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Deep Neural Networks (DNNs) have achieved tremendous success in many applications, while it has been

demonstrated that DNNs can exhibit some undesirable behaviors on concerns such as robustness, privacy,

and other trustworthiness issues. Among them, fairness (i.e., non-discrimination) is one important property,

especially when they are applied to some sensitive applications (e.g., finance and employment). However,

DNNs easily learn spurious correlations between protected attributes (e.g., age, gender, race) and the clas-

sification task and develop discriminatory behaviors if the training data is imbalanced. Such discriminatory

decisions in sensitive applications would introduce severe social impacts. To expose potential discrimination

problems in DNNs before putting them in use, some testing techniques have been proposed to identify the

discriminatory instances (i.e., instances that show defined discrimination1). However, how to repair DNNs

1The formal definition of “discriminatory instances” is in Section 2.2.
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after detecting such discrimination is still challenging. Existing techniques mainly rely on retraining on a

large number of discriminatory instances generated by testing methods, which requires huge time overhead

and makes the repairing inefficient.

In this work, we propose the method Faire to effectively and efficiently repair the fairness issues of DNNs,

without using additional data (e.g., discriminatory instances). Our basic idea is inspired by the traditional

program repair method that synthesizes proper condition checking. To repair traditional programs, a typical

method is to localize the program defects and repair the program logic by adding condition checking. Similarly,

for DNNs, we try to understand the unfair logic and reformulate it with well-designed condition checking.

In this article, we synthesize the condition that can reduce the effect of features relevant to the protected

attributes in the DNN. Specifically, we first perform the neuron-based analysis and check the functionalities

of neurons to identify neurons whose outputs could be regarded as features relevant to protected attributes

and original tasks. Then a new condition layer is added after each hidden layer to penalize neurons that are

accountable for the protected features (i.e., intermediate features relevant to protected attributes) and promote

neurons that are accountable for the non-protected features (i.e., intermediate features relevant to original

tasks). In sum, the repair rate2 of Faire reaches up to more than 99%, which outperforms other methods,

and the whole repairing process only takes no more than 340 s. The evaluation results demonstrate that our

approach can effectively and efficiently repair the individual discriminatory instances of the target model.

CCS Concepts: • Software and its engineering→ Software testing and debugging; • Computing method-

ologies→ Neural networks;

Additional Key Words and Phrases: Deep learning repair, fairness, individual discrimination, model

interpretation
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1 INTRODUCTION

Deep Learning (DL) has achieved tremendous success and demonstrated its great potential in
solving complex tasks in many applications, such as image classification [16], speech recogni-
tion [44], and natural language processing [12]. However, Deep Neural Networks (DNNs) are
known to be vulnerable and not reliable in terms of some properties, e.g., robustness, privacy,
and safety [4, 9, 25]. Apart from these properties, fairness is also one key property, which may
cause societal impact and is attracting more attention. For example, it has been shown that facial
recognition technology can recognize white faces more easily than those from other backgrounds.
Recent reports stated that some Uber Eats food delivery drivers were fired because facial recogni-
tion software could not recognize their faces [35]. Such bias has led some companies such as IBM
and Microsoft to abandon their disputable technologies [34].

Non-discrimination has become one of the most critical factors for social protection and equal
human rights [45]. However, recent works [58, 59] have shown that discrimination universally
exists in machine learning models such as individual discrimination [15] and group discrimina-
tion [17]. Such discrimination is usually defined on some protected or sensitive attributes (e.g.,
gender, age, and race), and is easily triggered when training on an imbalanced dataset (i.e., strong
correlations between target and protected attributes in this dataset) under a standard training pro-
cess. Individual discrimination means that DNNs can make different predictions for individuals

2Repair rate is expressed as the ratio of the number of repaired instances and the number of all generated discriminatory

instances to evaluate how effective Faire is in repairing individual discriminatory instances.
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that only differ in the protected attributes (e.g., gender difference). Group discrimination means
that DNNs have a bias in predicting different groups that also differ in the protected attributes. In
fact, discrimination always exists and poses potential threats if the decision-making process of the
model considers protected attributes as critical influencing factors. To mitigate such threats, in the
software engineering community, a number of testing techniques [3, 45, 58, 59] have been proposed
for detecting individual discriminatory instances in DNNs. When a large number of discrimina-
tory instances have been discovered, a question naturally arises: how to repair the discrimination
problem in DNNs?

Recently, although there have been some attempts on the DNN repair [23, 37, 42, 43, 50, 57],
they mainly focus on repairing the robustness issues (i.e., incorrect predictions) and cannot be ap-
plied to repair fairness issues, because such methods only focus on the model prediction accuracy
but ignore the fairness, which might even further deteriorate fairness of the original model. It is
necessary and pressing to develop methods to repair the discrimination problem for given DNNs.
Individual discrimination can identify discrimination behaviors that may be ignored by group fair-
ness [19, 58]. Individual fairness enables effective/powerful/robust and granular verification of
discriminatory behavior induced by changes only in the protected attribute in different contexts,
whereas group fairness measures may not detect discrimination when the model exhibits oppo-
site treatment to the same group under different situations. Therefore, in this work, we mainly
focus on tackling the repairing problem in terms of individual discrimination in DNNs. One ex-
isting repairing method [48] is to design a loss function to remove protected attributes under the
multi-task learning setting, while this method might fail to stably remove protected features. To
repair individual discrimination, another intuitive idea is to remove the protected attributes before
the training process. However, the individual discrimination may still exist due to the possible im-
plicit correlations between the protected attributes and non-protected attributes [3] (e.g., the age
attribute can be reflected by other properties such as occupation). However, some attributes (e.g.,
gender and race) are hard to remove in specific domains such as face recognition. Another typical
repair method is to generate a large number of discriminatory instances and retrain the model by
adding them to the training data. For example, the existing techniques AEQUITAS [45], ADF [59],
and EIDG [58] usually have two steps: the global search is to generate diverse discriminatory in-
stances and the local search aims to generate more analogous instances that will be used to retrain
the model [58, 59] (More details will be introduced in Section 2.2). However, such a method has
some drawbacks: (1) it relies on the generation of discriminatory instances, which needs a lot of
time (e.g., hours to days), (2) retraining is also a time-consuming process due to substantial data
augmentation, especially on large-scale tasks, and (3) the labels of the generated discriminatory
instances are unknown. These factors significantly reduce the effectiveness of these techniques
in practice, which is also confirmed by our evaluation results. Thus, an efficient, effective, and
practical repair technique is required.

To this end, we propose a novel technique Faire, which can effectively and efficiently repair
the discrimination of DNNs. Recall that the discrimination is caused because the prediction of the
DNN is sensitive to the protected attributes. Our key insight is to reduce the effect of the protected
attributes on the prediction. Specifically, inspired by the program repair technique [52] that syn-
thesizes the conditions for patching the program, we try to infer the feature-level “condition” that
will filter the features of protected attributes. Figure 1 shows one example that intuitively illus-
trates our basic idea. Figure 1(a) shows the program condition synthesized for capturing corner
cases in traditional software. Similarly, we add one condition layer (the orange layer in Figure 1(b))
after each hidden layer of the DNN, which will penalize the protected features and promote the
features that are not only non-protected but also accountable for the original tasks. For other fea-
tures, we will not provide direct manipulation during the repair (i.e., we neither promote these nor
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Fig. 1. Program Repair and Fairness Repair.

penalize these features). Specifically, we conduct neuron analysis to identify neurons that repre-
sent the protected features (protected neurons) and neurons that output features accountable for
the prediction of the original task (non-protected neurons). Based on this, we will add the condition
layer that penalizes the output values of the protected neurons and promotes the output values of
the non-protected neurons at each layer. Finally, we fine-tune the model with the original training
data by freezing the weights of the original hidden layers and only training the added condition
layers. In this way, we can manipulate features of the hidden layers such that fairness could be
enhanced. Note that our method does not need to retrain with a large number of discriminatory
instances, because our method explicitly reduces the effect of the protected attributes on the pre-
diction. Compared with the methods that require a large number of discriminatory instances to
implicitly force the DNNs to learn how to reduce individual discrimination, our method is, there-
fore, more efficient. Moreover, different from the multitask learning method [48], our method adds
a condition layer to control the protected features and the non-protected features, which is more
effective and direct.

We have implemented Faire and evaluated it on widely used datasets. We compared Faire with
three different baselines, i.e., the discriminatory instances retraining method, the flipping-based
retraining method, and the multitask learning method. The experimental results show that, on av-
erage, Faire can successfully repair 3% more individual discriminatory instances than the best base-
line method. We further evaluated the fairness of the repaired model using the state-of-the-art test-
ing tools. The number of discriminatory instances detected by testing tools on our model is lower
than that of the baseline models by 13% without dropping accuracy too much (less than 1%), indi-
cating better fairness on our repaired model. Finally, we analyzed the efficiency of Faire. Compared
with the discriminatory instances retraining method that achieves the best results among the base-
lines, our method is much more lightweight, i.e., tens of thousands of seconds less for the repair.

To summarize, this article makes the following contributions:

(1) We conduct an empirical study to assess the effect of features relevant to protected attributes
on the individual discrimination. We reveal the correlation between protected features and
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individual discrimination, and we are enlightened to manipulate features such that the fair-
ness could be enhanced.

(2) We develop an effective and efficient method Faire to repair the individual discrimination of
DNNs.

(3) We conduct a comprehensive evaluation on five popular tabular datasets and one image
dataset. The results demonstrate the effectiveness and efficiency of our method.

(4) The source code, data, and more results are publicly available at our website [5].

To the best of our knowledge, this article is the first work to systematically analyze and repair
the individual unfairness of DNNs, which does not need additional data. The main novelty is the
lightweight repair based on the white-box neuron analysis. We design comprehensive experiments
to show the effectiveness and efficiency of our methods. The results, especially the validation with
the state-of-the-art testing tool, demonstrate that Faire can significantly improve the individual
fairness of the target model. While program repair has been extensively studied in the software

engineering (SE) community, the DNN repair in terms of different properties is less touched.
This article provides a first step towards a very important problem, i.e., enhancing fairness that
is widely concerned in the society. More importantly, unlike the methods of the AI community,
our technology is motivated and designed from the perspective of SE technique (e.g., conditional
synthesis), which can provide SE researchers with some guidance on the research of DNN repair.

2 BACKGROUND

In this section, we briefly introduce the relevant background including DNNs, individual discrim-
ination, and problem definition.

2.1 Deep Neural Networks

DNNs are inspired by the neural networks of human brains, and they are popular due to excellent
performance [24]. A DNN usually consists of multiple layers of neurons, and achieves meaningful
information extraction and useless information discarding in a layer-wise manner [31].

Definition 2.1. A DNN f consists of multiple layers 〈l0, l1, . . . , lk , lo〉, where l0 is the input layer,
lo is the output layer, and l1, . . . , lk are hidden layers. The inputs of each layer are from the outputs
of the previous layer.

In this work, we mainly focus on the classifier f : X → Y , where X is a set of inputs and Y is
a set of classes. Given an input x ∈ X , we use fl (x ) to represent the internal features extracted by
the layer l (i.e., the output values of neurons at l ).

2.2 Individual Discrimination

Deep learning models are statistical models that are trained to maximize accuracy on the majority
of examples, and they do so by exploiting the most discriminative cues in a dataset, potentially
learning spurious correlations [38]. Models potentially cause severe fairness issues, if they cap-
ture spurious correlations between protected attributes and targets. However, the dataset collec-
tion process usually cannot guarantee a sufficient number of real-world samples that are under a
balanced distribution. Meanwhile, even when datasets are balanced such that each label co-occurs
equally with each protected attribute, current training algorithms may also amplify the associa-
tion between labels and the protected attribute, as much as if the data had not been balanced [46].
Therefore, unfairness widely exists in deep learning models.

There are many different metrics evaluating the fairness of machine learning models [13].
Among these metrics, individual fairness follows the philosophy that similar inputs that only dif-
fer in some protected attributes should not yield discriminatory results. We inherit the definition
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of individual discrimination in Reference [59]. The attributes set of the dataset can be denoted by
A = A1,A2, . . . ,An . Furthermore, we use P ⊂ A to denote the protected attributes set such as
gender, race, and age. Correspondingly, we use NP to denote the set of non-protected attributes.
We define the discriminatory instance as below.

Definition 2.2 (Discriminatory Instance). x = a1,a2, . . . ,an is an arbitrary instance in dataset,
where ai represents the value of attribute Ai . We define x as a discriminatory instance of a DNN
when there is a x ′ = a′1,a

′
2, . . . ,a

′
n in the instance space that satisfies the following conditions:

• ∃p ∈ P , s .t .,ap � a′p ,

• ∀q ∈ NP , s .t .,aq = a′q ,

• f (x ) � f (x ′).

As we can see from the definition, when x is a discriminatory instance, x ′ is also a discriminatory
instance. As introduced in References [58, 59], the search of discriminatory instances is done round
by round and an important indicator of individual fairness is how many discriminatory instances
can be searched in given rounds. The discriminatory instance searching process consists of two
parts: global generation and local generation. The goal of global generation is to detect diverse
discriminatory instances via clustering. The local generation aims to generate more discriminatory
instances nearby the instances detected by the global generation.

Specifically, in the global generation phase, Reference [59] clusters the samples in the original
dataset and selects seed instances for each cluster in a round-robin fashion. Moreover, Reference
[59] uses gradients to maximize the difference between the DNN outputs of two similar instances
to guide the crafting of individual discriminatory instances. The selection process will continue
until the number of generated instances reaches a certain number. The local generation then takes
the instances generated by the global phase as input. To find more discriminatory instances, the
local generation phase searches the neighbors of the input discriminatory instances. In this pro-
cess, the gradients are used to generate instances that are minimally different from the seeds while
maintaining their model predictions. Reference [58] improves Reference [59] both in global gen-
eration and local generation. In the global generation, they integrate the momentum term into
the iterative search, which enables the memorization of the previous trend and identifies more
discriminatory seeds. In the local phase, they designed a more direct strategy to select and perturb
attributes to complement the strategy adopted in Reference [59].

2.3 Problem Definition

Our problem is defined as: given a DNN f that suffers from individual discrimination, we aim to
repair the DNN f as a fairer DNN f ′. Given any input x , if we change some values of the protected
attributes as x ′, the classification output should be not changed, i.e., f ′(x ) = f ′(x ′). A stricter
definition could be

arg min
θ

∑

l ∈f θ

| f θ
l (x ) − f θ

l (x ′) |, s .t ., f θ (x ) = f θ (x ′) ∧ f (x ) = f θ (x ),

where f θ means the new model with the learned parameters θ , f θ
l

(x ) represents features extracted

at layer l of f θ on input x . For the input x and x ′, we expect that the decisions of the DNN on
these two inputs rely on the features that are as similar as possible, and the original functionality
is not affected. To achieve this goal, it usually involves retraining on a large number of individual
discriminatory instances and thus is not efficient. Without the availability of the individual dis-
criminatory instances, our problem is transformed to reduce the effects of the protected attributes
for prediction but still keep the normal functionality of the original model. Considering that the
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Table 1. Correlation between Protected Attributes and Unprotected Attributes

Dataset Removed attributes Targeted attributes Accuracy

age 0.603
race 0.852Census Income age, race, gender

gender 0.812

Bank Marketing age age 0.711

gender 0.594
LSAC gender, race

race 0.857

protected attributes may not be removed, in this work, we aim to reduce such effects in the feature
space of the DNN.

3 METHODOLOGY

3.1 Motivation

Our work is motivated based on the following two observations:

(1) The discriminatory instances are not always available, since the generation of such instances
is time-consuming and the generated data requires larger storage space, which is unrealistic
in some scenarios. Moreover, the truth labels are unknown for the newly generated discrim-
inatory instances.

(2) Directly removing the protected attributes cannot address the unfairness issue [3, 58], since
there usually are strong correlations between protected attributes and unprotected attributes.
Moreover, protected properties also cannot always be removed.

For the first observation, our evaluation results show that the generation usually consumes sev-
eral days. A more detailed discussion can be found in our evaluation. For the second observation,
to probe the correlations between protected and unprotected attributes, we remove protected at-
tributes from training data and set the protected attributes as the classification labels. Table 1
shows the correlation estimation. We can observe that on the Census Income dataset, the race
classification accuracy reaches 85.2%. On the LSAC and Bank Marketing dataset, the classifica-
tion accuracies for protected attributes could also reach more than 80%. The results show that the
non-protected attributes may have strong correlations with protected attributes. Hence, the pro-
tected attributes can still be inferred from unprotected attributes even if they are removed, i.e., the
discrimination would still be implied in the non-protected attributes.

3.2 Overview

Motivated by the above observations, we propose a method Faire that aims to reduce the effects of
the protected attributes when not explicitly removing them. Specifically, we analyze the features
that are used for decision-making by the DNN. Then, we repair the model by reducing the impact
of the features relevant to the protected attributes. In the following sections, we call the features of
protected attributes and non-protected attributes as protected features (PF ) and non-protected

features (NPF ), respectively. The key challenges are how to identify the PF and remove the impact
of PF while causing minimal loss on the accuracy of the model.

Figure 2 shows the overview of our method. Given an unfair DNN model f that conducts the
original task (denoted as O-task), its working process can be considered as classifying the input x
via the classifier component (i.e., the last several layers) on the ground of the features extracted
by the backbone component (i.e., the first several hidden layers). We do neuron-level analysis
regarding the features (F ) to distinguish PF and NPF . To identify PF from F with regards to a
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Fig. 2. Overview of this work.

protected attribute a, we base on the backbone component of the original model and train another
model f ′ that recognizes the target protected attribute a (denoted as P-task). For example, if the
protected attribute is gender, then the new model will classify whether this input is male or female.
Note that, during the training of the new model, we freeze the weights of the backbone component
of the original model and only set the last several layers as trainable. In this way, we can recognize
the protected features, since f ′ uses more PF extracted by the original model. In Figure 2, the
shared and frozen the backbone component in f and f ′ is marked in the black box.

Next, we will identify the key features that are used in f and f ′. Specifically, we use the existing
explanation technique [41] to identify the accountable neurons of each layer that contribute more
to the decision of the given input. The outputs of these neurons can be used to represent the key
features. Intuitively, the higher the contribution score of the neuron, the more accountable it is for
the prediction. For example, in step 3, the red neurons represent the key features for the O-task

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 21. Pub. date: November 2023.
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and the yellow neurons represent the key features for the P-task. The orange neurons represent
that they are accountable for both of P-task and O-task (called confounding neurons). The blue
neurons represent that they are not accountable for both of P-task and O-task. Specifically, the
model f can work well on O-task due to the features of red neurons. The discrimination exists in
f , because the features of yellow neurons also have some effects on the prediction. Thus, our key
idea of fairness repair is to promote the features of red neurons and penalize the features of yellow
neurons. The promotion of red neurons is to ensure the functionality of the original model, while
the penalty of yellow neurons is to eliminate discrimination.

Finally, we propose to add a new layer (called condition layer) after each hidden layer. The
condition layer will promote the features of red neurons and penalize the features of yellow neu-
rons (see Step 4 in Figure 2 and Figure 1). For other neurons such as confounding neurons and
non-accountable neurons, we will not provide specialized manipulation methods. Specifically, the
condition layer controls the data flow of the DNN by multiplying the output value of neurons with
the learnable parameters. We freeze the weights of the backbone component and only train the
added condition layers as well as the classifier component. Our method is similar to the basic idea
of traditional program repair, i.e., we do not retrain a totally new model but only synthesize some
suitable patch layers in the original model.

3.3 Study on Protected Features

In this section, we conduct an empirical study to demonstrate the connection between PF and
the final prediction fairness. We here compare PF in the vanilla models and the fairer models (i.e.,
repaired models). To estimate the PF used in the model, we train protected attribute classifiers
as a proxy. The higher the classification accuracy of protected attributes, the more PF is used in
the model. We first relabel the original training data. For example, in Census Income, the original
task is income prediction and there is one protected attribute (i.e., gender) in the training data.
We relabel the training data with gender labels (i.e., man and woman). We reuse and freeze the
first several layers of the original model, and we retrain the rest part of the model to recognize
new labels. For example, “a:repaired model” is trained by the following process: freeze the first
several layers of the repaired model and retrain the rest part for the classification of “a” attribute.
A higher accuracy of the retrained model means that more PFs tend to be provided by the first
several layers in the corresponding original model. The accuracy of “a:vanilla model” is higher than
that of “a:repaired model,” we can say that more PFs relevant to attribute “a” tend to be provided
by the first several layers in the corresponding original model (i.e., the vanilla model).

Then, we conduct a study to demonstrate our basic assumption: the PF used in the model can
have a large impact on its fairness. To this end, for comparison, we use the original model (f0) that
is unfair and a fairer model (f1) that is retrained by the state-of-the-art method [58]. In this method,
EIDIG searches diverse discriminatory instances in the global phase, and then they further develop
the local generation for generating more individual discriminatory instances to retrain (details are
introduced in Section 4.1.2, Discriminatory instances retraining). Then, we train the corresponding
new models (denoted as f ′0 and f ′1 ) for recognizing the protected attributes. The hypothesis is that
the accuracy of f ′0 is generally higher than f ′1 . If it is verified, then it means that more PF are
extracted in the frozen layers from the unfair model f0, i.e., using more PF could harm fairness.

Figure 3 shows the results on three datasets (i.e., Census, Bank, and LSAC, more details about
these datasets are deferred to Section 4.1). Note that we freeze different numbers of layers in the
DNN. freeze i represents that we freeze the first i layers of the model. For each attribute, we show
two lines representing the accuracy of f ′0 and f ′1 , which are retrained based on the vanilla model
and the repaired model. The results clearly show that the line of f ′0 is above the line of f ′1 , i.e., f ′0
extracts more PF , which means f0 utilizes more PF for classification than f1. The results confirmed
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Fig. 3. Protected attributes classification performance on three tabular datasets.

our assumption. We also observed that, when more layers are frozen, it is usually harder to train
a high-performance classifier in terms of the P-task, which tends to show that PF is potentially
discarded layer by layer.

In summary, the results of the study could show that the PF used in the model is the root cause
of the unfairness, which motivates us to reduce its impact in our method. Therefore, our objective
is converted to minimize the impact of the protected attributes on the internal features so that
the classification results would be less influenced by the protected attributes (i.e., smaller distance
between internal features of inputs that only differ in protected attributes). Inspired by condition
synthesis, we aim to synthesize the condition that can reduce the effect of protected features in
the DNNs. We propose to analyze the neuron-based features first and add a condition layer to
control the features. Then our objective is to learn the weights of the condition layer to repair the
individual discrimination.

3.4 Neuron-based Feature Analysis

In this section, we will introduce how to extract the relevant features. In a deep neural network,
the neurons are assumed to have different functionalities for the task. Given an input x , we can
analyze the neuron outputs to understand the neuron functionalities for the task. We adopt the
existing explanation technique (e.g., DeepLIFT [41]3) to analyze the contribution of each neuron
for the classification task. Specifically, the higher the contribution score, the greater the impact
on the prediction. The neurons with higher contribution can represent the key features of the
prediction. We name neurons with higher contribution as accountable neurons, and the definition
of accountable neurons for one single instance is as follows:

Definition 3.1 (Instance-level Accountable Neurons). Given an input x and the DNN model f , we
define its Accountable Neurons (ANs) of f as a sequence of neurons sets p = 〈s0, . . . , sL〉, where
sl is a set of accountable neurons that have the largest contribution scores at the layer l and

∀n ∈ sl ,C
n
l ∈ top-k (Cl ),

where Cl is the contributions scores of all neurons at layer l , top-k (·) is the function that extracts
the top k percent contribution scores from Cl , and Cn

l
represents the contribution score of the

neuron n at the layer l . The parameter k controls the number of selected accountable neurons at
each layer.

Based on the accountability analysis on the instance level, we then analyze the accountable
neurons for the overall decision-making of the DNN. We calculate the accountable neurons for each
training data and then select the common neurons that are accountable for most of the training
data. For each training data x ∈ X , we calculate its instance-level accountable neurons at the layer

3The used interpretation techniques are orthogonal to our method. Compared with other interpretation techniques,

DeepLIFT could handle cases where other techniques may give misleading results [41]. Moreover, it is easier to imple-

ment and integrate DeepLIFT to analyze the neuron function.
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l . Then, we calculate a weight for a neuron n of layer l , which measures its accountability for the
overall training data as follows:

wn =
|{x |x ∈ X ∧ n ∈ sx

l
}|

|X | ,

where sx
l

represents the instance-level accountable neurons at layer l for the instance x , |X | is the
total number of the data X .

Intuitively, the higher the weight, the more accountable the neuron n is for the decision of the
DNN. We finally identify the accountable neurons of the DNN that extract the key features for the
prediction:

p̂ = 〈ŝ1, . . . , ŝL〉 ,
where ŝl = {n |n ∈ l ∧ wn > t } and t is a threshold to control the neuron selection based on the
weights.

3.5 Neuron Condition Analysis

Based on the neuron-based analysis, we calculate the accountable neurons for both the original
classifier f and the protected attribute classifier f ′, denoted as p̂f and ˆpf ′ .

4 To improve the fairness,
we divide the neurons of the DNN into four categories:

(1) Penalized Neurons. At layer l , the penalized neurons are defined as ŝ ′l \ ŝl , where ŝ ′l and ŝl

are the accountable neurons calculated from f ′ and f , respectively. Intuitively, the neurons,
which are accountable for the protected attribute classification but not accountable for the
original classification, should have less impact. Thus, we should penalize the outputs of these

neurons. We do not penalize all neurons in ŝ ′l , since some neurons may largely affect the
performance of the original model.

(2) Promoted Neurons. On the contrary, the promoted neurons at layer l are defined as ŝl \ ŝ ′l ,
which are accountable for the original task but not accountable for recognizing the protected
attributes. Thus, the prediction should depend more on these neurons, and we will promote
their output.

(3) Confounding Neurons. There are some neurons that exist in both ŝ ′l and ŝl , i.e., ŝ ′l ∩ ŝl . These
neurons could play important roles in both tasks. Thus, we cannot simply penalize them or
promote them.

(4) Non-accountable Neurons. There are also some neurons that do not contribute much for both
two tasks, i.e., {n |n ∈ l ∧ n � ŝ ′l ∧ n � ŝl }. Similarly, it is unclear whether such neurons
should be promoted or penalized. However, these neurons tend not to affect the result too
much.

3.6 Fairness Repair with Condition Layer

Based on the functionality analysis of different neurons (see Section 3.5), we locate PF and NPF ,
and then propose a method to repair the model without changing the original weights. Specifically,
we define a condition layer that will be added after each frozen layer. The condition layer will
perform different operations on the features. The condition layer c after the hidden layer l is a
linear function that is defined as

c (l ) ( fl (x )) =W (l ) · fl (x ),

whereW is the learnable weights in condition layer and fl (x ) is the neuron output of the layer l .

4Without loss of generality, our method can be extended on multiple protected attributes by training multiple protected

attribute classifiers.
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Intuitively, each neuron output will be multiplied by one parameter (i.e., the weights of the
condition layer). By adjusting the weights, we can control the features used for the prediction
such that the model is repaired to be fair. At first, we set the default weights of each condition
layer as 1, which means that it is the same as the original model. Then, we train the weights of
the condition layer on the original training data with a new loss. Our basic idea is to penalize
the output of the penalized neurons while promoting the output of the promoted neurons. For the
confounding and non-accountable neurons, we will not explicitly manipulate their outputs. Our
loss function L contains two components: the original classification loss and the condition loss,
which are defined as follows:

Lc (x ,y;θ ) = −(yloд( f θ (x )) + (1 − y)loд(1 − f θ (x ))), (1)

Lw (x ;θ ) =

l ∈f∑

l

��
�

∑

n∈Penl

w
n
l −

∑

m∈Prol

w
m
l
��
�
, (2)

L = Lc (x ,y;θ ) + λLw (x ;θ ), (3)

where Lc is the original cross entropy loss and Lw is the condition loss. Prol and Penl denote the
promoted neurons and the penalized neurons at layer l , respectively. wn

l
denotes the weight for

the neuron n in the condition layer and λ is used to balance these two loss terms. For the condition
loss Lw , we aim to increase the weights of the promoted neurons and decrease the weights of the
penalized neurons. Intuitively, the larger weights mean that more features of the corresponding
neurons are used while smaller weights can reduce the influence of the features. To maintain the
accuracy of the target model, we add the cross entropy loss item Lc into our loss design. Through
the loss Equation (3), the model will be trained to increase and decrease the corresponding weights
(the aim of the second loss item Lw ) while maintaining the classification accuracy (the aim of the
first loss item Lc ). To enable the training to converge, we define the lower boundary (lb) and the
upper boundary (ub), which are the minimum and maximum of the weights.

Note that during training, we freeze the backbone component (i.e., the first several layers) of
the original model (see Figure 2) and fine-tune the classifier component (i.e., the last two layers).
The fine-tuning process is less time-consuming than retraining from scratch.

4 EVALUATION

To evaluate the effectiveness and efficiency of our approach, we have implemented Faire based on
Keras [11] with the Tensorflow backend [1]. The source code and more experimental details can
be found on our website [5]. Specifically, our evaluation aims to answer the following research
questions:

• RQ1: How effective is Faire in repairing individual discriminatory instances?
• RQ2: How effective is Faire in improving the individual fairness of the DNN?
• RQ3: Why could Faire outperform other methods?
• RQ4: How efficient is Faire in repairing fairness?

4.1 Experimental Setup

4.1.1 Datasets and Models. We evaluate Faire on four popular datasets including Census In-
come [14], Bank Marketing [14], LSAC [26], German Credit [14], COMPAS [33], and MNIST [27],
where the first five datasets are in tabular form and the last one belongs to the image domain.
These tabular datasets are commonly used in individual fairness testing [45, 58, 59].
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Fig. 4. Images on the MNIST dataset with white boxes and black boxes in the top left corner. The black boxes

are not explicitly visible due to the black background.

Fig. 5. Images on the Colored MNIST dataset with different colors.

• Census Income. The dataset was done by Barry Becker from the 1994 Census database with
48,842 instances and 14 attributes. The original aim is to determine whether a person makes
over 50K a year. Amid these 14 attributes, race, gender, and age are defined as protected
attributes.
• Bank Marketing. The dataset has more than 45,000 instances and 16 attributes of which

the only protected attribute is age. The original aim of this dataset is to assess if the product
(bank term deposit) would be (“yes”) or not (“no”) subscribed.
• LSAC. LSAC is a dataset that tracks students who entered law school in the fall 1991 through

three or more years of law examinations. National race- and gender-specific bar passage data
have been available for analysis and study.
• German Credit. This dataset is to give an assessment of credit based on personal and finan-

cial records. The small dataset has 1,000 examples with 20 attributes.
• COMPAS. Correctional Offender Management Profiling for Alternative Sanctions

(COMPAS) is a well-known commercial algorithm that judges and parole authorities use
to determine whether a criminal defendant is likely to commit another crime (recidivism).
Based on 2-year follow-up research, it has been demonstrated that the algorithm is biased
against black inmates and in favor of white defendants (i.e., those who committed crimes or
violent crimes after 2 years).
• MNIST. The MNIST database of handwritten digits has a training set of 60,000 examples and

a test set of 10,000 examples. We select this dataset to evaluate the usefulness of our method
in the image domain. Note that it is hard to measure the individual discrimination in the
image domain as the protected features could not be changed directly (see Definition 2.2).
Thus, we add a box in the top left corner of the image as shown in Figure 4, and use different
colors of the box (i.e., white and black) to simulate the bias. We pick data of two labels “0”
and “9” from the MNIST dataset as our training data for binary classification. We set 20% of
“0” samples as with white boxes and 80% of “9” samples as with white boxes. We assume the
box color is the protected attribute. To evaluate individual discrimination, for instance, we
change its box color to its counterpart, which contains the opposite protected information. If
the predictions of the original instance and its counterpart are inconsistent, then the instance
is a discriminatory instance. We also follow Reference [6] to construct the Colored Mnist
dataset. We pick data of two labels “0” and “9” from the MNIST dataset as our training data
for binary classification. We set 80% of “0” samples as blue and 80% of “9” samples as red.
More details are shown in Figure 5.
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Table 2. Accuracy and Architecture of Our Vanilla Models

acc l1 l2 l3 l4 l5 l6

Census 0.847 30 20 15 15 10 1

Bank 0.892 30 20 15 10 5 1

LSAC 0.863 50 30 15 10 5 1

For the tabular datasets, we adopt the toolkit of EIDIG [58] to process the datasets by convert-
ing all attributes to categorical ones. We follow the setting [58, 59] and train the six-layer fully
connected DNN models. The detailed architecture is shown in Table 2.

4.1.2 Baselines. To evaluate the effectiveness of Faire, we select three baselines for comparison.

• Discriminatory instances retraining [58, 59]. In this method, ADF and EIDIG search di-
verse discriminatory instances in global phase, and then they further develop the local gen-
eration for generating more individual discriminatory instances to retrain. As introduced in
Reference [58], EIDIG achieves better retraining performance. Thus, in this article, we mainly
use EIDIG to generate data for retraining. More specifically, the default retraining strategy
introduced in Reference [58] is to integrate discriminatory instances generated for all pos-
sible protected attribute combinations into training data to retrain. We here denote models
retrained by this default strategy as Mdis ). We also adopt a more reasonable strategy. When
repairing the fairness problem relevant to a specific protected attribute, we only include dis-
criminatory instances with regards to this protected attribute rather than all protected ones
into training data (denoted as Ma ).
• Flipping-based retraining. A basic method is to augment the training data by flipping the

protected attributes of each training data (e.g., generate a new instance by only changing the
gender from woman to man). During the learning process, the model will be learned to be
insensitive to the protected attributes, because the ground truth stays unchanged when only
the protected attributes vary in the training data. We denote this baseline as Mf l ip .
• Multitask Learning. Recall that our key insight is to eliminate the protected features in the

original model. A popular method is to reduce these features with a multi-task setting [48].
Similar to our method, during the training of the original task, we can train the protected at-
tribute classifier that shares the same backbone (i.e., the same hidden layers) at the same time.
Then the loss function for updating the weights is to minimize the original cross-entropy loss
(L1) and maximize the cross-entropy loss (L2) of the protected-attribute classifier. The final
loss is L = λ1L1 − λ2L2. In this way, the learned classifier could remove protected features.
We denote this method as Mmt .

4.1.3 Evaluation Metrics. We design the following metrics for our evaluation:

• Accuracy (ACC). The accuracy of the repaired model is an important indicator for measur-
ing its utility. The objective of Faire is to improve the individual fairness of the given models
without sacrificing too much accuracy.
• Repair Rate (RR). Following the same setting in ADF and EIDIG, we measure the repair

rate of each method. Specifically, given a set of individual discriminatory instances of the
original model, we then calculate how many original discriminatory instances do not suffer
from discrimination in the newly repaired model. Repair rate is expressed as the ratio of the
number of repaired instances and the number of all generated discriminatory instances.
• Detection Success Rate. Only measuring the repair rate on the existing dataset is not

enough, since a higher repair rate does not indicate that the new model is fairer. To
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evaluate the fairness of the repaired model, we adopted the testing technique [58, 59] to
generate the individual discriminatory instances in a fixed number of iterations. Specifically,
we adopt two strategies that are used in References [58, 59] to evaluate the fairness: (1) given
a fixed number of initial seed inputs, we adopt the global search of ADF or EIDIG to generate
individual discriminatory instances for each seed. Then, we calculate the success rate, i.e.,
how many seeds based on which the testing tool can successfully generate discriminatory in-
stances (denoted asGS). (2) For the random generation, we generate a fixed number of inputs
by randomly combining the values of input attributes as introduced in EIDIG, and check the
ratio of discriminatory instances in the inputs (denoted as RG).

4.2 Configuration

We mainly use EIDIG to generate a set of discriminatory instances datt for a specific combination
of protected attributes att . For the baseline Mdis , we follow the same setting in Reference [58]
by merging all discriminatory instances (for different combinations of protected attributes) under
three generation settings (i.e.,ADF , EIDIG5, EIDIGI N F ) and selecting 5% of them for the retraining.
For Ma , we retrain the model with the specific discriminatory instances datt generated for the cor-
responding protected attribute(s) att . For Mf l ip , given a training instance, we replace attr values
with all possible values to generate new instances. We generate new instances for all training data
and the labels of new instances are the same as the original training instances. We then integrate
all these newly generated instances into training data for retraining. For Mmt , we here set both
λ1 and λ2 as 1.0. Then the final loss is L = L1 − L2. For Faire, λ in Equation (3) is set as 1.0. We
freeze the first four layers as the backbone component and fine-tune the last two layers. We set 10
epochs for fine-tuning that can converge in these tasks. For Faire, we choose the last two layers to
perform the classification task. Because we find that when only the last layer is selected to perform
the classification task, the accuracy performance would degrade severely and this is against our
objective. When more layers are chosen to perform the classification task, it is harder to eliminate
protected features, because more PFs are in lower layers and the fairness improvement is limited.

All these experiments are conducted on the Intel Xeon Silver 4214 Processor with 1 Tesla
V100 GPUs with 16 GB memory.

4.3 RQ1: Repair Rate

We evaluate the repair rate on the generated discriminatory instances set datt for att . For Faire,
we set k (see Definition 3.1) and t (the selection rate for ŝl ) as 0.3 and 0.2, respectively. We set lb
and ub as range [−1, 0) with an interval 0.05, and range [0, 1) with an interval 0.05, respectively.

Table 3 shows the results of different methods on different protected attributes, where Attr
shows the protected attributes that are selected based on the setting in ADF and EIDIG. ACC
and RR show the accuracy and the repair rate of the model repaired by each method, and Mvan

represents the original model. lb and ub show the optimal parameters that achieve the best results.
Note that we also evaluate the parameters about k and t . Note that the symbol “—” means that the
existing testing techniques [58, 59] cannot be directly used to generate individual discriminatory
instances in the image domain. The complete results with different parameters (i.e., k , t , lb, and
ub) and the analysis could be found in our website [5].

From the results, we can observe that Faire has a much higher repair rate than all baselines
on all attr . In addition, the repair rate on a single attribute is higher than the repair rate on the
combination of two attributes, indicating that fairness repair on the combination of protected
attributes is more difficult. For model Ma , we can observe that the repair rate is mostly higher
than that of Mdis . For example, in the LSAC dataset, the repair rates of attribute д and д&r of
Ma (0.963, 0.951) are higher than those of Mdis (0.918, 0.878). It is because the discriminatory
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Table 3. Repair Rate of Our Repaired Model

Dataset Attr
Mvan Mdis Ma Mmt Mf l ip Faire
ACC ACC RR ACC RR ACC RR ACC RR ACC RR lb ub

Census
a 0.847 0.841 0.941 0.838 0.968 0.846 0.435 0.846 0.451 0.831 0.999 −0.30 0.15
g 0.847 0.841 0.976 0.840 0.948 0.849 0.710 0.845 0.856 0.837 0.995 −0.60 0.10
r 0.847 0.841 0.978 0.844 0.955 0.842 0.853 0.846 0.767 0.839 0.994 −0.95 0.80

a&g 0.847 0.841 0.908 0.843 0.962 0.844 0.347 0.845 0.293 0.833 0.990 −0.30 0.25
a&r 0.847 0.841 0.924 0.841 0.958 0.847 0.369 0.845 0.433 0.832 0.987 −0.35 0.25
r&g 0.847 0.841 0.957 0.842 0.942 0.846 0.382 0.843 0.545 0.835 0.972 −0.90 0.80

Bank a 0.892 0.890 0.916 0.890 0.977 0.892 0.838 0.889 0.478 0.890 0.998 −0.15 0.30

LSAC
g 0.863 0.859 0.964 0.860 0.947 0.860 0.914 0.857 0.679 0.832 0.997 −0.85 0.20
r 0.863 0.859 0.918 0.848 0.963 0.858 0.884 0.861 0.806 0.833 0.998 −0.90 0.05

g&r 0.863 0.859 0.878 0.844 0.951 0.861 0.841 0.850 0.448 0.830 0.993 −0.55 0.45

MNIST box 0.995 — — — — 0.995 0.333 0.995 0.500 0.993 1.000 −0.05 0.05

Credit
a 0.782 0.745 0.951 0.758 0.943 0.762 0.807 0.752 0.627 0.743 0.958 −0.50 0.60
g 0.782 0.745 0.941 0.772 0.955 0.752 0.820 0.748 0.728 0.765 0.997 −0.10 0.60

a&g 0.782 0.745 0.991 0.762 0.988 0.752 0.719 0.730 0.677 0.743 0.913 −1.00 0.25

COMPAS
g 0.675 0.668 0.733 0.658 0.703 0.677 0.653 0.657 0.270 0.637 0.995 −0.10 0.40
r 0.675 0.668 0.883 0.676 0.859 0.673 0.787 0.661 0.871 0.659 0.997 −0.10 0.50

g&r 0.675 0.668 0.672 0.671 0.642 0.672 0.481 0.675 0.128 0.645 0.953 −0.10 0.45

We run five times with different seeds and the average results are reported.

instance set datt focuses more on discrimination relevant to att . Retrained with datt , Ma will own
a stronger capability to filter information relevant to att to maintain fair decision, while Mdis is
not only targeting on att . The repair of Mmt is erratic (i.e., the range is 0.567). We observe that
in the training process, the outputs of the adversary branch may verge to one fixed value instead
of making the opposite predictions for protected attributes. This phenomenon reveals that this
multitask learning paradigm is not stable enough. For Mf l ip , the repair rate is also unstable (the
repair rate fluctuates from 0.293 to 0.856). In this retraining manner, Mf l ip can learn to ignore
protected attributes only on the training data. However, the change of the unprotected attributes
may still affect the sensitivity of the protected attributes in the prediction.

As for the accuracy, we can see that all repaired models can decrease the accuracy a bit, which
indicates that the protected attributes tend to have a influence on the tasks. Compared with oth-
ers, our accuracy has dropped most but not too much (less than 1%). We conjecture two possible
reasons: (1) Faire makes a drastic change in the original neural network (i.e., add new condition
layers) and fine-tunes the new model for a few epochs. (2) There is a trade-off between accuracy
and fairness [30] and Faire indeed limits the information given to decision-makers. Our method
achieved the best results in fairness repairing while sacrificing accuracy. For models trained by
flipping-based methods (e.g., Mf l ip ) and multitask learning (e.g., Mmt ), their accuracies decrease
less. We speculate that these two methods are closer to the original training with similar loss
and similar training data. Differently, Mdis and Ma change the training data a lot (i.e., add more
discriminatory instances), while Faire directly patches the DNN, leading to a decrease of the ac-
curacy. We also conduct experiments on the Colored Mnist dataset, and we find that even though
our method could effectively improve the repair rate (e.g., our method could achieve the RR as
0.689), the repair is not as effective as on the tabular dataset. The potential reason might be that
some features, such as color discrimination, may be more difficult to locate and repair through an
additional condition layer. This is because these features may be distributed across many neurons
in a complex network, making it challenging to identify which specific neurons are responsible
for them. Additionally, the nature of these features may make it more difficult to manipulate or
adjust them without affecting other aspects of neural processing.
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Considering the datasets in different domains, Faire is more generally applicable to different
domains while other techniques are often difficult to be used in non-tabular datasets (e.g., image).
This is because they are based on augmenting data by changing the values of (un)protected at-
tributes. However, the value change on non-tabular datasets is not easy. Differently, Faire does not
change the data directly and trains another neural network that works well for both tabular and
non-tabular datasets.

Answer to RQ1: Faire achieved a much higher repair rate (91.3%–100.0%) that largely out-
performs all baselines on protected attributes of all datasets. In addition, Faire could also be
applicable to image datasets while other techniques relying on data augmentation cannot.
However, Faire drops more on the accuracy, indicating that there tends to be a trade-off be-
tween accuracy and fairness.

4.4 RQ2: Effectiveness of Fairness Repair

Setup. For the repaired models trained in RQ1, we then evaluate their fairness with the state-of-
the-art fairness testing tool EIDIG and ADF. Specifically, for global search generation, we randomly
select 1,000 seed inputs from the training data to calculate the success rate (i.e.,GS). We follow the
setting [58] and set the cluster number to 4 for ADF and EIDIG and the decay factor to 0.5 for
EIDIG. We repeat this process 5 times to mitigate randomness. For then random generation, we
randomly generate 1,000 inputs to calculate the ratio of discriminatory instances (i.e., RG). We
repeat 10 times to calculate the average results.

Results. Table 4 shows the results of different methods on the five datasets. The results demon-
strate that Faire significantly outperforms the existing methods. For the random generation RG,
Faire is clearly better than other methods. For example, in the first three datasets (i.e., Census,
Bank, and LSAC), the average ratios of discriminatory instances generated on our repaired models
are only 0.004, 0.002, and 0.006, while the best results of other methods are 0.025 (Mdis ), 0.011
(Ma ), and 0.016 (Ma ), respectively.

Moreover, we also use the fairness testing tool to generate discriminatory instances on the se-
lected seeds. Columns GSA and GSE represent the ratio of discriminatory instances searched by
ADF and EIDIG, respectively. The results show that the state-of-the-art tools ADF and EIDIG dis-
covered fewer discriminatory instances on our repaired model. For example, EIDIG only achieved
discriminatory ratios of 0.022, 0.003, and 0.018 on the first three datasets, respectively. For the
retraining-based method, we found that Ma can achieve better fairness than Mdis , indicating that
retraining with more discriminatory instances is not necessarily helpful for improving fairness. For
example, in Bank, with ADF, the success rate on the model retrained with all data is 0.407 but it is
0.093 when retraining with only attribute-wise discriminatory instances. The naive flipping-based
method Mf l ip obtains the worst performance (e.g., 0.896 and 0.869 in the Bank dataset), which in-
dicates that the simple flipping of the protected attributes is ineffective for improving the fairness.
For Mmt that is similar to Faire (i.e., does not rely on other data), the results are better than Mf l ip

but worse than the retraining-based methods Mdis and Ma . Considering that Mmt and Faire share
a similar basic idea (i.e., reduce protected features in the model), the results could show that our
neuron-based analysis can better reduce the impact of PF than the fully learn-able method in Mmt .

Answer to RQ2: Faire significantly outperforms other methods in improving the fairness
of models. Although other methods could repair many original discriminatory instances (in
RQ1), the fairness of new models may not be really enhanced.
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Table 4. Average Results of Fairness Testing on Repaired Models

Data
Mvan Mdis Ma Mmt Mf l ip Faire

GSA GSE RG GSA GSE RG GSA GSE RG GSA GSE RG GSA GSE RG GSA GSE RG

C-a 0.464 0.654 0.111 0.305 0.218 0.023 0.220 0.132 0.016 0.540 0.749 0.183 0.736 0.743 0.176 0.001 0.001 0.001

C-g 0.187 0.282 0.039 0.105 0.070 0.016 0.353 0.255 0.064 0.252 0.398 0.054 0.262 0.301 0.034 0.006 0.010 0.000

C-r 0.203 0.324 0.105 0.168 0.122 0.014 0.281 0.194 0.030 0.200 0.323 0.077 0.378 0.460 0.098 0.013 0.017 0.003

C-a&g 0.518 0.717 0.151 0.360 0.279 0.031 0.161 0.074 0.013 0.594 0.788 0.285 0.828 0.822 0.298 0.028 0.034 0.003

C-a&r 0.608 0.740 0.211 0.413 0.339 0.036 0.121 0.087 0.009 0.616 0.802 0.272 0.758 0.773 0.331 0.019 0.021 0.005

C-r&g 0.355 0.486 0.127 0.257 0.182 0.031 0.297 0.218 0.038 0.273 0.527 0.130 0.711 0.707 0.214 0.035 0.047 0.009

avg 0.389 0.534 0.124 0.268 0.202 0.025 0.239 0.160 0.028 0.413 0.598 0.167 0.612 0.634 0.192 0.017 0.022 0.004

B-a 0.679 0.795 0.118 0.407 0.345 0.023 0.093 0.072 0.011 0.738 0.653 0.055 0.896 0.869 0.145 0.003 0.003 0.002

L-g 0.417 0.330 0.022 0.246 0.138 0.013 0.258 0.176 0.014 0.379 0.239 0.014 0.622 0.512 0.055 0.005 0.005 0.003

L-r 0.728 0.730 0.062 0.494 0.331 0.040 0.187 0.130 0.023 0.651 0.441 0.029 0.816 0.801 0.056 0.020 0.020 0.005

L-g&r 0.844 0.822 0.091 0.606 0.441 0.035 0.184 0.112 0.011 0.597 0.454 0.032 0.904 0.888 0.191 0.028 0.028 0.009

avg 0.663 0.627 0.058 0.449 0.303 0.029 0.210 0.139 0.016 0.542 0.378 0.025 0.781 0.734 0.101 0.018 0.018 0.006

Cre-a 0.363 0.434 0.266 0.120 0.080 0.032 0.082 0.042 0.017 0.186 0.267 0.070 0.225 0.349 0.220 0.019 0.019 0.009

Cre-g 0.156 0.192 0.115 0.075 0.040 0.041 0.157 0.089 0.050 0.199 0.254 0.118 0.125 0.216 0.075 0.003 0.003 0.031

Cre-a&g 0.408 0.469 0.407 0.175 0.131 0.074 0.112 0.051 0.033 0.273 0.389 0.181 0.475 0.453 0.387 0.059 0.059 0.002

avg 0.309 0.365 0.263 0.123 0.084 0.049 0.117 0.061 0.033 0.219 0.303 0.123 0.275 0.339 0.227 0.027 0.027 0.014

Com-g 0.692 0.655 0.003 0.498 0.379 0.014 0.506 0.431 0.017 0.638 0.641 0.127 0.735 0.658 0.707 0.010 0.010 0.002

Com-r 0.554 0.542 0.075 0.476 0.465 0.002 0.467 0.486 0.006 0.339 0.494 0.067 0.480 0.554 0.011 0.007 0.007 0.0

Com-g&r 0.698 0.682 0.348 0.486 0.385 0.014 0.537 0.526 0.025 0.723 0.724 0.145 0.749 0.742 0.611 0.109 0.109 0.011

avg 0.142 0.648 0.626 0.487 0.410 0.010 0.503 0.481 0.016 0.567 0.620 0.113 0.655 0.651 0.443 0.042 0.042 0.004

4.5 RQ3: Deep Analysis on Repaired Models

Setup. This evaluation further studies why our method can outperform other methods. The de-
cision process of DNN can be regarded as the information discarding process layer by layer. As
described in Section 2.3, we will evaluate the layer-wise distance between the original data x and
the new data x ′ that changes the protected attributes. Intuitively, we expect that the distance
should be smaller, indicating that the protected attributes do not affect the prediction too much.
Specifically, for each layer, we calculate the average L1 distance as follows:

Dl =

∑
x ∈X
∑

i ∈I
���fl (x ) − fl (x ′i )���1
|X | ∗ |I | ,

where l is the layer of the DNN f , I denotes the value combination set of the protected attributes,
x ′i denotes the new data that changes values of the protected attributes to i in x , |I | denotes the total
number of possible value combinations of the protected attributes, and |X | is the total number of
the data X . We here show the results on the Census Income dataset, Bank Marketing dataset, and
LSAC dataset.

Results. Table 5 shows the detailed results. Specifically, we calculate the layer distance except for
the input layer and the output layer of the model. Except for our models, we also show the results
of the vanilla models and the repaired models by Mdis for reference. Mdis is selected because
it achieved better results in the baselines. The results show that, compared with vanilla models,
our repaired models tend to reduce the average distance in most cases. However, we found that
the average distance from Mdis is much smaller than that of the vanilla model and ours from
layer 2 to layer 5. The reason could be that similar to adversarial retraining, Mdis introduces many
discriminatory instances that can directly affect the feature distance by training. However, our
method works on the neuron level that indirectly affects the feature distance in the hidden layers.
Considering the last layer, we can clearly see that the average distance of Faire is much smaller
than others. This phenomenon is consistent with the salient effectiveness of Faire, i.e., the smaller
the average distance in the logit layer, i.e., the last layer, the fairer the repaired model. It also
shows that, although our neuron-based analysis does not reduce the distance in the middle layers,
it can largely reduce the distance in the last layer, which is more important for the final result. We
conjecture that the neuron-based analysis is based on DeepLIFT, which performs the backward
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Table 5. Difference between the Middle Layer Features of the Original Data and Flipped Data

Data
layer2 layer3 layer4 layer5 layer6

Mvan Mdis Faire Mvan Mdis Faire Mvan Mdis Faire Mvan Mdis Faire Mvan Mdis Faire

C-a 0.296 0.157 0.070 0.138 0.069 0.031 0.273 0.055 0.049 0.170 0.017 0.012 0.138 0.021 0.000

C-r 0.237 0.063 0.236 0.152 0.039 0.146 0.233 0.032 0.169 0.150 0.016 0.119 0.106 0.011 0.002

C-g 0.135 0.055 0.028 0.091 0.033 0.044 0.169 0.025 0.038 0.112 0.011 0.025 0.082 0.008 0.001

C-a&r 0.393 0.186 0.213 0.169 0.097 0.210 0.145 0.069 0.153 0.093 0.030 0.035 0.141 0.029 0.004

C-a&g 0.368 0.169 0.102 0.154 0.076 0.040 0.240 0.061 0.021 0.149 0.028 0.011 0.138 0.025 0.004

C-r&g 0.289 0.085 0.239 0.175 0.055 0.188 0.162 0.036 0.226 0.099 0.015 0.143 0.112 0.016 0.009

B-a 0.433 0.191 0.226 0.260 0.092 0.206 0.246 0.041 0.082 0.240 0.018 0.023 0.120 0.029 0.000

L-g 0.047 0.111 0.068 0.077 0.037 0.023 0.121 0.027 0.026 0.084 0.026 0.010 0.089 0.017 0.001

L-r 0.141 0.177 0.145 0.220 0.066 0.067 0.317 0.050 0.047 0.198 0.050 0.042 0.178 0.036 0.001

L-g&r 0.169 0.220 0.249 0.231 0.101 0.166 0.356 0.067 0.093 0.180 0.064 0.055 0.165 0.047 0.002

analysis on the neuron contributions from the last layer. Therefore, Faire could have a large impact
on the output of the last layer.

Answer to RQ3: The discriminatory instances retraining approach can generally reduce the
average distance in each layer. Differently, without using discriminatory instances, Faire does
not reduce the feature distance consistently in the middle layers but reduces the distance of
the last layer a lot. The results of the last layer can directly affect fairness, which explains
why our method is more effective than others.

4.6 RQ4: Efficiency of Faire

For discriminatory instance retraining methods, we divide the repair process into data generation
(Tdata ) and training (Ttr ain ) to count the time overhead, respectively (e.g., Mdis , Ma ). For Mf l ip

and Mmt , we only take training (Ttr ain ) time into account. For Faire, we separately count the time
spent in training the protected attribute classifier (Ttr ainp

), neuron analysis (Tanalysis ), and final
repairing (Tr epair ). Table 6 shows the detailed time overhead on the Census Income dataset, Bank
Marketing dataset, and LSAC dataset. We observe that to generate all data needed to retrain a Mdis

model, it costs even more than 3 days if we generate for all attribute combinations in sequence. For
Ma , the time overhead could be more than 1 day (i.e., generation for a&r attributes combination).
For Mf l ip and Mmt , only training time is involved and the training time is no more than 80 s.
For Faire, training for protected attributes costs no more than 190 s. Meanwhile, it takes less than
120 s to calculate contribution scores via DeepLIFT. The retraining takes less than 50 s, and the
total process takes less than 340 s. Even though our method needs to search the optimal parameters
lb and ub, the searching could be easily done in parallel, which will reduce the introduced time
overhead.

Answer to RQ4: Although flipping-based methods to retrain and multitask learning are very
efficient, their effectiveness is inadequate. Compared with discriminatory instances retraining
methods, which are relatively effective, Faire is far more efficient. The total time overhead
demonstrates the efficiency of our method.

5 THREATS TO VALIDITY AND DISCUSSION

Threats. The selection of datasets and models could be a threat that our method may not gen-
eralize to other datasets well. To counter this issue, we selected three popular benchmarks and
architectures that are used in state-of-the-art testing techniques. The usage of the interpretation
tool DeepLIFT could also be a threat to our method. Randomness existing in the evaluation process
could be a threat. We repeat the evaluation process many times to reduce the effect of randomness.
The internal threat lies in our implementation, and we carefully checked our code.
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Table 6. Comparison on Time Overhead (Seconds)

Dataset Attr
Mdis Ma Mf l ip Mmt Faire

Tdata Ttr ain Ttotal Tdata Ttr ain Ttotal Ttr ain Ttr ain Ttr ainp
Tanalysis Tr epair Ttotal

Census

a 301,341.1 254.3 301,595.4 49,538.0 137.9 49,675.9 58.0 52.4 87.4 52.3 36.4 176.1
g 301,341.1 254.3 301,595.4 10,724.1 132.2 10,856.3 51.2 52.8 94.3 53.7 32.5 180.5
r 301,341.1 254.3 301,595.4 18,555.7 148.7 18,704.4 49.3 52.8 88.6 59.2 29.8 177.6

a&g 301,341.1 254.3 301,595.4 44,060.5 168.5 44,229.0 59.8 54.2 181.7 114.6 42.3 338.6
a&r 301,341.1 254.3 301,595.4 110,551.9 233.2 110,785.1 79.5 66.3 176 117.4 45.3 338.7
r&g 301,341.1 254.3 301,595.4 67,910.9 172.5 68,083.4 62.2 56.5 182.9 109.8 41.2 333.9

Bank a 94,645.6 126.3 94,771.9 94,645.6 126.2 94,771.8 55.9 51.2 80.7 51.0 36.9 168.6

LSAC
g 158,461.2 88.5 158,549.7 17,755.8 111.8 17,867.6 28.5 35.8 54.4 46.8 22.1 123.3
r 158,461.2 88.5 158,549.7 56,930.7 125.3 57,056.0 30.7 33.9 50.0 47.2 24.2 121.4

g&r 158,461.2 88.5 158,549.7 83,774.7 176.1 83,950.8 42.5 38.9 104.4 92.9 26.5 223.8

Discussion. Although Faire has achieved promising results in fairness repair, there are still some
limitations that can be further enhanced:

• The lower accuracy. From the results in RQ1, we found that we reduce more accuracy than
others. Our deep analysis reveals that this might be caused by the rough setting, i.e., we set
the same lower bound and the upper bound for all neurons. In the future, we could extend
our method to set suitable lower/upper bounds for different neurons.
• Introduce additional data. From the results in RQ2 and RQ3, we found that Faire did not

well reduce the feature distance in the middle layers and still suffers from subtle individual
discrimination. Previous methods using data augmentation (data-driven methods) could also
improve fairness performance. Intuitively, we can combine our method with the data-driven
method to further improve fairness. In the future, we will explore the combination of Faire
with the data-driven method.
• Support other neural networks. In this article, we mainly focus on the fully connected neural

network that is widely used in the existing individual fairness research. In the future, we
try to extend our method to other networks (e.g., Recurrent Neural Networks on sequential
datasets and Convolutional Neural Networks on image datasets).
• Feature representation. In this work, we use neuron behaviors to distinguish features and

then reduce the features related to protected attributes. However, our approach is not lim-
ited to feature analysis at neuron granularity. We could explore other feature representation
analysis methods of multi-granularity [32]. Such methods could potentially better separate
protected features and unprotected features apart, which might enable us to better penalize
the unprotected features and promote the protected features.
• Support other RGB image datasets. Conducting a neuron-granularity function analysis can

help locate most of the responsible neurons. However, for certain delicate discrimination
features like color, biases may exist in a large number of neurons that are challenging to
identify and repair using an additional condition layer. This is because the processing of such
features may be distributed across a complex network of neurons. As a result, pinpointing
the exact neurons responsible for the bias can be difficult. Moreover, due to the intricacies of
these features, attempting to adjust them without affecting other aspects of neural processing
can be challenging.

6 RELATED WORK

6.1 Neuron-based Deep Learning Model Analysis

In our work, we analyze neurons’ functionality based on existing explanation techniques. There
is already a line of work analyzing middle representations (i.e., the middle layers outputs of deep
learning models) at the neuron level. We here use “accountable neurons” to unify different aliases
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to neurons critical to model classification results. References [29, 56] focus on exploring neurons
accountable to adversarial attacks (i.e., neurons critical to the wrong classification results under
the adversarial attack). In Reference [29], they extract accountable neurons via layer-wise gradient
calculation and they prove that these accountable neurons are both crucial to adversarial attack and
generalization performance. In Reference [51], they utilize layer-wise relevance propagation

(LRP) [7] to calculate neuron relevance to the final classification, and higher relevance means
higher importance. They analyze the accountable neurons to construct the decision structure of
a DNN. They then design new coverage criteria (i.e., metrics to evaluate the effectiveness of a
test suite) based on the constructed decision structure. This article calculates neurons that could
represent decision logic in DNNs. In Reference [22], they quantify the contribution of individual
data points by a “zero-out” strategy (i.e., remove individual data points completely by setting data
points as zero). They then identify neurons vulnerable to adversaries and discover unfair neurons,
while the calculation is complex and time-consuming. In Reference [60], the authors slice deep
neural networks based on data flow analysis and quantify the neuron contributions to the slicing
criterion. Moreover, they calculate accountable neurons according to the neuron contributions,
which also involves a huge time overhead. In Reference [47], the authors train a gate for each
neuron (an associated control gate to each layer’s neuron) to identify critical neurons, and this
involves a retraining process.

In this article, we aim to locate accountable neurons for original tasks and protected attributes
classification tasks efficiently at the same time. We here adopted DeepLIFT to help with our analy-
sis for its reliability and convenience for deployment. We did a further analysis based on the roles
neurons play in two tasks.

6.2 Fairness Testing and Repair

There is already a line of works [8, 18, 28, 36, 38, 39, 53, 55] focusing on testing and improving group
fairness, where examples are grouped according to a particular sensitive attribute, and statistics
are calculated across groups.

However, the evaluations of group fairness and individual fairness are totally different [10]. In
our article, we focus on individual fairness. Reference [20] defines fairness and discrimination and
develops THEMIS to generate efficient test suites to measure discrimination. To improve the in-
efficiency problem of THEMIS caused by the random sampling process, Reference [45] proposes
AEQUITAS to split the generation process into global generation and local generation for better
guiding the exploration. Global generation is to discover discriminatory instances by randomly
exploring the input space, while local generation perturbs explored instances in the global phase
by three well-designed strategies to generate more discriminatory instances. They then propose
to retrain a fairer model with generated discriminatory instances. Reference [2] uses LIME [40] to
guide the generation of discriminatory instances. Reference [59] involves adversarial methods in
the global searching process. They utilize the characteristic that adversarial attacks can gradually
generate instances near the decision boundary to generate discriminatory instances efficiently in
the global phase. Reference [58] improves ADF both in the global phase and local phase. They
boost global generation with momentum and improve local generation with Effective Vicinity

Explorer (EVE) to make the exploration more effective, and thus improve both effectiveness and
efficiency. Reference [49] generates natural individual discriminatory instances with the help of
a generative adversarial network. In References [58, 59], authors integrate the generated discrim-
inatory instances to retrain given models to improve fairness. However, this repairing method
is far from efficient due to the huge time overhead in the generating process. Several methods
have been proposed to repair DNNs. Reference [42] directly manipulates the neuron weights
without retraining to repair. Reference [21] designs guided test generation techniques to do data
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augmentation to repair. Reference [54] mutates styles of images to achieve data augmentation to
repair. However, all these works target robustness instead of fairness. In our article, we expect to
repair the given models on fairness efficiently without generating extra data.

7 CONCLUSION

In this article, we propose Faire to repair individual discrimination in DNNs. Based on the em-
pirical study to assess the effect of protected features on individual discrimination, we infer the
feature-level condition that will filter the protected features to repair DNNs. Different from existing
methods, Faire does not need any additional data. Instead, we perform the neuron-based analysis
and add a patch (a well-designed layer) to reduce the impact of features relevant to protected at-
tributes in the prediction. Extensive experiments demonstrated the effectiveness and efficiency of
our method. Although effective and efficient, it is time-consuming to fully explore the parameter
space (e.g., unlimited combinations of lb and ub). In the future, we will find a method to guide the
parameter setting.
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