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Abstract 

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. 

However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight 

dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness 

and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number 

and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one 

hand, different from previous works, which carefully insert one token between two words per action, we insert 

an uncertain number of tokens following a well-designed distribution. To ensure high-quality decoding, the 

insertion number increases as more words are generated. On the other hand, we randomly mask an increasing 

number of generated words to force Pre-trained Language Models (PLMs) to examine the whole sentence via 

reconstruction. We have conducted extensive experiments and designed four dimensions for human evaluation. 

Compared with important baseline (CBART (He, 2021)), our method improves the 1.3% (B-2), 0.1% (B-4), 

0.016 (N-2), 0.016 (N-4), 5.7% (M), 1.9% (SB-4), 0.6% (D-2), 0.5% (D-4) on One-Billion-Word dataset 

(Chelba et al., 2014) and 1.6% (B-2), 0.1% (B-4), 0.121 (N-2), 0.120 (N-4), 0.0% (M), 6.7% (SB-4), 2.7% (D-

2), 3.8% (D-4) on Yelp dataset (Cho et al., 2018). The results demonstrate that our method is more diverse and 

plausible. 

Keywords: Constrained text generation, Pre-trained language models, Randomly insert, Randomly mask, Text 

diversity 

 

1. Introduction 

Lexically constrained text generation (CTG) is the task of generating sentences based on constrained keywords. 

As shown in Fig. 1, given several keywords faces, allegedly, agents, and questioned, the model prediction is a 

fluent and plausible sentence He faces federal charges for allegedly telling FBI agents who questioned him, 

which must include all keywords. Lexically CTG targets controlled text generation and has a wide range of 

applications, such as story generation (Fan et al., 2018, Fang et al., 2021), advertisements generation (Duan et 

al., 2021, Hughes et al., 2019), and counterfactual reasoning (Qin, Bosselut, Holtzman, Bhagavatula, Clark, & 

Choi, 2019). 

Compared with other text generation tasks, the outputs of a lexically CTG model are more flexible and diverse 

— there are various texts including the same set of keywords but with different meanings. Therefore, although 

one can achieve satisfactory performance by searching in human written corpus (Li, Su, Cai, Wang, & Liu, 

2022), generation-based methods (Zhou, Gao, Li, & Shum, 2020) are preferable. The basic idea is to add tokens 

progressive Iteration between keywords. To make the generated text 
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Fig. 1. An example of text generation from the One-Billion-Word (Chelba et al., 2014). Bold words are generated words in each iteration.

Fig. 2. The ratio of CBART and Human for POS tagging and average length with 4 keywords on One-Billion-Word.

text fluent, additional actions of insertion (e.g., Replace and Keep) are introduced for refinement (Zhang, Wang, Li, Gan, Brockett,
& Dolan, 2020). Furthermore, CBART (He, 2021) leverages the pre-trained encoder to provide the decoder with coarse-grained
modification for refinement action guidance.

In this paper, we argue that the diversity of existing lexically CTG methods is still unsatisfactory. As shown in Fig. 2, we take
CBART and dataset One-Billion-Word (Chelba et al., 2014) as an example and compare with human reference on the token POS
tagging results as well as sentence length. We can see that no matter which type of POS tagging, the distinct words used in CBART
are much less than that of Human. For example, CTG by the CBART in the test dataset has 2755 verbs and 18 adverbs. However,
there are 3316 verbs and 238 adverbs in the Human. The ratios of verbs in CBART and Human are 45.4% and 54.6%. The ratios of
adverbs in CBART and Human are 7.0% and 93.0%. Besides, the average sentence length of CBART is much shorter than Human
(15.5 vs. 23.6). Short texts limit the variability and flexibility of the text, making them less likely to introduce various words. Of
course, the more diverse the generated text, the more difficult it is plausible. That is, it is a great challenge how to improve the
generation’s richness and diversity while maintaining a high level of fluidity and integrity.

To do so, we propose a lightweight dynamic refinement strategy that takes the best advantages of Pre-trained Language Models
(PLMs). Instead of costly pre-training/finetuning, we focus on increasing the randomness of inference. There are two steps. The first
step aims at proactively enlarging the pool of decoded sentences. On the one hand, different from one-token-per-insertion in existing
methods, we insert an uncertain number of tokens between two keywords at each decoding step, where the number is determined
following a well-designed distribution. To ensure high-quality decoding, the probability of inserting more tokens is increasing along
with the growing sentence length, because we observe that it is too difficult for PLMs to generate many tokens while knowing only a
few. On the other hand, we randomly mask an increasing number of tokens to force PLMs to examine and revise the whole sentence
via reconstruction. Although existing works also design supervised/unsupervised substitution actions, the probability of triggering
the actions is stationary over time, regardless of a higher demand for more generated content. By repeating the first step, we can
obtain a pool of different sentences. In the second step, we screen and select the best sentence from the pool using another PLM,
introducing differentiated sentence quality measurements.

In general, our key assumption is that the higher the number of randomly inserted tokens, the higher the uncertainty of the
generated sentences, which in turn promotes the increase of sentence diversity. Inserting more tokens at once increases uncertainty.
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However, the higher the number of random token insertions, the lower the quality of the generated text. Our aim is to find this
balance between improving text quality and diversity.

For evaluation, we have conducted extensive experiments on two publicly available datasets compared with five baseline
methods. We also design four dimensions for human evaluation: fluency, complete, informativeness, and correlation (between
generated texts). Both results demonstrate that our proposed method can generate more diverse and high-quality sentences. Further
ablation and case study provide systematically analysis on diversity.

2. Related work

2.1. Non-autoregressive

Non-autoregressive (NAR) (Gu, Bradbury, Xiong, Li, & Socher, 2018) has an unparalleled advantage that is generating speed for
text generation, but the text quality of NAR models has a huge gap with autoregressive models. To alleviate this problem, recent
works (Ghazvininejad, Levy, Liu, & Zettlemoyer, 2019; Gu et al., 2018; He, 2021; Lee, Mansimov, & Cho, 2018) find the answer
from the autoregressive and NAR models how to trade-off speed and quality, that is, generating the text with multiple iterations.
Li and Shi (2021) proposes a grammatical error correction model based on BERT (Devlin, Chang, Lee, & Toutanova, 2019). Liu,
Huang, and Mou (2022) proposes a NAR unsupervised summarization, which employs an edit-based search towards a heuristically
defined score to generate a summary. Although the performance of the current NAR models gets improved, it is still not comparable
with the autoregressive models due to the lack of dependency among target words.

2.2. Lexically CTG

Lexically CTG relies on some keywords to generate the text. Early studies, e.g., B/F-LMs (Liu, Fu, Qu, & Lv, 2019; Mou, Yan, Li,
Zhang, & Jin, 2015), use one constrained keyword to generate text. And GBS (Post & Vilar, 2018) costs the quality and diversity to
produce the text based on multi-keywords. Recently, Zhang et al. (2020) proposes a POINTER model to insert new tokens between
existing keywords in a parallel manner with BERT. But the POINTER model imposes all the generation burden on the decoder, leading
the poor text quality. To address this problem, He (2021) proposes a CBART model to convert some generation burden to the encoder,
which predicts insertion, replacement, copy actions to guide the modification of decoder. Seo, Jung, Jung, Hwang, Namgoong, and
Roh (2023) employs semantic control grammar and re-rank method to obtain the candidate sentences. Yuan, Wang, Yu, and Zhang
(2022) proposes a hierarchical template-transformer model to generate sentiment texts with personalized information. Iso (2022)
proposes a lexically CTG framework by automatically generating templates given constrained lexicons and replacing placeholders
in the templates. In addition, there are some new tasks: Nie, Yang, Chen, Kong, Zhu, and Yang (2022) proposes a novel task that
aims at keywords to sentence generation with desired complexity levels for grade reading and language teaching tasks. Recently,
lexically constrained text generation with large language models (LLMs) (OpenAI, 2023; Touvron, Lavril, et al., 2023; Touvron,
Martin, et al., 2023) represents a dynamic and evolving field, with rapid advancements in both model development and practical
applications. And LLM achieves unparalleled results on this task.

However, the above methods only insert one token per iteration, because the performance will degrade if generating many
tokens while knowing only a few. This leads to sacrificed textual diversity. Note that LLMs are autoregressive models, and they
have massive parameters and training datasets. Our model is a NAR based on PLM. It is unfair to compare our model with LLMs. In
this paper, we highlight the advantages of the diversity of generation-based methods and propose to add randomness to inference
for a diverse pool of candidate sentences, so that we can select high-quality text while improving the diversity.

This paper is the extension of CBART (He, 2021) . Compared to original work, this paper has several improvements:
Methods: We propose two-step dynamic refinement 4.3 to balance the text of diversity and quality. The first step uses the diffused

mask and dynamic refinement to generate a wide range of pool sentences for constrained tokens. And the second step refines the
sentences to select the best sentence.

Experiments: (1) We conduct our method on One-Billion-Word and Yelp dataset to demonstrate the effectiveness by automatic
metrics (B-2, B-4, and SB-4 et al.); (2) We also design four dimensions (Fluency, Complete, Informativeness, and Correlation) for
human evaluation to complement automatic metrics. (3) Compared with CBART (He, 2021), our method achieve great performance
on automatic metrics and human evaluation.

Content: Our research focuses on achieving a harmonious balance between text quality and diversity, aiming to enhance both
aspects simultaneously. Lexically CTG tasks primarily prioritize the quality of generated texts, often neglecting the diversity of
outputs. To foster text diversity, it is essential to generate enough tokens, which prompt for rich variations in the generated text.
However, this motivation for diversity may lead to a compromise in text quality. Hence, our core approach centers on keeping the
text quality and improving diversity.

3. Research objective

This paper aims to address the following problems of the existing methods for Lexically CTG:
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• How to effectively increase the length of generation texts to enhance their diversity?
• When generating long texts means the number of inserted tokens increases, how to ensure the quality of the generated texts?

To address these issues, we propose a lightweight dynamic refinement strategy that takes the best advantages of Pre-trained
Language Models (PLMs), which contain two modules. The first module focuses on generating diverse texts by flexible insertion.
The core idea is that increase the length of texts by inserting multiple tokens. The second module aims to provide more keywords
without relying on extra knowledge to keep the high-quality inserted tokens.

4. Methodology

Our proposed method aims to take the best advantages of PLMs and focuses on improving the inference over diversity. In this
section, we first follow CBART (He, 2021) to construct data for training in Sections 4.1 and 4.2. Then, we describe our two-step
dynamic refinement strategy in Section 4.3.

4.1. Data preparation

Due to the training datasets (e.g., One-Billion-Word) only containing the text without constrained keywords, we follow He (2021)
to design the training data 𝐷 = {(𝑋𝑒, 𝑌 𝑒, 𝑋𝑑 , 𝑌 𝑑 )}, where 𝑋𝑒 and 𝑌 𝑒 are inputs and outputs of the encoder. Particularly, at the very
beginning, 𝑋𝑒 is constrained keywords. 𝑋𝑑 and 𝑌 𝑑 are the inputs and outputs of the decoder. We use 𝑋𝑒 and 𝑌 𝑒 to construct 𝑋𝑑

— a sequence of text containing [mask] and keywords, which will be regarded as modification results to guide the decoder to
generate target output sentence 𝑌 𝑑 . Next, we will explain the details with examples.

For the label space of 𝑌 𝑒, we define three actions: Keep, Replace, and Insert. Keep means that the current token remains original
state into the next iteration. Replace means that the current token should be replaced by a new token. Insert is used to add a new
token before the current token.

Example. Give a piece of text 𝑇 = First pictures released of the aftermath of a bomb near a police station
in Lahore, we construct the dataset 𝐷 as follows:

For the encoder, we randomly select some words as keywords from 𝑇 , e.g., 𝑋𝑒 = of the aftermath of a bomb near
a police station in Lahore. Then, we randomly replace keywords (e.g., replace aftermath with math) in the 𝑋𝑒 by a
certain percentage (e.g., 15%). Finally, the input of the encoder is 𝑋𝑒 = of the math of a bomb near a police station in
Lahore, and the encoder label is 𝑌 𝑒 = {2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, where 2 denotes that some tokens should be inserted before of,
and 1 denotes that the current token should be replaced by another token. 0 denotes that the current token remains unchanged.

For the decoder, we design the input of the decoder based on 𝑋𝑒 and 𝑌 𝑒: 𝑋𝑑 = [mask] of the [mask] of a bomb near a
police station in Lahore. The decoder output/label 𝑌 𝑑 should be the original text for reconstruction, replacing the [mask]
with the correct token, e.g., 𝑌 𝑑 = First of the aftermath of a bomb near a police station in Lahore. Note that if
multiple tokens need to be inserted (the first [mask] in 𝑋𝑑), we only pick up one leftmost word as target and ignore the remaining
ones.

We can see that it is to insert one token only per iteration, although there are several words to insert. Indeed, we can conduct the
generation several times, but this, to some extent, hurts diversity. So, we introduce the inference method with a dynamic number
of insertion tokens in Section 4.3 for improvements.

4.2. Training

Encoder. Encoder aims to use the input tokens to predict the action (Keep, Replace, or Insert) for each token. Specially, we use
BART (Lewis et al., 2020) with linear transformation to encode constrained keywords and compute actions for keywords. Given an
input sequence with 𝑛 constrained keywords, 𝐗𝑒 = [𝒙𝑒1,𝒙

𝑒
2,… ,𝒙𝑒𝑛], the encoder is expressed as follows:

{

𝐇𝑒 = BART(𝐗𝑒)
𝐘𝑒 = Softmax(𝐖𝑒𝐇𝑒 + 𝑏𝑒)

, (1)

where 𝐇𝑒 = [𝒉𝑒1,𝒉
𝑒
2,… ,𝒉𝑒𝑛] is the embedding of tokens, and 𝒉𝑒𝑖 ∈ R𝑘. 𝐖𝑒 ∈ R𝑘×3 and 𝑏𝑒 are the trained parameters. 𝐘𝑒 = [𝒚𝑒1, 𝒚

𝑒
2,… , 𝒚𝑒𝑛]

is the probability of actions, 𝒚𝑒𝑖 ∈ R3. And we chose the max probability as the action of the current token. Then, we use the
cross-entropy as the loss function:

𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = −1
𝑛

𝑛
∑

𝑡=1
log𝑝(𝒚𝑒𝑡 |𝒙

𝑒
1,𝒙

𝑒
2,… ,𝒙𝑒𝑛). (2)

Decoder. Given the decoder input 𝐗𝑑 and label 𝐘𝑒, 𝐗𝑑 = [𝒙𝑑1 ,𝒙
𝑑
2 ,… ,𝒙𝑑𝑚] contains [mask] and all keywords, and 𝐘𝑑 =

[𝒚𝑑1 , 𝒚
𝑑
2 ,… , 𝒚𝑑𝑚] is the predicted text. To ensure the keywords appear in the output, the decoder only predicts the [mask] in the 𝐗𝑑 .

Following the Encoder, we also use BART and linear transformation to compute the 𝐘𝑑 as follows:
{

𝐇𝐝 = BART(𝐗𝑑 )
𝐘𝑑 = Softmax(𝐖𝑑𝐇𝐝 + 𝑏𝑑 )

, (3)
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Fig. 3. Architecture of Dynamic Refinement. 𝒈𝑖 is the 𝑖th inserted token in the sentence.

where 𝐖𝑒 ∈ R𝑘×𝑣 and 𝑏𝑑 are the trained parameters. 𝑣 is the vocabulary size. We optimize the decoder by minimizing the
reconstruction loss:

𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = − 1
𝑚

𝑚
∑

𝑡=1
log𝑝(𝒚𝑑𝑡 |𝐗

𝑑 , 𝑦𝑑≤𝑡). (4)

Training Loss. In this part, we join the 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 and 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟 to optimize the total loss:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟. (5)

4.3. Dynamic refinement for inference

In this section, we introduce our two-step dynamic refinement considering both generation diversity and quality. The basic idea
is to add more randomness via dynamic insertion and mask to obtain a board pool of candidate sentences (the first step), then select
the best one for the next step refinement (the second step).

4.3.1. Overview
Similar to previous work (He, 2021; Zhang et al., 2020), the text is generated through multiple iterations. At each iteration, the

output of the decoder would be the input of the encoder in the next. Two example iterations are shown in Fig. 3, each has two
steps. Formally, given some constrained keywords 𝑋𝑒

𝑖 in the 𝑖th iteration:
For the first step, we feed 𝑋𝑒

𝑖 into the encoder to obtain the action labels 𝑌 𝑒
𝑖 , and in the meantime, we randomly mask the words

generated in the previous iteration according to an increasing ratio, namely diffused Mask (Section 4.3.2). Then, we construct several
the decoder inputs {𝑋𝑑

𝑖 } according to masked 𝑋𝑒
𝑖 and action label 𝑌 𝑒

𝑖 , such that we can generate various candidate sentences {𝑌 𝑑
𝑖 }

by feeding them to the pre-trained decoder, namely dynamic insertion (Section 4.3.3).
Finally, at the second step, we utilize GPT-2 (Radford et al., 2019) to select the best candidate 𝑌 𝑑∗

𝑖 from the pool {𝑌 𝑑
𝑖 }. We

choose the negative log-likelihood (NLL) as the measurement. In next iteration, the 𝑌 𝑑∗
𝑖 becomes the input of encoder 𝑋𝑒

𝑖+1.
The iteration continues until the model hit a Termination Condition. There are two trigger conditions:(1) All encoder labels are

0, which indicates the tokens remains unchanged. (2) The upper limit of iterations is reached.

4.3.2. Diffused mask
Diffused Mask (DM) aims to ensure the high-quality of generated text along with the increasing content. Currently, one of the

major problems for lexically CTG is that we need to generate too many tokens using only a few keywords — it has been demonstrated
that using a few words to generate many tokens leads to low-quality predictions, e.g., in large-scale PLMs, only 15% of words
are masked. Along with the increasing mask ratio, the pre-training performance presents a downward trend (Devlin et al., 2019).
Therefore, we attempt to randomly mask more tokens as more and more tokens are generated, taking advantage of PLMs for fluency.

Note that although there are replace actions in the training phase, they follow a certain percentage in the training data. Thus,
no matter how much-generated content we have, the replace action is very limited. And, we cannot directly increase the action
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ratio in training. Otherwise, it leads to a confused pre-trained encoder/decoder. On the contrary, DM brings more randomness, and
under extreme conditions, all generated tokens in the last iteration will be masked. That is, we encourage the model to re-generate
them based on all keywords as well as the generated tokens so far.

Specially, we randomly mask the ratio 𝑘 of generated tokens of the previous iteration. And the ratio of masking is influenced by
dynamic refinement (Detailed see 4.3.3); the more words it inserts, the larger the mask ratio is. We thus call it diffused mask. 𝑘 is
defined as follows:

𝑘 =
{

𝑇 ∗ 10% 0 ≤ 𝑇 < 𝛼1
0 𝑇 ≥ 𝛼1

, (6)

where 𝑇 is the number of iteration. 𝛼1 is the hyper-parameter, which is equal to 4.

4.3.3. Dynamic refinement
Dynamic Refinement (DR) explores the effectiveness of inserting multiple [mask] between two keywords. We hypothesize

that the number of given words affects the number of inserted tokens. Therefore, we have to carefully choose the insertion token
number within a controlled range. On the one hand, randomly inserting multiple words between two keywords will force the model
to consider longer outputs, increasing the probability of using more diverse words. On the other hand, the model can generate fluent
and plausible sentences, only if there are enough contextual words; otherwise, the generation quality will drop dramatically.

In specific, we randomly choose to insert 𝑡 tokens in the closed interval, 𝑡 ∈ [1, 𝑇 +1], where 𝑇 is the number of iteration, which
can be expressed as follows:

𝑡 =
{

Random([1, 𝑇 + 1]) 0 ≤ 𝑇 < 𝛼2
1 𝑇 ≥ 𝛼2

, (7)

where 𝛼2 is a hyper-parameter, which is equal to 4. Note that when the iteration reaches a certain value (𝛼2), the number of inserted
tokens per iteration between two keywords is reduced to 1. The reason is that after several iteration, the structure of the text has
been completed and it is not suitable for too many insertions leading to a decrease in the text quality.

Given the inputs and outputs of the encoder (the refinement actions), we can obtain a list of candidates with varying lengths
for decoding by performing DR 5 times. We then leverage the pre-trained decoder with the Top-𝑝 strategy (Holtzman, Buys, Du,
Forbes, & Choi, 2020) to generate multiple sequences. Finally, we select the best sequence for the next iteration as described in the
Section 4.3.1.

5. Experiments

5.1. Datasets and metrics

Datasets. To demonstrate the performance of our model, we evaluate the model on two publicly available datasets One-Billion-
Word1 and Yelp.2 We largely follow the works (He, 2021; Zhang et al., 2020) for fair comparisons. One-Billion-Word is a public
dataset from EMNLP2017 WMT News Crawl data, which contains 268,586 sentences. Yelp is the Yelp English review dataset
from Cho et al. (2018), which contains 160,000 training examples. Following He (2021), we select the sentences with length greater
10 and less than 40 as the Training and Dev dataset. We choose the 1M and 0.1M sentences as the Training dataset and Dev dataset
for One-Billion-Word and Yelp. Besides, we construct 6 Test datasets based on 1–6 keywords, and each Test has 1,000 sentences.3

Metrics. We evaluate our model from two aspects: the quality and diversity of text. Following the previous work (He, 2021;
Zhang et al., 2020), we use BLEU (Papineni, Roukos, Ward, & Zhu, 2002), NIST (Doddington, 2002), and METEOR (Banerjee &
Lavie, 2005) as automatic metrics to evaluate the generation quality, which measure the similarity between the generated text and
the reference text. For the diversity metrics, we use Self-BLEU score (SB-4) (Zhu et al., 2018), distinct bigrams (D-2) (Li, Galley,
Brockett, Gao, & Dolan, 2016), and 4-grams (D-4) (Li et al., 2016) to evaluate the similarity between one generated text with other
generated texts. Note that higher scores of BLEU, NIST, or METEOR indicate that the text generation model can generate similar text
with reference text and has high-quality content. The lower scores of Self-BLEU or higher distinct n-gram indicate that the model
can generate more diverse texts. Results for models are averaged over the six test sets with N = 1 to N = 6. 𝑁 is the number of
constrained keywords.

5.2. Parameter settings

Following CBART (He, 2021), we choose the BART-base (Lewis et al., 2020) as the pre-trained language model. The learning
rate is set to 1𝑒−5, and batch size is 80. We optimize our model with AdamW (Loshchilov & Hutter, 2019). We train our model for
3 epochs, and the number of iteration is 10. 𝛼1 and 𝛼2 are set to 4. In top-𝑝, the 𝑝 is 0.5.

1 http://www.statmt.org/lm-benchmark/
2 https://www.yelp.com/dataset
3 https://github.com/NLPCode/CBART

http://www.statmt.org/lm-benchmark/
https://www.yelp.com/dataset
https://github.com/NLPCode/CBART
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Table 1
Main results on the One-Billion-Word and Yelp. Results with † are computed based on re-trained models. Other results are reported in He (2021). The best
results are in the bold, and the second-best results are underlined. ‘‘M’’ refers to METEOR. ↑ denotes that the higher the value, the better. ↓ denotes that the
lower the value, the better.

Model BLEU ↑ NIST ↑ ↑ ↓ Distinct ↑

B-2 B-4 N-2 N-4 M SB-4 D-2 D-4

One-Billion-Word

sep-B/F 4.4% 0.7% 0.616 0.618 7.0% 52.1% 46.3% 78.8%
asyn-B/F 4.3% 0.7% 0.554 0.556 6.8% 50.3% 47.8% 80.9%
GBS 10.1% 2.8% 1.487 1.497 13.5% 37.0% 59.3% 87.2%
CGMH 9.9% 3.5% 1.153 1.165 13.1% 10.2% 78.9% 99.3%

POINTER𝐵𝐸𝑅𝑇−𝐵𝑎𝑠𝑒 2.5% 0.1% 0.961 0.961 10.2% – – –
Our𝐵𝐸𝑅𝑇−𝐵𝑎𝑠𝑒 10.3% 3.7% 0.969 0.969 28.1% 14.3% 69.2% 90.1%

CBART𝐵𝐴𝑅𝑇−𝐵𝑎𝑠𝑒† 15.1% 5.8% 0.964 0.965 25.7% 14.8% 69.8% 98.8%
Our𝐵𝐴𝑅𝑇−𝐵𝑎𝑠𝑒 16.4% 5.9% 0.980 0.981 31.4% 12.9% 70.4% 99.3%

Yelp

sep-B/F 6.9% 2.1% 0.521 0.531 8.7% 67.1% 31.9% 64.6
asyn-B/F 7.5% 2.3% 0.698 0.711 9.0% 68.0% 31.9% 64.6%
GBS 13.6% 4.5% 1.680 1.712 15.3% 59.3% 37.5% 70.2%
CGMH 12.3% 4.6% 1.413 1.446 14.6% 23.6% 60.7% 97.7%

POINTER𝐵𝐸𝑅𝑇−𝐵𝑎𝑠𝑒 4.0% 0.3% 1.139 1.140 13.0% – – –
Our𝐵𝐸𝑅𝑇−𝐵𝑎𝑠𝑒 18.0% 6.2% 0.935 0.934 25.9% 31.7% 43.2% 90.7%

CBART𝐵𝐴𝑅𝑇−𝐵𝑎𝑠𝑒† 18.4% 7.9% 1.102 1.103 28.8% 36.2% 45.8% 91.9%
Our𝐵𝐴𝑅𝑇−𝐵𝑎𝑠𝑒 20.0% 8.0% 1.223 1.223 28.8% 29.5% 48.5% 95.7%

5.3. Baseline

We compare our method with several strong baselines for lexically CTG:

• Sep-B/F and Asyn-B/F (Mou et al., 2015) that provides a novel backward and forward language model to generate previous
and subsequent words conditioned.

• GBS (Hokamp & Liu, 2017) that proposes Grid Beam Search to allow the inclusion of pre-specified lexical constraints.
• CGMH (Miao, Zhou, Mou, Yan, & Li, 2019) that uses Metropolis–Hastings sampling for constrained sentence generation.
• POINTER (Zhang et al., 2020) that can use BERT to insert new tokens between existing tokens in a parallel manner.
• CBART (He, 2021) that reduces the generation burden from the decoder, improving text quality.

5.4. Overall performance

Table 1 shows the overall performance on One-Billion-Word and Yelp. We can observe that: (1) Our method can outperform
all baselines in most metrics on different datasets, demonstrating the effectiveness and generalization ability of our model. (2)
CGMH achieves the best performance on SB-4, D-2, and D-4. Because it comes at the expense of degrading text quality, which is
consistent with previous work (He, 2021; He & Li, 2021). (3) On the content quality metrics (BLEU, NIST, and M), our proposed
method gets improved slightly. Because DM can force to mask some generated tokens, using more keywords to improve the quality
of the generated tokens. (4) On the diversity metrics (SB-4, D-2, and D-4), our model achieves a great improvement compared
with state-of-the-art CBART and POINTER. Because we flexibly insert multiple tokens per action, which brings more different
generation distributions over vocabulary, and thus generates longer and more candidate sentences. (5) Our approach outperforms
previous works (CBART and POINTER) in both the BERT and BART models, showcasing superior performance for our approach and
illustrating its generalizability.

5.5. Human evaluation

For complementary to automatic metrics, we conduct a human evaluation. We randomly select 50 sentences and invite three
volunteers4 to compare the generated sentences with CBART and Human Reference. Following previous works (He, 2021; Zhang
et al., 2020), we use the Fluency and Complete to demonstrate the text quality and use the Informativeness and Correlation
to demonstrate the diverse text. For inter-annotator agreement, the values of Cohen’s kappa (Fleiss, 1971) are 0.67, 0.79, 0.69,
and 0.62 for Fluency, Complete, Informativeness, and Correlation. From the Table 2, we can see that: (1) Quality. Compared with
Human Reference, the results of our proposed method still have a large gap. But we are preferable to CBART. (2) Diversity. Human
reference still has an overwhelming advantage, but the performance gap between our proposed method and CBART gets larger,
demonstrating the effectiveness of our proposed lightweight refinement strategy.

4 All volunteers are engaged in NLP research, and they independently annotate the data.
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Table 2
Human evaluation on One-Billion-Word.
Fluency: A and B, which is more fluency?

System A Neutral System B

Our 34.9% 9.9% 45.2% Human
Our 32.7% 38.2% 29.1% CBART

Complete: A and B, which text is more complete?

System A Neutral System B

Our 3.3% 67.3% 29.4% Human
Our 15.6% 72.8.% 12.6% CBART

Informativeness: A and B, which is more informative?

System A Neutral System B

Our 18.0% 8.7% 73.3% Human
Our 62.7% 15.7% 21.6% CBART

Correlation: Correlation of generated text and Human?

System A Correlation Non-correlation

Our 27.9% 72.1%
CBART 36.3% 63.7%

Table 3
An ablation study on One-Billion-Word. The number of constrained keywords is 4.
Model ↑ ↑ ↓ ↑

B-2 N-2 SB-4 D-2

Our 18.3% 1.106 11.0% 72.5%

w/o DR 16.9% 1.104 13.3% 71.0%
w/o DM 18.0% 1.061 11.0% 74.2%
w/o DR & DM 16.5% 1.030 13.2% 70.8%

5.6. Ablation study

We conduct an ablation study to illustrate the performance of our main modules and parameters.
Effect of DM and DR. We conduct experiments to analyze the effect of DM and DR, as shown in Table 3. We can see that:

(1) Without the DM, the performance of B-2 and N-2 is reduced, and the results of SB-4 and D-2 are better than our method.
These indicate two facts: First, DR does enhance the diversity of texts, but at the same time, it can cause a decrease in text quality.
Second, the quality and diversity of the text are a game, and DM can balance them by providing more keywords, while improving
the diversity and quality of the text. (2) Compared w/o DM with w/o DR & DM, all results of w/o DM are better than w/o DR & DM,
particularly in terms of diversity. This demonstrates that inserting multiple tokens at once makes sentences longer and increases text
variety without degrading the text quality. (3) Removed DR leads all results worse than our approach, especially in the diversity.
The major reason is that DR can flexibly insert multiple tokens between two keywords to improve diversity. (4) Compared w/o DR
with w/o DR & DM, DM can improve text quality, but it has little impact on diversity.

Effect of Hyper-parameter (𝛼1 and 𝛼1). 𝛼1 and 𝛼2 are thresholds for DM and DR, respectively. We show the evaluation metrics
for different 𝛼1 and 𝛼2 in Table 4. From Table 4, we can find that: (1) The experimental results have the same trend for 𝛼1 and 𝛼2.
Our performance is the best when 𝛼1 = 4 and 𝛼2 = 4. Because when DR inserts a large number of words, DM is needed to cooperate
with expanding the ratio of the mask to ensure text quality. (2) When 𝛼2 rises, the effectiveness of our method rises significantly
at the first few iterations. Because the first few iterations increase the number of insertions, significantly increasing the sentence
length.

Effect of the Number of Constraints. As shown in Table 5, as the number of constrained keywords increases, the scores of B-2 and
N-2 increase rapidly. These results are consistent with our hypothesis that the model can generate high-quality text only if there is
sufficient context information. Therefore, it is reasonable to increase the ratio of masking on generated tokens in the last iteration,
because there are more given works for the current iteration. Besides, we also observe a similar trend in terms of diversity. This
is because more keywords provide a longer sentence as initialization, and it is relatively easy to generate longer sentences, which
brings a higher probability of involving more different words.

5.7. Text analysis

We report the validity of our method in two ways: Sentence Structure and Case Study.
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Table 4
The Results with different 𝛼1 and 𝛼2 on One-Billion-Word. The umber of constrained keywords
is 4.
Model ↑ ↑ ↓ ↑

B-2 N-2 SB-4 D-2

𝛼1 = 1

𝛼2 = 4

18.1% 1.035 11.7% 72.3%
𝛼1 = 2 18.4% 1.082 12.4% 71.5%
𝛼1 = 3 18.2% 1.092 11.4% 72.4%
𝛼1 = 4 18.3% 1.106 11.0% 72.8%
𝛼1 = 5 18.1% 1.099 11.1% 72.6%
𝛼1 = 6 18.3% 1.104 11.4% 72.9%

𝛼1 = 4

𝛼2 = 1 17.2% 1.119 12.2% 72.4%
𝛼2 = 2 18.3% 1.149 11.8% 72.4%
𝛼2 = 3 18.0% 1.098 12.1% 72.2%
𝛼2 = 4 18.3% 1.106 11.0% 72.8%
𝛼2 = 5 18.3% 1.086 11.1% 72.7%
𝛼2 = 6 18.2% 1.070 11.2% 73.1%

Table 5
The number of constrained keywords on One-Billion-Word.
Number
Keywords

↑ ↑ ↓ ↑

B-2 N-2 SB-4 D-2

1 4.7% 0.505 14.1% 63.2%
2 8.6% 0.679 12.6% 68.7%
3 13.0% 0.864 11.4% 71.2%
4 18.3% 1.106 11.0% 72.7%
5 24.0% 1.365 11.4% 72.9%
6 29.6% 1.665 11.1% 73.4%

Sentence Structure. We can clearly observe that:
(1) In Fig. 4(f), the distribution of CBART concentrates on the right side, human reference is in the middle, while our proposed

method is evenly distributed in different lengths. That is, we tend to generate longer sentences than CBART. In Fig. 4 (a∼e), no matter
in which position (i.e., between different pairs of keywords), we tend to insert more words than CBART. This also demonstrates
that our method does not prefer a specific position, which may reduce the text quality.

(2) From Fig. 5 (Top)5, we can see that our method has a similar number of Verb, Pronouns, MD, Adjective, and Adverbs with
Human. Only the Noun is slightly less than Human. But the number of CBART for POS tagging is far less than that of Human.

Case Study. From Fig. 5 (Bottom), although our method and CBART have good fluency and grammatical rules, etc., generated
sentences via our method are longer and contain richer information, such as more Verb (voiced, called) and Pronoun (that)
in first example.

6. Conclusion

In this paper, we propose a lightweight dynamic refinement strategy to improve the diversity of lexically CTG. It can provide a
larger number and longer length of candidate texts in each iteration and take the best one from it. And experimental results show
that our method is effective and significantly better than competitive baselines. The extensive analysis also provides interesting
insights about our method. In the future, we will elicit more information from the language pre-trained model to compensate for
the lack of constrained keywords.

7. Limitation

The limitations of our approach include the following two points: (1) Although our approach improves the performance of the
model in lexical CTG, there is still a gap compared to Human Reference. (2) Using the prompt-tuning method to elicit more reliable
keywords from the pre-trained language model can improve the model results more effectively. (3) Due to data and parameter scale
limitations, our method is not compared with ChatGPT.

5 We use NLTK (https://www.nltk.org/) to analysis texts and obtain the POS tagging.

https://www.nltk.org/
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Fig. 4. The number of inserted tokens before keywords and sentence length on One-Billion-Word.
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Fig. 5. At the top, we count the number of POS tagging. At the bottom, we show generated texts by CBART and our method with same keywords extracted
from One-Billion-Word test. MD is Modal verb.
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