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Large-scale Graph Label Propagation on GPUs
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Abstract—Graph label propagation (LP) is a core component in many downstream applications such as fraud detection,
recommendation and image segmentation. In this paper, we propose GLP, a GPU-based framework to enable efficient LP processing
on large-scale graphs. By investigating the data processing pipeline in a large e-commerce platform, we have identified two key
challenges on integrating GPU-accelerated Lp processing to the pipeline: (1) programmability for evolving application logics; (2)
demand for real-time performance. Motivated by these challenges, we offer a set of expressive APIs that data engineers can customize
and deploy efficient Lp algorithms on GPUs with ease. To achieve better performance, we propose novel GPU-centric optimizations by
leveraging the community as well as power-law properties of large graphs. Further, we significantly reduce the expensive data transfer
cost between CPUs and GPUs by enabling LP processing on compressed graphs. Extensive experiments have confirmed the
effectiveness of our proposed approaches over the state-of-the-art GPU methods. Furthermore, our proposed solution supports a real

billion-scale graph workload for fraud detection and achieves 13.2x speedup to the current in-house solution running on a high-end

multicore machine with compressed graphs.

Index Terms—Graph, Label Propagation, GPU computing

1 INTRODUCTION

RAPH data is pervasive as people and things are

digitally connected today. The information embedded
in graph data brings opportunities to discover valuable
insights that continuously power the development of data-
driven economy [1], [2]. In many downstream applications
such as fraud detection [3] and recommendation [4], a
common practice for analyzing large graphs is to identify
important clusters. Among the existing graph clustering
approaches, Label Propagation (LP) is one of the most effec-
tive and efficient algorithms [5], [6]. Despite having a linear
complexity theoretically [7], the workload of executing LP
on large graphs is still a major bottleneck for time-critical
applications, especially in major commercial enterprises.

Fraud Detection Pipeline (Figure 1). We investigated the
data processing pipeline for fraud detection in TAOBAO,
one of the largest e-commerce platform. The LP algorithm
and its variants are used as a core component to ana-
lyze TAOBAO’s transaction networks, which include pur-
chases/click information. The networks are first processed
by LP to identify suspicious clusters from known black-
listed users. Subsequently, the identified clusters are then
analyzed by more sophisticated algorithms, e.g., graph neu-
ral nets [8], to discover new frauds. It is worth-noting that
the run-time of the LP component occupies 75% overhead of
the automated detection pipeline. Fraud detection is a press-
ing challenge today that the number of fraud transactions
is around 7.2% of the overall search volume daily. Hence,
speeding up the LP component will drastically improve the
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Fig. 1. Popular data pipeline for fraud detection.

detection latency and enable more responsive measures to
stop financial losses.

GPU-accelerated Graph Processing. Recently, there are
rapid growing interests in employing GPUs to accelerate
a variety of graph processing workloads, e.g., graph traver-
sal [9], [10], [11], pagerank [12] and network motif detec-
tion [13]. These existing works utilize GPU’s advantage of
massive parallelism for in-memory graph processing. They
leverage the associative property of their targeted graph
applications to efficiently distribute workloads. For instance,
one can assign a thread to visit each individual neighbor
of a vertex in graph traversal applications [9], or assign a
thread to independently extend a candidate motif by adding
one neighborhood vertex in network motif detection [13].
In contrast, for each iteration of the LP algorithms, every
vertex u scans all its neighbors for their label values and
selects the most frequent label (MFL) to update the label
value of u itself. Note that computing MFLs is not an
associative workload for each neighbor list, which renders
most existing studies infeasible for accelerating LP efficiently.
Although there have been some pioneer studies on par-
allelizing LP on GPUs [14], [15], we identify three major
drawbacks when developing GPU-based LP system:
o The existing works only optimize the classical LP al-
gorithm [7] on GPUs. However, many variants of LP
are used by data engineers in e-commerce platforms to



develop strategies on detecting evolving fraud patterns.
A survey compares 13,834 LP variants and the results
show that the variants have their niche, i.e., none is
universally superior [6]. Implementing a correct and ef-
ficient GPU program is challenging in general, and even
more difficult for graph applications like LP. Hence, it
is not practical to train every data engineers with the
knowledge of tedious programming and performance
optimizations on GPUs.

o The existing works simply leverage the raw comput-
ing power and high memory bandwidth of GPUs to
accelerate MFL computation. As the workload is not
associative, the existing methods rely on parallel seg-
mented sort of the entire neighbor lists to order the
labels for label frequency evaluation, and then select
the MFL [14], [15]. It requires repeated scans of the
labels, which bottlenecks the MFL computation. The
performance gets worse when a neighbor list does not
fit into the fast shared memory, in which the existing
methods must resort to the slow GPU global memory
for processing the neighbor list. On the other hand, for
vertices with fewer than 32 neighbors, it also wastes
resources to employ a warp of 32 threads for processing
vertices with tiny neighbor sets.

o The existing works incur expensive data transfer cost
between CPUs and GPUs when the graph size exceeds
the GPU memory capacity. Graphs that cannot fit into
the GPU memory are divided into partitions for out-
of-core processing on GPUs. For every LP iteration,
all graph partitions must be transferred to the GPU
memory. According to our experiments, data transfer
costs take over 60% of overall execution time for out-
of-core LP processing.

In this paper, we propose a GPU-based framework to
support large scale LP processing, called GLP. To ease the
development of different LP variants, we offer a set of
user-defined APIs in the GLP framework. These APIs pro-
vide expressive and bulk-synchronize abstractions for data
engineers to quickly deploy LP variants tailored for their
targeted applications, e.g., develop various algorithms to
enhance the system capability of detecting new frauds in e-
commerce platforms, without domain knowledge of GPUs.
Furthermore, the design of GLP can seamlessly support mas-
sive graphs that do not fit into the GPU memory entirely,
and GLP handles such scenarios with a CPU-GPU hybrid
execution mode.

Built upon the GLP framework, we propose three novel
optimizations. Our optimizations take advantages of the
characteristics of LP algorithms, which are overlooked by
the existing works.

First, we maximize shared memory usage even if a
neighbor set does not fit into the shared memory. The
existing works have to access the slow global memory to
compute the MFL for high-degree vertices as their neighbors
cannot fit into the shared memory. We leverage an important
observation: two neighbors of a vertex often share the same
label as they have a high chance to be in the same com-
munity [16]. To maximize shared memory processing for
computing MFL, we combine two shared memory resident
data structures: count-min sketch (CMS) and hash table (HT).
CMS is used to effectively prune labels with low frequencies
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and HT is deployed to store potential MFL without accessing
the global memory. We theoretically show that the global
memory access only occurs with small probabilities.

Second, we optimize the MFL computation for vertices
with low-degree. For most large graphs, the number of low-
degree vertices are massive due to the power-law principle.
The existing works either use a warp of 32 threads or a
single thread to handle one low-degree vertex but both
approaches suffer from low GPU resource utilization. As
GPUs are very sensitive to imbalanced workloads caused
by low-degree vertices, we optimize the MFL computation
by employing GPU warp-centric intrinsics for grouping
threads and updating the labels of multiple vertices con-
currently in a warp.

Third, we propose a novel scheme to enable LP process-
ing on compressed graphs. The reduction in memory usage
achieved by compressing the neighbor lists significantly
lowers the data transfer expense for out-of-core processing.
Utilizing a simple approach that fully decodes the com-
pressed representation for LP processing leads to frequent
GPU memory accesses. To address this issue, we opt for a
partial decoding of the compressed neighbor lists, generating
a more compact representation. Subsequently, we develop
a dynamic scheduling strategy that effectively allocates a
neighboring vertex from the compact representation to a
thread while maintaining workload balance.

We thereby summarize our contributions as follows:

e We propose GLP, a GPU-based framework that allows
data engineers to deploy user-defined, efficient and
scalable LP algorithms on GPUs for different applica-
tion requirements of the data science pipeline. To our
best knowledge, this is the first GPU framework that
can support a range of LP algorithms.

o We devise a novel structure that combines CMS and HT
to maximize shared-memory usage for MFL computa-
tion. We introduce a warp scheduling approach that
handles multiple low-degree vertices concurrently for
efficient in-memory processing on GPUs.

o We optimize data transfer by processing LP on com-
pressed graphs. To avoid full decoding, we develop a
compact representation where only partial decoding is
sufficient for LP processing.

o Extensive experiments confirm: (1) GLP achieves sig-
nificant speedups over the existing CPU and GPU
approaches for LP. (2) GLP reduces the data transfer
cost for LP processing on out-of-core graphs with the
compression techniques on average of 88.4%. (3) GLP
processes real-world fraud detection workloads on a
graph of over 10 billion edges with a single GPU, while
offers 13.2x speedup to the current in-house solution
running on a high-end multicore machine. We show
that GLP can be an efficient and cost-effective solution
towards fraud detection pipelines.

This journal article expands on our earlier conference
paper [17]. In this extended version, we introduce new com-
pressed label propagation methods in Section 5, specifically
designed for optimizing out-of-core GPU graph processing.
Further, Section 6.4 presents new experiments that highlight
an average data transfer cost reduction of 88.4% achieved
using our compression techniques. Finally, the case study
in Section 6.5 demonstrates that our methods amplify the
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Fig. 2. An example of parallel Lp execution.

speedup from 8.2x to 13.2x over TAOBAO’s in-house solu-
tion when handling a real billion-scale graph workload.

In what follows, we present the preliminaries and the
literature review in Section 2. The GLP framework is in-
troduced in Section 3. The in-GPU optimizations and com-
pressed LP processing are presented in Section 4 and Sec-
tion 5, respectively. Section 6 discusses the experimental
results. We conclude the paper in Section 7.

2 PRELIMINARIES
2.1 Label Propagation (Lpr)

Given a graph G = (V, E), where V represents the vertex
set and E represents the edge set. The neighbor set of a
vertex v is denoted as N (v). We present the classical Lp [7]
as a brief introduction to LP algorithms. Every vertex v;
is first initialized with a unique label L; representing its
cluster ID. Subsequently, each vertex takes the most frequent
label (MFL) among its neighbors for updating its own label.
Specifically, it invokes two stages for updating the labels: (1)
retrieving the labels of neighbors for all vertices; (2) count
the labels and extract the MFL. This process iterates until a
termination condition is met. Vertices with the same label
are assigned to the same cluster. The example in Figure 2
shows the first three iterations of LP. Two clusters are
identified by labels B and I after LP converges at step (d).

We note that many variants of LP are proposed [18], [19],
[20], [21], [22], see a survey in [6]. Nevertheless, they follow
the same pattern which a vertex first loads the label value of
neighbors and then use the MFL to aggregate the labels of
neighbors. We hence design the GLP framework anchored
on this pattern for supporting different LP variants. More
details will be presented in Section 3. Before moving on, we
present the frequently used notations in Table 1.

2.2 Related Studies

We review the literature by discussing four related areas: (1)
LP processing on GPUs; (2) Optimizing workload balance
for GPU graph processing; (3) Optimizing memory access
for GPU graph processing; and (4) Out-of-core graph pro-
cessing on GPUs.

3
TABLE 1
Frequently used notations in this paper
Symbol | Descriptions
G(V,E) | agraph G with vertex set V and edge set E
(v, u) an edge from vertex v to vertex u
l a label of a vertex
L,L; the label value array (indexed by the vertex id )
MFL the most frequent label (among the neighbors of a
vertex)
CMS,HT | the count-min sketch and the hash table in the
shared memory
GHT the hash table in the global memory
d the number of hash functions for CMS
w the number of buckets for each hash function for
CMS
h the number of buckets for HT

GPU-based label propagation. The existing works leverage
the high memory bandwidth of GPUs to load the labels of
neighbors for each vertex [14], [15]. Subsequently, a GPU-
optimized segmented-sort kernel is executed to order the
neighbor labels. Lastly, a count kernel scans the ordered
neighbor labels to extract MFL and then updates the ver-
tices in parallel. There are two major performance issues
when the aforementioned approach is executed iteratively
for LP: (1) the label values are repeatedly loaded but only
a subset of them have their labels updated, which leads
to unnecessary non-coalesced global memory accesses; (2)
the segmented-sort kernel executed on the entire graph is
an overkill for obtaining MFL and thus incurs redundant
workloads. GLP addresses these issues with a novel hash
table-based design.

Optimizing workload balance for GPU graph processing.
Accelerating graph workloads on GPUs incurs unbalanced
work distribution as the neighbor lists in large graphs follow
the power-law distribution. The most common workload
that is being extensively studied is graph traversal. Hong et
al.[23] propose a virtual warp-centric BFS algorithm that di-
vides an entire warp into small virtual groups to active more
threads within a warp. This technique is later adopted by
Medusa [24]. Merrill et al. [25] devise a block-based thread
scheduling where a block/kernel is assigned to handle a
high degree vertex, which is the same strategy adopted by
Gunrock [26]. Liu et al. [10] introduce iBFS for processing
concurrent BFS where a warp voting technique is used to
balance the workloads. Many scheduling approaches have
been proposed for other graph applications, see [27] for
a comprehensive survey. However, there is an important
assumption made in these existing works: the workloads are
associative in every neighbor lists, which does not hold for
the LP algorithm. Our proposed solution introduces a num-
ber of novel optimizations to handle the non-associativity:
(1) combine HT and CMS for handling large degree vertices
that do not fit into the shared memory and reduce work-
loads; (2) group small vertices for computing their label
frequencies in a warp. (3) compute the label frequencies on
the compressed neighbor list.

Optimizing memory access on GPU graph processing.
Recent works on GPU-based graph processing propose solu-
tions for addressing irregular memory accesses. Cusha [28]
eliminates random memory access by reordering edges into
G-shards, but at the cost of producing block/warp diver-
gence. Furthermore, the window representation proposed in
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Cusha is designed for associative workloads [29]. However,
the task of extracting MFL in LP is naturally non-associative,
which renders the infeasibility of adopting Cusha for Lp.
Khorasani et al. [30] introduce warp segmentation (WS)
for graph processing. Instead of reducing non-coalesced
memory accesses directly, they hide the latency of memory
transfer by feeding GPUs with compute-intensive tasks.
Nevertheless, this strategy is not suitable for I/O intensive
algorithms such as LP.

Out-of-core Graph Processing on GPUs. In general, there
are two strategies developed in existing systems to enable
efficient out-of-core graph processing using GPUs. The first
strategy replies on the Unified Memory Access (UMA) to
manage large graphs [31], [32]. The second strategy de-
composes large-scale graphs into smaller subgraphs that
can fit into the GPU’s memory [33], [34], [35], [36]. For LP
workloads, the entire graph is accessed for every processing
iteration. Hence, the existing strategies cannot reduce the
amount of data being transferred.

We adopt an orthogonal strategy that enables LP pro-
cessing on compressed graphs. Sha et al. [11] propose a
GPU graph traverse approach on compressed graphs.Each
neighbor list in the graph is encoded to a compact graph
representation (CGR) via Variable Length Code (VLC) for
compression. However, directly employing the processing
strategy in [11] results in frequent global memory accesses
due to complete VLC decoding. We propose a partial decod-
ing scheme that decodes CGR to a compact representation
of intervals and residuals, on which we can execute LP effi-
ciently. In addition to CGR, Kaczmarski et al. [37] introduce
a fixed-length compression technique, which is employed
to efficiently represent integers in a compact and tightly
constrained manner. However, it is unsuitable for scaling to
large graphs containing millions of nodes since the efficacy
of fixed-length encoding is limited by the range of values it
can represent. Such an issue has been pointed out in [11].
Yin et al. [38] propose Chunk-wise Graph Compression
format for graph sampling. This format, which uses linear
estimation (LE) to approximate the entire neighbor list, is
efficient for sampling purposes which visits neighbors in
the adjacency list with random access. However, for LP
processing, we need a full scan of the adjacency list. Fur-
thermore, LE requires additional stores and loads for bias of
each vertex before extracting the vertex ID, leading to a full
compression of the adjacency list for LP processing.

3 THE GLP FRAMEWORK

We follow two important design goals to make our system
a useful framework.

o Programmability. We provide a set of user-defined APIs
for data engineers to develop various LP variants on
GPUs with ease.

o Efficiency. The designed processing workflow and APIs
allow efficient and scalable GPU implementations.
Figure 3 shows the data structures and processing work-

flow of GLP. We use two structures, Graph and Attributes,
to represent the underlying graph and its attributes/labels.
The compressed sparse row (CSR) format is used to store
the graph structure. The users of GLP can include addi-
tional user-defined data structures for customization, but

I

Struct Graph{

/*CSR structure*/

Vertexld* N; /*neighbor list*/

SizeT* Offsets; /*offsets of the
neighbor list*/

Attributes* Attr; /*pointer of
attributes structure*/

LoadGraph

]
c
=

For multiple iterations

double* V_weight; /*vertex weight*/ PickLabel

double* E_weight; /*edge weight*/
}
Struct Attributes{

LabelT* L; /*label of each vertex in
the current iteration*/

LabelT* Lnext; /*label of each vertex
in the next iteration*/

LabelPropagation

UpdateVectex

double* Globalfreq;/*frequency of
labels in L*/

}

SaveResult

Fig. 3. Overview of GLP.

are advised to follow the structure of arrays (SoA) layout
for coalesced memory accesses on GPUs. The workflow
of GLP is iterative and each iteration contains three main
components as follows:

e PickLabel. This component is responsible for deciding
a label for each vertex with a user-defined strategy.

e LabelPropagation. Each vertex will pick the label
which achieves the highest score value among its neigh-
boring vertices. The users can customize the score func-
tions of labels. We illustrate more details in Section 4.

e UpdateVertex. Given a vertex and a label picked from
LabelPropagation, it is responsible for updating the
status of the vertex with a user-defined strategy.

APIs. We provide APIs for developers to customize and de-
ploy their LP algorithms on GPUs for different application
requirement on the data science pipeline. We show some
sample APIs in Table 2. With the help of those APIs, users
can directly customize PickLabel and UpdateLabel.
For LabelPropagation, we expose two APIs, namely
LoadNeighbor and LabelScore, to balance between ease
of customization and efficient GPU optimizations. The
LabelPropagation kernel running on GPUs will invoke
LoadNeighbor and LabelScore to select the MFL for
each vertex. The configurations for GPU kernel functions
are automatically set up, there is no requirement for users
to deal with any GPU optimizations.

Examples. To showcase the ease of implementing various
LP algorithms for data engineers to deploy different LP vari-
ants, we present three commonly used LP variants under the
GLP framework in Figure 4.

o Classic LP. This algorithm is introduced in Section 2.1

o LLP (The layered LP algorithm [19]). The classic LP tends
to provide undesirably large communities. In contrast,
LLP updates its label by the following formula. For
each label [ currently appearing on the neighbors of a
vertex, LLP computes val = k — v % (v — k). k is the
number of neighbors having the same label with [, v
is a density parameter, and v is the overall number of
vertices having the same label with [. The classic LP
chooses | maximizing k, whereas LLP chooses the label
maximizing val.
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TABLE 2
Sample User-defined APIs in GLP

APIs/Parameters

Descriptions

PickLabel(VertexId vid)

Given a vertex vid, it decides vid’s label and write the label to the
current label array L.

LoadNeighbor(VertexId vid, Vertexld did)

Given an edge (vid, did), it returns the label and the frequency for
did as a neighbor of vid.

LabelScore(VertexId vid, LabelT I, double freq)

Given a vertex vid, a label | and I’s frequency freq among vid’s
neighbors, it returns a score of [ for vid.

UpdateVertex(VertexId vid, LabelT I, double score)
score.

Given a vertex vid, update the status of vertex vid with label I and

__Graph* G; /*global graph structure G*/

/- ----Classic LP =]

double LabelScore
(Vertexld vid, LabelT I, double freq){
/*return freq as its label score*/

void PickLabel(Vertex!d vid){
/*copy Lnext to L */
G-> Attr-> L[vid] = G-> Attr-> Lnext[vid];

} return freq;
s pair<LabelT, double> }
LoadNeighbor (Vertexid vid, VertexId sid){ void UpdateVertex
LabelT I = G-> Attr-> L[sid]; (Vertexld vid, LabelT I, double freq){
/*accumulates frequency of | by one */ return;
return pair<double,LabelT>(l, 1.0); }
}
/% LLP */

__void PickLabel (Vertex!d vid){
LabelT | = G-> Attr-> Lnext[vid];
G-> attr-> L[vid]] = |;

_ __double LabelScore

(Vertexld vid, LabelT I, double freq){
double r = G-> Attr-> Gamma;
/*accumulate the frequency of 1*/ /*get the frequency of label | in L*/
UpdateGlobalFreq(l); double v = GetGlobalFreq(l);

} return freq—r * (v - freq);

pair<LabelT, double> }

LoadNeighbor (Vertexid vid, VertexId sid){
LabelT | = G-> Attr-> L[sid];
return pair<LabelT, double>(l, 1.0);

} }

void UpdateVertex
(Vertexld vid, LabelT I, double freq){
return;

/* SLP */

void PickLabel(Vertex!d vid){ double LabelScore

G-> Attr-> L[vid] = randomPick(vid); (Vertexld vid, LabelT I, double freq){

} return freq;
y pair<LabelT, double> }

LoadNeighbor (Vertex!d vid, Vertexld did){

EdgeT eid = GetEdgeld(vid,did);

double w = V_weight[vid] +
E_weight[did];

LabelT | = G-> Attr-> L[vid];

return pair<LabelT, double>(l, w);

} }

void UpdateVertex
(Vertexld vid, LabelT |, double freq){
LabelT | = G-> Attr-> Lnext[vid];
/*update labels of vid in candidates*/
AddLabelToLists(vid, 1);
RemovelLowFreqglabels(vid);

Fig. 4. User-defined APlIs for Lp variants.

e SLP (The speaker-listener LP algorithm [39]). Both clas-
sical LP and LLP can only assign a vertex to one com-
munity. SLP is designed for identifying overlapping
communities. Each vertex may have multiple labels. In
each iteration one label among the candidates is chosen
to be the current label of a vertex. Each vertex then
selects the MFL from its neighbors like the classical LP,
and the MFL is used to update the candidate labels for
each vertex. At the end of each iteration, labels whose
frequency are less than a threshold will be removed from
the candidates.

4 OpPTIMIZE MFL COMPUTATION

In this section, we present optimizations for implementing
LabelPropogation on computing MFL under the GLP

framework. We focus on two types of vertices, high and
low degree vertices, which are the major issues for memory
access overhead and workload imbalance respectively.

4.1 Handling High Degree Vertices

The existing works either use segmented sort or global hash
tables for counting the frequencies of labels. However, the
existing approaches have trouble in handling high degree
vertices. Implementations based on segmented sort have
to gather labels into an addition array in the GPU global
memory, i.e., the neighbor label array NL, and impose
expensive memory overheads on GPUs as the size of NL
is proportional to the total number of edges. Additionally,
segmented sort degenerates to plain parallel sort for high
degree vertices. In this approach, multiple scans on NL
are required. Thus, the segmented sort approach incurs
unnecessary workloads for obtaining the MFL. The other
possible approach is to allocate a hash table for each vertex
v with memory size equivalent to v’s neighbors in the GPU
global memory for counting the label frequencies. The hash
table approach relies on the built-in caching mechanism of
GPUs to reduce global memory accesses. However, when
the number of neighbors exceeds the cache size, the hash
table cannot avoid random accesses in the global memory.

In this work, we propose a shared memory approach that
handles high degree vertices even when the neighbors of a
vertex exceed the shared-memory size. This is possible due
to the important observation that, as more iterations are ex-
ecuted, neighbors of a vertex often share similar labels since
they are likely to be assigned in the same cluster. Hence, the
number of distinct labels among a vertex v’s neighbors could
be drastically smaller than the degree of v. The observation
enables opportunities for handling the frequency calculation
in the shared-memory alone. Nevertheless, the number of
unique labels cannot be determined before accessing all
neighbors of a vertex. To avoid unnecessary global memory
accesses, we combine a Count-Min Sketch (CMS) and a
Hash Table (HT) in the shared memory for estimating the
label frequencies of a high degree vertex. CMS [40] is an
effective approach for estimating frequencies in the data
stream scenario. For each arriving label {, CMS hashes [ to
d independent hash functions and increment the counts
in the corresponding buckets. CMS only overestimates the
frequency of a label and has a probabilistic guarantee on the
upper bound of the frequency value.

Our approach takes only one scan of the neighbor labels
for any vertex v. One thread block is assigned to v and
each thread is assigned to handle one neighbor u for v
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Procedure SharedMemBigNodes

input : threadid tid, vertex v, shared memory
structures HT,CMS, global memory hash table
GHT, neighbor array N, of fset[v] indicates
the starting index of neighbor list for v in V.
output: updated label array Lnext[]
u:= N [of fsets [v] + tid]
(I,weight) := LoadNeighbor (v, u)
ht_score := INT _MIN
cm_score ;= INT_MIN
freq := atomicAdd (HT, 1, weight)
if unsuccessful insertion then
freq := atomicAdd (CMS, [, weight)
cm_score ;= LabelScore(v,l, freq)
else
L ht_score := LabelScore(v,l, freq)

11 s(HT) := blockReduce (ht_score, max ())
12 $(CMS) := block Reduce (cm_score, mazx ())
13 if s(HT) > s(CMS) then

14 | if s(HT) == hi_score then

15 | Lnext [v] :=1

O© 0 N9 U R WN =

=
(=]

16 else

17 if | ¢ HT then

18 freq := globalInsert(GHT, I, weight)
19 gt_score := LabelScore(v,l, freq)
20 else

21 L gt_score := ht_score

2 s(GHT) := block Reduce (gt_score, max ())
23 if s(GHT) == gt_score then
2 | Lnext [v] :=1

and its label I. A CMS and a HT are allocated in the shared
memory. When scanning, we insert [ into HT and increment
the label frequency HT(!) in the hash table if the insertion
is successful. Otherwise the hash table is full, we add I
to cMs, followed by computing a score based on the label
and its frequency. After processing all neighbors, the thread
block synchronizes to find the maximum score in HT as
$(HT) and the maximum score estimated by CMS as s(CMS).
If s(HT) > s(CMS), we can safely update the vertex by using
the MFL in HT. The approach maximizes the chances for
shared memory processing.

We present the aforementioned approach in Procedure
SharedMemBigNodes. One thread with ID tid loads the
label of one neighbor u of v to [ as well as I’s weight (Line 2).
For the ease of presentation, a thread only processes one
neighbor of v but one thread will process multiple labels in
the actual implementation.

We try to insert the label to the shared memory structures
HT and CMS with the atomicAdd primitives (Lines 5-7). The
variables hi_score and ¢m_score store the scores of label [ in
HT and CMS after the insertion, respectively. Upon insertions
are complete, two blockReduce primitives ! are invoked to get
the maximum scores in HT and CMS from all threads in the
block. We can safely update Lnext[v] with the MFL in HT if
s(HT) > s(CMS) (Lines 13-15). Otherwise, we insert [ into the

1. blockReduce is a GPU block-wise reduction that uses a binary max
operator to compute a single aggregate from a list of input elements.

dblp ——
roadnet —>—

youtube
aligraph

livej wiki-en —@—
uk-2002 —6— twitter —A—

Percentage of MFL (%)

1 3 5 7 9 11 13 15 17 19
Iterations

Fig. 5. The average percentage of MFL in the high-degree (larger than
128) vertices across all datasets.

global hash table GHT and retrieve the MFL from both GHT
and HT to update Lnext[v] (Lines 16-24).

Special Note. The proposed approach for combining CMS
and HT is not an approximated solution for MFL computa-
tion. Instead, it is a pruning strategy that takes advantages
of the label distribution in the neighborhood. In the worst
case, we still need to access the global memory to count label
frequencies. Then we show that this strategy can effectively
reduce the global memory accesses with a high probability.

Theoretical Analysis. We discuss the theoretical guarantee
for our proposed shared memory approach. In particular,
we study the probability that global memory accesses are
needed for processing any given vertex v in a classic LP
algorithm. To simplify the analysis, we assume that all labels
except the MFL appear only once in the neighbor list. This
assumption is grounded in an observation of the label dis-
tribution during label propagation for high-degree nodes,
where the MFL predominantly prevails among the majority
of neighbors. We measure the average percentage of average
MFL changes across high-degree vertices at each iteration
of label propagation, as depicted in Figure 5. It reveals that
the percentage of MFL experiences a swift escalation in the
initial iterations, followed by a more gradual increase in
subsequent iterations.

Let m be the number of distinct labels in N(v), h be
the number of buckets in the HT, d and w be the number
of independent hash functions and the number of buckets
for each hash function in the CMS, respectively. For any
label I, f(I) denotes the frequency count in N(v) and
foin < f(I) < fuax- We first show the following lemma
to study the probability that the label with the maximum
frequency in N(v) is not in the HT after inserting all labels
into the HT and the CMS in a random order. To simplify the
analysis, we assume that all labels except the MFL appear
only once in the neighbor list.

Lemma 1. Let [* be the label where f(I*) = fpax. Then P[I* ¢

HT] < (1 — -20)?F where k = ls—t.

Proof 1. We only discuss the case where m > h since all
unique labels will be presented in HT if m < h. We study
the following random process: all distinct labels except [*
are randomly permuted as a sequence s and we insert [*
into s for fuax times at random positions. Hence, [* ¢ HT
if and only if [* does not appear in the first i positions
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of s. It then follows that:

m—h m+1—nh m+ fopax —1—h

BT m+1 M+ frax — 1
M+ (faax — 1)/2 — hy (Fasz—1)
S( M+ (faax — 1)/2 )

The ith factor of the equation presents the probability
that the MFL is captured by the HT in the ith position.

Furth/e;, thhe inequality holds since 7=k . mbn—izh <
+n/2—h\2 \/ ~ : " fam—1
(Foaza ) Vi € [0,n]. Simply substitute k = Jon—1
derives the lemma.

From Lemma 1, we can infer that [* has a low probability
not present in the HT when dealing with practical scenarios.
Suppose m < k (i.e., the number of unique values is small
compared with the maximum frequency count in N(v)),
P[I* ¢ HT] — e " for large fuax, where the probability
decreases exponentially with h.

Next, we analyze the scenario where the maximum
frequency estimated by CMS is larger than the maximum
frequency in HT when [* € HT. Such a scenario implies
global random accesses are needed. To establish the the-
oretical result, we denote f(HT) as the sum of frequency
counts of labels inserted into the HT and ¢(!) to denote the
frequency count estimated by the CMS for label .

Lemma 2. P[max; g(1) > faax] < md where § = 274

Proof 2. As the hash table stores f(HT) counts, the number
of insertions to the CMS is s = (|N(v)| — f(HT)). As all
frequency counts are integers, we have the followings:

Plg(l) > faax] = Plg(1) = f(I") + 1] )
< Plg(l) = f(1) +1]

<Pl > fO)+ - s =2 @

Equation 2 holds due to the properties of the CMS [40]
when w is set to 2s. Hence, Plmaxy, g(I) > fuax] < md
by the union bound of m distinct labels.

Now we are ready to estimate the probability of having
global memory accesses.

Theorem 1. The probability of global memory accesses is
bounded by (md + e~h) for any vertex v as fpax —> 00
and m < Jnax=1

The proof naturally follows by combing Lemma 1 and
Lemma 2. In practice, the maximum frequency fn.x becomes
large and the number of distinct label m becomes small after
a few iterations of LP for high degree vertices since com-
munities form when labels are merged. Hence, (md + e~")
is small and it renders our proposed approach effective in
reducing global memory accesses.

4.2 Handling Low Degree Vertices

The existing works either assign a single thread or one warp
of 32 threads to handle one low-degree vertex. Both strate-
gies are far from optimal. One-thread-one-vertex strategy
has the workload imbalance issue when two threads are
assigned to two vertices with different number of neighbors.
Further, the threads in a warp access different neighbor lists
concurrently, and have frequent uncoalesced memory ac-
cesses for the warp. One-warp-one-vertex strategy handles a

7
[1[1]2]2]2]3]3]3]3]4[4]4[4]5]5]6][6[6]7[7]8]8]
8[e[a[8]a 8|8[8[r[8[a]a[r|F[F[F[F[F]|
S S~ ~~
Warp 0 i\\\ Warp 1 \‘\{\\ arp\Z ~<
i N S T Y
v [1]1]2]2]2]3]3]3]3]o [4]a[a]a]5[5]6]6[6[0] [7]7][8[8]0[o]0[0]0]0]
N EEEE o] [sls[slF[slalalF[Flo] [F]F]F]F]o]o]o]o]o]o]
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\ —

™\, activemask =__ballot_sync (V[tid] ) ————

01111

(1) active 01111 |01111 01111 01111 01111
-mask 11111 (11111 (11211 11111 |11111 11111
vmask =__match_any_sync ( activemask, V([tid] )
) vmask 00000 |00000 (00000 |00000 |00000
00011 {00011 (11100 {11100 |11100
Imask = __match_any_sync ( vmask , NL[tid] )
(3) Imask 00000 | 00000 |00000 |00000 (00000
00011 | 00011 |10100 |01000 (10100
count = __popc ( Imask)
@) [cout 2 2 2 1 2

[tid o [1 [2 [3 [4

Fig. 6. An example of the warp-centric approach. Each number in V'
represents a node ID v and the number in NL below v represents a
label from a neighbor of v. Different colors represent different vertices
handled by the threads in warp 0 respectively. The bit mask for thread
tid represents all threads in warp 0 having the same workload as tid.

vertex with 32 threads and all threads in the warp access the
same neighbor list to avoid imbalance workload and unco-
alesced memory accesses. However, vertices with less than
16 neighbors are common in power-law graphs [41]. One-
warp-one-vertex strategy will result in many idle threads
and under-utilize the computing resources of GPUs.

Motivated by the above drawbacks, we propose to em-
ploy a warp of 32 threads to compute the label frequen-
cies for multiple low-degree vertices concurrently, i.e., one-
warp-multi-vertices approach. In this way, we make full
utilization of GPU threads compared with the one-warp-
one-thread approach. As the threads in a warp execute the
instructions in a lock-step manner, the major challenge is
how to efficiently identify the set of peer threads in the
warp working on (1) the same neighbor list; (2) the same
label from the same neighbor list. To solve the challenge,
we combine a number of warp-centric intrinsics to quickly
identify peer threads.

In the following, we give an illustrative example for
the classic LP algorithm and demonstrate how to handle
multiple low-degree vertices concurrently in a warp. For
ease of presentation, we assume the size of a warp is 10 and
warp 0 handles vertices 1, 2 and 3. The execution sketch is
illustrated in Figure 6.

1) We select those active threads having a valid label in
the warp. by calling the __ ballot_sync intrinsic 2. The
returned activemask tracks which threads are assigned
with a valid label to work on. For warp 0, all threads
have the same activemask and the most significant digit
is 0 indicating that thread 9 will be idle.

2) We group the active threads according to their assigned
vertex by calling the __match_any_sync intrinsic >. The
returned vmask for each thread t indicates the set of

2. __ballot_sync returns the bit mask of all active threads where the
input parameter is non-zero.

3. __match_any_sync returns the bit mask of all active threads (in-
dicated by the activemask) that have the same value of the input
parameter.
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peer threads assigned with the same vertex as ¢. In our
example, both thread 0 and thread 1 are assigned with
vertex 1, thus the position 0 and 1 of vmask are set to 1

3) We employ __match_any_sync again for grouping
threads to compute the label frequency. The returned
Imask for each thread tid indicates the set of peer
threads assigned with the same label of the same vertex.
In our example, thread 2 holds label A from vertex 2.
Among all three threads that are assigned to vertex 2,
only thread 4 is assigned with label A, thus both threads
2 and 4 hold the same Imask where the corresponding
positions are set to 1.

4) The count of label frequency is the number of ones
in Imask, which are computed by simply calling the
__popc intrinsic *.

It is noted that our approach handles multiple vertices
for updating the labels with warp-level intrinsics. As warp-
level intrinsics are extensively optimized in the throughput-
oriented architectures, the approach can efficiently process
low degree vertices. The atomic operations are replaced by
efficient bit manipulation with the help of intrinsics. Each
intrinsic operation can be executed much more efficiently
within a few clock cycles on GPUs.

5 GLP oN COMPRESSED GRAPHS

For large graphs that do not fit into the GPU memory,
the existing works on out-of-core GPU graph processing
divide the graphs into smaller partitions [33], [34], [35],
[36]. The partitions are transferred to GPU via the PCle
bus based on the computational demand. However, since
LP requires to process all adjacent lists, all partitions must
be unavoidably transferred to GPUs in each LP iteration.
In effect, the partition-based approach does not reduce the
amount of transferred data. Although the existing works
take advantage of asynchronous transfer to overlap the PCle
overhead with in-GPU processing [34], [36], they assume
that the PCle bus is dedicated to a single application to
maximize its usage. In modern data centers, the PCle bus
is shared by multiple applications on a diverse set of pe-
ripheral devices, such as network adapters [42], SSDs [43]
and FPGAs [44]. Reducing the amount of transferred data in
a shared PCle environment is essential for achieving high-
performance data processing in practice.

In this paper, we develop techniques for enabling LP
processing on compressed graphs. The compression results
in reduced data to be transferred via PCle. In what follows,
we first introduce the compressed graph representation
(CGR) and discuss the technical challenges for enabling
LP processing on CGR. Subsequently, we propose a novel
partial decoding scheme that processes LP on a compact
representation without full CGR decoding.

5.1 Compressed Graph Format

Recently, Sha et al. [11] propose a novel CGR such that
larger graphs can fit into the GPUs for graph traversal.
The CGR compresses each vertex’s neighbor list via Vari-
able Length Encoding (VLC). As depicted in Figure 7, the

4. __popc counts the number of bits that are set to 1 of the input
parameter.

Adjacency List

[ 160 12, 15,(18, 19, ..., 3137, 38, 39, |54

Intermediate Representation
20, 2, (18,14), (37,3), 12, 15, 54

VLC encoding
000010100 010 00100 0001110 00110 011 0001001 011 00000100111

Fig. 7. The CGR of an adjacent list. The adjacency list contains 20
neighbors of vertex 16 (the first neighbor is vertex 12). After transformed
to the compact representation, the list is represented as a combination
of intervals and residuals. The number of neighbors is stored (i.e., 20)
followed by the number of intervals (i.e., 2). Vertex 18 in the first interval
(18,4) is encoded as 2(00100), which is the gap between vertex 18 and
vertex 16. We encode a positive gap = as 2z, otherwise, a negative gap
as 2z + 1 for the first interval and residual. Thus, the gaps 2 is encoded
as 00100. The length of the intervals 14 is encoding as 0001110. The
starting vertex of second interval (37,3) is encoded as 6(00110), which
is the gap between the starting vertex of the second interval 37 and the
ending vertex of the first interval 31. The length of second interval is
encoded as 3(011). The first residual 12 is encoded as the gap between
the vertex 12 and vertex 16, which is -4(0001001). The second and
final residuals, 15 and 54, are encoded based on the gap between their
respective values and the value of the preceding residual, which are
3(011) and 39(00000100111).

compression scheme first transforms a neighbor list to a
compact representation of intervals and residuals. The in-
terval contains nodes with continuous vertex IDs and the
remaining vertices are left as residuals. For every sequence
of intervals and residuals, we convert it into a differential
sequence based on the original sequence. This involves
representing each element as the difference between itself
and the element that precedes it. Afterwards, VLC encoding
is used to compress the intervals and residuals to a bit array.

With the CGR, the neighbor lists of large graphs are
compressed into bit arrays. However, it is not feasible to
execute LP on the bit array directly. A natural approach
is to adapt the decoding method proposed in [11] and
recover the neighbor lists completely. The recovered neigh-
bors are then processed with the LP logic as discussed
in Section 4. Nonetheless, this approach faces two major
challenges. First, storing the decoded neighbors is memory-
intensive, which can lead to expensive memory accesses on
GPUs. Given that LP workloads are memory-bound, it is
critical to minimize memory accesses. Second, power-law
graphs often contain massive low-degree vertices, which
require a sequential decoding process. Decoding all these
vertices in parallel requires substantial thread resources and
incur expensive synchronization overhead. In what follows,
we discuss techniques that enable efficient LP processing
without completely decoding the neighbor lists.

5.2 Label Propagation on CGR

Partial Decoding. To avoid decoding the adjacency lists
completely, we partially decode the bit strings to the com-
pact representation of intervals and residuals and process
LP directly on the compact representation. To clarify, our
process does not involve decoding a segment of the bit
string. Instead, we decode the entire bit string to reconstruct
the intermediate representation in Figure 7.

However, the intervals and residuals make it challenging
to evenly distribute the LP processing workload among
threads. We propose a dynamic scheduling strategy which
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Procedure compressedLP

input : lane ID lid, vertex v, CGR bitStr
output: updated label array Lnext|]

1 degNum := decode(bitStr)

2 itvNum := decode(bitStr)

3 itvldr :=0

4 curLen :=0

5 while degree Num-- do

6 | curNode := decode(bitStr)

7 | curLen := (itvNum-- > 0) ? decode(bitStr) : 1
8 while itvIdx + curLen > warpsize do

9 if lid > itvIdx then

10 L u = lid — itvIdx 4+ curNode

1 Lnext|] := Label Propagation(v,u)

12 curNode := curNode + warpsize — itvldx
13 curLen := curLen — warpsize + itvldx

14 itvldr =0

15 if (itvldx < lid < itvldx + curLen) then

16 L u = lid — itvldx + cur Node

17 itvldx = itvldx + curLen

18 if lid < itvIdx then
19 | Lnext[] := Label Propagation(v,u)

efficiently assigns a neighbor vertex to a corresponding
thread and balances the workload among threads. Once a
thread is assigned to a neighbor vertex, it gets the label
information of the neighbor and proceeds with the MFL
computation discussed in Section 4.

Procedure compressedLP presents our dynamic schedul-
ing strategy using the compact representation. Each warp
is assigned to a CGR segment of vertex v. Every thread
receives the bit string bitStr of the segment and its lane
ID lid. At first, the threads within the warp decode the
number of neighbors and the number of intervals from
bitStr (Lines 1-2). Following this, the threads decode inter-
vals and residuals from bitStr one at a time. We employ
two variables, itvI/dx and curLen, to maintain a sliding
window for each interval. itvldx serves as the starting
pointer of the sliding window, while curLen represents
the length of the sliding window. If curLen exceeds the
warp size, we assign each thread in the warp to a neighbor
vertex u (Line 10). Once all threads are assigned, we execute
label propagation for vertex v and its neighbor u (Line 11).
The remaining assigned neighbors are processed similarly
in subsequent iterations by adjusting itvIdr and curLen
(Lines 12-14). If curLen is smaller than the warp size, we
only assign neighbors to those threads within the sliding
window (Line 16). We continue to move the sliding window
for the assignment of subsequent intervals until all threads
have been assigned neighbors or no more neighbors remain.

Figure 8 shows an example for the process of partial de-
coding, which does not incur memory overhead on storing
decoded vertices in the GPU global memory.

1) First, we decode the number of degrees and intervals
from the CGR bit string. Then, all the threads within
the warp decode the first interval (18,14). We create a
window starting from index 0 with a width of 14. As 14
is larger than the assumed warp size of 10, we split the

CGR | 000010100 010 00100 0001110 00110 011 0001001 011 00000100111

20, 2, (18,14), |37, 3), [12] 15, 54

[Janes [0 [2 [z 3 N CRE
ltvidx = 0
curLen =14

1st round ’ (18, 10) ‘
Itvidx =0 Itvidx = 4 Itvidx =5, 6, 7
curLen =4 curLen =3 curLen =1

209 round | (28.4) \ (37.3) [@2n)] as.0)[64) |

Fig. 8. An example of compressed label propagation.

interval into two intervals: (18,10) and (28,4). In the first
round, all threads in the warp work on interval (18,10),
and we perform label propagation for that interval.

2) In the second round, we address the remaining interval
(28,4) by resizing the window size to 4 and setting the
starting index of the window to 0. In this way, the first
4 threads in the warp are assigned neighbors 28, 29,
30, and 31. Then, we decode the next interval (37,3)
and assign the corresponding neighbors to lanes 4-7 by
moving the window four spaces to the right.

3) After all intervals are processed, we treat residuals as
special intervals with a length of 1. The residuals 12, 15,
and 54 are assigned to the last three threads by moving
the window one space at a time. As all intervals and
residuals are assigned, we run label propagation on all
threads in the second round.

Addressing Low-Degree Vertices. The decoding process

is inherently sequential by design. A significant number

of low-degree vertices exist, and decoding them results in
inefficient use of thread resources, as their workloads are
insufficient to fully leverage the available parallelism. To
avoid such issue, we choose not to compress low-degree
vertices. Nonetheless, this approach could potentially result
in increased memory consumption, thereby negatively im-
pacting performance since greater memory usage can lead
to higher costs associated with memory transfers. Hence,
we measure the compression ratio when low-degree vertices
are not compressed to provide a clear insight into the actual
memory usage. Table 3 illustrates the variations in compres-

sion ratios when nodes with degrees less than 0, 2, 4, 8,

16, and 32 are not compressed for all datasets. aligraph

achieves the highest compression ratio, approximately 15

times, for all tested thresholds, due to its notably high

average degree of 3991.8. uk-2002 attains a compression
ratio of 9.9 times when all vertices are compressed, but
it still reaches a ratio of 8.4 times when only nodes with
degrees larger than 32 are compressed. All datasets, with
the exception of roadNet, maintain a stable compression
ratio for the examined thresholds. The underlying reason is
that roadNet represents a road network, where the degree
distribution does not conform to the power law, and the
majority of nodes possess low degrees.

Thus, we opt to leave vertices with a degree less than

32 uncompressed in order to minimize the decoding over-

heads. By doing so, we achieve several advantages. First, we

effectively reduce the workload imbalance among threads,
resulting in a more even distribution of work and allowing
threads to complete their tasks in a more synchronized
manner, ultimately reducing idle time. Second, we lower the
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TABLE 3
Compression ratio with a degree threshold

Dataset <0 <2 <4 <8 <16 <32
dblp 1.78 1.73 1.72 1.70 1.61 1.56
roadNet 2.03 2.03 2.01 1.24 1.0 1.0
youtube 1.93 1.93 1.86 1.83 1.77 1.68
aligraph | 1543 | 1543 | 1543 | 1543 | 1543 | 1543
livej 2.83 2.81 2.73 2.53 2.49 2.45
uk-2002 9.90 9.84 9.52 9.30 8.71 8.43
wiki-en 6.32 6.32 6.28 6.23 6.21 5.99
twitter 2.05 2.03 2.03 2.02 2.01 1.97

10
TABLE 4
Dataset Statistics

Dataset )% FE Ave-Degree | Encoding
dblp 317,080 1,049,866 6.6 0.67s
roadNet 1,965,206 2,766,607 2.8 0.27s
youtube 1,134,890 2,987,624 52 1.65s
aligraph 14,933 29,804,566 3991.8 29.22s
livej 3,997,962 34,681,189 17.3 28.76s
uk-2002 | 18,520,486 298,113,762 16.1 55.69s
wiki-en | 15,150,976 378,142,420 24.9 88.77s
twitter | 41,652,230 | 1,468,365,182 35.3 281.37s

overhead associated with the decoding process, as uncom-
pressed vertices do not require the additional processing
steps involved in decoding. This leads to faster execution
and reduced resource consumption. Lastly, as observed ear-
lier, compressing low-degree vertices does not significantly
improve the compression ratio. By keeping them uncom-
pressed, we maintain a reasonable compression ratio while
simplifying the decoding process and reducing the complex-
ity of the overall algorithm. This approach results in a more
efficient and optimized utilization of thread resources.

6 EXPERIMENTAL EVALUATION

We evaluate the performance of our solutions through
experiments against the state-of-the art methods and the
in-house LP system of TAOBAO. We present experimental
results to answer the following questions:

o How much is the improvement of our in-memory solu-
tion against the state-of-the-art methods on multi-core
CPUs and GPUs? (Section 6.2)

o Is each of the proposed in-memory optimizations effec-
tive? (Section 6.3)

o How much is the improvement of our out-of-core so-
lution against the state-of-the-art GPU solutions? (Sec-
tion 6.4)

o What are the advantages of our LP solutions against
the in-house LP system in TAOBAO? (Section 6.5)

6.1 Experimental Setup

Datasets. dblp, roadNet, youtube, and livej were
obtained from Stanford Network Dataset Collection [45],
twitter,uk-2002, wiki—-en were obtained from Kobkenz
Network Collection [46], uk—2002 was obtained from Lab-
oratory for Web Algorithmics [47], and aligraph was an
open dataset provided at Tianchi [48]. We use the method
proposed in [11] to encode each dataset and obtains the com-
pressed graph format for out-of-core evaluations. We report
the encoding cost in Table 4. Note that the encoding process
is conducted offline and the compressed graph format can
be shared by different processing tasks as discussed in [11],
[37], [38] to take advantage of saved memory cost.

LP algorithms. We evaluate three common LP algorithms.
For classic 1.P, we run 20 iterations. For L.LP, we set v = 2,
1 =0,1,2,...,9, and run 20 iterations for each ~. For SLP,
set the maximum number of labels of each vertex to 5, and
run 20 iterations.

Compared Approaches. We compare our proposed ap-
proaches with the state-of-the-art GPU-based solutions.

e TG is the implementation of classic LP provided in the
TigerGraph framework [49] on multi-core CPUs. The
number of threads is set to 12 to match with the number
of physical cores by default.

e Ligra represents the LP algorithms implemented based
on the Ligra framework [50] on multi-core CPUs. The
number of threads is set to 12 to match with the number
of physical cores by default.

e OMP represents the LP implementations using OpenMP.

e G-Sort [15] is the state-of-the-art GPU solution for
classic LP with the segmented sort approach.

¢ G-Hash [51] is an extended version of G-Sort by em-
ploying shared memory hash table for label counting.

¢ GLP is our proposed in-memory GPU solution for LP
without the compression technique.

e CGLP is our proposed out-of-core GPU solution for
compressed LP using two kernels. One decodes the
adjacency list from CGR, and the other does label prop-
agation directly on the adjacency list.

e CGLP+ is our proposed out-of-core GPU solution which
adopts the partial decoding optimization.

Environment. We conduct two sets of experiments. All
codes are compiled by GCC-7.4 and CUDA 10.0 with op-
timization -O3. The first set (Sections 6.2-6.4) is conducted
on a single machine with Intel(R) Xeon(R) W-2133 CPUs,
64GB RAM and two NVIDIA 2080ti GPUs (only one GPU is
enabled). The second set (Section 6.5) compares GLP and
CGLP+ running on the above single machine setup (two
GPUs are enabled and connected by Nvlink) with the cur-
rent in-house solution used in TAOBAO running on a high
end machine, which is equipped with 4 Intel(R) Xeon(R)
Platinum 8168 CPUs and 512GB RAM.

6.2

In this section, we evaluate the in-memory performance
of the compared approaches by running LP algorithms on
the five datasets that can fit into the memory of one GPU.
The other three datasets wiki-en,twitter and twitter
will be used in the out-of-core evaluation. We benchmark
the solutions by comparing their speedup ratios over OMP.

In-memory performance evaluation

The results are demonstrated in Figure 9(a), Figure 9(b) and
Figure 9(c) respectively.

For classic LP comparisons, OMP and Ligra show sim-
ilar performance on most of the datasets, and both ap-
proaches are more efficient than TG. For those datasets,
G-Sort performs slightly better than G-Hash. This is be-
cause G-Sort employs an efficient segmented sort kernel
from CUB 5. The segmented sort achieves the best per-
formance when the size of each segment is small. As the

5. https:/ /nvlabs.github.io
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Fig. 10. Speedup of all GPU-based compared methods over the oMp baseline.

neighbors of a vertex correspond to a segment, G-Sort
demonstrates good performance for small neighborhoods.
Furthermore, both G-Sort and G-Hash require additional
global memory equivalent to the graph size to process the
neighborhood labels. The memory consumption of GLP is
20% and 24% lower than that of G-Hash and G-Sort on
average respectively, as illustrated in Table 5. GLP achieves
the best performance among the three. G-Hash deploys
a hash table in the GPU global memory which records
the occurrence of labels in the neighbors. Each neighbor
requires at least one memory access to the hash table,
resulting in frequent global memory accesses. However, GLP
mitigates this issue through the efficient shared memory
approach reducing redundant global access. G-Sort de-
ploys the segmented sort for MFL computing, which neces-
sitates multiple scans to rearrange the neighbors. Whereas
GLP requires only one scan of the neighbors. Furthermore,
GLP deploys warp-level intrinsics to efficiently handle low
degree vertices, which are not optimized in G-Hash and
G-Sort. In particular, GLP achieves 4.5x and 7x speedup
over G-Sort and G-Hash on average, respectively. For LLP
and SLP, the results are consistent with those of classic
LP. In summary, the results have demonstrated that GLP
significantly outperforms the state-of-the-art solutions on
both CPUs and GPUs.

TABLE 5

GPU Memory consumption for in-memory datasets(MB)
Dataset G-Hash | G-Sort GLP
dblp 52.12 55.15 42.12
roadNet 180.50 199.22 154.11
youtube 157.25 168.08 128.75
aligraph 1137.52 1137.65 853.28
livej 147547 | 151351 | 1144.73

Since the performance results of the three LP variants are
highly similar, we use classic LP to benchmark the compared
methods in the rest of this paper. Furthermore, we omit the
results of Ligra and TG for subsequent evaluation since
they have significant inferior performance compared with

the GPU-based solutions.

6.3 Effectiveness of the in-memory optimizations

To demonstrate the effectiveness of our proposed optimiza-
tions, we compare the following approaches for computing
the MFL in the classic LP algorithm on GPUs:

o global. A hash table in the global memory is employed for
each vertex to count the neighborhood label frequency
with the help of GPU caching mechanism, which is used
in G-Hash [51].

o smem. Our proposed approach of combing CMS and HT
(Section 4.1) to minimize workloads for counting label
frequencies of high degree vertices. We set the high
degree vertices as those with degree larger than 128.

o smem+warp. The optimization proposed in Section 4.2
to handle multiple low degree vertices with one warp.
We set the low degree vertices as those with degree less
than 32. It is activated together with smem to show the
additional improvement.

TABLE 6
Effectiveness of the purposed optimizations (speedup over global)
Dataset dblp | roadNet | youtube | aligraph | livej
smem 1.4x 1.2x 1.6x 7.4x 1.7x
smem-+warp 6.1x 13.2x 8.6x 10.1x 3.6x

We activate our optimizations one by one and report the
speedup over global in Table 6. The smem strategy shows
significant speedup compared with global, which uses global
hash table for label counting. There is a special case in
aligraph, where smem achieves 7.4x speedup over global
which is much higher than other datasets. The reason is that
the aligraph dataset has the largest average degree across
all datasets as shown in Table 4, where most of the vertices
can benefit from smem.

The warp strategy adds on top of smem and optimizes
the process of finding the MFL for low degree vertices. It
provides superior speedup on small graphs. Especially in
roadNet, warp offers an additional 11x speedup. This is due



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

to the fact that roadNet is a road network and thus each
vertex has a small constant degree, which leads to heavy
workload imbalance for global. On average, combining smem
and warp achieves a speedup of 8.3x over the one without
the optimizations.

6.4 Out-of-core performance evaluation

In this section, we evaluate the performance of all GPU-
based approaches, including our out-of-core solutions, CGLP
and CGLP+, across all datasets, including the three out-of-
core datasets in Figure 10.

As the graph size expands, G-Sort’s performance de-
clines due to the diminished efficiency of segmented sorting
on larger segments, which is caused by an increased neigh-
borhood size. Consequently, G-Sort performs equally or
worse than G-Hash. However, GLP surpasses both G-Hash
and G-Sort in terms of performance for both in-core and
out-of-core datasets.

Next, we compare the performance of our out-of-core
solutions with GLP. For the first five datasets, where the
data can fit into GPU memory, GLP achieves the highest
speedup over CGLP and CGLP+. For instance, in dblp, the
speedup achieved by GLP is 239.7x, while CGLP and CGLP+
achieve 44.7x and 97.9x, respectively. This is because CGLP
and CGLP+ incur additional costs for decoding, making
them less efficient on in-memory datasets.

However, for the last three datasets that cannot fit into
GPU memory, CGLP+ achieves the highest speedup. For ex-
ample, in uk-2002, CGLP+ achieves a 14.1x speedup, while
CGLP and GLP achieve 9.4x and 8.3x speedup, respectively.
Overall, GLP is the most efficient solution for in-memory
datasets, while CGLP+ is the best for out-of-core datasets.
In the special case of roadNet, all three methods yield the
same results because most vertices in roadNet have a low
degree, which skips the compressing process as discussed
in Section 5.

In order to further examine the costs associated with pro-
cessing out-of-core datasets, we profile the expenses related
to CPU-GPU data transfer and in-memory LP processing in
GLP, CGLP, and CGLP+, as presented in Table 7. The results
demonstrate that the data transfer cost constitutes over 60%
of the total running time in GLP when handling out-of-
core datasets. In contrast, CGLP+ exhibits a significantly
lower percentage of data transfer costs, accounting for less
than 20%. Generally, CGLP+ reduces the data transfer cost
for LP processing on out-of-core datasets by 88.4%. This
reduction is attributed to the fact that GLP must repeatedly
reload the entire neighbor list from the CPU to the GPU
in each iteration, while CGLP and CGLP+ only need to load
the compressed adjacency list to the GPU memory once,
decoding the neighbor list continually in each iteration
instead. Like CGLP+, CGLP also incurs a small memory
transfer cost. Because both of them use the same compressed
graph format. However, CGLP has a huge computational
cost due to decoding. In CGLP+, the computational cost is
decreased by 36%, 25%, and 38% in uk-2002,wiki-en,
and twitter respectively when compared to CGLP. This
reduction underscores the effectiveness and benefits of em-
ploying CGLP+ for reducing decoding cost. The reason is
that CGLP requires additional loads of decoded adjacency

TABLE 7
The percentage of running time of computing and memory transferring
on out-of-core datasets

Datasets GLY

GPU compute | PCl-e transfer | total
uk-2002 | 32.7%(1.62s) 67.3%(3.35s) 4.97s
wiki-en | 38.8%(3.23s) 61.2%(5.10s) 8.33s
twitter | 39.3%(6.72s) | 60.7%(10.38s) | 17.1s
Datasets CGLP

GPU compute | PCl-e transfer | total
uk-2002 | 93.9%(3.58s) 6.0%(0.23s) 3.81s
wiki-en | 90.8%(6.55s) | 9.1% (0.66s) 72Ts
twitter | 90.1%(14.355) | 9.8%(1.575) 15925
Datasets CGLP+

GPU compute | PCl-e transfer | total
uk-2002 | 90.9%(2.30s) 19.1%(0.23s) 2.56s
wiki-en | 88.1%(491s) | 11.9% (0.66s) | 5.57s
twitter | 84.7%(8.73s) 15.3%(1.57s) 10.3s
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list from GPU memory, whereas CGLP + integrated decoding
and label propagation with only one scan of the compressed
adjacency list.

Though CGLP+ incurs a higher computation cost than
GLP for all three datasets due to the decoding process,
its overall running time remains smaller than that of GLP
for out-of-core datasets. This finding highlights the effec-
tiveness of CGLP+ in reducing the costs associated with
processing large-scale graphs that exceed available memory.

6.5 Large-scale Fraud Detection Processing

We study a real-world data science pipeline to further
demonstrate the superiority of our proposed methods.

Fraud Detection Pipeline in TAOBAO. The overview of
the detection pipeline has been presented in Figure 1. The
pipeline maintains sliding windows containing the transac-
tions in the past 10-100 days. A graph is constructed for each
sliding window connecting the entities in the transactions.
The graph sizes of different sliding window configurations
are presented in Table 8. Subsequently, LP algorithms are
invoked with known fraudulent entities to discover small
susceptible clusters. The identified clusters are then fed
into more complex algorithms, e.g., graph neural nets [§],
to detect suspicious transactions/users in a fine-grained
manner. We note that the efficiency bottleneck lies in the
LP stage, which takes up a heavy 75% processing overhead
of the above automated detection pipeline.

We compare our proposed methods GLP and CGLP+
with the current in-house LP solution used in TAOBAO.
As reported in Table 8, GLP cannot support in-memory LP
processing on the 10-days workloads unless with two GPUs.
Even with two GPUs, GLP cannot maintain an in-memory
processing over workloads more than 10 days. In contrast,
CGLP+ can support in-memory computation for workloads
within 20 days with single GPU and workloads within 40
days with two GPUs.

We report the performance comparison in Figure 11. We
report the average elapsed time for one LP iteration. The ex-
periment shows that GLP and CGLP+ achieves 8.2x and 13.2x
speedup on average against the current in-house approach
with a single GPU. Additionally, GLP and CGLP+ further
achieve 1.8x and 1.9x speedup on average with two GPUs.
We note that with one GPU, CGLP+ always performs better
than GLP for each workload. With two GPUs, GLP outper-
forms CGLP+ for workloads of 10 days but ends in larger
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Fig. 11. The elapsed time of using CGLP+ vs. GLP and the current in-house solution of TAOBAO for one iteration of L.p.
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