
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2023

KRover: A symbolic execution engine for dynamic kernel analysis KRover: A symbolic execution engine for dynamic kernel analysis

Pansilu Madhura Bhashana Pitigalaarachchi PITIGALA ARACHCHILLAGE
Singapore Management University, pansilu.2020@phdcs.smu.edu.sg

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Haiqing QIU
Singapore Management University, hqqiu@smu.edu.sg

Haoxin TU
Singapore Management University, haoxintu.2020@phdcs.smu.edu.sg

Jiaqi HONG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
PITIGALA ARACHCHILLAGE, Pansilu Madhura Bhashana Pitigalaarachchi; DING, Xuhua; QIU, Haiqing; TU,
Haoxin; HONG, Jiaqi; and JIANG, Lingxiao. KRover: A symbolic execution engine for dynamic kernel
analysis. (2023). Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2009-2023.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8469

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Pansilu Madhura Bhashana Pitigalaarachchi PITIGALA ARACHCHILLAGE, Xuhua DING, Haiqing QIU,
Haoxin TU, Jiaqi HONG, and Lingxiao JIANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8469

https://ink.library.smu.edu.sg/sis_research/8469

KRover: A Symbolic Execution Engine for Dynamic Kernel
Analysis

Pansilu Pitigalaarachchi
pansilu.2020@phdcs.smu.edu.sg

Singapore Management University
Singapore

Xuhua Ding
xhding@smu.edu.sg

Singapore Management University
Singapore

Haiqing Qiu
hqqiu@smu.edu.sg

Singapore Management University
Singapore

Haoxin Tu∗
haoxintu.2020@phdcs.smu.edu.sg
Singapore Management University

Singapore

Jiaqi Hong†
hjqgzz@gmail.com

Independent Researcher
Singapore

Lingxiao Jiang
lxjiang@smu.edu.sg

Singapore Management University
Singapore

ABSTRACT

We present KRover, a novel kernel symbolic execution engine
catered for dynamic kernel analysis such as vulnerability analysis
and exploit generation. Different from existing symbolic execu-
tion engines, KRover operates directly upon a live kernel thread’s
virtual memory and weaves symbolic execution into the target’s
native executions. KRover is compact as it neither lifts the tar-
get binary to an intermediary representation nor uses QEMU or
dynamic binary translation. Benchmarked against S2E, our perfor-
mance experiments show that KRover is up to 50 times faster but
with one tenth to one quarter of S2E memory cost. As shown in
our four case studies, KRover is noise free, has the best-possible
binary intimacy and does not require prior kernel instrumentation.
Moreover, a user can develop her kernel analyzer that not only
uses KRover as a symbolic execution library but also preserves its
independent capabilities of reading/writing/controlling the target
runtime. Namely, the resulting analyzer on top of KRover inte-
grates symbolic reasoning and conventional dynamic analysis and
reaps the benefits of their reinforcement to each other.

CCS CONCEPTS

• Security and privacy → Software and application security;

KEYWORDS

Dynamic Kernel Analysis; Symbolic Execution

ACM Reference Format:

Pansilu Pitigalaarachchi, Xuhua Ding, Haiqing Qiu, Haoxin Tu, Jiaqi Hong,
and Lingxiao Jiang. 2023. KRover: A Symbolic Execution Engine for Dy-
namic Kernel Analysis. In Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’23), November 26–30,
2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3576915.3623198

∗Haoxin is also a Ph.D. student at Dalian University of Technology, China.
†Jiaqi’s contribution was made when she worked as a research fellow at SMU.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623198

1 INTRODUCTION

Symbolic execution (SE) is known for its capabilities of precisely
describing the concerned data flows by using symbolic expressions
and characterizing the control/data flow’s dependence on inputs
with constraints. Besides its traditional application domain (namely
software testing), vulnerability discovery and automatic exploit
generation (AEG) are the new applications benefiting from its rea-
soning and path exploration power, as shown in several techniques
for dynamic kernel security analysis [11, 27].

To the best of our knowledge, S2E [7] is the only symbolic exe-
cution engine supporting kernel analysis1. S2E is anchored at the
CPU layer by integrating itself with QEMU [2]. It becomes a soft-
ware CPU to host all user and kernel threads in a virtual machine.
Instructions involving symbolic data are dispatched to its KLEE
[4] engine for symbolic computation. The CPU-anchored approach
empowers S2E to analyze system-wide code-oriented properties
such as performance profiling and driver analysis. However, this
approach exhibits several inherent performance and usability limi-
tations when applied to dynamic kernel thread analysis.

S2E may expand the scope of execution more than needed if the
analysis is targeted on selected threads. Since QEMU does not dic-
tate which thread to be scheduled to run, S2E processes all threads
regardless of their relevance to the analysis goal. Although the
out-of-scope execution does not affect the correctness of analy-
sis results, it could take a non-negligible toll on performance and
resource consumption. More importantly, the CPU-anchored ap-
proach results in a semantic gap between S2E and the kernel since
the CPU is agnostic to software semantics. To bridge the gap, S2E
requires the target kernel to be instrumented beforehand so that the
desired information can be exposed. For kernels with no such instru-
mentation, the unattended gap hinders effective dynamic analysis
concerning software-level semantics. For instance, to count instruc-
tions executed within one thread requires identifying the thread’s
CR3 value as well as monitoring CR3 switches. Without kernel in-
strumentation, it is difficult to notify QEMU and get support. Lastly,
the user’s analysis code lacks direct command and control over the
target thread, because it is only executed via user plugins and their
access to the target runtime is mediated by S2E and QEMU.

1SymQEMU [18] is claimed to be applicable for the kernel though no detailed experi-
ments are provided.

2009

https://doi.org/10.1145/3576915.3623198
https://doi.org/10.1145/3576915.3623198
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623198
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623198&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

In this paper, we propose KRover, an engine for dynamic sym-
bolic analysis for kernel threads. A kernel analyst can develop her
kernel analysis program on top of KRover and invokes the latter as
a library. The program benefits from the following KRover features.
• KRover takes a live kernel thread as input and functions without
(necessarily) relying on the kernel source code. KRover neither
instruments the kernel binary nor applies Dynamic Binary Trans-
lation (DBT) as in QEMU [2] or Pin [12].

• The analysis program (including KRover) uses the same address
space as the target kernel’s, with its binary instructions running
on the CPU and referencing kernel memory using kernel virtual
addresses e.g., mov %rax 0xffffffff12345678.

• The analysis program, like conventional dynamic analysis tools,
has access to hardware features to control the target thread, such
as using debug registers or INT3 probes.

• The analysis program is empowered by KRover to direct how
the target thread runs: to “slide down" from one program point to
another with native execution or to single-step with symbolic ex-
ecution for close monitoring and analysis. The analysis program
orchestrates the interleaving of these two modes.

These features make KRover amicable for those kernel analysis
tasks which demand a binary level understanding of an execution
flow. For ease of presentation, we collectively call them binary
intimacy, which has a richer implication than binary code oriented
symbolic execution as provided by SymQEMU [18] and QSYM [29].

The advantages of KRover are attributed to our novel system de-
sign. The common approach of existing symbolic execution (SE) en-
gines is to translate the target source/binary code into another rep-
resentation whose execution subsequently accommodates symbolic
operations. Specifically, QSYM [29] makes direct binary-to-binary
compilation while all other engines compile/uplift the target’s
source/binary code to various forms of IR code [4, 5, 7, 17, 18, 25].
The symbolic computation logic is interposed upon the execu-
tion/interpretation of the “new-looking” target which is expected to
preserve the predecessor’s semantics as much as possible. Instead
of relying on code translation, KRoverweaves symbolic operations
into the target’s binary execution by using OASIS [8], a KVM-based
dynamic software analysis infrastructure supporting address space
coalescence and cross-space analysis.

KRover’s limitations are also due to its architectural design.
KRover is not capable of performing systemwide symbolic analysis
as it functions upon the targeted threads only. In addition, it cannot
handle some hardware related instructions such as hlt. Since both
the target and KRover run on the same bare-metal hardware, those
instructions could disrupt the underlying environment.

We have built a prototype2 of KRover on Linux and evaluated
its performance and usability. Our performance experiments upon
single-path execution of 50 Linux systems call handling show that
KRover is 6.8 times faster than S2E on average and 50 times max-
imum, with 1/10 to 1/4 of S2E’s physical memory consumption.
We have also run four case studies. The first two are on a buffer
overflow vulnerability in a kernel module which can only be trig-
gered after several network I/O operations prepare the necessary
kernel state. In the first case study KRover is used to generalize
and characterize the vulnerability and in the second we assess if

2The source code of KRover is available at https://github.com/KRoverSystems/KRover

the vulnerability fix is complete. In the third, we analyze a rootkit
behavior to attest to the benefits of binary intimacy and the chal-
lenges of undertaking the same task with S2E. The last case study
showcases that KRover’s thread-centric execution is noise-free
while S2E’s is not. These cases also demonstrate how a user can
easily develop a kernel analyzer program that uses KRover as a
library and handles binary-level challenges.

Organization. In the next section, we present an overview of
KRover including its software and system architecture. In Section 3,
we describe the system aspects of KRover including the memory
model. Section 4 presents the algorithmic aspects of KRover, in-
cluding the ways to concretely or symbolically execute kernel in-
structions. Section 5 reports the performance of KRover, including
the time and memory costs taken for one round of execution and
KRover component overheads, etc. Section 6 presents three prac-
tical use cases of KRover for generalization and characterization
of a CVE, vulnerability fix validation, rootkit behavior analysis,
respectively, and a synthetic case to show noisy execution in S2E.
We discuss related work in Section 7 and conclude the paper in Sec-
tion 8. More details about KRover implementation and experiment
results are reported in the full version of this paper [21].

2 OVERVIEW OF KROVER

As a binary symbolic execution engine, KRover runs kernel instruc-
tions starting from a live kernel state and explores only one path
at a time by default. It outputs the path constraint and the state
constraint if any. KRover can also be invoked to explore multiple
paths with a given exploration strategy.

2.1 KRover Architecture

System Architecture. As depicted in Figure 1, KRover runs as a
library of the user’s dynamic onsite analyzer on top of OASIS [8].
With the support of OASIS, it exports the kernel thread from the
guest VM to the onsite environment where, on the same vCPU core,
the captured kernel thread can run natively (i.e., using the same
instructions, data, and addresses as in the guest VM) and KRover
can also run in the kernel’s virtual address space. To highlight the
two modes of execution within the onsite environment, we refer
to them as the native environment and the analysis environment,
respectively.

OASIS

Guest VM

KRover

Host OS

Onsite Environment

Thin-Controller

Fat-Controller

sym. inst.
executor

con. inst.
executor

export

kernel
threadnat. env.analysis env.

User Analyzer OASIS API

Figure 1: System architecture andmain software components

of KRover

2010

https://github.com/KRoverSystems/KRover

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Software Components. KRover consists of four main software
components: two controlling modules: Fat-Controller and Thin-
Controller as well as two execution modules: the Concrete Instruc-
tion Executor (CIE) and the Symbolic Instruction Executor (SIE).
Fat-Controller manages execution switches between the native en-
vironment and the analysis environment, while Thin-Controller
dispatches kernel instructions to the CIE or the SIE in the analysis
environment, depending on whether symbols are involved. The
user analyzer can directly invoke Fat-Controller or Thin-Controller
to carry out executions.
Three Execution Modes & One Virtual Memory. At the high-
est level, Fat-Controller and Thin-Controller command how kernel
symbolic execution is carried out. Fat-Controller directs the kernel
execution at the function level. It dispatches a kernel function invo-
cation to either the native environment or the analysis environment.
In the former, the kernel function runs natively and exits from the
environment either when the function returns or when an instruc-
tion involving symbols is encountered. In the analysis environment,
Thin-Controller directs instruction executions within a function. It
dispatches those instructions whose execution involves symbolic
data to the SIE for an interpreted execution. Namely, they are inter-
preted to emulate the effects. Those instructions without symbols
are dispatched to the CIE for a CPU execution without interpreta-
tion. The concrete execution is to relocate the target instructions
and then execute them with the original memory content. Thus,
KRover’s kernel symbolic execution transits in three execution
modes, i.e., native, concrete, and interpreted executions, according
to schedules made by the two controllers at runtime. The latter two
are collectively called onsite symbolic execution as both are on the
OASIS analysis environment and Thin-Controller’s management.

Empowered by the OASIS framework, interpreted and concrete
executions in the analysis environment can make native read/write
accesses to the target kernel virtual memory in the same way as na-
tive executions in the native environment. Hence, all three modes of
executions are conducted upon the target virtual memory, namely
directly referencing the target objects with the same virtual ad-
dresses (VAs). The only difference is that interpreted execution
accesses addresses with symbolic data while the other two do not.

2.2 Onsite Symbolic Execution

Thin-Controller executes kernel instructions one by one using ei-
ther the CIE or the SIE based on whether symbolic data is involved.
It also synchronizes the software CPU context used by the SIE and
the hardware CPU context when switching between interpreted
and concrete executions.
Symbolic Instruction Executor (SIE). The SIE emulates the
CPU execution of symbolic instructions and updates the software
CPU context and/or the memory with concrete or symbolic data.
If needed, it creates a new symbolic expression according to the
instruction’s semantics. A challenge in the SIE design is CPU flag
handling. Many x86 instructions result in flag changes which affect
the subsequent execution of a conditional instruction (e.g., jnz).
Thus, the SIE must support symbolized flags. We delay flag setting
in order to reduce the induced performance toll, which is the same
strategy as used by the VEX IR layer in angr [25]. A key difference is
that VEX’s flag handling is for every instruction whereas KRover’s

flag handling only occurs when executing instructions involving
symbolic data. Because of this difference, we can generalize flag
operations instead of taking instruction snapshots [25].
Concrete Instruction Executor (CIE). The CIE is designed to
leverage its capability of directly referencing the target’s virtual
memory. It relocates the concrete instruction from the original ker-
nel VA to a new VA in KRover’s space. If the memory operand is
dependent on the instruction address, it rewrites the operand to
reference the original VA. The relocation approach is more efficient
than dispatching concrete instructions to the native environment.
The speed of native execution of the latter approach cannot com-
pensate for the expensive context switches between native and
analysis environments whereas switches between SIE and CIE are
merely control flow transfers.
Path Selection Strategies. When handling a conditional transfer
instruction whose condition involves a symbol, Thin-Controller
selects the branch to explore according to a parameter set by the
user analyzer. The analyzer may use the seeded selection, i.e., to
follow the branch according to the condition evaluation using the
symbols’ seed values. For example, the user can choose system call
parameters used in a known vulnerability proof-of-concept as the
seeds to symbolically analyze the vulnerability. The analyzer can
guide KRover via path selection heuristics such as a depth-first
exploration and a targeted exploration.

2.3 An Illustration of Symbolic Execution

The example in Figure 2 illustrates how KRover handles the target
kernel running thread with symbolic operations. In this example,
we suppose that the 4-byte data at -0x4c(%rbp) is symbolic when
KRover attends to the first instruction at 0xffffffff810024bd.

......
ffffffff810024bd: e8 ce a6 52 00 callq 0xffffffff8152cb90
ffffffff810024c2: 48 85 c0 test %rax,%rax
ffffffff810024c5: 49 89 c4 mov %rax,%r12
ffffffff810024c8: 0f 84 0d ff ff ff je 0xffffffff810023db
ffffffff810024ce: 8b 98 70 02 00 00 mov 0x270(%rax),%ebx
ffffffff810024d4: 8b 45 b4 mov -0x4c(%rbp),%eax
ffffffff810024d7: 85 c0 test %eax,%eax
ffffffff810024d9: 74 40 je 0xffffffff8100251b
ffffffff810024db: 49 83 fc 28 cmp $0x28,%r12
......

.....
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
.....

Figure 2: Illustration of KRover’s execution. Instructions in

the dashed line box are natively executed. Instructions in the

solid line boxes are interpreted and the rest are concretely

executed.

Supposedly a static analysis or heuristics shows that the callee
function in Instruction 1 is irrelevant to the symbolic data. Fat-
Controller dispatches it to get the entire function call executed
natively. Once it returns, Thin-Controller fetches instructions from
the kernel virtual memory and executes them. It finds out that In-
structions 2 and 3 do not involve symbolic data and hence dispatches
them to the CIE for a concrete execution. All branch instructions
are interpreted so that the Thin-Controller does not lose control.
Since the first je depends on concrete data in RAX, the control
transfer does not involve path selection. Suppose that the ZF bit
in the EFLAGS register is not set after the test instruction, there is

2011

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

no transfer and the next instruction (i.e., Instruction 5) is fetched
to execute. Thin-Controller finds out that it involves no symbols
and then concretely executes it using the CIE. For Instruction 6,
it determines that the source is symbolic and then interprets the
execution using the SIE. As a result, EAX holds symbolic data and
forces Instruction 7 to be interpreted as well which results in a sym-
bolic ZF bit in EFLAGS. Instruction 8 is another conditional control
transfer. Different from the first one, it depends on symbolic flags.
Hence, Thin-Controller selects a path and adds the corresponding
path constraints.

The example shows that three modes of execution are properly
choreographed along with the instruction flow and the results from
them are seamlessly coalesced into the common virtual memory. It
also shows that KRover directly operates upon the running target
thread’s virtual memory. The runtime binary intimacy cannot be
realized in other SE engines.

3 SYSTEM DESIGN

This section presents the system-level details of KRover, which
are the premises for software design and implementation.

3.1 Memory Model

KRover models the target kernel’s virtual memory as a sequence
of bytes referenced by virtual addresses. As shown in Figure 3, it is
conceptually composed of two non-overlapping zones: the concrete
zone and the symbolic zone, i.e., the two sets of VA regions holding
concrete and symbolic data, respectively. Physically, the concrete
zone is embodied by the target kernel’s own virtual memory in the
guest VM. The symbolic zone is implemented within KRover’s own
memory in the lower half of the 48-bit space. It is organized in a
sorted list of cells each representing one VA region in the symbolic
zone. A cell holds the region’s starting address, the size, and the
pointer pointing to the symbolic expression logically residing in
the region.

Figure 3: Illustration of the model of the kernel virtual mem-

ory: a mixture of concrete and symbolic zones

Given a target kernel’s virtual address, KRover either references
it directly if it is in the concrete zone; or retrieves the corresponding
cell if it is in the symbolic zone. A bitmap is used to facilitate zone
identification. Note that although the kernel memory holds (invalid)
data at addresses belonging to the symbolic zone, KRover ensures
that they are never used by the native or concrete execution.

KRover’s memory model is distinct from its counterparts in
other SE engines (See Figure 4). In an IR-based engine such as
KLEE [4], Mayhem [5] and angr [25], the target memory is entirely
emulated within the engine’s own address space. All target memory
objects are physically stored in the engine’s memory. In a DBT-
based engine such as QSYM [29] and SymQEMU [18], the target

memory is modified to accommodate the injected code and data
of the engine. In contrast, KRover’s memory model is exactly the
same as in the target’s native execution, which ensures that KRover
reasons about the genuine states of the target and the derived input
is effective in practice.

Target

obj1

code

Target

code

sym obj3

KROVERIR-based SE

sym obj3

IR code

SE code

data

SE
code

target
&
SE code

sym obj3

DBT-based SE

(a) (d)(b) (c)

obj3

obj2 obj2
obj1

obj1
obj2

obj1
obj2

Figure 4: Address space comparison among the target native

execution, IR-based SE, DBT-based SE, and KRover. The

target’s obj3 is symbolic while other objects are concrete.

3.2 CPU Register Model

KRover models CPU registers to cater for instructions’ register
accesses. It saves the CPU context including all 64-bit control regis-
ters, general-purpose registers (GPR), and the EFLAGS register when
exiting from concrete or native execution. Since the kernel may
load registers from memory contents, symbolic expressions could
be propagated to registers as well. Moreover, an instruction writing
to a portion of a 64-bit GPR (e.g., EAX) may lead to a mixture of
concrete and symbolic contents within a register. Hence, we model
GPRs as a small memory region so that a unified model for memory
and GPR registers greatly streamlines data movements between
them.

Specifically, a GPR is treated as a 64-bit storage consisting of
concrete zones and symbolic zones. Data in concrete zones are
retrieved from the corresponding copy in the CPU context image
while data in symbolic zones are organized in the cell list as in
the memory model. Hence, KRover maintains 16 cell lists for 16
64-bit GPRs. GPRs with shorter widths such as 16 bits do not have
a dedicated cell list. Since they refer to a range of bytes in the 64-bit
GPR, KRover creates special pointers to the cell matching the offset
(if there is a such need at runtime).

KRover currently does not support symbolic control registers
(e.g., CR3). Although it can load a symbolic expression to the soft-
ware copy of control registers, it cannot emulate the hardware
behavior for subsequent executions. Hence, when a symbolic ex-
pression is loaded to a control register,KRover always concretizes it
and adds a constraint. The treatment of the EFLAGS register is more
complex as the flags therein can be set directly and indirectly by
various instructions. We explain its model and usage in Section 4.4
when describing how the SIE works.

2012

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

3.3 Execution Mode Switches

Because of the memory model above, neither concrete nor native
execution should access any VAs in the symbolic zone as the mem-
ory thereof does not hold proper data. Thin-Controller ensures that
instructions concretely executed do not use symbolic data since
it finds out the referenced memory location. Fat-Controller relies
on heuristics derived from static kernel code analysis to predict
whether a function encounters symbolic data. To cover inaccuracy
in the heuristics, KRover uses data breakpoints to detect accesses
to VAs in the symbolic zone during native execution.
Data Breakpoint. Without kernel code instrumentation, KRover
relies on hardware support to implement data breakpoints with
different granularities. Specifically, Fat-Controller sets up byte-level
data breakpoints and page-level data breakpoints before dispatching
a function for native execution. The former is based on the CPU’s
four debug registers. The hardware throws out a debug exception
when the CPU attempts to read/write up to eight bytes data from/to
a memory buffer whose base address is loaded in one of the debug
registers. While it has the finest granularity, the CPU only has
four such registers. The page-level data breakpoints are realized
by configuring the page table entry of the concerned page so that
any access to the page triggers a page fault exception. While there
is no limit to such data breakpoints by the hardware, they have
coarse granularity and may throw out undesired page faults when
the CPU accesses concrete data co-located as symbolic data on
one page. Once triggered, a data breakpoint returns the control to
Fat-Controller which then dispatches the flow to Thin-Controller.

3.4 Offline Path Exploration

Since one of the objectives of symbolic execution is to find paths
leading to a desirable state, it is desirable forKRover to support path
exploration, i.e., to start execution from one program point with
different paths and terminate either when the goal is met or all paths
are tried. Like other offline SE engines (e.g., angr [25] and QSYM
[29]), KRover explores the target kernel only one path at a time.
Path exploration in kernel space is noteworthily more challenging
than in applications. A kernel thread’s execution may depend on
global data scattered in the vast kernel state. It is infeasible to
determine the involved data beforehand. Hence, a consistent path
exploration has to ensure the identical kernel state is used in all
paths.

We leverage KRover’s architectural advantages to tackle the
challenge with the copy-on-write strategy as used in KLEE [4],
angr [25] and Linux kernel. The user analyzer dictates KRover’s
multi-path execution by specifying the starting point of exploration
as well as termination conditions such as return from a function or
writing to a symbolic address. Initially, when KRover’s symbolic
execution arrives at the starting point, it sets the kernel memory as
read-only and saves a copy of the symbolic zone data. The subse-
quent symbolic execution enters the copy-on-write mode. When-
ever a page fault occurs due to writing to a read-only page, KRover
allocates a new page with read and write permissions to replace
the original one. Note that references to VAs in the symbolic zone
are not affected since they are interpreted by the SIE. After termi-
nating one-path execution, those new kernel pages are discarded.
A new path exploration starts from the same starting point and

the saved copy of the symbolic zone. By default, KRover uses the
depth-first strategy to select the new path to explore. The user
analyzer can provide a heuristics function to guide KRover’s path
selection. Figure 5 illustrates a path exploration with two different
paths originating from the common initial state.

user

kernel

syscall Legend

starting point of exploration

target state

branch to explore
branch to terminate

path taken in a copy-on-write execution

Figure 5: KRover explores multiple paths from the same

starting state with copy-on-write execution.

4 ONSITE SYMBOLIC EXECUTION

In this section, we first present the overall workflow of onsite
symbolic execution followed by descriptions about how KRover
handles various issues in concrete and interpreted executions.

4.1 The General Workflow

Thin-Controller handles onsite symbolic execution. Following the
CPU context prepared by Fat-Controller, it fetches one instruction
from the kernel memory according to RIP. Thin-Controller parses
the instruction to extract the memory address it references (if any)
and the involved register(s). If either is in the symbolic zone, Thin-
Controller dispatches it to the SIE for an interpreted execution.
Otherwise, it dispatches all non-control transfer instructions to
the CIE for a concrete execution and emulates the control transfer
instruction by itself, i.e., to continue to fetch the next instruction
from the transfer destination.

After the SIE/CIE completes one instruction execution, the con-
trol is returned to Thin-Control. Note that all KRover components
are in the same address space in the analysis environment, and
control transfers among them are function calls and returns. Un-
like switches across the analysis environment and the native en-
vironment, they do not incur any EPT or CPU privilege switch.
Nonetheless, entering and exiting the concrete execution requires
a software CPU context swap since concrete execution is upon the
target kernel’s CPU context.

4.2 Concrete Execution

The target kernel instructions for concrete execution have to be re-
located because all kernel code pages are deprived of the execution
permission in OASIS’s analysis environment. Moreover, instruction
relocation should not change the memory address referenced by the
instruction to preserve semantics and also simplify the procedure.

The performance of concrete execution is critical to KRover’s
overall performance because there are far more concretely executed
instructions than symbolically executed ones. We thus carefully
design the CIE to minimize its overhead.
Instruction Relocation. The CIE copies the target instruction
into its own memory page as shown in Figure 6 below. The CIE
has a modifiable code page dedicated to relocated execution. On

2013

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

this page, there is a 15 bytes long nop sled which is the placeholder
for the relocated instruction of the maximum binary length. The
sled is sandwiched between the CPU context loading and saving
instructions.

CIE code

nop sled (15 bytes)

CPU context saving

CPU context loading
relocated target
instruction
lea 0x12(%r15), %rdx

return

Kernel Address Space KRover Address Space

lea 0x12(%rip), %rdx

Figure 6: The CIE relocates the target instruction to its own

writable code page.

RIP-independent instructions are directly copied to the new loca-
tion for execution after the CIE. RIP-dependent instructions require
re-writing before relocation. There are two types of dependency
on RIP: address dependency due to the RIP-relative addressing
mode and data dependency where the RIP value is used as the
data. To handle both cases, the instruction is rewritten before CIE.
Specifically, RIP in the instruction binary is replaced with an un-
used general-purpose register. In the example shown in Figure 6,
0x12(%rip) is replaced with 0x12(%r15) and the CIE loads R15
with the original instruction address before running the modified
instruction.
CPU Context. Since the CIE’s own execution and the target’s
concrete execution are in the same control flow, the hardware does
not make any context saving or switches. Thus, the CIE deals with
three forms of CPU contexts for three purposes: the one for its own
execution, the target’s context image shared with the SIE, and the
context for the target’s concrete execution. Note that the last two
are kept consistent all the time.

After writing the target instructions to the designated location
as in Figure 6, the CIE saves its own CPU context and loads the reg-
isters with contents from the saved CPU image. After the concrete
execution, the CIE saves all registers (including EFLAGS) from the
CPU to the context image so that (if needed) the SIE can carry out
the subsequent interpreted execution, and then restores its own
CPU context.

4.3 Interpreted Execution

The SIE’s interpreted execution of an instruction is largely com-
posed of three steps: to read the source data from the memory or
registers, to make the corresponding computation, and to update
the destination memory or register. Note that the SIE natively ref-
erences the target kernel memory using the same virtual address
as the kernel and thus memory operations of target instructions
can be natively done in general. An exception scenario is sub-cell
accesses, i.e., to access only a portion of the bytes represented by a
cell. For instance, the symbolic zone has a cell representing eight
symbolic bytes at address 𝐴 and a mov instruction loads RAX reg-
ister from address 𝐴 + 4. Both memory and register accesses may
encounter this scenario. Since a cell represents the whole region

as one symbolic expression, accessing a portion of it requires us to
treat read and write scenarios separately.
Mem/Reg Read. If the VA region represented by a cell is entirely
within an instruction’s read range, the SIE uses the cell as a whole.
In the case of a sub-cell read, the SIE generates a new symbolic
expression from the symbolic object and creates a new cell for it.
Although there is address overlapping between the original cell
and the new one, they have consistent expressions. Thus, a read
operation incurs no change to the original cell.
Mem/Reg Write. If the VA region represented by an existing cell
is entirely within the write range, the cell is updated as a whole. It
is either deleted or updated depending on whether the source data
is concrete or symbolic. In the case of sub-cell access, the SIE breaks
the original cell into two new cells. The one out of the write range
holds the new symbolic object derived from the original symbolic
data, while the one within the range becomes a new cell which is
then written as a whole.

An instruction’s operand could involve both concrete bytes and
symbolic bytes. While the SIE creates a new symbolic expression for
the operand, there is no corresponding cell since it is intermediary
data and does not have an address in the kernel memory. All transfer
instructions are handled by the SIE, regardless of whether they are
concrete or symbolic. This is to ensure that Thin-Controller does
not lose control over the target’s instruction flow.

4.4 Flag Handling

The bits in the flag register EFLAGS determine whether a transfer is
taken or not when the CPU executes a conditional control trans-
fer instruction e.g., jc. Instruction executions may change EFLAGS
directly or indirectly. The former is via several flag-controlling in-
structions such as clc and popf. Indirect changes are much more
common. After an instruction execution, e.g., add, the hardware
checks if any flag needs to be set or cleared to reflect the state
of the execution outcome. Hence, the flag values can be depen-
dent on symbolic data used in a flag-affecting instruction. We call
the two types of instructions as flag-controlling and flag-affecting
instructions, respectively.

Thin-Controller determines whether a conditional transfer is
made or not when EFLAGS is symbolic. Once a branching decision
is made, the corresponding flags are concretized according to the
instruction specification. Nonetheless, it has no use to set the path
constraint upon the flag symbol, such as 𝑧 = 1 where 𝑧 is a symbol
representing the zero flag bit since the constraint is already defined
by the instruction itself. The challenge is thus how to set the con-
straint that captures the causality of flag setting rather than the
flag values themselves.

An intuitive approach is to set the flags with a symbolic ex-
pression using operands appearing in the symbolically executed
instruction. Nonetheless, due to the large number of flag-affecting
instructions and the complexity of flag-setting, this approach not
only incurs a higher development burden but also significantly
takes a heavy toll on KRover performance. Moreover, the runtime
cost is wasteful as one instruction’s flag-setting is very likely to be
replaced by the subsequent instruction execution.

2014

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Similar to the VEX IR used in angr [25], we also use a lazy
approach for flag evaluation. Our approach is based on the assump-
tion3 that, between a conditional transfer instruction depending
on a flag (e.g., je) and its preceding flag-affecting instruction set-
ting the flag (e.g., test), the kernel compiler never inserts any
flag-affecting instruction that sets other flags. In our approach, the
SIE maintains a bit vector, called the flag vector, representing the
symbolic states of flags in EFLAGS. Whenever a flag-affecting in-
struction is symbolically executed, the SIE sets all bits in the flag
vector to indicate their symbolic state and also associates them
with the symbolic expression created by the instruction. Hence,
when the interpreted execution continues, all flags remain symbolic
with their associated symbolic data evolving. When switching to
concrete execution, the first flag-affecting instruction triggers all
bits in the flag vector to be cleared and the association between
flags and symbolic data to be removed. It means that the subsequent
interpreted execution uses the concrete values in the saved EFLAGS.

Comparedwith flag-affecting instructions, it is relatively straight-
forward to handle flag-controlling instructions. The SIE just em-
ulates their executions by treating EFLAGS as a general purpose
register to assign a symbolic expression to it if needed. Note that
only the affected bits of the flag vector are set since the SIE already
has the instruction semantics.

Upon interpreting a conditional transfer instruction, the SIE
checks the corresponding bit(s) in the flag vector to find out whether
the condition is concrete. If so, it evaluates the condition and
chooses the next instruction to run accordingly. Otherwise, it con-
cretizes the dependent condition flag(s) according to the path se-
lection and creates the path constraint following the instruction’s
arithmetic description in the Intel manual, e.g., jle implies “if less
or equal". Thus, our approach entails a minimal overhead to each in-
struction execution and the cost is only incurred upon conditional
transferring. As a limitation of this approach, it cannot handle
scenarios where the flags are used to indicate execution errors.

4.5 Path Selection

The SIE always runs the target kernel execution along one path until
the end. When encountering a symbolic branch, i.e., a conditional
transfer dependent on symbolic data, it uses heuristics provided by
the user analyzer to select the branch.

If no heuristic is provided, the SIE randomly decides whether the
branching condition is true or false. It implies a random exploration
of the kernel states. For the sake of performance, the SIE does
not check the constraint solver to determine whether a branch
is reachable since the kernel is highly optimized and is unlikely
to have an unreachable branch. Moreover, because a false path
selection can be caught by offline constraint solving or a test case
replay, the performance benefit outweighs the potential inaccuracy.

A special heuristic supported by KRover is the seeded selection,
similar to the one used as used in KLEE [4]. It allows KRover to
explore the target following the execution path dictated by user-
supplied seed values of symbols. Under the seeded selection heuris-
tics, the SIE evaluates a symbolic conditional branch using the
corresponding seed values and takes the branch accordingly.

3Note that the assumption may not hold for certain kernel compilers.

4.6 Execution Event Detection

KRover works on the binary layer of the kernel where the soft-
ware semantics (e.g., a data structure or a pointer to an object)
all vanishes. As compared with other engines running with the
intermediary representation code compiled from the source code,
KRover’s intimacy with binary has pros and cons in detecting
execution events such as errors, specific function calls, etc.

On the downside, KRover does not have the built-in capability of
detecting program errors such as buffer overflow/underflow where
the memory access is outside of the boundary of an object. This
limitation can be mitigated if the target kernel has KASAN [10]
enabled at runtime. Since KRover does not change the kernel’s
address space layout, KASAN still reports memory errors reliably.
The strength of KRover error detection is that it can catch execution
errors reported by the hardware including page faults and other
exceptions. More importantly, binary intimacy ensures that errors
reported by KRover are exactly the same as in native executions.

By default, the SIE reports the following errors: (a) arbitrary
transfer where the destination of a control transfer is symbolic;
(b) arbitrary write where the destination address is symbolic. (c)
arbitrary read where the source address is symbolic. In these cases,
KRover reports the error to the user analyzer and stops symbolic
execution if the analyzer does not concretize the involved symbol.

Note that a normal kernel behavior may also appear like an
arbitrary read/write. For instance, the user analyzer symbolizes an
I/O system call argument representing the location of a userspace
buffer. As a result, the syscall handler’s normal execution returns
the I/O data to the user-supplied bufferwhichmatches the definition
of arbitrary write. To avoid such false positives, KRover introduces
a special type of symbol named buffer symbol. The user analyzer
can symbolize a buffer using a buffer symbol with a concrete size.
KRover actually allocates the buffer with the correct size but treats
its location as symbolic data. Different from symbolic addresses,
reads and writes to a symbolized buffer can be implemented by the
SIE using the buffer’s concrete location, and therefore they are not
deemed as arbitrary read or write.

While working on the binary layer, KRover is able to detect
specific events in the execution. For instance, KRover has been
included with the guest kernel’s symbol table (a file) allowing the
Thin-Controller to detect calls to certain interesting functions (e.g.,
kmalloc() and memcpy()) as required by the user analyzer. Also,
when required, KRover dynamically acquires the corresponding
function call return address before a call to a certain interesting
function and uses that information to detect the return of the func-
tion call. Once detected, the Thin-Controller passes the control to
the analyzer for further action.

5 PERFORMANCE EVALUATION

We develop a prototype of KRover and conduct experiments on
a PC with an Intel Core i7-10700 2.90 GHz processor and 32 GB
DRAM. The PC is managed by a host Linux with kernel version
5.4.125 supporting KVM. In all experiments, we run OASIS and
KRover in the host and launch a KVM guest with the same Linux
kernel as the host’s.

2015

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

5.1 Implementation of KRover

We implement a prototype of KRover on top of the OASIS frame-
work [8]. In addition, we use Microsoft constraint solver Z3 version
4.8.14 [23] for constraint checking/evaluation and Dyninst version
12.0.0[20] for binary disassembly and instruction parsing. The size
of the prototype binary is merely 912 KB, compiled from around
12.3K lines of C/C++ code and 250 lines of assembly code in total.

At the time of writing, the SIE supports 135 x86-64 instructions
covering a wide range of operations including memory movement,
arithmetic/logic/bit-wise processing, stack operations, and REP pre-
fixed instructions, etc. We have also added ∼1.7K lines of C code to
the OASIS framework [8] to provide new functionality/APIs, such
as support copy-on-write execution during path exploration, page
table updates, and hardware breakpoint handlers.

To evaluate KRover performance, we conduct three sets of ex-
periments. The first set measures the run-time CPU costs of major
components of KRover. These results help us to identify the per-
formance bottlenecks. The second set measures and compares the
single-path symbolic execution speed of KRover and S2E. The last
one compares the memory utilization of KRover and S2E. In all ex-
periments, we use a utility tool for instruction pre-processing. The
tool disassembles the binary code and provides a cache containing
instructions and extracted operands. We also use seeded execution
for all experiments so that the results are comparable with S2E.

5.2 KRover Component Overhead

The specific overheads of KRover components vary with many fac-
tors including the workload, the percentage of symbolic executions,
and even instruction types. To generally estimate the overhead
distribution, we execute 50 Linux system calls in seeded symbolic
execution mode. The percentage of CPU time taken by major com-
ponents, Thin-Controller, CIE and SIE is 48%-78%, 3%-37.6% and
2.5%-37% respectively. By and large, more than half of the total
execution cost is incurred by Thin-Controller. The costs incurred
at the CIE and the SIE are mainly dependent on the number of
instructions dispatched to them.

5.2.1 Thin-Controller Execution. Thin-Controller analyzes instruc-
tions fetched from the cache of the pre-processor and emulates nop,
and all control transfer instructions regardless of whether they are
concrete or symbolic. For other instructions, it dispatches them to
either the SIE or the CIE. Table 1 shows the costs of Thin-Controller
operations.

Instr.
fetch

Instr.
Analysis

Instruction Emulation
nop ret call branch instruction

323 1184 15 113 1770 2072
Table 1: # of CPU cycles for main operations in Thin-

Controller.

The instruction analysis mainly consists of the checks performed
to determine if an instruction involves any symbolic data. It in-
volves the virtual address evaluation of the memory operand in
the instruction. In the seeded execution, emulations of symbolic
branch instructions require an invocation of Z3 to evaluate the path

constraint using seeds. The cost includes a one-time overhead of
894,826 CPU cycles for bootstrapping Z3 and 133,502 cycles per
constraint evaluation.

5.2.2 CIE Execution. The CIE runs in four steps, i.e., instruction
rewriting, relocation, execution, and updating symbolic EFLAGS.
Table 2 reports the average CPU time spent for each step. In our
workload, only 0.06% to 4.90% of instructions dispatched into the
CIE require rewriting. Hence the performance impact of rewriting
on the overall cost of CIE is not prominent. The cost of the execution
step includes the CPU context saving and loading. Note that its large
overhead is due to frequent code modification which breaks the
execution pipeline and invalidates relevant cache lines. Between 2%
and 27% of the instructions dispatched for the CIE are flag-changing
instructions incurring the overhead of EFLAGS image updating.

Instruction
Rewriting

Instruction
Relocation

Instruction
Execution

EFLAGS
Update

Total

570 38 1016 704 2328
Table 2: # of CPU cycles for key steps in the CIE

5.2.3 SIE Execution. Table 3 presents the cost breakdown of the
SIE. The dominant overhead is due to processing the concrete and
symbolic operands for interpretation which involve operations on
various data objects representing symbols and constants. The oper-
ation interpretation involves updating the cells with new symbolic
expressions. An additional cost is incurred by the flag-affecting
instructions to update the EFLAGS image with corresponding sym-
bolic expressions if applicable.

Operand
Processing

Operation
Interpretation

EFLAGS
Update

Total

21433 7535 1049 30017
Table 3: # of CPU cycles for key steps in the SIE.

5.2.4 Summary. While the SIE’s per instruction cost is 10 times the
CIE, there are usually much less than 10% instructions dispatched
to the SIE. Hence, the interpretation overhead does not dominate
the overall symbolic execution cost. The invocation of Z3 is two
orders of magnitude higher than the cost of one concrete instruction
execution. Hence, it is the main cost contributor, especially for cases
with short execution paths. According to our results, it incurs 7.5%-
36% of the total execution cost.

5.3 Speed of Symbolic Execution

WebenchmarkKRover’s execution speed against S2E. BothKRover
and S2E are tasked to symbolically run a system call handler with
one or several symbolic arguments. Both engines operate in seeded
execution mode so that they are expected to follow the same path
dictated by the common seed(s). Note that S2E in seeded mode does
not fork out states for path exploration. For S2E experiments, we
have built a guest kernel image with the same kernel version as the
KVM guest used by KRover. The S2E guest image does not include

2016

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the standard S2E plugins or sub-modules provided for analysis,
which avoids unneeded executions putting S2E in a disadvanta-
geous position.
RawExecution Speed. Weuse 50 test cases each comprising a user
space program issuing a distinct system call such as setpriority,
mmap, brk, pipe, lseek and write. Each system call consists of pre-
defined seed inputs along with a predefined symbolic argument(s).
In some cases, the test program includes one or multiple preceding
system calls to prepare the kernel state. These preceding system
calls do not involve symbolic arguments. We highlight that for
both S2E and KRover, the time measurement only includes the
execution of the system call with a symbolic argument. We run a
separate experiment to show how KRover and S2E differ in terms
of handling those preparation system calls.

0 5 10 15 20 25 30 35 40 45 50 55
Speedup

0

2

4

6

8

10

of

 te
st

 c
as

es

Figure 7: Histogram of the speedup (in times) of KRover’s

execution to S2E.

KRover outperforms S2E in all test caseswith paths ranging from
nearly one hundred instructions to a few thousand instructions.
The consolidated results on speed-up are shown as a histogram in
Figure 7. The speed-up ranges between 1.1 to 50.2 times as fast as
S2E and an arithmetic average is 6.8 times.
Late Launch. KRover has the late launch capability of natively
executing the target program until the kernel cultivates the desired
run-time state for symbolic execution. To demonstrate its advantage
over S2E, we design nine test cases requiring preceding system calls
as the workload. We measure the time taken by KRover and S2E,
respectively, to execute the state preparation work. The results
are in Table 4. On average KRover is 10 times faster than S2E in
preparing the kernel state. Note that in S2E experiments, these
setup system calls are actually handled by QEMU as there is no
symbol created yet.
Selective Dispatch. Given proper heuristics on function execu-
tion, Fat-Controller can dispatch functions without using symbolic
data to natively execute. To demonstrate this capability, we use a
semi-automatic tool to derive such heuristics upon five system call
handlers. We use srcSlice [15] to extract the needed intelligence
about a kernel function execution’s dependence on variables, in-
cluding intra-procedure data flows and inter-procedure data flows
via function call argument passing. The tool eventually produces
a variable-function dependence dictionary in which each entry
is indexed by a variable defined in the source code and lists the
names of the functions with dependence on them. Based on that,
we prudently pick the functions which are predicted not to have

Test

case

Setup sys.

call(s)

Execution time KRover’s

speedupKRover S2E

setpriority getpriority 32025 140188 4.38
statx open 71567 745785 10.42
tee pipe, write 67420 517019 7.67
get_robust- set_robust- 32295 137081 4.24
_list _list
kcmp getpid 31909 127384 3.99
lseek open 57564 934760 16.24
write pipe 56112 393307 7.01
shmat shmget 54944 1743838 31.34
prlimit64 getppid 33430 147860 4.42

Table 4: # of CPU cycles) for executing system calls before

symbolic execution.

symbols with high confidence for each test case. Table 5 below
shows that high-quality heuristics may save up to 90% of execution
time owning to native execution. We leave it as future work to
develop data flow analysis techniques for such heuristic derivation.

5.4 Memory Usage

We measure the memory footprint of KRover and S2E for single-
path symbolic execution of three system call handlers. The system
call personality has around 200 instructions while the access
and pipe2 have more than 2.5K instructions each. Note that both
the memory occupied by the guest VM image in S2E and the KVM
guest memory have been excluded from measurement. The results
are shown in Figure 8 where the Time axis is not scaled to the actual
time but to indicate the start and end of execution. KRover has
a significantly low and rather stable memory consumption over
time while S2E uses approximately 4-10 times more memory than
KRover.

Figure 8: Memory usage of KRover and S2E in single-path

symbolic execution

5.5 Path Exploration

We also run experiments to evaluate KRover’s performance in path
exploration. We test KRover against the setuid syscall handler

2017

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

Statistic

Results

statx sched_getaffinity utime getcwd utimes

Total instructions in execution path 718 671 3172 842 3187
Instructions executed in native environment 631 363 2389 835 2389
Total execution time with selective dispatch 2.757 2.897 3.446 0.412 4.567
Total execution time without selective dispatch 4.938 3.635 9.962 4.417 11.566
% reduction in execution time 44.17% 20.30% 65.41% 90.66% 60.52%

Table 5: Cost-saving due to heuristic-based selective dispatch. Time is measured in millions of CPU cycles.

with the uid argument being symbolized. The test case uses the
depth-first search strategy to explore all possible paths in the han-
dler. When encountering a symbolic transfer instruction, the SIE
invokes the constraint solver to determine whether a branch is
satisfiable or not. In total, KRover discovered 23 paths4 and exe-
cuted 15730 instructions in 1.8 seconds. The longest path has 1052
instructions while the shortest one has 44 instructions. The initial
preparation for path exploration, i.e., to freeze the target kernel,
takes about 34.4 milliseconds. The subsequent turnaround time, i.e.,
the switching time from one path to another, is about 0.6 millisec-
onds. Except for five short paths, executions in most paths trigger
6 to 8 page faults requiring a 4KB-sized page allocation and 3 to 4
page faults requiring a 2MB-sized page allocation.

6 APPLICATIONS OF KROVER

The first two use cases study the CVE-2021-43267 [19], a heap buffer
overflow vulnerability in the Transparent Inter Process Communica-
tion (TIPC) module [13] in Linux kernels before version 5.14.16. The
vulnerable code is inside the kernel function tipc_crypto_key_rcv5
which allocates a heap buffer according to the packet header and
moves the packet payload to the newly allocated buffer by two
memcpy calls. The size argument of the last memcpy derived from
the payload without proper validations can lead to an overflow.
We suppose that the CVE, its POC [16], the kernel’s symbol tables
and definitions of kernel object structures are accessible, while the
kernel source code is not. The third case study is against a third
party rootkit in Github and the last one uses our own program.

6.1 Case I: Vulnerability Generalization

By generalizing the vulnerability using symbolic execution, the
analyst’s objective is to have a systematic way to set relevant bytes
in the offensive packet for a particular goal, e.g., to write 0x20 bytes
from a particular position of the packet payload outside of a victim
buffer. Assuming full control over TIPC packet contents, the analyst
considers the following questions.
Q1. How to control the overflown length? This question is equiva-

lent to the following two subquestions: (a) whether and how
the size of the victim buffer can be controlled; (b) whether and
how the number of bytes written can be controlled.

Q2. Which part of the packet corresponds to the overflown data?
Q3. Whether the packet data is written to the target buffer without

change or not?

4S2E only explored 3 paths under the same depth-first multi-path exploration mode.
5The vulnerable source code can be found at https://elixir.bootlin.com/linux/v5.11-
rc7/source/net/tipc/crypto.c#L2306.

Note that the victim buffer is dynamically allocated in the heap.
Symbolic execution techniques are not mature enough to reason
about Fengshui[26] attacks to determine the buffer location. Hence,
the control over the victim buffer address is out of scope.

At first glance, a SE engine taking the symbolized TIPC packet
contents as the input can easily produce answers to the aforemen-
tioned questions in the form of path constraints characterizing
the control flow and symbolic expressions characterizing the data
flow. Nonetheless, a dive into the problem reveals several hidden
challenges when a SE engine is deployed for this task.

• It is difficult to reach the proper kernel state that starts to sym-
bolically process the offensive packet as network I/O operations
are involved according to the known PoC.

• There are several occasions demanding the analyzer to steer the
SE with the target kernel’s runtime data and the SE to notify the
analyzer reciprocally. For instance, since a symbolized packet
cannot be sent through the network I/O, the offensive packet
needs to be symbolized in the memory after the I/O. Another
occasion is to detect the victim buffer allocation. Although it
is not in the analyst’s goals to symbolically execute kmalloc,
we need to answer Q1.a with the parameters passed to kmalloc.
On the other hand, the SE needs to notify the analyzer when
detecting out-of-bound memory read/write.

• The location of the offensive TIPC packet in the kernel heap needs
to be symbolized in order to tackle Q2. Otherwise, the execution
uses concrete addresses to copy data from the packet. However, a
symbolized location entails reading or writing a symbolic address.
Most SE engines do not support such operations.

6.1.1 Symbolic Execution Using KRover. We develop a user ana-
lyzer of 207 lines of source code for this case. The analyzer (includ-
ing its KRover component) runs on top of the OASIS infrastructure.
The guest VM uses Linux kernel version 5.11-rc7. The analyzer
uses the seeded execution mode of KRover. We explain below how
the analyzer program tackles the challenges above by leveraging
KRover’s features.
Kernel State. We run a slightly modified POC [16] in the guest
to prepare the needed kernel state. The PoC sends a series of TIPC
packets on the loopback interface to prepare the kernel states and
injects the vulnerability-triggering packet. We have prepared a
loaded kernel module to hook tipc_udp_recv kernel function and
invoke OASIS[8]’s capability to export itself to the onsite environ-
ment when the processing of the last packet reaches the entry of
tipc_udp_recv. In this way, the difficulty in handling network I/O
is circumvented.

2018

https://elixir.bootlin.com/linux/v5.11-rc7/source/net/tipc/crypto.c#L2306
https://elixir.bootlin.com/linux/v5.11-rc7/source/net/tipc/crypto.c#L2306

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Locating TIPCPacket. The analyzer starts to dynamically analyze
the captured thread at the entrance of tipc_udp_recv(struct
sock *sk, struct sk_buff *skb). The analyzer locates the
TIPC packet starting from the target’s RSI register since the register
holds the address of the sk_buff object according to the x86-64
ABI. As shown in Figure 9, the analyzer equipped with kernel object
definitions traverses the runtime kernel memory to locate the TIPC
packet in the kernel heap in the same way as the kernel itself.

TIP
C

 p
acket

TIPC Header

TIPC Payload

tipc_udp_recv(…, struct sk_buff *skb)

Symbolized memory

U
D

P
 p

acket

struct sk_buff

U
D

P
 p

acket
U

D
P

 p
acket

Figure 9: KRover’s binary intimacy helps locate the TIPC

packet by traversing the run-time kernel memory.

Symbol Declaration and Symbolic Execution Launch. The
analyzer symbolizes all bytes in the TIPC packet whose concrete
values are used as seeds. In addition, it uses the address of the
acquired sk_buff object to locate the member pointer pointing to
the UDP packet encapsulating the TIPC packet by following kernel
object definitions. It then sets the UDP packet pointer as a buffer
symbol (denoted by 𝑌) which helps answer Q2. As explained in
Section 4, KRover supports reads and writes to a buffer symbol.
These symbolic memory regions are shown in Figure 9.

After the initial symbolization of memory data, the analyzer
starts KRover symbolic execution by calling Thin-Controller with
proper parameters. KRover resumes the target thread execution.
In the course of running, KRover invokes the analyzer’s callback
functions to handle concerned events.
Event Detection and Handling. At runtime, the analyzer gets
involved in the symbolic execution on two occasions. One is to
detect the symbolic execution of kmalloc in order to answer Q1.a
and also to concretize its symbolic argument as the symbolic exe-
cution does not support heap operations. The second is to turn the
return value of kmalloc as a buffer symbol (denoted as 𝑍) in order
to answer Q1.b. Note that the kmalloc function is dispatched to
native execution. The common memory view allows the analyzer
and KRover to use kernel VAs consistently.
Addresses Reasoning with Buffer Symbols. Buffer symbols
allow KRover to reason about addresses without affecting their
references. As explained above, the analyzer uses two such sym-
bols for the packet location and the victim buffer location, re-
spectively. The symbolic execution encounters the instruction REP
movsb %ds(%rsi),%es(%rdi). In this memory copy instruction,
the source and destination addresses are expressions of 𝑌 and 𝑍 ,
respectively. In addition, the present RCX is also a symbol (denoted
by 𝑁) that specifies the number of repetitions of the movsb opera-
tion. Hence, KRover stops execution and passes the control to the
user analyzer.

6.1.2 Results. The analysis results are shown in Figure 10. The
victim buffer size is 𝑝 − 𝑞 which is the parameter used on the final
kmalloc (Q1.a). The TIPC module copies 𝑁 bytes to the victim
buffer. 𝑁 is located at the offset 𝑞 + 0𝑥28 to the UDP packet base.
The source location of copying is the offset 𝑞 + 0𝑥2𝑐 to the UDP
packet location 𝑌 (Q2) while the destination location of copying
is the offset 0𝑥24 of the victim buffer 𝑍 (Q1.b). The notations of
𝑝, 𝑞, 𝑌 , 𝑍 , and 𝑁 are in Figure 10. The packet data is written to the
victim buffer without any change (Q3).

Byte 0 3
Y

Y+8

Y+q+0x28

Y+q+0x2c

Z

Z+0x24

Overflown buffer

TIPC header

TIPC payload

Np : bits 0-16 of TIPC header bytes 0-3
q : bits 21-26 of TIPC header bytes 0-3

Y : Start address of UDP packet(packet-location)

Z : Start address of buffer allocated
by kmalloc(),(buffer-location)

N : TIPC packet contents(4-bytes) with an
offset of q+0x28 to Y

Size of the overflown buffer : p - q

of bytes copied in vulnerable memcpy()

memcpy() source address

memcpy() destination address

U
D

P
 p

acket

Notations

Symbolic memory

Analysis results

Kernel memoryAddress

Figure 10: Summary of analysis results

Based on the generalized description of the buffer overflow, the
condition to trigger the overflow is:

N > p - q - 0x24 (1)

in addition to the path constraint reaching the vulnerable program
point. Since 𝑁, 𝑝, 𝑞 are symbols that are under the analyst’s direct
control, he can trigger the buffer overflow vulnerability.

6.2 Case II: Vulnerability Fix Completeness

Verification

The analyst can use KRover to verify the fix6. We develop another
user analyzer of 156 lines of code to verify on Linux kernel ver-
sion 5.15.1. The core idea is to let KRover explore all paths and
check whether the ones reaching the vulnerable program point
satisfy Equation 1 discovered previously. Similar to Case I, the user
analyzer exports the kernel thread after the offensive packet is
received. Since Equation 1 does not involve buffer locations, the
analyzer does not need to symbolize the packet location or the
buffer location. Only the packet contents are symbolized.

The CVE fix is in the vulnerable function tipc_crypto_key_rcv.
Hence the user analyzer controls KRover to symbolically execute
the target thread until reaching its entrance. It then starts path
exploration to find all paths within the function reaching the pre-
viously vulnerable memcpy. Finally, the new path constraints are
analyzed to check whether Equation 1 is satisfied or not.
Late Launching of Path Exploration. The user analyzer makes
use of KRover’s late launch feature to delay the start of the path
search until the execution reaches a desired state, i.e., the entry of
tipc_crypto_key_rcv. Once reached, KRover takes a snapshot
of the symbolic state maintained in KRover’s internal structures.
6https://github.com/torvalds/linux/commit/fa40d9734a57bcbfa79a280189799f76c88f7bb0

2019

https://github.com/torvalds/linux/commit/fa40d9734a57bcbfa79a280189799f76c88f7bb0

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

Note that we do not take snapshots of the guest VM. Then KRover
starts the depth-first random path search.
Path Termination. The analyzer defines the return address of the
tipc_crypto_key_rcv function call as the path termination condi-
tion. It also defines the vulnerable memcpy as the target state. Both
addresses are obtained via kernel virtual memory introspection.
Fix Validation. During path exploration, KRover encounters 4
symbolic branch conditions resulting in a total of 5 paths. Two
of them reach the (previously) vulnerable memcpy. The symbolic
states of these two paths show that they have the same symbolic
expressions describing the arguments in the memory copying as
in Case I. It shows that the CVE fix does not affect the data flow
leading to the memory copy. Nonetheless, the path constraints
reported in Case II are not the same as those from Case I. There are
three additional path constraints introduced by the fix as follows.
The definitions of N, p, and q are as per Figure 10.

p - q > 0x37 (2a)

N + 0x24 = p - q (2b)
N <= 0x48 (2c)

Thus, Z3 cannot solve the combination of these three constraints
and Equation 1, because Equations 2b and 1 are conflicting. It is
therefore confirmed that the vulnerability triggering condition can
never be satisfied in the fixed kernel version.

6.3 Case III: Rootkit Analysis

The third case study is to demonstrate how KRover’s binary inti-
macy helps an analyst tackle challenges arising from an analysis
task that demands thorough binary level analysis and reasoning at
runtime.

6.3.1 The Analysis Task. The target rootkit is downloaded from
Github7. Once loaded as a kernel module, it uses ftrace to hook
the kernel’s kill syscall handler so that its code executes before
the genuine handler, as shown in Figure 11. It is equipped with
multiple malicious functions whose executions are triggered by the
signal number delivered to the kernel by its user space accomplice.
It is also known that Signal #52 notifies the rootkit to hide itself by
modifying the kernel’s linked-list of loaded modules.

User space

Kernel space

kill syscall

User space program

kill syscall handler rootkit

call rootkit
ftrace
instrumentation

syscall table

Figure 11: Illustration of the rootkit’s high level working.

The Goal. With the aforementioned information, we (as the an-
alyst) are interested in finding out how the rootkit prepares itself
for hiding. Specifically, we hope to answer the following questions.
Q1. How is the rootkit’s control flow in Sig#52 handling dependent

on kernel states and its own global state?
7http://github.com/h3xduck/Umbra

Q2. How are these memory states shaped by the rootkit’s handling
of other signals?
Since it is infeasible to statically determine all memory addresses

to be accessed during the rooktit’s signal handling, we need both
dynamic analysis to find them out and symbolic executions to
reason about the control flow and data flow dependence.

6.3.2 The KRover Analyzer. With KRover, we develop an analyzer
with only 308 lines of C/C++ code. The rootkit is loaded to a guest
VM that uses Linux kernel version 5.4.150. In a nutshell, the analyzer
first obtains all memory accesses in a seeded symbolic execution
and then applies the results to define new symbols for symbolic path
exploration. Figure 12 visualizes the workflow consisting of five
steps: entering the rootkit, initialization and state backup, seeded
symbolic execution for memory references acquisition, preparation
for exploration, and symbolic path exploration.

User space

Kernel space

kill syscall

-Symbolize kill
signal number

-Backup state

-Restore state
-Symbolize identified

kernel and rootkit
global memory

Path exploration

Rootkit entry

Rootkit exit

En
te

rin
g ro

o
tkit

N
ative

 exe
cu

tio
n

3 5

Target export
to onsite env.

2 4

Position of target code executed

1

Seeded execution

Figure 12: Five steps of the analyzer application execution

To prepare the analysis, we run an application issuing a kill
system call with Sig#52 in the guest VM and then export the thread
to the onsite environment before that system call. The analyzer
then runs the five steps below. Note that the analyzer at run-time
obtains from kernel symbol tables the addresses of the kill syscall
handler (__x64_sys_kill), printk function entry and the module
structure of the rootkit comprising its base address and size, etc.
Step-1: Entering the rootkit. In this step, the analyzer resumes
the target thread’s execution to issue the kill syscall and intercepts
it when the flow is about to enter the rootkit code in the kernel.
Because this segment of target execution is for syscall issuance in
the libc and the syscall dispatch in the kernel without involving
the rootkit code, it is not to be analyzed. Thus, the target thread is
natively executed. Specifically, the analyzer locates the rootkit entry
and installs the INT3 probe. It then instructs KRover to natively
execute the target. Once the INT3 exception is triggered by the
target, the control is returned to the analyzer which then restores
the original instruction at the probe site and proceeds to Step-2.
Step-2: Initial symbolization and backing-up state. Step-2
prepares for the seeded symbolic execution with the symbolized
signal number and the seed value 52. Since the symbolization in
KRover is directly upon the virtual memory, the analyzer has to find
the address (or register) holding the signal number at the present
execution state. According to the prior knowledge of the kernel, the
signal number is passed to the kernel through register RSI which
is saved to the pt_regs object upon kernel entry. The base address
of the pt_regs object is then passed by the syscall dispatcher to

2020

http://github.com/h3xduck/Umbra

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the handler function via register RDI. Thus, the analyzer locates
the signal number and its value with two lines of C code below.

add r e s s = &((p t _ r e g s ∗) (c u r r e n t _ r d i)) −> r s i
v a l u e = ((p t _ r e g s ∗) (c u r r e n t _ r d i)) −> r s i

Note that the analyzer’s current_rdi variable holds the value of
RDI saved by KRover upon the INT3 exception in Step-1. The
analyzer then calls KRover to symbolize the bytes at address.
Before the next step, it backs up the target’s CPU state and the
symbolic state and enables KRover’s copy-on-write feature so that
the subsequent symbolic executions use the same starting point.
Step-3: Global memory references acquisition. The analyzer
uses KRover’s seeded symbolic execution to find out global mem-
ory references made by the rootkit instructions. It analyzes each
target instruction in the execution flow and symbolizes the memory
contents on the fly. To improve efficiency, the seeded execution
skips printk execution as it has no impact on the task.

The analyzer dispatches the target thread to Thin-Controller for
a single-stepped execution in which the analyzer’s two call-back
functions are invoked before instruction dispatching for execution
and after instruction execution, respectively. The first call-back
function obtains from Thin-Controller the to-be-executed instruc-
tion’s all memory references including the address and the size
pertaining to the memory operand. Recall that these references
have been extracted by Thin-Controller to determine whether any
symbolic data is involved. The function then checks if the instruc-
tion is within the rootkit code section. Only when the instruction is
from the rootkit, it further examines whether the involved memory
addresses (if any) are from the global memory. It is determined to
be in the rootkit’s global if it is within the bounds of the rootkit’s
address layout and the RIP-relative addressing mode is used. It is
in the kernel global if it appears in the kernel symbol table or it
uses the GS segment in addressing. Once a fresh read on the global
memory is detected, the analyzer symbolizes its content and flags
the instruction as symbolic so that Thin-Controller subsequently
dispatches it for the SIE to symbolically execute.

The second call-back function detects two scenarios. One is to
check whether RIP points to the entry of printk after a call in-
struction execution. In this case, the call-back function skips printk
execution by emulating the function return. The other checking is
about whether the stack is balanced which indicates exiting from
the rootkit function. In this scenario, the analyzer terminates the
seeded execution and proceeds to Step-4.
Step-4: Preparation for exploration. In this step, the analyzer
frees the memory pages written in Step-3 and restores the target
state to that of the rootkit function entry with the initial CPU con-
text and symbolic state. It symbolizes memory contents whose ad-
dresses and sizes are discovered in Step-3. It invokes Thin-Controller
to launch symbolic execution with path exploration of the target
(i.e., Step-5). Note that the signal number remains as a symbol.
Step-5: Symbolic path exploration. By exploring different paths
in the rootkit handler, the analyzer is able to reason how the global
data used by the rootkit handling of Sig#52 is shaped by the rootkit’s
handling of other signals. Similar to Step-3, the analyzer applies
the call-back function after instruction execution to skip printk
execution and detect the end of a path. The analyzer terminates

when there is no more path to explore, and returns the resulting
path constraints and symbolic expressions of each global data.
Results. During the seeded symbolic execution (Step 3), seven
new symbols (S1-S7) are defined and all of them are found to be the
rootkit’s global data. No kernel global data accesses are detected.
Four of them (S1, S2, S3 and S4) appear in the path constraint
derived from the seeded execution. Hence, they are used in tandem
with the symbolic signal number for path exploration (Step-5).

In path exploration, KRover explores 31 paths in total. The four
bytes symbolized by S4 are written during path exploration while
S1, S2, S3 are not. Path constraints of the seeded execution and the
paths modifying S4 are shown in Table 6. The results suggest that
the rootkit can execute one of the four paths (#4, #12, #19, #27) to
make the four bytes (represented by S4) at 0xffffffffc049e240 satisfy
the hiding function’s path constraint.

Seeded execution Path exploration
Path
constraint

Path
#

Path constraints
involving 𝑆4 and 𝑆𝑖𝑔#

State
update

4 (𝑆4 ≠ 1) ∧ (𝑆𝑖𝑔# = 53) 𝑆4 = 1
(𝑆1 ≤ 𝐴)∧ 6 (𝑆4 ≠ 0) ∧ (𝑆𝑖𝑔# = 52) 𝑆4 = 0
(𝑆3 > 𝐴)∧ 12 (𝑆4 ≠ 1) ∧ (𝑆𝑖𝑔# = 53) 𝑆4 = 1

(𝑆1 + 𝑆2 ≤ 𝐴)∧ 14 (𝑆4 ≠ 0) ∧ (𝑆𝑖𝑔# = 52) 𝑆4 = 0
(𝑆𝑖𝑔# = 52)∧ 19 (𝑆4 ≠ 1) ∧ (𝑆𝑖𝑔# = 53) 𝑆4 = 1
(𝑆4 ≠ 0) 21 (𝑆4 ≠ 0) ∧ (𝑆𝑖𝑔# = 52) 𝑆4 = 0

27 (𝑆4 ≠ 1) ∧ (𝑆𝑖𝑔# = 53) 𝑆4 = 1
29 (𝑆4 ≠ 0) ∧ (𝑆𝑖𝑔# = 52) 𝑆4 = 0

Table 6: Results of the analysis. ‘A’ (0xffffffff81005217) is the

return address of the kernel’s kill syscall handler.

6.3.3 Benefits from Binary Intimacy. All four aspects of binary
intimacy are embodied in this case study and greatly simplify the
development of the analyzer. Firstly, the analysis is restricted to the
target kernel thread serving syscalls from the designated user space
program. Secondly, thanks to the same address space setup, our
analyzer code effortlessly references the kernel memory using ker-
nel addresses throughout all steps without using any intermediary.
Thirdly, the hardware-supported facility is applied upon the target
execution in Step 1. The analyzer can also use the debug register to
set a hardware breakpoint on the rootkit entry. Lastly, the analyzer
controls how the target runs at different stages of analysis. The
target undergoes native execution, seeded symbolic execution and
symbolic path exploration and is forced to skip printk in Steps 3
and 5. In short, KRover’s binary intimacy unites the analyzer’s role
in dynamic kernel analysis in the conventional sense and the other
role in symbolic analysis for data and control flow reasoning and
empowers the analyzer to seamlessly switch between them.

It is infeasible to accomplish the task using S2E with an off-the-
shelf guest kernel. Even with an S2E instrumented kernel, the task
is onerous. The difficulty stems from the task’s need for applying
fine-grained dynamic kernel analysis to guide SE. On the one hand,
conducting dynamic analysis and SEs in separated sessions faces
the address consistency problem because the rootkit is loaded at
different addresses in different launches. On the other hand, S2E’s
sophisticated design and complex system engineering make itself

2021

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Pansilu Pitigalaarachchi et al.

unfriendly to nimble dynamic analysis and difficult to yield the
control to user plugins. For example, to the best of our knowledge,
plugins cannot change S2E’s symbolic execution mode at runtime.
Moreover, as the target runs on QEMU, it cannot truly benefit from
hardware features e.g., to slide down the path until a breakpoint.

6.4 Case IV: Noise Free Execution

The last case study is to show that KRover inherently confines the
symbolic execution to the target thread whereas symbols in S2E
are propagated to unrelated threads which (if not properly filtered)
results in noisy executions in analysis.

Figure 13 shows our S2E test program. It defines a global variable
flags and forks out a child process. Within the child process, flags
is symbolized and passed in the getpriority system call (Line 7).
The parent process sleeps for 20 seconds to ensure that it contin-
ues the execution after the child’s symbolization step. Upon being
woken up, the parent issues the open system call taking flags as
one of the arguments (Line 11).

1 in t f l a g s = 0 ;
2 void no i s e () {
3 i f (f o r k () == 0) {
4 p r i n t f (" a t c h i l d p r o c e s s \ n ") ;
5 / / s ymbo l i z e t h e g l o b a l v a r i a b l e ' f l a g s '
6 s2e_make_symbol i c (& f l a g s , s i z eo f (f l a g s) , " which ") ;
7 g e t p r i o r i t y (f l a g s , 0) ; / / t a r g e t sy s t em c a l l
8 } e l se {
9 s l e e p (2 0) ;
10 p r i n t f (" a t p a r en t p r o c e s s \ n ") ;
11 open (" / proc / cpu in f o " , f l a g s) ;
12 }
13 }
14 in t main () { n o i s e () ; return 0 ; }

Figure 13: Target program example showing noisy execution

Apparently, the parent’s open system call is to be concretely
executed as the symbolization occurs in the child process only.
However, the experiment with S2E reports a different outcome.
Besides the four kernel states explored for the child, S2E has also
explored 2649 kernel states for the parent’s open for about one
hour before it is forced to stop. Supposing that the analysis goal
is about the child’s getpriority handling, S2E’s exploration for
the parent obviously wastes resources and inundates useful results
with a flood of noises.

This outcome is due to a composite effect of the kernel’s copy-
on-write strategy for process forking and the inherent working of
S2E/QEMU. Since neither the parent nor the child process modifies
flags, the kernel does not allocate a new page for the child’s flags.
As a result, the parent and child access the same physical memory
location for flags to issue system calls. The s2e_make_symbolic
execution in the child first labels the memory content of flags as
symbolic. Then, during the execution of open, S2E/QEMU fetches
flags from the memory and detects the label indicating a symbolic
region. It thus symbolically executes the system call.

While our test program is a synthetic one, it does reveal that
S2E’s memory symbolization has a global effect due to its execution
being anchored at QEMU. For monolithic kernels, all threads share
the same kernel address space. For instance, a global kernel vari-
able (e.g., jiffies) is possibly referenced by any kernel thread. A

prudent user of S2E needs to figure out how symbolic kernel data is
possibly used. If necessary, S2E or QEMU can be modified to trace
CR3 so that noisy executions and/or outputs are properly filtered.
In contrast, when the test program is analyzed using KRover, only
the child process is symbolically executed while the parent uses
the concrete value of flags for open invocation.

Caveat. Note that whether the global effect of symbolization
is a side effect or a desirable feature is dependent on the scope
of symbolic analysis. It becomes a nuance if the analysis focuses
on a selected thread. Thus, while S2E is suitable for system-wide
analysis, KRover is a better tool for thread-centric analysis.

7 RELATEDWORK

Symbolic Execution Engines. In the literature, two prevalent
flavors of symbolic execution engines are implemented: IR-based
and IR-less [17]. A large portion of the engines fall into the first
category. Those engines typically first transform the target program,
either from source code or binary code, into IR and then perform the
program analysis by interpreting the transformed IR. KLEE [4] and
AEG [1] use LLVM bitcode as their IR to analyze the target program
with source code. For analyzing binaries, Mayhem [5] transforms
the binary to the IR from the BAP platform [3]. S2E [7] leverages
both LLVM bitcode and QEMU’s IR (i.e., TCG). Angr [25] utilizes the
VEX from Valgrind framework [14]. Recent two compilation-based
approaches, SymCC [17] and SymQEMU [18] keep the use of IR.
However, instead of interpreting IR, they instrument the symbolic
analysis capabilities into IR and build symbolic execution right into
the binary to speed up the execution. The IR-less engines directly
execute the target program without involving IR transformation.
Triton [24] and QSYM [29] instrument the unmodified machine
code at the run time assisted by Intel Pin [12] and directly run the
instrumented machine code to support symbolic execution.
Symbolic Execution in Kernel Analysis. To detect kernel bugs/
vulnerabilities, SymDrive [22] makes device inputs to the driver
symbolic to eliminate the need for real devices and uses SE to detect
potential vulnerabilities in Linux drivers. HFL [11] performs hybrid
fuzzing, i.e., combining SE and fuzzing, to detect kernel vulnerabili-
ties. UBITect [30] combines flow-sensitive type qualifier analysis
and symbolic execution to perform precise and scalable Use-before-
Initialization bug detection. Since not every vulnerability is created
equal, many other works are devoted to sorting those vulnerabil-
ities by assessing their exploitability and/or generating exploits
for them. FUZE [28] facilitates exploiting kernel Use-After-Free
vulnerability leveraging fuzzing and SE. AEM [9] is an automated
exploit migration technique to facilitate cross-version exploitability
assessment for Linux kernels, by adjusting the symbolic arguments
and collecting constraints to compare their exploitability. SyzScope
[31] combines fuzzing and static analysis with symbolic execution
to evaluate the impact of a given seemingly low risk bug and un-
cover its potential high risk impact, where symbolic execution is
used for validating the feasibility of reaching high-risk impacts and
evaluating possible primitives e.g., arbitrary write and constrained
write. KOOBE [6] utilizes symbolic execution to facilitate exploit
generation of kernel out-of-bounds write vulnerabilities.
Comparison with Other Engines. All existing SE engines handle
symbolic and concrete executions in a unified fashion. IR-centric

2022

KRover: A Symbolic Execution Engine for Dynamic Kernel Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

engines [4, 5, 7, 25] always interpret IR instructions regardless of
whether symbolic data is accessed. While no code modification
is incurred at runtime, interpretation-based executions are inher-
ently slower than binary executions. Different from the existing,
KRover is a kernel symbolic execution engine catered for dynamic
kernel analysis, which directly operates upon a live kernel thread’s
virtual memory and weaves symbolic execution into the target’s
native executions. Notably, benefited from waiving of lifting target
binary to IR, KRover has shown its significant performance im-
provement, which enables the fast symbolic execution. KRover’s
binary intimacy becomes advantageous in overcoming binary-level
challenges of kernel analysis. However, it should also be noted that
compared to the IR-centric engines KRover’s execution results in
a larger semantic gap between the executed binary instructions
and the source code. Binary-centric engines [18, 29] rewrite all
machine instructions and instrument them with symbolic handling
logic. These engines outperform their IR-based counterparts. As
compared with KRover, they heavily rely on dynamic binary trans-
lation (DBT) which is more complicated than the techniques used in
KRover. Moreover, DBT reshapes the target’s address space, which
is likely to introduce analysis inaccuracy. Note that KRover’s CIE
only relocates the addresses of instruction instead of their memory
operands and hence preserves the address space.

8 CONCLUSION

We have presented KRover as a kernel symbolic execution engine
for dynamic kernel analysis. Built upon OASIS, KRover conducts
symbolic execution directly upon the target kernel’s live virtual
memory and weaves it into the target’s binary execution. KRover is
more suitable for thread-centric dynamic kernel analysis due to its
binary intimacy, high speed, noise free nature and programmable
invocation. Our four case studies show that an analysis program
can maintain its capabilities of engaging with the target while
using KRover as a library for symbolic execution. In short, KRover
allows conventional dynamic analysis and symbolic reasoning to
be integrated with mutual reinforcements.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their constructive comments
and suggestions.

REFERENCES

[1] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74–84.

[2] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track. 41–46.

[3] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification (CAV). 463–469.

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 209–224.

[5] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P). 380–394.

[6] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. KOOBE:
Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulner-
abilities. In Proceedings of the 29th USENIX Security Symposium. 1093–1110.

[7] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E plat-
form: Design, implementation, and applications. ACM Transactions on Computer
Systems (TOCS) 30, 1 (2012), 1–49.

[8] Jiaqi Hong and Xuhua Ding. 2021. A Novel Dynamic Analysis Infrastructure to
Instrument Untrusted Execution Flow Across User-Kernel Spaces. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P). 1902–1918.

[9] Zheyue Jiang, Yuan Zhang, Jun Xu, Xinqian Sun, Zhuang Liu, and Min Yang.
2023. AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel
Vulnerabilities. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P). 588–603.

[10] The kernel development community. 2022. The Kernel Address Sanitizer
(KASAN). (2022). Retrieved September 8th, 2023 from https://docs.kernel.org/dev-
tools/kasan.html

[11] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings
of the Network and Distributed System Security Symposium (NDSS). 1–17.

[12] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. ACM
SIGPLAN Notices 40, 6 (2005), 190–200.

[13] Jon Maloy. 2023. TIPC Programmer’s Guide. (2023). Retrieved September 8th,
2023 from http://tipc.io/programming.html

[14] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM SIGPLAN Notices 42, 6 (2007).

[15] Christian D Newman, Tessandra Sage, Michael L Collard, Hakam W Alomari,
and Jonathan I Maletic. 2016. Srcslice: A tool for efficient static forward slic-
ing. In Proceedings of the 38th International Conference on Software Engineering
Companion (ICSE). 621–624.

[16] Peter. 2021. Local PoC exploit for CVE-2021-43267. (2021). Retrieved September
8th, 2023 from https://haxx.in/files/blasty-vs-tipc.c

[17] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In Proceedings of the 29th USENIX Security
Symposium. 181–198.

[18] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-based
symbolic execution for binaries. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). 1–18.

[19] CVE Program. 2021. CVE-2021-43267. (2021). Retrieved September 8th, 2023
from https://www.cve.org/CVERecord?id=CVE-2021-43267

[20] Dyninst Project. 2021. Dyninst. (2021). Retrieved September 8th, 2023 from
https://github.com/dyninst/dyninst/tree/v12.0.0

[21] KRover project. 2023. KRover: extended paper. (2023). Retrieved Sep-
tember 8th, 2023 from https://github.com/KRoverSystems/KRover/blob/main/
KRoverFullPaper.pdf

[22] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. 2012. SymDrive:
Testing drivers without devices. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 279–292.

[23] Microsoft Research. 2021. Z3. (2021). Retrieved September 8th, 2023 from
https://github.com/Z3Prover/z3/tree/z3-4.8.14

[24] Florent Saudel and Jonathan Salwan. 2015. Triton: A dynamic symbolic execu-
tion framework. In Symposium on Information and Communications Technology
Security. 31–54.

[25] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. (State of) The Art of War: Offensive Techniques in
Binary Analysis. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P). 38–157.

[26] Alexander Sotirov. 2007. Heap Feng Shui in Javascript. Black Hat Europe 2007
(2007), 11–20.

[27] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
Bingchang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable (One Step towards Automatic Exploit Generation). In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). 1914–1927.

[28] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium. 781–797.

[29] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2020. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium. 745–761.

[30] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian,
Mohsen Lesani, Srikanth V Krishnamurthy, and Paul Yu. 2020. UBITect: a precise
and scalable method to detect use-before-initialization bugs in Linux kernel. In
Proceedings of the 28th ESEC/FSE. 221–232.

[31] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. 2022.
SyzScope: Revealing High Risk Security Impacts of Fuzzer-Exposed Bugs in Linux
kernel. In Proceedings of the 31st USENIX Security Symposium. 3201–3217.

2023

https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html
http://tipc.io/programming.html
https://haxx.in/files/blasty-vs-tipc.c
https://www.cve.org/CVERecord?id=CVE-2021-43267
https://github.com/dyninst/dyninst/tree/v12.0.0
https://github.com/KRoverSystems/KRover/blob/main/KRoverFullPaper.pdf
https://github.com/KRoverSystems/KRover/blob/main/KRoverFullPaper.pdf
https://github.com/Z3Prover/z3/tree/z3-4.8.14

	KRover: A symbolic execution engine for dynamic kernel analysis
	Citation
	Author

	Abstract
	1 Introduction
	2 Overview of KRover
	2.1 KRover Architecture
	2.2 Onsite Symbolic Execution
	2.3 An Illustration of Symbolic Execution

	3 System Design
	3.1 Memory Model
	3.2 CPU Register Model
	3.3 Execution Mode Switches
	3.4 Offline Path Exploration

	4 Onsite Symbolic Execution
	4.1 The General Workflow
	4.2 Concrete Execution
	4.3 Interpreted Execution
	4.4 Flag Handling
	4.5 Path Selection
	4.6 Execution Event Detection

	5 Performance Evaluation
	5.1 Implementation of KRover
	5.2 KRover Component Overhead
	5.3 Speed of Symbolic Execution
	5.4 Memory Usage
	5.5 Path Exploration

	6 Applications of KRover
	6.1 Case I: Vulnerability Generalization
	6.2 Case II: Vulnerability Fix Completeness Verification
	6.3 Case III: Rootkit Analysis
	6.4 Case IV: Noise Free Execution

	7 Related Work
	8 Conclusion
	References

