 5, is refined by four events. These four
events model the entry of the service, setting the process to DORMANT, rescheduling the core,
and returning the service, respectively. Another service START in Figure 5 is refined by 16 events.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:13

Fig. 4. Refinement of partition-mode transitions. Fig. 5. Refinement of process-state transitions.

This service takes into consideration the periodic and aperiodic processes started in a NOR-
MAL partition or an initialization mode partition, set priority and release points, and so forth. In
the subsequent layers, each layer will refine the process management services and introduce new
elements for processes.

4.4 Refinement Structure for Inter- and Intrapartition Communications

Regardless of the type of communication (namely queueing or sampling ports, as well as buffers,
blackboards, semaphores, mutexes, or events), there is a general characteristic for communication
behaviors, the requesting-waiting-scheduling procedures for currently unavailable resources.

The general procedures for communications are based on the following scenarios:

(1) The requested resource is available and no processes are waiting for this resource. When a
process issues a request in this situation, such as the service SEND_BUFFER, the service will
perform the sending action immediately and the message will be sent out successfully.

(2) The requested resource is available but there exist processes waiting for this resource.
(3) The current resource is unavailable. In this situation, the application will wait for this re-

source and request to reschedule.

Based on the communication characteristics, we can abstract communication actions as three
types of events in the third layer:

(1) The requested resource is currently available and then performs communication actions
immediately, such as sending or receiving actions.

(2) The requested resource is current busy, namely the event req_busy_resource in Figure 6.
(3) The requested resource becomes available after rescheduling (the event resource_become_

available in Figure 7). In Figures 6 and 7, we list concrete event refinement of the abstract
resource-requesting events req_busy_resource and resource_become_available.

The fifth layer refines each abstract event into concrete communication events, namely the queu-
ing and sampling, blackboards, buffers, and mutexes.

We use the service SEND_BUFFER in Figure 8 as an example to describe the refinement process.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:14 F. Zhang et al.

Fig. 6. Refinement of events for requiring an

unavailable resource.

Fig. 7. Refinement of events for waking up one

process.

Fig. 8. The Event composition for the

service SEND_BUFFER.

Fig. 9. Refinement of events for waking up multiple processes.

(1) In the first situation, where the requested resource is available and no processes are waiting
for this resource, the service will perform the sending event send_buffer immediately.

(2) In the second situation, the requested action where the event is req_busy_resource will be
refined by five sub-procedures:

• The event 2.1 removes the first waiting process from the resource’s process queue.
• The event 2.2 handles the timeout value of the waiting process.
• The event 2.3 wakes up this process, removes this process from the WAITING list, and sets

the process at READY, unless another process has suspended it.
• The event 2.4 performs rescheduling.
• The event 2.5 executes the remaining actions.

(3) In the third situation, the requested event req_become_available will be divided into five
sub-procedures: The event 3.1 initializes the context. The event 3.2 sets the timeout type, namely
timed-wait, wait forever, or no-wait. The event 3.3 sets the requesting process at WAITING and
then inserts this requesting process into the requested port’s waiting list. The event 3.4 performs
rescheduling. The event 3.5 resumes the suspended process and continues to perform its remaining
actions. The refinement relations are illustrated in Figure 8.

We can see from Figures 6 and 7 that these refinement events lack two sets of events: the waking-
up action of waiting processes that are blocked on blackboards or on events. The reason we don’t

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:15

Table 6. Abstract Partition-transition Paths

partition_mode_transition =̂ any part newm where
@grd001: part ∈ PARTITIONS
@grd002: newm ∈ PARTITION_MODES
@grd003: partition_mode(part)=PM_IDLE⇒ newm=PM_WAMR_START ∨ newm=PM_COLD_START
@grd004: partition_mode(part)=PM_COLD_START⇒ newm=PM_IDLE ∨ newm=PM_COLD_START ∨

emphnewm=PM_NORMAL
@grd005: partition_mode(part)=PM_WAMR_START⇒

newm=PM_IDLE ∨ newm=PM_COLD_START ∨ newm=PM_WAMR_START ∨ newm=PM_NORMAL
@grd006: partition_mode(part)=PM_WAMR_START⇒ newm=PM_IDLE ∨ newm=PM_COLD_START ∨

newm=PM_WAMR_START
then

@act001: partition_mode(part) := newm

classify these two types of events into the above refinement structure in Figure 7 is that we should
wake up all the processes waiting for blackboards or events, whereas we only wake up the first
waiting process blocked on queueing ports, mutexes, or semaphores. Therefore, another abstract
event resource_become_available2 was designed to wake up all of the waiting processes. This ab-
stract event is different from the abstract one resource_become_available that wakes up only the
first waiting processes, which is illustrated in Figure 9.

Then, we construct the refinement structure for all the inter- and intrapartition communication
services.

5 A COMPREHENSIVE EVENT-B SPECIFICATION

This section introduces the comprehensive Event-B specification.

5.1 Partition Managements

A partition is a program unit of an application designed to satisfy these partitioning constraints.

5.1.1 Partition Mode Transitions. We first specify the abstract partition-mode transition paths
in the top machine M_Part_Trans, which is defined in the event partition_mode_transition in
Table 6.

We introduce process state transitions under certain partition modes in the second machine.
However, these events about partitions are still abstract. In the third machine, we start to specify
concrete partition management services associated with periodic/aperiodic processes.

The partition’s operating mode is the current execution state of a partition. There exist four
types of partition modes: IDLE, NORMAL, COLD_START, and WARM_START. The partition mode
transition paths specified in Table 6 correspond to Figure 2.3.1.4 in the ARINC 653 standard.

5.1.2 Partition Scheduling. The scheduling of partitions in a module is strictly static and deter-
ministic over time, which is a round-robin scheduling policy. The module generates the time-based
scheduling based on the predefined module configuration. Each partition is then scheduled accord-
ing to its respective partition time windows.

The static scheduling configuration is defined in the context C_Part_Proc_Manage, as
listed in Table 7. In this context, the constant partition2num in the axiom axm_partitionID:

partition2num ∈ PARTIT IONS �� N first assigns an ID to each partition using a total bijection.
Then, the constant part_sched_list in the axiom axm_part_sched_list:part_sched_list ∈ N→(N×N)
defines the static scheduling list. In the axiom axm_part_sched_list, the first parameter with the
nature type is the partition ID; the second and the third one are the offsets and durations of
a partition, respectively. Axioms axm_part_sched_list1 and axm_part_sched_list2 present the
constraints on the partition configuration; the former shows that each partition has an offset and
a time capacity (duration), while the latter shows that each partition’s offset is more than or equal

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:16 F. Zhang et al.

Table 7. The Static Configuration of Partition Scheduling

C_Part_Proc_Manage
axioms

@axm_partitionID: partition2num ∈ PARTITIONS �� N
@axm_part_sched_list: part_sched_list ∈ N→ (N × N)
@axm_part_sched_list1: ∀p · p<card(PARTITIONS)⇒ (∃offset,dur · part_sched_list(p) = (offset �→ dur))
@axm_part_sched_list2: ∀p · p<card(PARTITIONS) ∧ (p+1)<card(PARTITIONS)⇒

(∃offset,dur,offset_1,dur_1 · part_sched_list(p) = (offset �→ dur) ∧ part_sched_list(p+1) = (offset_1 �→ dur_1) ∧
offset_1≥ offset+dur)

@axm_major_time_window_value:
∃offset,dur · part_sched_list(card(PARTITIONS)-1) = (offset �→ dur)⇒ offset+dur=majorFrame

@axm_periodicStartPoint: periodicStartPoint ∈ N→ N
@axm_periodicStartPoint1: ∀p · p<card(PARTITIONS)⇒ (∃offset, dur, periodic_start_point ·

part_sched_list(p)=(offset �→ dur) ∧ periodicStartPoint(p)=periodic_start_point ∧ periodic_start_point≥ offset ∧
periodic_start_point < offset+dur)

Table 8. The Partition Scheduling Event

partition_schedule any part
where

@grd001: part ∈ PARTITIONS
@grd002: partition_mode(part) = PM_NORMAL ∨ partition_mode(part) = PM_COLD_START ∨

partition_mode(part) = PM_WARM_START
@grd101: need_reschedule = TRUE
@grd102: ∃offset, dur· part_sched_list(partition2num(part)) =

(offset �→ dur) ∧ clock_tick mod majorFrame ≥ offset ∧ clock_tick mod majorFrame < offset+dur
then

@act101: need_reschedule := FALSE
@act102: current_partition := part
@act103: need_procresch := need_procresch �− (Cores_of_Partition(part) × {TRUE})

to the prior partition’s offset plus its duration. Axiom axm_major_time_window_value presents
the value of a module’s major frame time, which is the last partition’s offset plus its duration in
the configuration list. Axioms axm_periodicStartPoint and axm_periodicStartPoint1 present the
release point of periodic processes.

The action of the partition scheduling is specified by an event partition_schedule, as listed in
Table 8. In Table 8, the grd002 represents that partitions in NORMAL mode and initialization mode
(COLD_START or WARM_START) can be scheduled. The Grd101 is a flag for partition scheduling.
The grd102 is the core algorithm that determines the current partition ID based on the current
clock time, and the act102 sets this partition ID as the current partition. The algorithm in the
Grd102 guarantees that the current clock time is within the voted partition’s time window; i.e., the
value of the current clock time should be between the value of the current partition’s offset and
the value of its offset plus its duration. The system should perform process scheduling following
the partition scheduling. The action act103 sets the process rescheduling flag to TRUE for the cores
assigned to the new partition ID. Then the system will perform process scheduling in the event
partition_schedule().

5.1.3 Partition Services. In Figure 4, we can see that the partition service SET_PARTITION_
MODE is specified as nine refined events. We present only the event set_part_mode2Normal_ready

as illustrated in Table 9. This event turns the partition to NORMAL mode, sets all previously started
aperiodic processes to READY, and sets all previously delay-started aperiodic processes to WAIT-
ING. In this event, stperprocs represents started periodic processes, dstperprocs represents delayed
started periodic processes, staperprocs represents started aperiodic processes, and dstaperprocs

represents delayed started aperiodic processes.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:17

Table 9. The Partition Event set_part_mode2Normal_ready

set_part_mode2Normal_ready =̂
any part procs procs2 procsstate core nrlt stperprocs dstperprocs staperprocs dstaperprocs
where

...
@grd003: procs = processes_of_partition−1[{part}] ∩ process_state−1[{PS_Waiting}]
@grd005: procsstate ∈ procs→ {PS_Waiting, PS_Ready}
@grd006: core ∈ CORES ∩ dom(location_of_service)
@grd007: location_of_service(core) = Set_Normal �→ loc_1
@grd009: ¬(location_of_service(core) = Set_Normal �→ loc_1 ∧ finished_core(core) = FALSE)
...
@grd203:

stperprocs = (procs \ period_of_process−1[{INFINITE_TIME_VALUE}])∩ process_wait_type−1[{PROC_WAIT_PARTITIONNORMAL}]
@grd204:

dstperprocs = (procs \ period_of_process−1[{INFINITE_TIME_VALUE}])∩ process_wait_type−1[{PROC_WAIT_DELAY}]
@grd205:

staperprocs = procs ∩ period_of_process−1[{INFINITE_TIME_VALUE}] ∩ process_wait_type−1[{PROC_WAIT_PARTITIONNORMAL}]
@grd206:

dstaperprocs = procs ∩ period_of_process−1[{INFINITE_TIME_VALUE}] ∩ process_wait_type−1[{PROC_WAIT_DELAY}]
@grd207: nrlt ∈ stperprocs→ N
@grd208: ∀p,x,y,b · (p∈ stperprocs ∧ ((x �→ y)�→ b) firstperiodicprocstart_timeWindow_of_Partition(part)⇒

nrlt(p) = ((clock_tick*ONE_TICK_TIME)/majorFrame+1)*majorFrame + x)
@grd209: procsstate = (staperprocs ×{PS_Ready}) ∪ ((dstaperprocs ∪ stperprocs ∪ dstperprocs)×{PS_Waiting})
@grd211: ¬(location_of_service2(core) = Set_Normal �→ loc_1 ∧ finished_core(core) = FALSE)

then
@act001: location_of_service(core) := Set_Normal �→ loc_2
@act002: process_state := (process_state �− procsstate) �− (procs2 × {PS_Suspend})
@act201: location_of_service2(core) := Set_Normal �→ loc_2
@act202: setnorm_wait_procs(core) := procs
@act203: setnorm_susp_procs(core) := procs2
@act204: releasepoint_of_process := releasepoint_of_process �− nrlt

Table 10. Abstract Process-transition Paths under Certain Partition Modes

process_state_transition =̂ any part proc newstate core where
...
@grd005: processes_of_partition(proc) = part
@grd006: partition_mode(part) =

PM_COLD_START ∨ partition_mode(part) = PM_WARM_START ∨ partition_mode(part) = PM_NORMAL
@grd007: ((partition_mode(part)=PM_COLD_START ∨ partition_mode(part)=PM_WARM_START) ∧

process_state(proc)=PS_Dormant)⇒ newstate=PS_Waiting
@grd008: ((partition_mode(part)=PM_COLD_START ∨ partition_mode(part)=PM_WARM_START) ∧

process_state(proc)=PS_Waiting)⇒ (newstate=PS_Dormant ∨ newstate=PS_WaitandSuspend)
@grd009: ((partition_mode(part)=PM_COLD_START ∨ partition_mode(part)=PM_WARM_START) ∧

process_state(proc)=PS_WaitandSuspendg)⇒ (newstate=PS_Waiting ∨ newstate=PS_Dormant)
...
@grd0016: (partition_mode(part)=PM_NORMAL ∧ process_state(proc)=PS_Faulted)⇒ newstate = PS_Dormant

then
@act001: process_state(proc) := newstate

5.2 Process Managements

5.2.1 Process State Transitions. A partition consists of one or multiple processes that combine
dynamically and execute concurrently to provide functions associated with that partition’s
resources.

We first introduce the concept of processes in the second-layer machine M_PartProc_Trans.
This layer introduces process states, the allocation of processes to partitions, and the core con-
figuration for partitions and processes. Additionally, we specify the service CREATE_PROCESS
and define the key event process_state_transition, as illustrated in Table 10. The key event specifies
process state transition paths under certain partition modes.

The process state Waiting in ARINC 653 implies three situations. To distinguish between these
three situations, we introduce three state modes to represent Waiting: Suspended, Waiting, and
WaitandSuspend. These state modes are described as follows:

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:18 F. Zhang et al.

Table 11. The Process-scheduling Event

process_schedule =̂ refines process_schedule any part proc core errproc where
...
@grd005: core ∈ Cores_of_Partition(part)
@grd006: processes_of_cores(proc) = core
@grd007: partition_mode(part) = PM_NORMAL
@grd008: process_state(proc) = PS_Ready ∨ process_state(proc) = PS_Running
@grd009: finished_core(core) = TRUE
...
@grd204: ∀p ·p∈processes_of_partition∼[{part}] ∧ p∈dom(currentpriority_of_process)⇒

currentpriority_of_process(p) ≤ currentpriority_of_process(proc)
...

then
@act001: process_state := (process_state�−(cores_processes(core) �→ PS_Ready))�− {proc �→ PS_Running}
@act002: current_processes(core) := proc
@act003: current_processes_flag(core) := TRUE
@act004: need_reschedule := FALSE
@act005: need_procresch(core) := FALSE

...

(1) If a running process is suspended by the service SUSPEND or SUSPEND_SELF, the state
transition of this process is from running to suspended.

(2) If a running process requests a currently unavailable resource, such as events or mutexes
occupied by other processes, the state transition is from running to waiting.

(3) If a process waiting for a resource is suspended by other processes, the state transition is
from suspended to WaitandSuspend.

Based on the above analysis, the process states are defined as partition(PROCESS_STATES,

PS_Dormant, PS_Ready, PS_Waiting, PS_suspended, PS_Waitandsuspended, PS_Running, PS_Faulted)

in the context C_Part_Proc_Trans. Similar to the partition-mode-transition event parti-

tion_mode_transition at the top machine, the state transitions defined in the event pro-

cess_state_transition are not concrete transition events or actions; they are only the possible state
transition paths. The concrete services in the following machines, such as SET_PRIORITY, SUS-

PEND, RESUME, and STOP, will refine the concrete state transition paths.

5.2.2 Process Scheduling. One of the most important activities of the OS is to arbitrate the
competition within a partition when multiple processes of a partition concurrently issue requests
of processor cores.

The event of process scheduling in the bottom machine is listed in Table 11. In Table 11, the
grd005 determines whether the operating core is assigned to the partition part, and the grd006

determines whether the core has been assigned to the process proc in the PCA. The grd007 and the
grd008 confirm the current partition mode is NORMAL and the scheduled process is READY or
RUNNING. The grd009 examines whether the current processor core has finished the executions
of prior services. The grd204 can ensure the scheduled process proc is a process with the highest
priority.

In the action part in Table 11, the act002 and the act003 assign the processor core core to the
process proc and enable the process execution on this core. Meanwhile, the act001 updates states
for all processes in the partition.

5.2.3 Process Services. Processes may be designed as periodic or aperiodic executions. The pe-
riodic types are introduced in the third machine M_Part_Proc_With_Events and defined as parti-

tion(PROC_PERIOD_TYPE, PERIOD_PROC, APERIOD_PROC). Three types of priority (current, base,

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:19

Fig. 10. Channels between interpartition communication ports.

and retained) are represented as variables basepriority_of_process, currentpriority_of_process, re-

tainedpriority_of_process in the fourth machine, respectively.
We have listed an example of process service, CREATE_PROCESS, in Section 3.6. This service

is divided into four subprocedures, and each procedure is specified as one event that models the
entry, the intermediate, and the last action behaviors, respectively.

5.3 Inter- and Intrapartition Communications

ARINC 653 defines two types of communication paradigms: interpartition communications and
intrapartition communications. Interpartition communications refer to communications between
partitions, while intrapartition communications refer to communications between constituent pro-
cesses within a partition.

Interpartition communications are composed of two modes: the queuing and sampling. The
queuing involves storing messages in a queue until they are read by the receiving partition, while
the sampling involves periodically checking for the availability of a new message.

Intrapartition communications can take place in several modes: blackboards, buffers, mutexes,
events, and semaphores. Blackboards and buffers provide general interprocess message commu-
nications and synchronization, while semaphores, events, and mutexes provide only process syn-
chronizations.

In ARINC 653, messages are atomic entities. We use the set MESSAGES in Ctr_IPC to represent
the set of messages, and the variable used_messages to represent the set of already sent (used) mes-
sages. When sending messages in interpartition communications, the messages to be sent should
be in the set MESSAGES, and they are stored in used_messages after being sent.

5.3.1 Interpartition Communications. The significant difference between inter- and intraparti-
tion communications is the channel mechanism for interpartition communications. A channel
serves as a link between a source port and one or more destination ports, illustrated in Figure 10.
Ports allow a partition to send or receive messages on a specific channel. We use two types of
channel events, transfer_sampling_msg and transfer_queuing_msg, to model channel behaviors for
sampling and queueing modes, respectively.

In sampling channels, “a message remains in the source port until it is transmitted by the channel

or it is overwritten by a new occurrence of the message, whichever occurs first.” On the other hand,
in queuing channels, “a message sent by the source partition is stored in the message queue of the

source port until it is transmitted by the channel. When the message reaches the destination port, it is

stored in a message queue until it is received by the destination partition.”
We use partition (PORTS, SamplingPorts, QueuingPorts) to represent interpartition communica-

tion ports, and Queuing_Channels ∈ Source_QueuingPorts �� Dest_QueuingPorts to represent queu-
ing channels. A port has a message space to store the message(s) to be sent/received. Sampling
ports have a single message storage, which is specified as a variable msgspace_of_samplingports ∈
sampling_ports �→ (MESSAGES × N). Queuing ports keep a message queue with a queuing length,

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:20 F. Zhang et al.

Table 12. The Event send_queuing_message

send_queuing_message =̂ any core port msg t part
where

...
@grd005: finite(queue_of_queuingports(port)) ∧

card(queue_of_queuingports(port)) <
MaxMsgNum_of_QueuingPorts(port)

@grd006: processes_waitingfor_queuingports(port) =∅
...
@grd201: part = current_partition
@grd202: Ports_of_Partition(port) = part
@grd203: t = clock_tick×ONE_TICK_TIME

then
@act001: queue_of_queuingports(port) :=

queue_of_queuingports(port) �− {msg �→t}
@act002: used_messages := used_messages ∪ {msg}

Table 13. Insert Waiting Processes into the READY Queue

in Service DISPLAY_BLACKBOARD

DISPLAY_BLACKBOARD =̂ any part procs core bb msg procs_Ready
@grd006: partition_mode(part) = PM_NORMAL
@grd012: procs = processes_waitingfor_blackboards(bb)
@grd014: location_of_service3(core) =

Display_Blackboard_NeedWakeup �→loc_1
@grd015: procs_Ready ∈ procs→ {PS_Ready}

then
@act001: location_of_service3(core) :=

Display_Blackboard_NeedWakeup �→loc_2
@act002: msgspace_of_blackboards(bb) := msg
@act003: processes_waitingfor_blackboards(bb) :=

processes_waitingfor_blackboards(bb) \ procs
@act004: used_messages := used_messages∪{msg}
@act005: process_state := process_state�−procs_Ready

which is specified as a variable queue_of_queuingports ∈ queuing_ports→ (MESSAGES × N). The
pair (MESSAGES × N1) represents a message sent/received at a specific time. For example, writ-
ing a sampling message msg on the port pt at time t is represented as pt �→ (msg �→ t) ∈ ms-

gspace_of_samplingports. The queuing mode is queued in the FIFO or priority order. We use a
variable processes_waitingfor_queuingports ∈ queuing_ports → (processes �→ (MESSAGES×N)) to
store waiting processes of a queuing port.

The event send_queuing_message specifies the service SEND_QUEUING_MESSAGE, which is il-
lustrated in Table 12. This event involves sending a message msg via a queuing port port when the
port is not full and no other processes are waiting for it. The guard grd05 checks whether the cur-
rent number of the queue port is less than the queue size. The guard grd06 checks whether other
processes are waiting for this port. The sending behavior is defined as act01, and the message is
set to used state after being sent by the action act02.

5.3.2 Intrapartition Communications. Intrapartition communications provide provisions for
processes within a partition to communicate with each other.

Buffers can store multiple messages in a message queue. When using buffers, no messages will
be lost, and the sender will be blocked if the queue is full. The size of a message queue is speci-
fied as ∀buf.(buf∈buffers ∧ finite(queue_of_buffers(buf))⇒ card(queue_of_buffers(buf)) ≤ MaxMs-

gNum_of_Buffers(buf)).
No message queuing occurs in blackboards. Any message written to a blackboard remains

invariant until the message is either cleared or overwritten. Processes waiting for blackboards are
specified as processes_waitingfor_blackboards ∈ blackboards→ P(processes).

Semaphores provide controlled accesses to partition resources, and they can be counted. Pro-
cesses waiting for semaphores are specified as processes_waitingfor_semaphores ∈ semaphores →
(processes �→ N).

An event contains a bool-state variable, namely “up” and “down,” and a waiting-process
queue. The bool-state variable of an event is specified as partition(EVENT_STATE, {EVENT_UP},

{EVENT_DOWN}), and the processes waiting for events are specified as processes_waitingfor_events

∈ events→ P(processes).
A mutex is a synchronization object to control access to partition resources. Only one process

at a time can own a mutex, which is specified as partition(MUTEX_STATE, MUTEX_AVAILABLE,

MUTEX_OWNED). The process owning a mutex is specified as mutex_of_process ∈ mutexs �→ pro-

cesses. A mutex contains a defined priority value that a process’s current priority is raised to when
the mutex is obtained by this process. Processor cores that request mutexes are specified as ac-

quire_mutex ∈ CORES �→ mutexs.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:21

Table 14. The Creation of the Error Handler

CREATE_ERROR_HANDLER =̂ any part proc core where
@grd004: location_of_service(core) = Create_Process�→loc_i
@grd005: finished_core(core) = FALSE
@grd009: partition_mode(part) = PM_COLD_START ∨

partition_mode(part) = PM_WARM_START
...

then
@act001:

location_of_service(core) := Create_Process�→loc_1
@act002: process_state(proc) := PS_Dormant

Table 15. Project Statistics

Machine Events LOC POs AD
I 1 21 6 6(100%)
II 16 382 240 233(97%)
III 31 670 232 211(90%)
IV 110 3,000 2,055 1810(88%)
V 242 7,200 981 823(93%)
VI 257 7,800 164 164(100%)
VII 276 8,760 136 134(98%)
Total - - 3,814 3,471(91%)

The event display_blackboard_needwakeuprdprocs_insert in the fifth-layer machine, as illus-
trated in Table 13, specifies the action “remove the processes from the blackboard’s process queue

and move them from the WAITING to the READY state” in the DISPLAY_BLACKBOARD service.
This event means that if the partition is in NORMAL (grd006), the processes procs are waiting for
the blackboard bb (grd012), and the service has executed the procedure 1 (grd014), then the service
will transfer the message msg on the blackboard bb (act002, act003, act004), set the service execu-
tion location (act001), and set the WAITING processes to READY and insert them into the READY
queue (act005).

5.4 Health Monitoring

Health monitoring (HM) functions respond to and report hardware, application, and/or OS soft-
ware errors and failures. The HM mechanism is introduced in the last machine M_HM. The ARINC
653 OS will provide HM configuration tables and an application-level error handler process for
each partition. The error handler is a special process in a partition with the highest priority but
no process identifiers. It defines a variable shutdown ∈ BOOL to control a module and refines each
event in the machine M_IPC by adding a guard shutdown = FALSE. This means that if a module is
shut down, no event can be triggered. Each partition having at most one error handler process is
specified as a partial function errorhandler_ of_partition ∈ PARTITIONS �� processes.

The event create_error_handler in Table 14 in the M_HM specifies the action “Create a special pro-

cess” in the service CREATE_ERROR_HANDLER. This event means that if the service has completed
the initialization (grd004) and the partition state is in COLD_START or WARM_START (grd009), the
event will set the current process to Dormant (act002) and the location at loc_1 (act001).

5.5 Timing Managements

The event ticktock is used to represent the clock ticks. The variable clock_tick specifies the system
time clock and the variable need_reschedule is a flag used to denote whether the system can trigger
scheduling. Both clock_tick and need_reschedule will be used in process or partition events.

The timing management services provide a means to control periodic and aperiodic processes.
At the end of each processing cycle, a periodic process can call the PERIODIC_WAIT service to
get a new deadline. The TIMED_WAIT service allows the process to suspend itself for a minimum
amount of elapsed time. After the wait time has elapsed, the process becomes available to be sched-
uled. These two services are first introduced as period_wait and time_wait in the third machine
M_PartProc_With_Events.

We define a variable timeout_trigger ∈ processes �→ PROCESS_STATES × N1 to store the time
counter for processes. The ordered pair (proc �→ (PS_Ready �→ t)) ∈ timeout_trigger means that
the process proc is blocked and is waiting for some unavailable resource until time t, and then
this process will be set to READY. When the system initiates a time counter with a duration t, a
tuple (process_state × t) will be inserted into the timeout trigger. When the time t comes, the event
time_out triggers a blocked process to the state process_state.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:22 F. Zhang et al.

6 PROOF OBLIGATIONS AND RESULTS

6.1 Project Evaluation

The statistics of our specification and proof are shown in Table 15. We can see that the lines

of code (LOC) and events for machines increase gradually since the refinement machine is an
extension of the above machine. The last-layer machine M_HM contains 276 events and 8,760 LOC.
The number of invariants representing critical properties for all the machines is 157. More than
3,800 proof obligations (POs) are generated, and more than 90% of them are automatically
discharged.

6.2 Proof Obligations

Proof obligations can ensure concrete machines hold the specified properties of the abstract ma-
chines. We have proved the most important types of proof obligations: gluing and consistency
invariants, deadlock freedom, correct refinement relations, and so on. Most of the proof obliga-
tions can be proved by the SMT solver, the model checker proB [26], or other automatic provers.

6.2.1 Invariant Preservation in the First Layer. Invariant preservation in the first layer requires
formal proof to ensure that various events maintain the invariants constrained in this layer. This
proof process ensures that modified invariants hold true in the presence of defined constants and
variables, which can be represented as “axioms, invariants � modified invariants.” As a result, this
type of proof obligation can be formally defined as “A c, I c v � I ′ c v ′.”

6.2.2 Invariant Establishment Rules for the Initialization Event. The initialization event should
establish the invariant for the first time [3]. In this way, other events after initialization can be
enabled in a situation where the invariants hold. The initialization event establishes invariants
that can be described as “axioms � modified invariants by the initialization event.” This proof can
be formally defined as “A c � I ′i c v ′i ,” in which v ′i denotes the modified variables after executing
the initialization event and I ′i denotes the modified invariants of the initialization event.

6.2.3 Consistency. Consistency proofs include feasibility statements (see Section 2.6 in [11]),
consistency of hypotheses, and consistency among dynamic and static elements (see Section 8.1.5
in [4]).

Feasibility statements (FIS) shows that under the given properties (axioms), the invariants,
and the guards, the event indeed yields at least one valid value as defined by the predicates in that
event. This can be described as “axioms, invariants, guards, predicates � new variables defined by

predicates,” which can be formally defined as “A c, G c v, I c v � ∃v ′.v ′ = E (c,v).” For example, the
action act313 : current_partition :∈ PARTIT IONS in the initialization event of the fourth-level
machine needs an FIS proof that indicates that the initialization event can generate a valid partition
with the axiom constraint “axm_part_num: card(PARTITIONS) > 0 ∧ card(PARTITIONS) < 256.”

Consistency of hypotheses refers to the requirement that the hypotheses, which are defined
as axioms or invariants specified in machines and contexts, should not contradict each other. It
is a logical statement that should hold true throughout the execution of the system. The proof
obligations for consistency of hypotheses are generated automatically and labeled as INV.

Consistency among dynamic and static elements indicates that the model is coherent. It is
used to prove the validation of event behaviors and state transitions in our model. These consis-
tency conditions, defined as invariants, have been manually constructed, and their proof obliga-
tions have been proved in our work.

We use two examples to illustrate the consistency among dynamic and static elements. In the
first example in Table 9, the event set_part_mode2Normal_ready is an intermediate event of the
service SET_PARTITION_MODE, i.e., not the last and return event. There is a consistency invariant

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:23

Table 16. Gluing Invariants in the Event partition_modetransition_to_warmstart

partition_modetransition_to_warmstart =̂ refines partition_mode_transition any part new procs cores where
@grd001: part ∈ PARTITIONS
@grd002: newm ∈ PARTITION_MODES
@grd101: cores ∈ P1 (CORES)
@grd102: newm = PM_WARM_START
@grd103: partition_mode(part) = PM_WARM_START ∨ partition_mode(part) = PM_NORMAL
@grd104: procs = processes_of_partition−1[{part}]
@grd105: cores = Cores_of_Partition(part)

then
@act001: partition_mode(part) := newm
@act101: processes := processes \ procs
@act102: process_state := procs �− process_state
@act103: processes_of_partition := procs �− processes_of_partition
@act104: processes_of_cores := procs �− processes_of_cores

that if an event of a service is not the last and return event of a service, the flag finished_core(core)

that denotes that the core has finished a service should be FALSE. This is specified as an invariant,
inv_local_service_and_finished_core, in the second layer, as follows:

∀core,serv · core∈ dom(location_of_service) ∧ serv ∈ Services ∧ location_of_service(core)�(serv �→ loc_r)⇒
finished_core(core) = FALSE.

A another example, in Table 10, we define the abstract process-state transitions. In or-
der to ensure that only processes in the NORMAL-mode partition can be at the RUNNING
or READY state, we added an invariant in the model of the second layer. This invariant,
inv_runreadysuspfaltproc_onlyin_normal, is specified as follows:

∀part · { part∈ PARTITIONS ∧ partition_mode(part) � PM_NORMAL⇒
∀proc · [proc∈ (processes_of_partition−1[{part}]∩dom(process_state)) ∧ process_state(proc)∈ PROCESS_STATES⇒

process_state(proc) � PS_Ready ∧ process_state(proc) � PS_Running ∧
process_state(proc) � PS_Suspend ∧ process_state(proc) � PS_Faulted] }.

6.2.4 Gluing Invariants. Gluing invariants are invariants that define specific relationships
among variables and states between the concrete and abstract machines.

Gluing invariants can establish a rigorous link between the adjacent machines. They can include
variables from the refined machine. Gluing invariants “glue” the space of the refined machine to
its above abstract machine.

The event in Table 16 is refined from the abstract event that defines partition-mode transi-
tions in Table 6. In Table 16, we added two parameters, the procs and cores, to represent the
processes in a partition and the assigned cores to this partition, respectively. The gluing invari-
ants are listed as guards grd101 through grd106 in Table 16. For example, the guard “grd104: procs

= processes_of_partition−1[{part}]” links the new argument procs to its partition part and denotes
that procs is the set of all the processes in the partition part. The “processes_of_partition ∈ processes

�→ PARTITIONS” denotes the mapping relation from a process to its partition. The guard “grd105:

cores = Cores_of_Partition(part)” links the new arguments cores to their partition and denotes that
the cores are the set of all processor cores assigned to the partition part. The proof obligations of
these gluing invariants are listed in Table 12.

6.2.5 Deadlock Freedom. Deadlock freedom means a system will work forever once it is started
[3]. This property confirms that the system can evolve by engaging at least one of its events at any
time, which ensure that at least one of the guards of various events is always true. The deadlock
freedom is described as “axioms, invariants � disjunction of the guards,” which is formalized by
“A c, I c v � G1 c v ∨ G2 c v ∨ ... Gn c v,” in which Gi c v denotes the guards for a specific event i.
We use the model checker ProB [26], which can be installed into Rodin as a plug-in to prove the
deadlock freedom.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:24 F. Zhang et al.

Fig. 11. Proof obligations for the event partition_

modetransition_to_normal_mode.
Fig. 12. Proof obligations for the event partition_

modetransition_to_warmstart.

6.2.6 Correct Refinement. To ensure correct refinements, we should prove two parts: the guard
strengthening concerning the guards and correct refinement relations concerning the actions [3].

Guard strengthening is to prove the guards of a concrete event are stronger than those of an
corresponding abstract event. The term “stronger” means that the former guards imply the later
guards, which ensures an enabled concrete event transition without a counterpart to its corre-
sponding abstract transition. We prove the guard strengthening as follows:

“axioms, abstract invariants, concrete invariants, concrete guards � abstract guards.”
This is formalized as “A c, I c v, J c v w, Hi c w � Gi c, v.”
Correct refinement relations can ensure that the concrete model preserves the properties of

the abstract model (i.e., the abstract invariants) and satisfies the added properties (i.e., the added
invariants), while the guard strengthening guarantees only that the enabling conditions of a con-
crete event do not conflict with its corresponding abstract event. We prove the correct refinement
as follows:

“axioms, abstract invariants, concrete invariants, concrete guards � modified concrete invariant.”
This is formalized as “A c, I c v, J c v w, H c w � J c v ′ w ′.”
We illustrate two examples that demonstrate proof obligations of partial partition-mode

transitions in Figures 11 and 12, respectively. The abstract partition-mode transitions
are defined in the first layer and refined by partition_modetransition_to_warmstart, parti-

tion_modetransition_to_normal_mode, and a total of seven events in the second layer. Figure 11 dis-
plays the proof obligations of the event partition_modetransition_to_normal_mode, and Figure 12
shows those of the event partition_modetransition_to_warmstart.

Additionally, we have listed some important safety properties in Table 17. We refer readers to
[3] for further details about the policy and concept of proof obligations.

6.3 Analysis

After a formal analysis of the Event-B specification, we confirm that the six errors found in
the single-core ARINC 653 also exist in the multi-core ARINC653. The six errors, discussed
in the literature [44], occur in process-state transitions in the process management services
RESUME and DELAYED_START, and the communication services SEND_QUEUING_MESSAGE

and RECEIVE_BUFFER. The reason is that the multi-core ARINC 653 derives from the single-core
one, which contains the errors, so the multi-core ARINC 653 inherits these errors. We can
address these errors using Event-B because we decompose each service into independent Event-B
events that execute atomically and consider the locking mechanism for event executions, and the
formal deductive analysis of the formal specification can uncover hiding problems through each
refinement layer.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:25

Table 17. Safety Properties for ARINC 653 Part 1–4

No. Functionality/Invariant description

Partition and process management

(1) Each partition has at least one processor core.

(2) A partition in COLD_START or WARM_START should not schedule a user application.

(3) Each process has a core affinity.

(4) Each process should only be scheduled on the core assigned to its partition.

(5) A periodic process has a periodic release point.

(6) A partition has a lock-level number.

(7) Process management services should conform to the process state transition relations.

(8) Partition management services should conform to the partition mode transition relations.

(9) If the current lock level is greater than 0, the current process should not be scheduled out.

(10) Each partition can have one health monitor process.

(11) The scheduler is two-level scheduling that comprises partition scheduling and process scheduling.

(12) The partition scheduling is static.

(13) The process scheduling is dynamic, which picks the highest-priority process to execute on its assigned core.

(14) If a partition is not in NORMAL, its applications should not be in Ready, Running, Suspend, or Faulted.

(15) If a partition contains processes at Ready, Running, Faulted, or Suspend, the partition should be NORMAL.

(16) There is at most one Running process in each processor core.

(17) If a partition is in IDLE, it should not have any process.

(18) If a partition is in NORMAL, it should have at least one process.

(19) There is at most one Running process in each processor core.

(20) When a partition is in COLD_START or WARM_START, the lock level should be larger than zero.

(21) If the lock level of a partition is zero, the partition should be in NORMAL.

(22) The current process’s partition is in NORMAL.

Communication

(23) The sizes of message queues are finite.

(24) The message number in a queue is less than the maximum message number.

(25) Wake up all the waiting processes for events and blackboards when these resources become available again.

(26) Wake up all the first waiting processes for ports, mutexes, etc., when these resources become available again.

(27) Interpartition communication ports, events, buffers, and semaphores have process queuing discipline.

Multi-core framework

(28) Service can be interrupted by other services during execution.

(29) Services can execute concurrently within a partition or between partitions.

(30) The execution order of service should remain the same in the refinement.

7 RELATED WORK

The seL4 [2, 24, 25] is the first and most comprehensive OS kernel that uses formal methods to
ensure safety and security properties of a high-performance L4-family microkernel [20]. However,
seL4 does not support multicore concurrency with fine-grained interleaving and locking. For this
issue, von Tessin [41] and Peters et al. [32] argue that concurrent behaviors executing on multicores
can be reduced to a minimum, so they believe a single big-kernel-lock (BLK) might be good
enough to achieve good performance on multicore platforms. Von Tessin further shows how to
convert single-core seL4 proofs into proofs of a multicore OS kernel with a BKL framework.

Zhong Shao et al. present a compositional approach and build a clean-slate and certified con-
current OS kernel—CertikOS (Certified Kit Operating System) [1, 17–19]. Their concurrency [18]
framework allows interleaved executions of kernel/user modules across different abstraction lay-
ers, and each such layer can have a different set of observable events and features [19]. They
introduce the hypervisor architecture of the CertikOS that leverages formal certification to ensure
information leakage in cloud computing [17]. CertiKOS can isolate applications from each other
as well as provider-controlled resource management mechanisms.

Nevertheless, the well-known contributions of the above literatures focus on traditional OSs but
not ARINC 653-compliant OSs.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

24:26 F. Zhang et al.

Formal specification of the ARINC 653 architecture and components has been developed using
Circus language [31], Architecture Analysis and Design Language (AADL) [14, 36, 43], and
PROMELA of the SPIN [22] model checker [12]. However, they only specify a small part of services
and analysis of few critical properties. Zhao et al. [34, 45] specify and verify interpartition com-
munication of ARINC 653 in sequential and concurrent settings, respectively. They also redevelop
and automatically verify ARINC 653 models using Python [35]. In [44], the system functionalities
and all service requirements of ARINC 653 have been formalized in Event-B, and some errors have
been found in the standard.

About the validation of the Event-B model, Ait-Ameur et al. [7] claim that the ontology is a good
candidate for handling explicit domain knowledge, Mendil et al. [27] present a framework that fa-
cilitates the formalization of standard concepts and rules as an ontology using Event-B consisting
of data types and a collection of operators and properties. At-Ameur et al. propose [6] to define
transitions explicitly as partial functions in an Event-B theory. Zhao et al. [34, 45] also propose
an ontology methodology based on Event-B as an intermediate model between informal descrip-
tions of ARINC 653 and the formal specification in Event-B. However, all the above contributions
support only the single-core ARINC 653.

8 CONCLUSION AND FUTURE WORK

This article proposes a formal specification method for the multi-core ARINC 653 standard using
Event-B and its IDE RODIN, presents a comprehensive specification with seven refinement layers
of machines, and performs a formal analysis on proof obligations. After formal specification and
analysis, we confirm that the errors found in the single-core ARINC 653 also exist in the multi-core.
In the following work, we will consider security properties in our current safety specification and
organize the refinement structure to satisfy specific safety- and security-critical properties.

APPENDIX

For definition and description of proof obligations, we adopt the notations in Table 18 referencing
from [3].

Table 18. Notations

Symbols Description
c constants
v abstract variables
w concrete variables
E abstract events
F concrete events
v ′ = E (c, v) modified abstract variables after executing abstract events
w ′ = F (c, w) modified concrete variables after executing concrete events
A c axioms for constants
G c v guards for abstract events
H c w guards for concrete events
I c v abstract invariants for constants and abstract variables
J c v w concrete invariants for constants and concrete variables
I ′ c v ′ modified abstract invariants for constants and modified abstract variables
J ′ c w ′ modified concrete invariants for constants and modified concrete variables

Meanwhile, we list some important operators with their mathematical semantics in Table 19.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:27

Table 19. Glossary

Operator Description Formal Semantic
N The set of natural numbers
\ Set difference S\T = { x | x ∈ S ∧ x � T }
N1 The set of positive natural numbers N1 = N \ {0}
Z The set of integer numbers
P Powerset P(S) = {s | s⊆ S}
P1 Non-empty subsets P1(S) = P(S) \ {�}
↔ Relations S ↔ T = P (S × T)
dom Domain ∀r ·r∈S ↔ T ⇒ dom(r) = {x ·(∃y · x �→ y ∈ r)}
ran Range ∀r ·r∈S ↔ T ⇒ ran(r) = {y ·(∃x · x �→ y ∈ r)}
←↔ Total relations if r ∈ S ←↔ T then dom(r) = S
↔→ Surjective relations if r ∈ S ↔→ T then ran(r) = T
↔↔ Total surjective relations if r ∈ S ↔↔ T then dom(r) = S and ran(r) = T
; Forward composition ∀p,q ·p ∈ S ↔ T ∧ q ∈ T ↔ Q⇒ p;q = {x �→y | ∃z ·x �→z ∈ p ∧ z �→y ∈ q}
◦ Backward composition p ◦ q = q ; p
� Domain restrictions S � r = {x �→y | x �→y ∈ r ∧ x ∈ S}
id Identity S � id = {x◦x | x ∈ S}
�− Domain subtraction S �− r = {x �→y | x �→y ∈ r ∧ x � S}
� Range restriction r � T = {x �→y | x �→y ∈ r ∧ y ∈ T }
�− Range subtraction r �− T = {x �→y | x �→y ∈ r ∧ y � T }
r−1 Inverse r−1 = {y �→x | x �→y ∈ r}
r[S] Relational image r[S] = {y | ∃x ·x ∈ S ∧ x �→y ∈ r}
�− Overriding r1 �− r2 = r2 ∪ (dom(r2) �− r1)
⊗ Direct product p ⊗ q = {x �→(y �→y) | x �→y ∈ p ∧ y �→z ∈ q}
�→ Partial functions S �→ T = {r · r ∈ S ↔ T ∧ r−1;r ⊆ T � id}
→ Total functions S → T = {f · ∈ S �→ T ∧ dom(f) = S}
�� Partial injections S �� T = {f · ∈ S �→ T ∧ f −1 ∈ T �→ S}
� Total injections S � T = S �� T ∩ S → T
�� Partial surjections S �� T = {f · ∈ S �→ T ∧ ran(f) = T }
� Total surjections S � T = {f · ∈ S �� T ∧ S → T }
�� Bijections S �� T = {f · ∈ S � T ∧ S � T }

REFERENCES

[1] n. d. CertiKOS. http://flint.cs.yale.edu/certikos/index.html/

[2] n. d. seL4. https://sel4.systems/

[3] Jean-Raymond Abrial. 2010. Modeling in Event-B: System and Software Engineering. Cambridge University Press.

[4] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and Laurent Voisin. 2010.

Rodin: An open toolset for modelling and reasoning in Event-B. International Journal on Software Tools for Technology

Transfer 12, 6 (2010), 447–466.

[5] SAE-ITC Aeronautical Radio, Inc. December 23, 2019. ARINC Specification 653 Part 1: Avionics Application Software

Standard Interface, Part 1 - Required Services.

[6] Yamine Aït-Ameur, Guillaume Dupont, Ismail Mendil, Dominique Méry, Marc Pantel, Peter Rivière, and Neeraj K.

Singh. 2022. Empowering the event-B method using external theories. In Integrated Formal Methods: 17th International

Conference (IFM’22), Proceedings. Springer, 18–35.

[7] Yamine Ait-Ameur and Dominique Méry. 2016. Making explicit domain knowledge in formal system development.

Science of Computer Programming 121 (2016), 100–127.

[8] June Andronick. 2017. Reasoning about concurrency in high-assurance, high-performance software systems. In Inter-

national Conference on Automated Deduction. Springer, 1–7.

[9] June Andronick. 2018. Formal Model of a Multi-core Kernel-based System. Technical Report. National ICT Australia

Limited.

[10] Pedro de la Cámara, María del Mar Gallardo, and Pedro Merino. 2007. Model extraction for Arinc 653 based avionics

software. In International SPIN Workshop on Model Checking of Software. Springer, 243–262.

[11] Joey Coleman, Cliff Jones, Ian Oliver, Alexander Romanovsky, and Elena Troubitsyna. 2005. RODIN (rigorous open

development environment for complex systems). School of Computing Science Technical Report Series.

[12] Pedro de la Cámara, J. Raúl Castro, María del Mar Gallardo, and Pedro Merino. 2011. Verification support for ARINC-

653-based avionics software. Software Testing, Verification and Reliability 21, 4 (January 2011), 267–298.

[13] Julien Delange and Laurent Lec. 2011. POK, an ARINC653-compliant operating system released under the BSD license.

In 13th Real-Time Linux Workshop, Vol. 10. 181–192.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

http://flint.cs.yale.edu/certikos/index.html/
https://sel4.systems/

24:28 F. Zhang et al.

[14] Julien Delange, Laurent Pautet, and Fabrice Kordon. 2010. Modeling and validation of ARINC653 architectures. In

Proceedings of Embedded Real Time Software and Systems (ERTS’10).

[15] The Coq Development Team. n. d. The Coq Proof Assistant. https://coq.inria.fr/

[16] Kevin Elphinstone, Amirreza Zarrabi, Adrian Danis, Yanyan Shen, and Gernot Heiser. 2016. An evaluation of coarse-

grained locking for multicore microkernels. arXiv preprint arXiv:1609.08372 (2016).

[17] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS: A certified kernel for

secure cloud computing. In Proceedings of the 2nd Asia-Pacific Workshop on Systems. 1–5.

[18] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan Wu, Vilhelm Sjöberg, and David Costanzo.

2019. Building certified concurrent OS kernels. Communications of the ACM 62, 10 (2019), 89–99.

[19] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.

2016. CertiKOS: An extensible architecture for building certified concurrent OS kernels. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’16). 653–669.

[20] Jorrit N Herder. 2005. Towards a True Microkernel Operating System. Master’s Thesis, Vrije Universiteit Amsterdam

2005.

[21] Green Hills. n. d. INTEGRITY-178 tuMP. https://www.ghs.com/products/safety_critical/integrity_178_tump.html

[22] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software Engineering 23, 5 (1997), 279–295.

[23] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Romanovsky, Kimmo Varpaaniemi, Dubravka Ilic, and

Timo Latvala. 2013. Developing mode-rich satellite software by refinement in event-B. Science of Computer Program-

ming 78, 7 (2013), 884–905.

[24] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser.

2014. Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer Systems (TOCS) 32,

1 (2014), 1–70.

[25] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock1, Philip Derrin1, Dhammika Elkaduwe,

Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4:

Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.

207–220.

[26] Michael Leuschel and Michael Butler. 2003. ProB: A model checker for B. In Formal Methods: International Symposium

of Formal Methods Europe (FME’03), Proceedings. Springer, 855–874.

[27] Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh, Dominique Méry, and Philippe Palanque. 2021. Standard

conformance-by-construction with Event-B. In International Conference on Formal Methods for Industrial Critical Sys-

tems. Springer, 126–146.

[28] Dominique Méry and Neeraj Kumar Singh. 2013. Formal specification of medical systems by proof-based refinement.

ACM Transactions on Embedded Computing Systems (TECS) 12, 1 (2013), 1–25.

[29] University of Cambridge and Technische Universität Münch. n. d. Isabelle/HOL. https://isabelle.in.tum.de/

[30] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007),

271–307.

[31] Artur Oliveira Gomes. 2012. Formal Specification of the ARINC 653 Architecture Using Circus. Ph. D. Dissertation. Uni-

versity of York.

[32] Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015. For a microkernel, a big lock is fine. In Pro-

ceedings of the 6th Asia-Pacific Workshop on Systems. 1–7.

[33] John Rushby. 1999. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance. Technical Report.

[34] David Sanan, Yongwang Zhao, Shang-Wei Lin, and Liu Yang. 2021. CSim2: Compositional top-down verification of

concurrent systems using rely-guarantee. ACM Transactions on Programming Languages and Systems 43, 1, Article 2

(Feb. 2021), 46 pages. https://doi.org/10.1145/3436808

[35] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and Xi Wang. 2018. Nickel:

A framework for design and verification of information flow control systems. In Proceedings of the 13th USENIX

Conference on Operating Systems Design and Implementation (OSDI’18). USENIX Association, 287–305.

[36] Frank Singhoff and Alain Plantec. 2007. AADL modeling and analysis of hierarchical schedulers. In Proceedings of the

2007 ACM International Conference on Sigada Annual International Conference. 41–50.

[37] Wind River System. n. d. VxWroks 653. https://resources.windriver.com/vxworks/vxworks-653-product-overview

[38] Lynx Software Technologies. n. d. LynxOS-178. https://www.lynx.com/products/lynxos-178-do-178c-certified-native-

posix-partitioned-rtos-more-info

[39] Freek Verbeek, Oto Havle, Julien Schmaltz, Sergey Tverdyshev, Holger Blasum, Bruno Langenstein, Werner Stephan,

Burkhart Wolff, and Yakoub Nemouchi. 2015. Formal API specification of the PikeOS separation kernel. In NASA

Formal Methods Symposium. Springer, 375–389.

[40] Michael Von Tessin. 2012. The clustered multikernel: An approach to formal verification of multiprocessor OS kernels.

In Proceedings of the 2nd Workshop on Systems for Future Multi-core Architectures.

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

https://coq.inria.fr/
https://www.ghs.com/products/safety_critical/integrity_178_tump.html
https://isabelle.in.tum.de/
https://doi.org/10.1145/3436808
https://resources.windriver.com/vxworks/vxworks-653-product-overview
https://www.lynx.com/products/lynxos-178-do-178c-certified-native-posix-partitioned-rtos-more-info

Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B 24:29

[41] Michael von Tessin. 2013. The Clustered Multikernel: An Approach to Formal Verification of Multiprocessor Operating-

system Kernels. Ph. D. Dissertation. University of New South Wales, Sydney, Australia.

[42] Ying Wang, Dianfu Ma, Yongwang Zhao, Lu Zou, and Xianqi Zhao. 2011. An AADL-based modeling method for

arinc653-based avionics software. In 2011 IEEE 35th Annual Computer Software and Applications Conference. IEEE,

224–229.

[43] Ying Wang, Dianfu Ma, Yongwang Zhao, Lu Zou, and Xianqi Zhao. 2011. An AADL-based modeling method for

ARINC653-based avionics software. In Proceedings of IEEE 35th Annual Computer Software and Applications Conference

(COMPSAC’11). 224–229.

[44] Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. 2016. Formal specification and analysis of partitioning

operating systems by integrating ontology and refinement. IEEE Transactions on Industrial Informatics 12, 4 (2016),

1321–1331.

[45] Yongwang Zhao, David Sanan, Fuyuan Zhang, and Yang Liu. 2019. Refinement-based specification and security

analysis of separation kernels. IEEE Transactions on Dependable and Secure Computing 16, 1 (2019), 127–141. https:

//doi.org/10.1109/TDSC.2017.2672983

[46] Yongwang Zhao, Zhibin Yang, David Sanán, and Yang Liu. 2015. Event-based formalization of safety-critical operating

system standards: An experience report on ARINC 653 using Event-B. In 2015 IEEE 26th International Symposium on

Software Reliability Engineering (ISSRE’15). IEEE, 281–292.

Received 26 July 2022; revised 27 June 2023; accepted 10 August 2023

Formal Aspects of Computing, Vol. 35, No. 4, Article 24. Publication date: November 2023.

https://doi.org/10.1109/TDSC.2017.2672983

	Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B
	Citation

	Refinement-based Specification and Analysis of Multi-core ARINC 653 Using Event-B

