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Abstract
Activities of daily living (ADLs) relate to people’s daily self-care activities, which reflect their living habits and lifestyle.
A prior study presented a neural network model called STADLART for ADL routine learning. In this paper, we propose a
cognitive model named Spatial-Temporal Episodic Memory for ADL (STEM-ADL), which extends STADLART to encode
event sequences in the form of distributed episodic memory patterns. Specifically, STEM-ADL encodes each ADL and its
associated contextual information as an event pattern and encodes all events in a day as an episode pattern. By explicitly
encoding the temporal characteristics of events as activity gradient patterns, STEM-ADL can be suitably employed for activity
prediction tasks. In addition, STEM-ADL can predict both the ADL type and starting time of the subsequent event in one
shot. A series of experiments are carried out on two real-world ADL data sets: Orange4Home and OrdonezB, to estimate
the efficacy of STEM-ADL. The experimental results indicate that STEM-ADL is remarkably robust in event retrieval using
incomplete or noisy retrieval cues.Moreover, STEM-ADL outperforms STADLART and other state-of-the-art models in ADL
retrieval and subsequent event prediction tasks. STEM-ADL thus offers a vast potential to be deployed in real-life healthcare
applications for ADL monitoring and lifestyle recommendation.

Keywords Spatial-temporal episodic memory · Encoding and retrieval · ADL retrieval · Subsequent event prediction

Introduction

Activity of daily living (ADL), as a term often applied in the
healthcare domain, involves a series of basic, ordinary, and
repetitive activities that a person performs daily to meet the
needs of daily living [1]. The study of ADLs is of significant
value as they reflect one’s physical status and self-care abili-
ties. In particular, people with mental or physical disabilities
and the elderlymayhave difficulty performingADL tasks.As
such, health assistive technologies leveraging the knowledge
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of ADLs have significant application prospects for providing
care to these people and reducing the burden on healthcare
systems and caregivers.

With advances in artificial intelligence (AI), sensor tech-
nologies, and pervasive computing, smart homes have been
widely adopted for health monitoring, particularly for the
disabled and the elderly. Smart home-based activity predic-
tion is of significant value in real-world applications, such
as medication reminders, activity recommendations, secu-
rity monitoring, etc. However, activity prediction remains a
challenging task due to the complexity of the living environ-
ment and the diversity of individual’s daily routines. Note
that in the scope of this research work, we focus on the mod-
eling of high-level ADL patterns (e.g., always taking a nap
after lunch) through mining one’s ADL routines or habits
[2], rather than the modeling of low-level activity types (e.g.,
sitting on sofa) through analyzing the collected raw sensory
inputs [3]. Specifically, different smart environments provide
different types of location information and ADLs. In addi-
tion, the starting time and duration of the sameADLmayvary
daily, and the number and sequence of activities performed
each day depend on the environment of the day or other ran-
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dom occurrences. All such uncertainties pose challenges to
the smart home-based activity prediction.

To properly model high-level ADL patterns, inspired by
the memory function of the human brain, we consider using
an episodic memory neural network model to encode and
retrieve ADL streams. Specifically, ADLs and the associ-
ated specific information are encoded into event patterns,
and events in a day are encoded into episode patterns. Thus,
episodic memory models are suitable for learning typical
behavioral patterns from experience, allowing generaliza-
tion across events, and remaining sufficiently adaptable to
new events.

A prior study presents Spatial-temporal ADL Adaptive
Resonance Theory (STADLART) [2] for daily routine learn-
ing. STADLART is a three-layer neural network, including
the input layer, the category layer, and the routine layer.
Attributes of the input layer include the ADL type, its spatial
information, and its temporal information, which comprises
the starting time, duration, and the associated day informa-
tion. The spatial-temporal ADL pattern nodes in the category
layer have the same activation value when they are activated.
Thus, in the activation vector for routine learning, a value of
1 indicates that the pattern is activated while 0 indicates not
activated. This setting implies that STADLART is not appli-
cable for activity prediction tasks because the order of events
is not encoded.

This paper proposes a neural network model named
Spatial-Temporal EpisodicMemory for ADL (STEM-ADL),
which substantially extends STADLART to encode ADL
sequences in the form of episodic memory. STEM-ADL is a
three-layer hierarchical networkmodel based on the dynamic
characteristics of fusion ART [4, 5]. The three layers of
STEM-ADL are (i) the input layer which contains event-
specific knowledge, (ii) the event layer which encodes the
multi-modal information into events, and (iii) the episode
layer which encodes the related events in a day into an
episode and models the order of events by time decays. In
STEM-ADL, memory retrieval is first triggered in the input
layer with the retrieval cues. Through the bottom-upmemory
search, STEM-ADL retrieves the related events and episodes
sequentially. Then, it predicts the activity by retrieving the
specific memory through the top-down readout process (see
“STEM-ADL architecture” section for details).

STEM-ADL is able to retrieve specific ADLs from the
user’s spatial-temporal preferences and predict subsequent
events based on past experience. For model evaluation,
we conduct experiments using two real-world ADL rou-
tine data sets, namely Orange4Home [6] and OrdonezB [7].
The results indicate that STEM-ADL has a high level of
robustness in event retrieval using partial and noisy cues. Fur-
thermore, STEM-ADL outperforms STADLART and other
state-of-the-art (SOTA) methods in the ADL retrieval and
subsequent event prediction tasks. To the best of our knowl-

edge, this is the first research on smart home-based ADL
prediction using a brain-inspired computational episodic
memory model.

The main contributions of this paper include:

1. STEM-ADL draws inspiration from human episodic
memory, encodes the defined ADL and its associated
multi-modal information as an event, and further encodes
the sequence of events in a day into an episode.

2. STEM-ADLcan retrieve theADL typebasedon thegiven
spatial and temporal information.

3. STEM-ADL models the temporal relationship of events
and can predict both the ADL type and starting time of
the subsequent event in one shot.

4. STEM-ADL is evaluated on two publicly available real-
world data sets, achieves a high level of robustness in
event retrieval using partial and noisy cues, and outper-
forms SOTA methods in ADL prediction tasks.

The rest of this paper is arranged as follows. “Related
work” section reviews the literature of the relevant work.
“Preliminaries: fusionART and STADLART” section recalls
some fundamentals of fusion ART and STADLART.
“STEM-ADL architecture” section describes the proposed
approach in detail. “Experimental setup” section deals with
the experimental setup. “Experimental results” section dis-
cusses the experimental results. “Conclusion” section sum-
marizes the conclusions and presents future work.

Related work

Among the cognitive functions of the human brain, memory
is an advanced function related to learning and decision-
making. In particular, episodic memory is a collection of
events that a person has experienced in the past. The gen-
eral idea of episodic memory modeling is to store events
with the temporal sequence and apply statistical methods to
deal with noisy and incomplete cues [8]. The integration of
episodic memory was proposed in Soar cognitive architec-
ture [9], using the working memory tree data structure to
encode, store, and retrieve episodes. However, the system
may be inefficient due to a large number of snapshot storage.

A series of self-organizing neural networks, named fusion
ART, integrated different learning paradigms into a universal
learning model [5]. The fuzzy choice and match func-
tions and the complement coding technique [10] in fusion
ART generalize the input patterns and suppress irrelevant
attributes. Based on fusion ART, the memory model STEM
[11] encoded the multi-modal input of the hall entrance
monitoring video into events with relevant context informa-
tion without an episode layer. Another fusion ART-based
episodic memory model was used to assist a robot in observ-
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ing andmemorizing five kinds of contextual information, i.e.,
object, people, place, time, and activity [12]. Closely related
to episodic memory, the fusion ART-based autobiographical
memorymodel [13, 14] encoded the emotional state as one of
the inputs to mimic the difference in human memory recall
between happy and sad memories. STADLART [2] model
discovers the execution patterns of ADLs throughout the day
and clusters them into ADL daily routines. To the best of our
knowledge, STEM-ADL is the first study to employ episodic
memory for smart home-based activity prediction.

There has been an extensive literature on human activ-
ity recognition [15–17]. The activity recognition problem in
smart home is to automatically recognize the activities of
residents by utilizing the sensor data collected in the smart
environment. In [18], an online daily habit modeling and
anomaly detection (ODHMAD) model was proposed to rec-
ognize ADL, model habits, and detect abnormal behavior
for the elderly living alone in real time. ODHMAD uses
online activity recognition (OAR) to recognize activities by
learning the activation status of sensors and employs the
dynamic daily habit modeling (DDHM) component tomodel
the elderly’s daily habits, offering personalized knowledge to
recognize abnormal behaviors. ODHMAD deals with raw
sensor data collected from a simulation environment and
lacks real-world data to evaluate the system. However, what
we are exploring is the spatial-temporal relationship between
the user’s ADL, time and place in the intelligent environ-
ment, so as to predict the activity from the user behavior
sequence. The activity prediction problem in the smart home
is to automatically predict the future activities of the residents
according to their past and present situation, including pre-
dicting the subsequent activities and the time of occurrence.
For smart home-based activity prediction, there are twomain
approaches. One approach is sequence mining, which mines
the relevant behavior patterns through a series of sequence
analyses [19]. SPEED is a sequence prediction model that
constructs decision trees based on ADL events recognized
by chopping the data streams into sliding windows [20].
The other approach is to combine sequence matching with
machine learning methods. CRAFFT [21] uses a dynamic
Bayesian network with four input context information to pre-
dict activity. Similarly, PSINES [22] extended the dynamic
bayesian network architecture. Deep learning methods (e.g.,
LSTM) have also been applied for smart home-based activity
prediction [23, 24]. Sequential pattern mining was applied
to find the time pattern of the activity sequence, and then
conditional random field (CRF) was used to model the activ-
ity sequence for predictions [25]. Our STEM-ADL model
belongs to the latter approach. Therefore, we select baseline
models of the same approach for performance comparisons
(see “Experimental results” section).
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Fig. 1 Fusion ART network architecture. Each parallelogram in F1
indicates an input channel or input field, and each black dot in F2 indi-
cates a category node. The black semi-circles between the input and
category fields represent the bidirectional conditional links, including
code activation and competition processes (bottom-up processing) and
resonance and readout processes (top-down processing)

Preliminaries: fusion ART and STADLART

The episodic memory model proposed in this paper is based
on fusion ART. The network is designed to learn cognitive
node encoding multi-modal input pattern groups, supporting
the recognition and recall of the stored patterns. In this sec-
tion,we review the basics of the fusionARTandSTADLART
model.

Fusion ART

Biologically-inspired fusion ART network simulates infor-
mation processing in the human brain and performs a class
of fuzzy operations for multi-modal pattern recognition and
association. Fusion ART [4, 5] extends the ART network
[10] to handle multi-channel inputs (see Fig. 1). The net-
work model consists of K input channels or input fields
F1
1 , F2

1 , . . . , FK
1 (the terms “input channel” and “input field”

are interchangeably used in fusion ART networks) and one
category field F2, which are connected by bidirectional con-
ditional links.

The composition and dynamics of fusion ART are
described as follows:

Input vectors: Let I k denote the M - dimensional input
vector of channel k, I k = (I k1 , I k2 , . . . , I km, . . . , I kM ), where
I km denotes input m to channel k, for m = 1, 2, . . . , M and
k = 1, 2, . . . , K .

Input fields: Let Fk
1 for k = 1, 2, . . . , K denote the input

field of channel k that receives input vector I k .

Activation vectors: Let xk denote the activation vector
of input field Fk

1 that receives input vector I k , xk =
(xk1 , x

k
2 , . . . , x

k
m, . . . , xkM ), where xkm ∈ [0, 1]. Because

fusion ART uses fuzzy operations (see (1), (3), (4)), the
activation vector needs to be further expanded with the com-
plement vector x̄ k , where x̄ km = 1 − xkm . This expansion is
called complement coding, which is employed to avoid the
problem of “category proliferation” in fuzzy ART [10].
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Category field: Let F2 denote the category field and y repre-
sent the activation vector of F2, y = (y1, y2, . . . , yC ), where
C is the number of category nodes in F2. Note that, C − 1
nodes are committed (learned) and one node is uncommitted
(see template matching for details). Initially, fusion ART has
only one uncommitted node in F2 with a weight vector of
1 s.

Weight vectors:Letwk
j denote the weight vector of category

node j in F2 for learning the input of Fk
1 . Due to the use

of complement coding, the weight vector is initialized to
wk

j1 = wk
j2 = · · · = wk

j2M = 1. Interested readers may
refer to [26] for details on how to use complement coding and
fuzzy AND operations to generalize the knowledge encoded
in the weight vectors.

Parameters: Each field/channel of the input layer in the
fusion ART model comprises four parameters, namely the
choice parameters αk > 0, vigilance parameters ρk ∈ [0, 1],
contribution parameters γ k ∈ [0, 1], where ∑

γ k = 1, and
learning rate parameters βk ∈ [0, 1].
Code activation: For each activation vector xk , for k =
1, 2, . . . , K in F1 and the weight vector wk

j of each cate-
gory node j in F2, the choice value of each category node is
defined by the following choice function:

Tj =
K∑

k=1

γ k
|xk ∧ wk

j |
αk + |wk

j |
, (1)

where the fuzzy AND∧ is defined as (a∧b)i ≡ min(ai , bi ),
and the norm |.| is defined as |X | = ∑M

m |xm |. This is the
bottom-up category search process (F1 to F2 in Fig. 1). The
choice value Tj reflects the similarity between the activation
vectors in F1 and weight vectors of node j in F2. The larger
Tj is, the more similar the activation vector is to the category
node j .

Code competition: The winner node J in the code com-
petition procedure is the one with the highest choice value,
where

TJ = max{Tj : for all F2 node j}. (2)

Then update the activation vector of category field in F2 to
yJ = 1 and y j = 0, ∀ j �= J , i.e., winner takes all.

Template matching: If the matching function of the winner
node satisfies the vigilance requirement at each channel, then
resonance occurs, such that

mk
J = |xk ∧ wk

J |
|xk | ≥ ρk, 1 ≤ k ≤ K . (3)

A mismatch reset will occur if any channel does not meet
the criteria. Specifically, the choice value TJ is reset to 0, and

a new category node J is selected. The search continues until
the selected J satisfies the resonance. If the winner category
node is uncommitted, it becomes committed after template
learning, and then a new uncommitted node is added to F2.

Template learning: The template learning process is per-
formed to encode the knowledge of the input into the weight
vector of the winner node. The learning rate β is set to 1 for
fast learning.

w
k(new)
J = (1 − βk)w

k(old)
J + βk(xk ∧ w

k(old)
J ). (4)

Memory readout: The top-down readout process (F2 to F1
in Fig. 1) presents the weight vectors of the winner node J
in F2 to the input fields:

xk(readout) = wk
J . (5)

STADLART

STADLART aims to learn ADL daily routines and can be
seen as two stacked fusionART networks in three layers. The
F1 layer contains four fields that correspond to theADL type,
time, day, and spatial information. Each category node in the
F2 layer represents a spatial-temporal ADL and is activated
as a response to the contextual information presented in the
F1 layer. The activation values of activated spatial-temporal
ADL patterns are set to 1s, and the rest are 0s. The F3 layer
contains the daily routine field, where the ADL routine nodes
in F3 represent the serial combinations of spatial-temporal
ADLs.

STEM-ADL architecture

To encode daily activities into episodic memory, we propose
spatial-temporal episodic memory for ADL (STEM-ADL).
STEM-ADL is a three-layer neural network based on the
fusion ART model (see Fig. 2). The F1 layer contains three
input fields that encode event-specific attributes, including
time, place, and ADL type. The F2 layer contains only one
event field and serves as the category field of event encoding
and the input field of episode encoding. Based on activations
of F1, a cognitive node in the F2 layer is selected and acti-
vated as an event pattern. After all sensor events in a day
are learned from F1 to F2, F2 will form an activation vector
y, the length of which is equal to the number of all event
nodes currently existing in the event field. In this activation
vector y, the activation values decay over time, forming a
descending activation pattern to represent the sequence of
events. Based on activation vector y, a category node in the
F3 layer is selected and activated as an episode pattern. The
bidirectional conditional links between layers still apply to
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Fig. 2 STEM-ADL architecture. The three-layer self-organizing struc-
ture contains an input layer F1, an event layer F2, and an episode layer
F3. F1 has three input channels corresponding to the attributes of time,
place, and ADL type. Each light gray dot in F2 encodes a spatial-

temporal ADL pattern, while each dark gray dot in F3 encodes the
sequence of events in a day. The node activation values decaying over
time in F2 characterize the temporal order of the events in an episode

STEM-ADL. When an episode node in F3 is selected, the
whole episode can be reproduced through the top-down oper-
ation (readout process) from F3 to F2. Events in the selected
episode can also be reproduced through the top-down oper-
ation (readout process) from F2 to F1 in the sequence they
were saved in the F2 layer.

Event encoding and retrieval

In STEM-ADL, the input fields encode the event-related
attributes in F1. The value of time attribute is normalized,
and the values of place andADL type attributes are converted
into category variables.

Time vector

In a daily activity data set, the starting time and ending time
of activity are given in the form of timestamps. We encode
such information explicitly in the time field. Firstly, the time
information needs to be normalized.We set the granularity of
time to seconds, so the time of a day is 24×60×60 = 86,400
in seconds. Thus, the normalized starting or ending time is
obtained using time in seconds

86,400 . Let xt represent the activation
vector of the time field:

xt = (xts, x
t
e, x̄

t
s, x̄

t
e), (6)

where xts and xte denote the normalized starting and ending
time, respectively, x̄ ts and x̄ te denote the corresponding com-
plement values.

Place vector

The place refers to the spatial information associated with
the ADL. Activities take place in different locations in smart
homes, such as living room, bedroom, bathroom, etc. The
activation vector x p of the place field is represented as fol-

lows:

x p = (x p
1 , x p

2 , . . . , x p
r , x̄ p

1 , x̄ p
2 , . . . , x̄ p

r ), (7)

where r is the total number of places in consideration, x p
i is

the i th place type, and x̄ p
i is the corresponding complement

value. It is obvious that at any time,
∑

x p
i = 1.

ADL vector

The ADL types depend on the daily activity data set used.
Usually, ADL types include cooking, sleeping, eating, etc.
Let xa represent the activation vector of the ADL field:

xa = (xa1 , xa2 , . . . , xaq , x̄a1 , x̄a2 , . . . , x̄aq ), (8)

where q is the total number of ADL types, xai is the i th ADL
type, and x̄ai is the corresponding complement value. It is
obvious that at any time,

∑
xai = 1.

For event encoding, relevant fusion ART operations are
applied to learn the node in the event layer. For event retrieval,
the retrieval cue can comprise information from all three
input fields or partial input fields, with or without noise.
Based on the presented retrieval cue, STEM-ADL selects
the winner node(s) with the highest choice value in F2 and
then reads the relevant information of the retrieved event(s).
Multiple similar events may be retrieved when the cue is par-
tial or noisy. Algorithm 1 presents the whole process of event
encoding and retrieval.

Episode encoding and retrieval

Temporal order coding of events is a primary component
of episodic memory. In the fusion ARTmodel, the activation
value of the winner node in the category field is usually set to
1. Therefore, in STADLART, the activated spatial-temporal
ADLpattern nodes in the category layer have the same activa-
tion value, so the order of events cannot be encoded in its daily
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Algorithm 1 Event encoding and retrieval

1: Set xk in F1 w.r.t the input vector I k

2: Perform code activation to compute the choice values of all nodes
in F2 (see (1))

3: Perform code competition to select the event node J with the highest
choice value as the winner node in F2 (see (2))

4: if event encoding process then
5: while mismatch reset occurs (see (3)) do
6: Suppress the activation of the current winner node that mis-

matches
7: Perform code competition again (see (2))
8: end while
9: Perform template learning (see (4))
10: else if event retrieval process then
11: Read out the weight vectors wk

J to F1 (see (5))
12: end if

Algorithm 2 Episode Encoding and Retrieval
1: for all sequential events in a day do
2: Select the winner node J in F2 (detailed in Algorithm 1)
3: Set yJ ← 1
4: for all the previously activated events nodes in F2 do
5: y(new)

j ← y(old)
j (1 − τ)

6: end for
7: end for
8: Given activation vector y formed in F2
9: Perform code activation to compute the choice values of all nodes

in F3
10: Select the winner node J ′ with the highest choice value in F3 w.r.t

y
11: if episode encoding process then
12: the weight vector w′

J ′ in F3 is updated according to the learning
rule

13: w
′(new)

J ′ ← (1 − βs)w
′(old)

J ′ + βs(y ∧ w
′(old)

J ′ )

14: else if episode retrieval process then
15: Read out the weight vector w′

J ′ to F2
16: end if

routine layer. In STEM-ADL, we characterize the temporal
order of events by updating the activation value of the acti-
vated event nodes and assume that the earlier an event occurs,
the smaller the activation value is. Let t0, t1, t2, . . . , tn denote
the increasing timestamps, and yti denote the event activa-
tion value in F2 at time ti , then yt0 < yt1 < yt2 < · · · < ytn .
Specifically, when a new node is activated in F2, the acti-
vation values of the previously activated nodes are decayed
proportionally that y(new)

j = y(old)
j (1 − τ), where τ denotes

the predefined decay coefficient and τ ∈ (0, 1).
Fields F2 and F3 in Fig. 2 form another fusion ART, cor-

responding to the input field of events and the category field
of episodes, respectively. Field F3 encodes an episode of
sequential events in a day with the weight vector represented
as w′

j ′ . The parameters involved in episode learning include
learning rate βs , vigilance parameter ρs , contribution param-
eter γ s , and choice parameter αs in F2.

STEM-ADL can retrieve episodes from various types of
cues. The episode retrieval cue can be a subset of any episodes
starting from the beginning or any other time point in the day.

Once an episode is selected, the associated spatial-temporal
ADL patterns can be reproduced from the selected episode
node in F3 to the event nodes in F2 by performing the readout
operation. Algorithm 2 presents the encoding and retrieval
processes of the episode.

ADL retrieval and prediction

STEM-ADL can retrieve specific ADLs using the occu-
pant’s spatial and temporal preferences. Moreover, due to
its episode learning capability, STEM-ADL can predict sub-
sequent events based on the current event, predicting both
the ADL type and starting time in one shot.

ADL retrieval ADL patterns have certain regularity in the
temporal and spatial features. For example, an occupant usu-
ally has breakfast in the dining room at seven in the morning
and leaves home at eight. So specific ADLs can be retrieved
from spatial-temporal information.

STEM-ADL activates each spatial-temporal ADL pattern
node in F2 with the given time input xt and the place input x p .
All event nodes matching xt and x p are selected to output the
ADL information through a top-down readout operation. The
detailedADL retrieval procedure is presented inAlgorithm3.

Algorithm 3 ADL Retrieval using Spatial-Temporal Infor-
mation
1: Set the timevector xt and place vector x p w.r.t the given input vectors

I t and I p

2: Activate each event node j in F2 by applying choice function

3: Tj ← γ t |xt∧wt
j |

αt+|wt
j | + γ p |x p∧w

p
j |

α p+|w p
j |

(with ADL information missing in

x)
4: Select the event node J with the highest choice value in F2 (see (2))
5: Read out wa

J associated with node J in F2 (see (5))

Subsequent event prediction Performance of ADLs has an
intrinsic chronological order, for example meal preparation
is typically followed by cooking, eating, and washing dishes.
If the smart home could anticipate what the occupant will
perform, it can provide better services in the form of activity
reminders and recommendations. STEM-ADL can predict
the subsequent events based on learned patterns of one’s daily
activities and the current event. The given current event maps
to an event node J in F2 by event encoding. The activation
vector y of F2 is updated to yJ = 1, and y j = 0,∀ j �= J ,
which is used as the cue for episode retrieval. The choice
value of episode nodes in F3 is calculated as follows:

T ′
j ′ = |y ∧ w′

j ′ |
αs + |w′

j ′ |
. (9)

The episode node(s) with the highest choice value in F3 is
then selected. Because only one event is used as the cue
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Algorithm 4 Subsequent event prediction process
1: Set activation vectors xt , x p , and xa w.r.t the current event input

vectors I t , I p , and I a

2: Activate each event node j in F2 by applying choice function
(see (1))

3: Select the event node J with the highest choice value in F2
4: Set yJ ← 1, y j ← 0,∀ j �= J
5: Activate each episode node j ′ in F3 by applying choice function

w.r.t y (see (9))
6: Select the episode node(s) J ′ with the highest choice value in F3
7: Read out w′

J ′ associated with episode node J ′ in F3
8: Update yJ ← w′

J ′,J in F2
9: Compute the subsequent event node activation value (see (10))
10: All nodes j∗ form the candidate event set ( j∗1 , j∗2 ,…, j∗b )
11: Read out w j∗ associated with event node j∗ in F2
12: Obtain the tuple (x̂ t ,x̂ p ,x̂a) in F1
13: if exist different ADL types in the candidate events then
14: Select the candidate event with the highest ADL occurrence and

the minimum time error
15: else
16: Select the candidate event with the minimum time error
17: end if

for episode retrieval, multiple episodes containing this event
might be retrieved. In the selected episodes, the correspond-
ing activation vector(s) y is then read out from F3 to F2.
The activation value yJ of the current event is updated to the
readout value at the same index. As introduced in “Episode
encoding and retrieval” section, the activation values of the
previously activated events gradually decay over time. The
activation value y j∗ of the subsequent event j∗ can be com-
puted by the following function:

y j∗ = yJ
1 − τ

. (10)

All nodes j∗ with an activation value equals to y j∗ form
the candidate event set, denoted as ( j∗1 , j∗2 , . . . , j∗b ). Then,
the event-related attributes associated with node j∗ are read
out from F2 to F1 to get the event tuple (x̂ tl , x̂

p
l , x̂

a
l ) for l =

1, 2, . . . , b. In episodic memory, prediction is made based on
past experiences (i.e., candidate event set). Thewinner-takes-
all strategy applies here as well. If an ADL always follows
the current event, we predict it as the subsequentADL. Let Nl

denote the number of occurrences of tuple element x̂al , and
the ADL type with the highest Nl value in the candidate set is
identified as the prediction result. The winner of ADL types
is indexed at L , where L = argmaxl Nl . In the candidate
event set, two or more event nodes may have the same ADL
but different starting times (depending on the degree of event
generalization). Therefore, when the ADL of the subsequent
event is identified, time error is used as another selection
criterion to break the tie. Specifically, the predicted starting
time should be the one with the minimum error between the
starting time of the subsequent event and the ending time
of the current event. Note that because we use complement
coding and fuzzy AND operations, the output time vector x̂ tl

represents a generalized interval of the starting time (ending
time). The starting time interval is denoted as [x̂ tl,s, 1− ¯̂xtl,s]
rather than just a single timestamp. The error between the
median of the starting time interval and the ending time of
the current event is computed by the following function:

Dl = ∣
∣x̂ tl,sm − xte

∣
∣, l ∈ L (11)

where x̂ tl,sm denotes the median of starting time interval that

x̂ tl,sm = 1
2 (x̂

t
l,s + 1 − ¯̂xtl,s). The winner after competing the

errors in time is indexed at L ′, where L ′ = argminl Dl .
Finally, the starting time of the subsequent event and the
corresponding ADL type are predicted by reading out node
L ′. See Algorithm 4 for a detailed prediction procedure.

Complexity analysis

The complexity of STEM-ADL is analyzed in terms of both
space and time. Let K denote the number of input field
attributes,C denote the number of events, B denote the num-
ber of episodes, and suppose each episode contain g events
on average.

Space complexity

For event encoding, STEM-ADL requires C category nodes
to represent the unique events in the F2 layer and 2CK
weights between F1 and F2 layers including the complements
(see “Event encoding and retrieval” section). Similarly, for
episode encoding, it requires B nodes in the F3 layer and2BC
weights between F2 and F3 layers to encode B episodes. So
the total space requirement without generalization is B + C
+ 2BC + 2CK . Because in most real-world scenarios, there
are more number of episodes than the input field attributes,
i.e., B > K , the space complexity of STEM-ADL is O(BC).

Time complexity

In STEM-ADL, the time complexity of encoding an event is
O(CK ) due to the resonance search process. Subsequently,
STEM-ADL takes an O(gCK ) process on average to gener-
ate the activation for the sequence to be learned at the F2 layer.
Then the activated pattern in F2 is matched with all patterns
stored in the F3 layer. When the matching is unsuccessful,
it is learned as a new category node in the F3 layer. The
learning process of F2–F3 takes O(BC2). Because C > g
and as discussed earlier B > K , BC2 > gCK . Therefore,
the time complexity for STEM-ADL to encode an episode is
O(BC2).

In summary, both the space and timecomplexity ofSTEM-
ADL are reasonably low, which is as expected that the
Fusion-ART models have been shown as computationally
efficient in various application domains [11, 27, 28].
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Fig. 3 Visualization of activities
in Orange4Home. The X-axis
indicates the activity time
(mainly 8 am–5 pm daily), the
Y -axis shows the number of
days recorded (20 days), and the
legends on the right are the
activity types (17 types)

Experimental setup

This section introduces the experimental setup, consisting of
the data sets, data processing, parameter settings, and base-
line models.

Data sets

Smart home-based ADL data sets involve significant sen-
sor deployment and data collection costs, typically recording
one or more occupants’ activities over a considerably long
period of time. In this work, we source for publicly avail-
able data sets to conduct experiments. As aforementioned in
“Introduction” section that ourwork focuses on thehigh-level
modeling of ADL patterns instead of low-level recognition
of specific activities, we may only rely on those data sets
comprising labeled ADL routines performed by one or more
occupants in the smart home environment. However, due
to various reasons, including privacy and ethical issues, not
many collected data sets were made publicly available. Fur-
thermore, among the limited number of publicly available
ones comprising labeled ADL routines, only few are suitable
to be used to evaluate the performance of our STEM-ADL
and other baseline models. For example, in the Cairo data
set [29], only a small part of the recorded ADLs are labeled
with their performers in this multi-occupant data set. In addi-
tion, although ADL labels are given in the single occupant
Kasteren Dataset [30], seven ADLs (namely leaving, bev-
erage, sleeping, showering, breakfast, dinner, and toileting)
are not rich enough to describe one’s daily activities in real
life, thus, not suitable for use in our experiments. In the
end, we find the following two smart-home data sets suit-

able to be used to evaluate the performance of STEM-ADL
and other baseline models. Both data sets have full annota-
tions of ADLs, comprising the starting timestamp, ending
timestamp, the location, and the associated activity.

Orange4Home The Orange4Home data set collected the
ADLs of a single occupant for 20 successive work days (i.e.,
four weeks) [6] (see Fig. 3). The ADL types and the cor-
responding location and number of occurrence are shown
in Table 1. The activities occurred in eight areas within the
apartment: entrance, living room, kitchen, bedroom, office,
bathroom, toilet, and staircase.
OrdonezB The OrdonezB data set collected 23 days of activ-
ities performed by a single occupant in his home [7] (see
Fig. 4). The ADL types and the corresponding location and
number of occurrence are shown in Table 2. The activities
occurred in five areas: kitchen, living room, bathroom, bed-
room, and entrance.

As shown in Tables 1 and 2, the number of ADL types cap-
tured in Orange4Home is much more than that in OrdonezB.
Nonetheless, the ADL routines in Orange4Home are much
more regular than those in OrdonezB (see Figs. 3 and 4),
which leads to the difference in the prediction accuracy for all
models between the two data sets (see “Experimental results”
section).

Data processing

We encode a day consisting of 24h of activities as one
episode. As an artifact, events in OrdonezB across midnight
are split into two events, i.e., the first ends at 23:59:59, and
the second begins at 00:00:00 on the following day. Based
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Table 1 Location and number
of occurrence of ADLs in
Orange4Home

Place Activity Number Place Activity Number

Bedroom Dressing 30 Bathroom Using the sink 38

Reading 15 Using the toilet 9

Napping 15 Showering 19

Cleaning 3 Cleaning 4

Living Room Eating 19 Kitchen Preparing 19

Cleaning 19 Cooking 19

Watching TV 18 Washing the dishes 19

Computing 15 Cleaning 4

Staircase Going up 57 Office Computing 46

Going down 57 Watching TV 14

Entrance Entering 21 Cleaning 4

Leaving 21 Toilet Using the toilet 8

Fig. 4 Visualization of activities
in OrdonezB. The X-axis
indicates the activity time
(00:00–23:59), the Y -axis shows
the number of days recorded (23
days), and the legends on the
right are the activity types (10
types)

Table 2 Location and number
of occurrence of ADLs in
OrdonezB

Place Activity Number Place Activity Number

Kitchen Breakfast 22 Bathroom Showering 11

Lunch 13 Toileting 93

Dinner 11 Grooming 113

Snack 47 Living Watching TV 116

Bedroom Sleeping 29 Entrance Leaving 38
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Fig. 5 Relationship between the number of ST ADL patterns and vig-
ilance values

on such division, November 11, 2012 (Day 1) and December
3, 2012 (Day 23) both only have one event (see Fig. 4), so
we remove these two days in all experiments. We only con-
sider the prediction of events within the same episode and
not across the episodes. The encoding of the input fields is
as follows:
Time vector is obtained by normalizing the starting and end-
ing timestamps of an ADL (see “Time vector” section). For
example, in Orange4Home, Day 1, the activity “Computing”
started at 08:48:41 and ended at 11:45:44. After normaliza-
tion and complement coding, the corresponding time vector
is (0.367, 0.490, 0.633, 0.510) (see (6)). The length of the
time vector is 4.
Place vector represents the location where each ADL is per-
formed. Referring to the previous example when introducing
time vector, activity “Computing” occurred in the “Office.”
The corresponding place vector is (0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
1, 1, 1, 0, 1, 1), where the sixth bit represents “Office.” The
length of the place vector for Orange4Home is 16 (8 places
with their complements) and 10 for OrdonezB (5 places with
their complements).
ADL vector represents the recorded ADL types of the data
set. Following the same example used before, theADLvector
is (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), where the seventh bit indicates
the “Computing” activity. The length of the ADL vector for
Orange4Home is 34, and 20 for OrdonezB.

Parameter settings

Parameters ρk , one for each channel k in F1, regulate the gen-
eralization across events. In the template matching process
(see (3)), vigilance parameters are used as threshold criteria
to judge whether a resonance occurs. Figure5 shows the total
number of events generated with different vigilance values
for the Orange4Home and OrdonezB data sets. When the
vigilance value is set to 1, each activity instance is consid-
ered a distinct spatial-temporal ADL pattern. A reduction of
0.01 in the event-level vigilance value results in an approxi-
mately 80% and 50% decrease in the number of generalized
ADL patterns for the Orange4Home andOrdonezB data sets,
respectively (seeFig. 5).With vigilancevalues smaller than1,
STEM-ADL clusters similar events into the same event node

and generates the generalized pattern through template learn-
ing (see (4)). Table 3 shows the number of events and episodes
generated with different vigilance combinations. Parameter
ρs regulates the generalization across episodes. As shown in
Table 3, the number of episodes for Orange4Home decreases
as ρs drops from 1 to 0.9, indicating that the episodes in the
Orange4Home are highly similar, while those in OrdonezB
are significantly different (i.e., no generalization performed
to merge episodes). To balance the specificity and gener-
alization ability, we set ρt = 0.99 for Orange4Home and
ρt = 0.95 for OrdonezB in F1, which corresponds to the
variety of the two data sets (see Figs. 3 and 4). Because the
place and ADL vectors are binary-valued, we set both ρ p

and ρa to 1, thus requiring an exact match on these two input
fields.

The following parameter values of STEM-ADL are used
in all the experiments conducted in this work. For event
encoding between F1 and F2, k ∈ {t, p, a}, choice parame-
ters αk are set to 0.001 to avoid NaN in the choice function
(see (1)), contribution parameters γ k = 0.333, which means
the impact among the three input fields is equal, learning rate
βk = 1 for fast learning. For episode encoding between F2
and F3, there is only one input channel, and the parameters
are set asαs = 0.001, γ s = 1,βs = 1, andρs = 1. The delay
coefficient τ is set to 0.1. Except for the discussion of ρt , all
the other parameters in STEM-ADL take the default values
used in various fusion ART models [2, 11, 13]. Although
STEM-ADL has several parameters, it is pretty straightfor-
ward to set their values.

Baselinemodels

For comprehensive performance comparisons, we select not
only traditional machine learning approaches, such as Gaus-
sian Naive Bayes (GNB) [31], Support Vector Machine
(SVM) [32], and Decision Tree (DT) [33], but also deep
learning approaches, such as Long Short-Term Memory
(LSTM), Recurrent Neural Networks (RNN), Gated Recur-
rent Units (GRU). We also compare it with STADLART
and a self-organizing incremental neural network named
SOINN+ [34]. Their input vectors are composed of the same
features as STEM-ADL.

Compared to STEM-ADL, there is an extra day field in
STADLART, and the day vector xd is defined as follows:

xd = (xd1 , xd2 , . . . , xd9 , x̄d1 , x̄d2 , . . . , x̄d9 ), (12)

where xd1 to xd7 denote “Monday” to “Sunday,” xd8 and xd9
denote “Weekday” and “Weekend,” respectively.

LSTM controls the flow of information through three
types of gates to performmemory functions. SOINN+ inher-
its ideas from SOINN [35] to execute associative memory
tasks and is relatively more capable of handling noisy data
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Table 3 The number of events
and episodes generated with
different vigilance values

ρt ρs Orange4Home (20 days) OrdonezB (21 days)

Events No. Episodes No. Events No. Episodes No.

1.00 1.00 492 20 508 21

1.00 0.90 492 20 508 21

0.99 1.00 102 19 269 21

0.99 0.90 102 14 269 21

0.95 1.00 45 19 114 21

0.95 0.90 45 9 114 21

streams. For RNN, LSTM, GRU, we set neurons number =
128, epochs = 300, batch size = 64, “MSE” for loss function,
and “Adam” as the optimizer. We tune the parameters of all
baseline models iteratively and report their best performance
in the next section.

Experimental results

In this section, experimental results on event retrieval, ADL
retrieval, and subsequent event prediction are evaluated in
terms of accuracy and F1-score. In the event retrieval exper-
iments, all events in the data sets are used for retrieval cues.
In the ADL retrieval and subsequent event prediction experi-
ments, the “leave-one-day-out” approach is adopted to verify
the validity of the proposed model, which is K-fold cross
validation, where K is equal to the number of days. The ver-
ification algorithm takes the activity instances of one day as
the test set and the activity instances of the other days as the
training set, calculates the average value and uses it formodel
evaluation.1 All experiments were conducted on a computer
equipped with an Intel i7-10750H 2.60GHz CPU and 16GB
RAM.

Event retrieval

After ADL instances are encoded into the episodic memory
model, we conduct event retrieval experiments using noisy
and partial cues to evaluate the robustness of STEM-ADL.
Weuse retrieval accuracy as the evaluationmetric. If the event
which generates the corresponding retrieval cue is within the
retrieved event set, it is considered a successful retrieval. Oth-
erwise, it is a failure. Therefore, retrieval accuracy is defined
as the rate of the number of successful retrievals over the
overall amount of retrieval cues used. For a fair comparison,
the day vector in STADLART is set to all 1s (1 s are used to
denote do-not-care).
Noisy cue In this experiment, the presence of these noisy cues
is simulated by injecting noise into the data sets. Specifically,

1 The source code will be provided if the article is accepted.

random noise is added to each attribute of the input field with
varyingprobabilities. For the timefield, the attributes are con-
tinuous, and the values are subjected to Gaussian noise with
N% probability, where N ∈ {0, 10, 20, 30, 40, 50}. First, a
random number r is selected, where r ∈ [0, 100]. If r ≤ N ,
the corresponding time attribute is subjected to the addition
of Gaussian noise with zero mean and a standard deviation
of 0.01 (not applicable for complements, whose values are
computed after the addition of noise), and its value is capped
within the range of [0, 1] for correctness. For the place and
ADL fields, their attributes are binary-valued, and each bit of
the attributes is toggled (i.e., x ′ = 1 − x) with a probability
of N% (again, not applicable for complements).
Partial cue Partial cues are incomplete cues with miss-
ing attribute values. We randomly select one, two, or three
attributes among the time, place, and ADL type fields to gen-
erate the partial cues. For LSTM and SOINN+, the missing
attributes are filled with 0 s. For example, when the partial
cue contains only one attribute and the time vector is selected,
the partial cue is (xt , 0, 0).

Because both types of retrieval cues involve randomness,
the accuracy varies across different runs. Hence, we run each
experiment ten times and report the average results. Figures6
and 7 show the retrieval results using noisy and partial cues,
respectively. When the noise level is 0 (i.e., exact retrieval),
all models achieve 100% accuracy. When the noise level
increases, the performance of all models declines. Overall,
STEM-ADL and STADLART perform comparably well in
event retrieval, and both outperform SOINN+ and LSTM,
indicating that the fusion ART models are better at handling
imperfect information. Similarly, all models achieve 100%
accuracy with no missing attributes. With missing attribute
values, STEM-ADL shows slightly better performance than
STADLART, and both models outperform SOINN+ and
LSTM.This is due to the fact that STEM-ADLadopts amulti-
channel fusion mechanism (also adopted by STADLART),
while SOINN+ is a single-channel learning model that takes
all multi-source context information as a whole. When the
number of attributes decreases to one or two, the performance
of LSTM declines sharply, indicating that it might not handle
partial cue retrieval tasks well.
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Fig. 6 Retrieval accuracy for
noisy cues

Fig. 7 Retrieval accuracy for
partial cues

ADL retrieval

We report the ADL retrieval accuracy of different models
with the given spatial and temporal information in Table 4.
Because the temporal information in STADLART contains
the associated day information (see (12)), we provide both
retrieve results with and without the day field. As shown
in Table 4, STEM-ADL outperforms all other models in
terms of accuracy and F1-score on both data sets. The
underlying reasons for the high ADL retrieval accuracy
achieved by STEM-ADL (91.2% for Orange4Home and
76.9% for OrdonezB) are mainly twofold. First, it encodes
ADL patterns across all days for better generalization. Sec-
ond, it holistically learns the association among the ADL
and the corresponding spatial-temporal information. Specif-
ically, STEM-ADL does not differentiate the day type and
captures the generic ADL patterns across all days (see “ADL
retrieval and prediction” section). Meanwhile, STADLART

encodes theADLsperformedondifferent day types (see (12))
into disjoint patterns. This explains why STEM-ADLoutper-
forms STADLART in the activity retrieval task. In contrast to
othermachine/deep learningmodels that learn an approxima-
tion function of inputs (time and place in this case) mapping
to outputs (ADL), STEM-ADL adopts associative learning
among all three input fields of F1. Therefore, STEM-ADL is
naturally suitable for ADL retrieval tasks.

More details on the classification results of STEM-
ADL are provided by presenting the confusion matrix. In
Orange4Home, activities have high temporal and spatial sta-
bility. “Computing” is the most stable activity, followed
by “Watching TV” and “Dressing.” “Cleaning” may occur
in any room of the apartment and has the highest rate of
incorrect retrieval (see Fig. 8), and “Toileting” is easily mis-
judged due to the randomness of its occurrence time. In
OrdonezB, activities such as “Leaving,” “Sleeping,” and
“Watching TV” can be correctly identified based on the
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Table 4 Comparisons on ADL
retrieval performance

Model Orange4Home OrdonezB

Accuracy F1-score Accuracy F1-score

GNB 0.663±0.058 0.673±0.096 0.712±0.071 0.749±0.063

SVM 0.576±0.021 0.491±0.037 0.711±0.056 0.571±0.093

DT 0.888±0.121 0.874±0.149 0.746±0.091 0.723±0.114

RNN 0.686±0.049 0.640±0.077 0.712±0.060 0.650±0.095

LSTM 0.684±0.043 0.613±0.056 0.718±0.052 0.665±0.087

GRU 0.680±0.053 0.617±0.067 0.718±0.053 0.666±0.094

SOINN+ 0.763±0.094 0.757±0.136 0.714±0.061 0.692±0.096

STADLART (with day) 0.785±0.129 0.723±0.170 0.515±0.080 0.500±0.114

STADLART (w/o day) 0.826±0.116 0.801±0.154 0.642±0.102 0.629±0.103

STEM-ADL 0.912±0.090 0.899±0.117 0.769±0.085 0.765±0.106

Bold values indicate the best performance

Fig. 8 Confusion matrix of
ADL retrieval in Orange4Home

given spatial-temporal information. However, activities such
as “Grooming,” “Toileting,” and “Showering” take place in
the bathroom and can easily be confused with each other.
Activity “Dinner,” which takes place over a wide range of
time from 21:47 to 23:35, has no consistent temporal pattern
and is usually confused with “Snack” (see Fig. 9).

Subsequent event prediction

As introduced in “ADL retrieval and prediction” section, the
ADL and time vectors can be read out after selecting the
winner event node in the prediction task.
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Fig. 9 Confusion matrix of
ADL retrieval in OrdonezB

Table 5 Comparisons on
subsequent event prediction
accuracy

Model Orange4Home OrdonezB

Accuracy F1-score Accuracy F1-score

GNB 0.718±0.057 0.718±0.068 0.211±0.058 0.284±0.087

SVM 0.701±0.042 0.674±0.042 0.322±0.070 0.159±0.036

DT 0.886±0.063 0.894±0.047 0.359±0.068 0.311±0.088

RNN 0.883±0.095 0.887±0.096 0.342±0.081 0.216±0.053

LSTM 0.889±0.098 0.892±0.097 0.353±0.071 0.231±0.058

GRU 0.893±0.092 0.894±0.092 0.337±0.079 0.220±0.060

SOINN+ 0.733±0.055 0.732±0.079 0.325±0.081 0.260±0.113

STADLART 0.884±0.077 0.884±0.093 0.320±0.061 0.288±0.081

STEM-ADL 0.920±0.059 0.921±0.058 0.381±0.070 0.333±0.098

Bold values indicate the best performance

ADL prediction The ADL prediction performance of various
models on both data sets is shown in Table 5. The proposed
STEM-ADL is superior to the existing models in terms of
both accuracy and F1-score. Following the same example
used in “Data processing” section, predict that the activity
occurring after “Computing” is “Going down.” It can be
interpreted by the behavior routine of the occupant to infer
the subsequent activity. STEM-ADL encodes the context-

aware information of the activity and models the sequence
of spatial-temporal activity patterns.
Starting time prediction In addition, we compare the pre-
dicted starting time of subsequent events, which is another
important aspect of real-world applications. Because of the
use of fuzzy AND operations and complement coding,
STEM-ADL learns the generalized event nodes, represent-
ing aggregations of the same ADL occurring at close times.
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Table 6 Subsequent event
prediction accuracy with
different vigilance values

Date Set ρt ρs ADL MAE (in minutes)

Accuracy F1-score Interval Median

Orange4Home 0.95 1 0.919 ± 0.070 0.913 ± 0.076 3.60 15.84

0.99 1 0.920 ± 0.059 0.921 ± 0.058 3.95 6.99

OrdonezB 0.95 1 0.381 ± 0.070 0.333 ± 0.098 24.62 42.78

0.99 1 0.326 ± 0.077 0.289 ± 0.082 19.20 21.95

Bold values indicate the best performance

Table 7 Starting time prediction
of the subsequent event
compared across various models

Model MAE (in minutes)

Orange4Home OrdonezB

RNN (median error) 9.78 74.18

LSTM (median error) 5.22 69.90

GRU (median error) 5.28 69.57

STADLART (median error, see (14)) 12.05 50.74

STADLART (interval error, see (13)) 10.00 50.45

STEM-ADL (median error, see (14)) 6.99 42.78

STEM-ADL (interval error, see (13)) 3.95 24.62

The best interval error is highlighted in bold, and the best median error is underlined

Therefore, it can provide a time interval in which the occu-
pant often performs a specific activity.We expect the event to
occur within the predicted starting time interval. As with the
activity prediction example, the predicted event starts within
the intervals “11:41:07” and “11:52:21.”

For a fair comparison with the deep learning models that
produce a single timestamp prediction, we compute and
present two types of mean average error (MAE) for STEM-
ADL and STADLART, namely the interval error and median
error. For interval error, if the ground-truth starting time of
an event falls within the time interval predicted by STEM-
ADL (or STADLART), the amount of error is deemed as
0. Otherwise, the error is computed as the absolute differ-
ence between the ground-truth value and its nearest interval
boundary. Specifically, let tgi denote the ground-truth starting
time of the i th subsequent event, and ti = [ts1i , ts2i ] denote
the predicted starting time interval of the i th subsequent event
for STEM-ADL or STADLART. The interval MAE is com-
puted as follows:

MAEinterval

= 1

H

H∑

i=1

{
0, if tgi ∈ ti .

min(
∣
∣tgi − ts1i

∣
∣ ,

∣
∣tgi − ts2i

∣
∣), if tgi /∈ ti .

(13)

where H denotes the overall number of subsequent events
in the test set. For median error, the median timestamp of
the predicted starting time interval is taken as the single pre-
diction value and used for MAE computations as the other

models do. The median MAE is computed as follows:

MAEmedian = 1

H

H∑

i=1

∣
∣tgi − mean(ts1i , ts2i )

∣
∣ . (14)

Note that for STEM-ADL and STADLART, only the gener-
alized time interval is preserved after training. Both models
do not keep track of the exact data samples learned during
the generalization process for efficiency. Therefore, although
we name MAEmedian as “median error,” we make use of the
mean of the interval boundaries (see (14)).

Although for the interval errors, if the predicted interval is
large enough, the probability of obtaining zero error is high.
However, the prediction of starting time should be consid-
ered in conjunction with the prediction accuracy of ADL. It
is not true that the larger the prediction interval is, the better
the result will be. Per the introductions in “Fusion ART” and
“Parameter settings” sections, ρt and ρs regulate the gen-
eralization of events and episodes, respectively. The larger
the ρt is, the higher specificity of the event is, on the con-
trary, the smaller the ρt is, the higher generalization of the
event is. In the activity prediction task, spatial-temporal ADL
patterns are learned from historical behaviors, and therefore,
appropriate values are selected to balance specificity and gen-
eralization ability. Due to the difference between the two data
sets, ρt takes diverse values to achieve reasonable general-
ization. Table 6 shows the prediction results with different
vigilance values and the optimal ADL prediction results are
consistent with the threshold of the optimal event generaliza-
tion. ADL’s accuracy and time error are shown as not being
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able to be optimized simultaneously because the time inter-
val of activity becomes larger after generalization. Note that
the results reported in the subsequent event prediction corre-
spond to the best ADL accuracy.

The MAE errors of all models are reported in Table 7.
Regarding interval error, STEM-ADL has the minimum pre-
diction error for both data sets, outperforming all the others,
including STADLART, which also computes the same type
of interval error. Regarding the median error, STEM-ADL
achieves the third best in Orange4Home (with minor differ-
ences to LSTM and GRU) and outperforms all the others in
OrdonezB.

For STEM-ADL, ADL prediction is made by mining
human behavior patterns, events generalization are needed.
The time complexity is due to the generalization of comput-
ing winner nodes and the winner is subject to code activation
and template matching. All event-related information can be
retrieved together by following the bottom-up activation and
top-down memory readout procedures (see Algorithms 1, 2
and 4, respectively). Using the vigilance parameter com-
bination as introduced in “Parameter settings” section, the
average model training time is 4.35 s for Orange4Home,
5.78 s for OrdonezB. For event prediction, it takes an aver-
age of 11.87 ms to predict subsequent ADL. On the contrary,
when deep learning models handle the prediction task with
time series, they generally need two networks to predict the
ADL type (classification task) and the starting time (regres-
sion task), respectively. LSTM, for example, has an average
training time of 23.86 s and prediction time of 29.33 ms,
which are both significantly longer than those of STEM-
ADL. Therefore, for subsequent event prediction, the deep
learning models have no advantage on both accuracy and
efficiency.

Conclusion

We propose a spatial-temporal episodic memory approach
called STEM-ADL, that employs fusion ART modeling
based on a self-organizing neural network for ADL learning
and prediction. STEM-ADL explicitly considers ADL and
related context information including starting time, ending
time, and spatial information. ADL data streams are aggre-
gated at the bottom layer to generate spatial-temporal ADL
patterns represented by events to encode the temporal and
spatial properties of ADLs, and a series of spatial-temporal
ADL patterns are encoded as an episode. Compared with
STADLART, STEM-ADL encodes the activated sequence
of events in a gradient decay pattern, which enriches the
context-aware knowledge and improves the overall perfor-
mance. The data sets Orange4Home provided by Orange
Labs and OrdonezB offered by UCI are applied to evaluate
the effectiveness of the proposed STEM-ADL. STEM-ADL

generalizes an occupant’s ADL spatial and temporal pat-
terns over several days and provides information for further
behavior prediction. In all experiments, STEM-ADL was
compared with STADLART and other baseline algorithms
such as LSTM and an associativememorymodel. The results
show that STEM-ADL is superior to the baseline algorithms
in various aspects. STEM-ADLmodel has high robustness in
encoding and recalling stored events using partial and noise
search cues. In addition, STEM-ADL well retrieves ADLs
from thegiven spatial-temporal information and further accu-
rately predicts the subsequent event, which comprises ADL
type and starting time. As discussed, STEM-ADL requires
less time and space complexities.

By utilizing the STEM-ADLmodel, an intelligent system
will know the typical activity patterns of the occupant. Based
on this knowledge, smart home-based healthcare applica-
tions and other health-assistive services become possible.
For example, the intelligent system can predict the occu-
pant’s next activity to provide a lifestyle recommendation to
improve people’s quality of life.

Due to the limitations of data sets,we are only able to study
the behavior of a single occupant living in an intelligent envi-
ronment. In the future, we intend to enlarge the capability of
STEM-ADL to dealwithmore challenging scenarios, such as
using ADLs collected from the same smart home to identify
individuals living together when such real-world data sets are
available.
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