
38

Owner-free Distributed Symmetric Searchable Encryption

Supporting Conjunctive Queries

QIUYUN TONG, School of Cyber Engineering, Xidian University, China

XINGHUA LI, School of Cyber Engineering, Xidian University, China and Engineering Research Center of

Big data Security, Ministry of Education, China

YINBIN MIAO and YUNWEI WANG, School of Cyber Engineering, Xidian University, China

XIMENG LIU, College of Computer and Data Science, Fuzhou University, China

ROBERT H. DENG, School of Information Systems, Singapore Management University, Singapore

Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting

retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share

the secret key with all query users or always be online to generate search tokens. While there are some

solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result

decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose

an Owner-free Distributed Symmetric searchable encryption supporting Conjunctive query (ODiSC).

Specifically, we first evaluate the Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF)

in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being

online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive

secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical

performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.

CCS Concepts: • Security and privacy→Management and querying of encrypted data;

Additional Key Words and Phrases: Symmetric searchable encryption, multi-user, conjunctive query, dual-

cloud architecture

ACM Reference format:

Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, and Robert H. Deng. 2023. Owner-free

Distributed Symmetric Searchable Encryption Supporting Conjunctive Queries. ACM Trans. Storage 19, 4,

Article 38 (September 2023), 25 pages.

https://doi.org/10.1145/3607255

This work was supported by the National Natural Science Foundation of China (No. 62125205, No. 62072361), the Key

Research and Development Program of Shaanxi (No. 2023KXJ-190), and the Fundamental Research Funds for the Central

Universities (No. XJSJ23188, No. YJSJ23007).

Authors’ addresses: Q. Tong, Y. Miao (corresponding author), and Y. Wang, School of Cyber Engineering, Xidian University,

Xi’an, China, 710071; emails: qytong0820@163.com, ybmiao@xidian.edu.cn, wywxidian@foxmail.com; X. Li (correspond-

ing author), School of Cyber Engineering, Xidian University, Xi’an, China, 710071, and Engineering Research Center of Big

Data Security, Ministry of Education, Xi’an, China, 710071; email: xhli1@mail.xidian.edu.cn; X. Liu, College of Computer

and Data Science, Fuzhou University, Fuzhou, China, 350108; email: snbnix@gmail.com; R. H. Deng, School of Information

Systems, Singapore Management University, Singapore, Singapore, 188065; email: robertdeng@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2023/09-ART38 $15.00

https://doi.org/10.1145/3607255

Published in ACM Transaction on Storage (2023) 19 (4). DOI: 10.1145/3607255

https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0002-7411-4348
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-3491-8146
https://doi.org/10.1145/3607255
mailto:permissions@acm.org
https://doi.org/10.1145/3607255

Q. Tong et al.

1 INTRODUCTION

Cloud computing, as a promising computing paradigm, motivates resource-constrained clients to
outsource their data for cost saving and flexibility. However, Cloud Service Providers (CSPs,
e.g., Amazon AWS, Microsoft Azure, etc.) are often treated as untrusted entities and may leak the
private data [29]. Symmetric Searchable Encryption (SSE) [27] is an ideal primitive to ensure
data privacy while supporting ciphertext retrieval. A natural extension of SSE is the multi-user
setting, where an arbitrary group of users can issue queries [10]. Existing Multi-user SSE (MSSE)

schemes have realized more expressive keyword search, among which conjunctive query is an
important function and has been widely used in reality. For example, a doctor wants to find the
medical records containing two query keywords fever and hyposmia from an electronic medical
record database.

But existing MSSE schemes [6, 14, 17, 20, 31, 32, 35, 39, 42] cannot achieve “owner-free,” as
shown in Figure 1. Specifically, in the previous MSSE schemes [17, 20, 32, 35, 39], the data owner
shares the secret key with query users to generate search tokens seen in Figure 1(a). Since each
query user has access to the secret key, the adversary (usually CSP) will obtain the key by corrupt-
ing any one query user, which seriously increases the risk of key leakage and thus exposes the
whole outsourced database. In Figure 1(b), some other MSSE schemes [6, 14, 31, 42] perform a per-
query interaction between the data owner and each query user, such that the query user obtains a
search token without learning the secret key, while the data owner learns nothing about the search
query. Nevertheless, the data owner must be online at all times, and considerable computation and
communication burdens are incurred on it, which defeats the initial purpose of data outsourcing.

Recently, the combination of secret sharing and dual-cloud architecture in the previous
schemes [8, 19, 26, 37] has been used to achieve privacy-preserving owner-free retrieval. In the
architecture, both outsourced data and search queries are additively secret-shared among two non-
colluding CSPs, who then execute a series of secure Multi-parity Computation (MPC) protocols
to achieve secure top-k queries. However, there are several weaknesses if such implementation is
directly applied to MSSE, where the secret key instead of outsourced data is secretly shared among
two non-colluding CSPs. First, such implementation is only used to support similar sequence query
and k-nearest neighbor classification. If it is used for index-based retrieval, it only supports top-k
queries, not conjunctive queries. Additionally, decryption of desired results still requires the assis-
tance of the data owner.1 Second, without constraint of key-based authorization, any query user
is able to retrieve the entire database, which poses a significant risk of unauthorized access.2

To address the above issues, we propose an owner-free distributed3 SSE scheme supporting
conjunctive queries (called ODiSC). We evaluate the Learning-Parity-with-Noise weak Pseu-

dorandom Function (LPN-wPRF) [13] under the dual-cloud architecture to generate search to-
kens, enabling MSSE to be jointly implemented by two clouds when the data owner becomes free
from sharing key and being online. Moreover, we combine Additive Secret Sharing (ASS) [12]
and Symmetric-key Hidden Vector Encryption (SHVE) [35] to support fine-grained conjunc-
tive queries in the dual-cloud/distributed architecture, such that unauthorized access is prevented

1The combination of secret sharing and dual-cloud architecture only frees the data owner from encrypting search queries.

The secret keys used to encrypt the outsourced database remain exclusively possessed by the data owner. Consequently,

decryption of the ciphertexts retrieved by the query user requires the assistance of the data owner.
2Unauthorized access means that the search result set R contains the ciphertext cD of such document, which matches the

query Q regardless of whether its access policy ΓD matches the attribute set S . For example, given that the documents

D1, D2, D3, D4, D5 match the query Q , and that the access policies of the documents D4, D5 match the attribute set S , we

have R = {cD1, cD2, cD3, cD4, cD5 }, and the documents D1, D2, D3 are beyond the query user’s authorization.
3To distinguish from traditional SSE in the single-cloud architecture, we use distributed SSE to represent SSE in the

dual-cloud architecture.

2

Owner-free Distributed SSE Supporting Conjunctive Queries 3

Fig. 1. Limitations in existing MSSE schemes.

and decryption of desired results is realized without the assistance of the data owner. The main
contributions of our work are summarized as follows:

• We propose an owner-free MSSE scheme in the dual-cloud architecture. Specifically, we build
an MPC protocol for LPN-wPRF, in which two CSPs take the secret-shared secret key and
a secret-shared search query as input to output a secret-shared search token while keeping
the secret key and search query secret.
• We design a privacy-preserving fine-grained conjunctive query. Specifically, a fine-grained

conjunctive query is converted into vector matching using a Bloom filter and hidden vector-
based access structure, and then secure vector matching is performed using ASS and SHVE.
It makes up for the weaknesses brought by the dual-cloud architecture.
• We give a formal security analysis to show that ODiSC is adaptively simulation-secure. We

also conduct extensive experiments using the real-world dataset to demonstrate that ODiSC
is efficient and feasible for practical applications, whose search time is less than 1 second for
10,000 data.

The remaining article is organized as follows: In Sections 2 and 3, we review the existing literature
and relevant background knowledge, respectively. Section 4 describes the system model, threat
model, problem definition, security definition, and design goals. In Section 5, we present the tech-
nical overview and concrete construction of ODiSC and discuss the identity impersonation in it.
Sections 6 and 7 present the security and performance evaluations of our proposed scheme, respec-
tively. Section 8 concludes this article.

2 RELATED WORK

MSSE is first formally defined and constructed by Curtmola et al. [10]. The scheme first builds an
inverted index to support efficient single keyword search, then is extended to MSSE by sharing
the secret key with a group of authorized users based on broadcast encryption. After that, there
are many follow-up works proposed.

Similar to [10], some MSSE works [17, 20, 32, 35, 39] use the idea of key sharing. The schemes
[20, 32, 35] support multi-keyword ranked search, Boolean range query, and fuzzy multi-keyword
search in the multi-user setting also via broadcast encryption. In these schemes, authorized
users can access the entire database. Zhang et al. [39] achieved fine-grained Boolean query by
combining SSE primitive with the attribute-based authorization policy, where partial secret keys
are shared with all query users. If the adversary corrupts a query user, he or she can use the
partial secret key to decrypt the partial index, which results in data privacy leakage. Li et al. [17]
provided efficient search privilege refinement by utilizing the polynomial-based access strategy
and achieved highly accurate ciphertext retrieval by combining Term Frequency-Inverse

Document Frequency (TF-IDF) with the secure k-Nearest Neighbor (kNN) technique. In

Q. Tong et al.

these schemes, a query user may decrypt others’ search tokens, resulting in query privacy leakage.
To solve it, Tong et al. [30] distributed different secret keys to query users and used the dual
secure kNN technique to convert the multi-key trapdoors into the same-key trapdoors.

Other works [6, 14, 31, 42] achieve MSSE by performing an interaction between the data owner
and the query user in each query. Specifically, Jarecki et al. [14] executed Oblivious PRF (OPRF)

between the data owner and each query user to generate a search token without disclosing the
secret key and plaintext query to each other. In addition, it also allowed CSP to verify that the
search tokens are authorized by the data owner using homomorphic signature. Cash et al. [6]
used the same method to support dynamic multi-user ciphertext retrieval. The schemes [31, 42]
designed a trapdoor generation protocol to encrypt a query point with a round of communication
between the data owner and the query user, where noise addition is introduced to mask plaintext
query and secret key. However, they cannot resist the known plaintext attack. In these interaction-
based schemes, the data owner needs to stay online all the time to receive and encrypt each query
request, which defeats the initial purpose of data outsourcing. If a large number of queries are
issued in a short time, the data owner will become the bottleneck of the system.

The schemes [5, 8, 15, 19, 26, 28, 37, 41] solved the contradiction between key sharing and
online interaction. In the scheme [41], query users locally encrypted search queries using the lim-
ited information about the secret key, which claims to be secure against known-plaintext attacks.
Sun et al. [28] proposed a non-interactive fine-grained Boolean query based on RSA function and
Attribute-based Encryption (ABE), where the access control works on an encrypted database.
Query users would infer some sensitive information (e.g., theme) from the documents that match
query keywords but are inaccessible, thereby damaging inaccessibility. Kermanshahi et al. [15] se-
cretly shared the secret key to authorized query users using the Shamir secret sharing and allowed
query users to compute search tokens by using Randomizable Distributed key-homomorphic

PRF (RDPRF). However, the decryption of search results still needs the help of the data owner.
Cheng et al. [8] used ASS to split each genomic sequence and search query into two shares, then
executed a series of secure MPC protocols to support secure Similar Sequence Query (SSQ) in
the model involving two non-colluding and honest-and-curious clouds. It allows any query user to
retrieve the entire database, which leads to unauthorized access. In addition, the number of com-
munication rounds in the search process increases linearly with the size of the outsourced data-
base, which brings huge communication overhead. The schemes [19, 26, 37] used the same system
model to support faster secure SSQ, privacy-preserving kNN classification, and encrypted image
retrieval, respectively. Boneh et al. [5] implemented an MPC-friendly PRF protocol among two or
more servers to obtain the decryption key for the database entries matching the selected query
keyword. In this scheme, unauthorized access will occur since anyone is allowed to retrieve the
entire database, whether they have access or not. Note that asymmetric SE schemes [9, 23, 34] can
easily enable owner-free retrieval, but they rely on a fully trusted authority and incur significant
computation overhead. In this article, we focus on how to implement owner-free MSSE. Compared
with existing schemes, our proposed scheme has versatile features demonstrated in Table 1.

3 PRELIMINARIES

In this section, we introduce some related knowledge used in our work, which includes additive
secret sharing [12], LPN-wPRF [13], and SHVE construction [16]. Table 2 gives a summary of
notations used in the article.

3.1 Additive Secret Sharing

Two-out-of-two ASS is defined over a field Zp . ASS splits a secret x ∈ Zp into a pair of random
shares 〈x〉 = {〈x〉0 , 〈x〉1} ⊆ Zp such that 〈x〉0 + 〈x〉1 ≡ x mod p and only the party P� knows 〈x〉� .

4

Owner-free Distributed SSE Supporting Conjunctive Queries 5

Table 1. Comparative Summary between ODiSC and Existing Schemes

Schemes Search Type
Avoiding

Key Sharing
Offline

Data Owner
Fine-grained

Access Control

[14] Boolean OPRF ✗ Signature

[17] kNN (TF-IDF) ✗ Key sharing Polynomial

[31] kNN (Euclidean) Mask ✗ ✗

[39] Boolean ✗ Key sharing ABE

[5] Single MPC-friendly PRF† ✗

[15] Boolean Shamir + RDPRF† ✗

[26] kNN (edit) ASS + Dual-cloud† ✗

[28] Boolean RSA function† ABE

ODiSC Conjunctive Distributed LPN-wPRF† SHVE

Notes. “†”: The technique can be used to achieve privacy-preserving retrieval, where key sharing and online

data owner are both avoided.

Table 2. Notation Descriptions

Notations Descriptions

[i] 1, 2, . . . , i
0 All-zeros vector
1 All-ones vector
d Number of attributes
NB Length of Bloom filter
N Size of outsourced database DB

M Size of keyword dictionaryW
Q Search query Q = {w j1 ,w j2 , . . . ,w jq

} ⊆W
K Secret key for index and token generation
sk Secret key used to encrypt the outsourced data
� Hadamard (component-wise) product
〈x〉� Additive secret sharing of x held by party P�
DB(w) Document set containing the keyword w
Addp (u,v) u +v mod p
LinB

p (x) Bx mod p where B is public

BLp (B,x) Bx mod p where B is secret
Convert(p,q) (x) Convert x ∈ Zp into x ∈ Zq

TopkSim(D,Q) = 1 Similarity of document D and search query Q is top-k
AcMatch(ΓD , S) = 0 Access policy ΓD does not match attribute set S

To reconstruct the secret x , the parity P� collects all shares and computes x = 〈x〉0 + 〈x〉1 over Zp .
ASS is additive homomorphic, i.e.,

〈
x + y

〉
= 〈x〉 + 〈y〉. For multiplication, given 〈x〉 and

〈
y
〉
, the

parties jointly compute the secret shares of z = xy based on Beaver’s technique [2].

3.2 LPN-wPRF

LPN-wPRF is constructed by mixing linear functions over different moduli. The motivation is to
maximize simplicity and minimize complexity in MPC applications. LPN-wPRF is a function Fλ :
Z

m×n
2 × Zn

2 → Zt
2 with key-space, input space, and output space in Zm×n

2 , Zn
2 , and Zt

2, respectively,
where m,n, t are the functions of security parameter λ. The concrete construction is shown in
Figure 2, which is succinctly represented using five basic gates: mod-2 linear gate LinB

2 , mod-2

Q. Tong et al.

Fig. 2. Concrete construction of LPN-wPRF.

Fig. 3. Detailed procedure of SHVE construction.

addition gate Add2, mod-p bilinear gate BLp , Z2 → Z3 conversion gate Convert(2,3) , and Z3 → Z2

conversion gate Convert(3,2) . To improve efficiency and enable short key, the secret key K can be
taken as a structured matrix (e.g., uniformly random Toeplitz matrix, generator matrix of quasi-
cyclic codes) rather than a uniformly random matrix, which reduces the size of the secret key from
mn tom + n or n. For λ-bit security, it is suggested to setm = n = 2λ, t = λ.

3.3 SHVE Construction

SHVE construction is a lightweight predicate encryption scheme used to solve the resulting pattern
leakage problem in the Oblivious Cross-tags (OXT) [7]. It is defined over Σ∗ = Σ ∪ {∗}, where Σ
denotes a finite set of attributes and “∗” denotes a wildcard symbol not in Σ. The detailed procedure
of SHVE construction is shown in Figure 3.

4 PROBLEM FORMULATION

In this section, we introduce the system model, threat model, problem definition, security defini-
tion, and design goals of ODiSC.

4.1 System Model and Threat Model

In this article, we consider a document database outsourcing scenario. As shown in Figure 4, the
system model of ODiSC mainly consists of three entities: Data Owner (DO), Query Users (QUs),
and two Cloud Service Providers (CSPs). The role of each entity is described as follows:

6

Owner-free Distributed SSE Supporting Conjunctive Queries 7

Fig. 4. System model of ODiSC.

• Data owner. The DO constructs a secure index for the document database, then secretly
shares it among CSPs P0, P1.
• Query users. The QU wants to perform conjunctive query over the encrypted document

database. He or she secretly shares his or her search query among CSPs P0, P1.
• Cloud service providers. In addition to generating search tokens for QUs, reliable4 CSPs P0, P1

also provide storage and search services for DO and QUs, respectively.

In a smart medical setting, the hospital can act as a DO, who plans to outsource medical data to
two CSPs. Before encrypting the database, it first builds a secure index and splits it into two shares
〈I〉0 , 〈I〉1, then uploads an index share and the encrypted database to CSP P� for � ∈ {0, 1} (Step
1©). When the QU (e.g., patient, research institution) attempts to issue a search query Q , he or she
splits it into two shares 〈Q〉0 , 〈Q〉1 and then submits them to CSPs P0, P1, respectively (Step 2©).
Upon receiving the search request, CSPs P0, P1 first interactively execute the MPC-friendly token
generation protocol to generate a secret-shared search token (Step 3©). Then, each CSP locally
evaluates the stored index share using a respective search token share to obtain the search result
shares (Step 4©) and returns them to the QU (Step 5©). Finally, the QU reconstructs search results
to obtain desired documents. The storage system with dual-cloud architecture not only reduces
the risk of document data loss through cross-cloud backup but also enables privacy-preserving
retrieval by distributing index and query data across two CSPs. Moreover, it eliminates the need
for the DO to perform key management and remain online during retrieval.

Threat Model. Similar to [8, 19, 31], the entities in the system model are assumed to be honest-
but-curious. They honestly follow the established protocols, but the DO is curious about QUs’
query contents, QUs are curious about unauthorized data, and CSPs are curious to infer valuable
information from the outsourced data. Moreover, we assume that two CSPs cannot collude with
each other or be compromised simultaneously, which means that they should not reveal any extra
information beyond what is specified by the protocols.

Remark. According to the 2023 State of the Cloud Report5 published by Flexera, a well-known
software asset management company, few enterprises are now locked in a single cloud provider,
and a vast majority of enterprises have embraced multi-cloud strategies, with 87% of them

4The dual-cloud architecture, utilizing replication [36] and erasure code [18], can provide fault tolerance for stored data.

Thus, we assume that CSPs are reliable and can guarantee data persistence and availability without loss. Our focus remains

on owner-free MSSE supporting conjunctive query.
5https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR

https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR

Q. Tong et al.

implementing a multi-cloud approach and 72% using a hybrid cloud approach. This indicates
that the dual-cloud architecture is practical. Furthermore, the assumption of two non-colluding
CSPs is common in the secret-sharing-based data processing schemes such as [8, 19, 21, 38, 40].
In practice, the architecture of two non-colluding CSPs is realistic due to business reputation
and competitive relationship. Once caught colluding with each other, they will lose massive
market shares as customers no longer trust them. For outsider adversaries, the probability of
compromising two CSPs at the same time is significantly low as CSPs adopt different defense
strategies to resist network attacks. Thus, we just consider insider adversaries, i.e., CSPs.

4.2 Problem Definition

In MSSE, a certain DO uses the secret key K to construct a secure index for a document
database DB = {D1,D2, . . . ,DN }. Before sending a search request to the CSP, the search query
Q = {w j1 ,w j2 , . . . ,w jq

}(q ≥ 2) of each QU needs to be encrypted using the secret key K . One way
is that the DO shares K with each QU, denoted as fKeyShare = 1, which increases the risk of key
leakage and thus exposes the entire outsourced database. Another way is that the DO remains
online to execute a per-query interaction with each QU, denoted as fOnline = 1, which defeats the
initial purpose of data outsourcing. Although the combination of secret sharing and dual-cloud
architecture in the previous schemes can be used to achieve privacy-preserving owner-free
retrieval (i.e., fKeyShare = 0, fOnline = 0), it has the following weaknesses if directly applied
to MSSE:

• A conjunctive query w j1 ∧w j2 ∧ · · · ∧w jq
is not supported.

• Decryption of each desired result cD requires the assistance of the DO, where cD =

Sym.Enc(skD , D) and the secret key skD is only owned by the DO.
• The desired result set R may contain the documents beyond the QU’s authorization, i.e., R =
{cD |TopkSim(D,Q) = 1,AcMatch(ΓD , S) = 1} ∪ {cD |TopkSim(D,Q) = 1, AcMatch(ΓD , S) =
0}, where ΓD is the access policy of the document D and S is the QU’s attribute set.

Therefore, in this article, we aim to propose a MSSE scheme satisfying

R ← MSSE(DB,Q,K)

s .t .
⎧⎪⎪⎨⎪⎪⎩
fKeyShare = 0, fOnline = 0,
R = {cD |Q ⊆ D,AcMatch(ΓD , S) = 1},
skD can be obtained by QU if cD ∈ R .

(4)

4.3 Security Definition

We consider the simulation-based definition introduced by [11, 25], where the adversary A is
a certain CSP P� in the honest-but-curious model. Thus, for the security of ODiSC, we need to
ensure that the view of the adversaryA is simulatable, such that the adversaryA cannot compu-
tationally distinguish between the simulated view ViewA,Sim and the real view ViewA,Real with
a non-negligible probability. We now define the experiments Sim and Real in Figure 5. Here,
L1 (DB) denotes the database leakage function, whereA knows the size of database N , the size of
keyword dictionaryM , the size of each index list Nw , the number of attributesd , and the number of

0-ciphertext and 1-ciphertext in each column of each index list {nϱ, j
1 ,n

ϱ, j
2 }ϱ ∈[M], j ∈[NB].L2 (DB,Q, S)

denotes the search leakage function, whereA learns which entry of the inverted index is retrieved
for the specific query keyword and whether the same user attribute was uploaded in the past or
not. Then, the security of ODiSC is defined as:

Definition 1. Our ODiSC scheme Π = {Setup, IndexBulid,QueryIssue, Search} is said to be adap-
tively simulation-secure if for any PPT adversaryA making polynomial q(λ)-times queries and a

8

Owner-free Distributed SSE Supporting Conjunctive Queries 9

Fig. 5. The real and simulation experiments.

PPT distinguisher D, there exists an efficient simulator S such that

|Pr[D (ViewA,Real) = 1] − Pr[D (ViewA,Sim) = 1]| ≤ neg(λ). (5)

In layman’s terms, adaptive simulation security means that the view of adversary A (CSP P�)
can be simulated in a way that is indistinguishable from the real view when the adversary A is
given the ability to adaptively choose each future query based on previously chosen queries as
well as their search tokens and search results.

4.4 Design Goals

ODiSC should achieve the following goals in terms of functionality, security, efficiency, and
accuracy:

• Owner-free fine-grained conjunctive query. Conjunctive query can be done when the DO is
free from sharing the secret key and being online. Moreover, the search results can be de-
crypted if and only if the QU’s attributes satisfy their access policies.
• Adaptive simulation security. Adaptive CSPs should not obtain the shares owned by each

other or infer underlying plaintext information from the knowledge they have.
• Efficient retrieval. The search time complexity of our scheme should be insensitive to the size

of the outsourced database, making it suitable for large-scale data retrieval scenarios.

Q. Tong et al.

Table 3. Distributed Computation of Five Circuit Gates in LPN-wPRF

Protocols Public Inputs Shared Inputs Correlated Randomness Output Shares

π B,2
Lin

B 〈w〉� — 〈y〉� = B · 〈w〉� mod 2
π 2

Add
— 〈u〉�, 〈v〉� — 〈w〉� = 〈u〉� + 〈v〉� mod 2

π
p

BL
K̂, x̂ — 〈K̃ 〉�, 〈x̃ 〉�,

〈
K̃ x̃
〉
�

〈u〉� = � · K̂ x̂ − K̂ 〈x̃ 〉� − x̂
〈
K̃
〉
�
+
〈
K̃ x̃
〉
�

π
(2,3)
Convert

x̂ over Z2 —
r̃1 = x̃ mod 3

r̃2 = x̃ + 1 mod 2 mod 3
〈x ∗〉� = (x̂ ⊕ 1) � 〈r̃1〉� + x̂ � 〈r̃2〉�mod 3

π
(3,2)
Convert

v̂∗ over Z3 —
r̄1 = v̄ mod 2

r̄2 = v̄ + 1 mod 3 mod 2

〈v〉�[i] = � ⊕ (⊕2
j=1〈r̄ j 〉�[i]) if v̂∗[i] = 0

〈v〉�[i] = 〈r̄2〉�[i] if v̂∗[i] = 1
〈v〉�[i] = 〈r̄1〉�[i] if v̂∗[i] = 2

• Accurate search result. Our scheme should not compromise accuracy while preserving pri-
vacy, and its retrieval accuracy should be comparable to plaintext retrieval.

5 OUR PROPOSED SCHEME

In this section, we first introduce the technical overview of ODiSC, then specify corresponding
concrete construction, and finally extend ODiSC to consider CSPs impersonating QUs’ identities
to break data privacy.

5.1 Technical Overview

As described in Section 4.2, traditional MSSE schemes generate search tokens via key sharing
or online interaction, which incurs an increased key leakage risk or defeats the initial purpose
of data outsourcing. Although the combination of ASS and dual-cloud architecture, Shamir se-
cret sharing and RDPRF, and RSA function and MPC-friendly PRF can be used to realize privacy-
preserving owner-free retrieval, they have one of the following weaknesses: non-supporting con-
junctive query, result decryption assistance of the DO, and unauthorized access. Therefore, in this
article, we aim to propose an MSSE scheme satisfying Equation (4). To do this, we first introduce a
distributed LPN-wPRF protocol πDLPN-wPRF, which is a building block of search token generation
with fKeyShare = 0, fOnline = 0.

The distributed LPN-wPRF protocol πDLPN-wPRF is to evaluate LPN-wPRF in dual-cloud archi-
tecture using a secret-shared key and a secret-shared element as input to obtain a secret-shared
output. We first need to evaluate the five gates of LPN-wPRF in the distributed architecture, de-

noted as linear gate protocol πB,2
Lin

, addition gate protocol π 2
Add

, bilinear gate protocol π
p

BL
, Z2 → Z3

conversion protocol π (2,3)
Convert

, and Z3 → Z2 conversion protocol π (3,2)
Convert

. Their concrete construc-
tions are shown in Table 3, which are derived from [13]. Then, we compose them to construct
πDLPN-wPRF with a preprocessing phase. The detailed procedure is shown in Figure 6.

After that, we realize the privacy-preserving fine-grained conjunctive query without decryption
assistance or unauthorized access, which can be divided into the following two steps:

(1) Converting conjunctive query into secure vector matching. Each document D with access
policy ΓD is represented as an NB-bit Bloom filter b, obtained by mapping each keyword in D to b.
Similarly, each search query Q from QU with the attribute set S is represented as an NB-bit Bloom
filter q. If q[i] = b[i] or q[i] = 0 for ∀i ∈ [NB] (i.e.,Q ⊆ D), the document D is a conjunctive query
result of the query Q . For secure vector matching, we first generate the secret-shared search
token 〈tk〉 using the protocol πDLPN-wPRF. To prevent privacy leakage during the retrieval process,
we take the shares

〈
H (q[i]| |i)〉 as input when q[i] = 1. Otherwise, we select a random element

ri ∈ Zn
2 and take 〈ri 〉 as input. Then, we encrypt the data vector b to obtain the index ciphertext

Eb = (y1,y2, . . . ,yNB) via SHVE.Enc, where the PRF function F0 is replaced with LPN-wPRF FB
K . To

eliminate the noises {ri |q[i] = 0} introduced in the search token generation, we split Eb into two

10

Owner-free Distributed SSE Supporting Conjunctive Queries 11

Fig. 6. Detailed procedure of πDLPN-wPRF.

NB × 2-dimensional matrices Eb(0), Eb(1) as shown in Equation (7). Note that the noise ri in Equa-
tion (7) is generated independently of QU and is equal to H (w | |i), wherew is a keyword extracted
from the document D and stored in the address field. More details are provided in Section 5.2.

Eb(�)[i][0] =
〈
FB

K (ri)
〉
�
, Eb(�)[i][1] = yi ⊕

〈
FB

K (ri)
〉

1−�
, i ∈ [NB]. (7)

It is worth noting that all locations containing 1 in the query vector q are leaked if we directly
use SHVE construction [16] for secure vector matching, thereby leaking query privacy and
data privacy. To solve it, we use ASS to split q into two random vectors

〈
q
〉
, such that the

locations containing 1 are hidden. In this way, privacy-preserving conjunctive query is achieved

by computing 〈tk〉� ⊕ Ind(�) , where

Ind(�) = Eb(�) ◦ 〈q〉� = ⊕i ∈[NB]Eb(�)
[
i
] [〈

q
〉
� [i]

]
. (8)

(2) Converting access control into secure vector matching. Let X = {X1, . . . ,Xd } be a set of at-
tributes and Vi = {v1,v2, . . . } be the value set for the attribute Xi (e.g., role, department, location,
etc.). For example, for the attribute role, the attribute values are a set of unique numbers corre-
sponding to nurse, pharmacist, physician, and so forth. We define Σ = V1∪· · ·∪Vd and Σ∗ = Σ∪{∗}.
The access policy ΓD is encoded as a policy vector p ∈ Σd

∗ . The user attribute set S is encoded as an

attribute vector a ∈ Σd . If a[j] = p[j] for all p[j] � ∗, the attribute set S matches the access policy
ΓD , i.e., AcMatch(ΓD , S) = 1. For fine-grained access control and result decryption without the
assistance of the DO, we conceal the secret key skD under the policy vector p via SHVE.KeyGen to

Q. Tong et al.

Fig. 7. Implementation workflow of ODiSC.

obtain a key ciphertext Ek. Moreover, we encrypt the attribute vector a as an attribute ciphertext
Eu via SHVE.Enc. To hide the attributes that the document D does not care about, the policy vector
p is transformed into a binary vector bv, which is then split into two random binary vectors 〈bv〉.
To protect skD from CSPs, the key ciphertext Ek is also additively split. In this way, fine-grained

access control is achieved by computing 〈Ek〉� ⊕ Att(�) , where

Att(�) = Eu � 〈bv〉� = ⊕i ∈[d]Eu[i] · 〈bv〉� [i]. (9)

Finally, each CSP P� computes the search result share 〈sk ′〉� in Equation (10) and returns it to
the QU, who then reconstructs sk ′. If the search queryQ matches the documentD and the attribute
set S satisfies the access policy ΓD , then sk ′ is equal to skD and the QU can use it to decrypt the
ciphertext cD without the help of the DO. Since the computation of 〈sk ′〉� is performed locally,
the number of communication rounds among CSPs is not affected by the size of the outsourced
database. CSPs just require three rounds of communication to generate the search token.

〈
sk ′
〉
� = (〈tk〉� ⊕ Ind(�)) ⊕ (〈Ek〉� ⊕ Att(�)). (10)

5.2 Concrete Construction

ODiSC is an MSSE scheme that supports fine-grained conjunctive query with DOs free from shar-
ing key and being online. Its implementation workflow is shown in Figure 7. DO uses SHVE,
Sym.Enc, and the secret sharing technique to build a secure index and encrypt the document data-
base. DU employs the secret sharing technique to issue search request in a privacy-preserving
manner. CSPs P0, P1 perform the MPC protocol πDLPN−wPRF to retrieve accessible documents in-
cluding all query keywords. The concrete construction can be divided into four algorithms: Setup,
IndexBuild, QueryIssue, and Search. The specific process is shown as follows.

Setup(1λ): Given the security parameter λ, the DO runs DLPN-wPRFoff (1λ) to generate the
parameter shares 〈P〉 and the secret key K , then sends 〈P〉� to CSP P� for � ∈ {0, 1}. In addition,
when a QU with identity id wants to join, the DO first transforms his or her attribute set S into
an attribute vector a, then encrypts it as the attribute ciphertext Eu in Equation (11), and finally
sends the tuple (H3 (id), Eu) to each CSP, where H : {0, 1}∗ → {0, 1}n ,H3 : {0, 1}∗ → {0, 1}λ are two
hash functions.

Eu[i] = FB
K (H (a[i]| |(NB + i))), i ∈ [d]. (11)

IndexBuild(K ,DB,A): Given an outsourced database DB = {D1,D2, . . . ,DN } and their
policy vector set A, the DO extracts keywords from DB to obtain the keyword dictionary
W = {w1,w2, . . . ,wM }. After that, the DO builds and secretly shares an inverted index for efficient

12

Owner-free Distributed SSE Supporting Conjunctive Queries 13

ALGORITHM 1: Index Building Process

Input: Secret key K , database DB, policy vector set A
Output: Index shares 〈I〉, encrypted database EDB

1 for j = 1; j ≤ N ; j + + do

2 for i = 1; i ≤ NB; i + + do

3 b
encode←−−−−−−− D j ;

4 Compute yi = FB
K

(H (b[i]| |i));
5 Set Eb = (y1,y2, . . . ,yNB

);

6 Select str ∈ {0, 1}λ satisfying str = 0
l | |str1 | |str2;

7 Compute skD j
= H1 (str1),pD j

= H2 (str2);

8 Compute c j = Sym.Enc(skD j
,D j) and link it to pD j

;

9 Set YD j
= {i ∈ [d]|p j [i] � ∗};

10 Compute Ek = ⊕i ∈YDj
FB

K
(H (p j [i]| |(NB + i))) ⊕ str;

11 Generate bv satisfying bv[i] = 1 if i ∈ YD j
and 0 otherwise;

12 Set CD j
= (Eb, Ek, bv), EDB = {c1, c2, . . . , cN };

13 Construct an inverted index I containing M address-value pairs {〈Ewi ,Li 〉}i ∈[M], where

Ewi = FB
K

(H (wi)) and Li = {CD j
}D j ∈DB(wi) ;

14 for ϱ = 1; ϱ ≤ M ; ϱ + + do

15 for CD j
∈ Lϱ do

16 〈Ek〉 ASS←−−−− Ek, 〈bv〉 ASS←−−−− bv;

17 for i = 1; i ≤ NB; i + + do

18 Compute ri = H (wϱ | |i);
19 Compute Eb(�)[i][0], Eb(�)[i][1] via Equation (7);

20 Set 〈CD j
〉� = (Eb(�) , 〈Ek〉� , 〈bv〉�);

21 Set 〈Lϱ 〉� = {〈CD j
〉� }D j ∈DB(wϱ) ;

22 Set 〈I〉� = {
〈
Ewi , 〈Li 〉�

〉}i ∈[M];

23 return 〈I〉 , EDB.

ciphertext retrieval, which can be divided into the following three steps. The specific process is
shown in Algorithm 1.

• Encryption. For each document D j ∈ DB with the policy vector p ∈ A, the DO generates the
content CD j

= (Eb, Ek, bv) below:
– The DO represents D j as a data vector b of size NB as described in Section 5.1 and then

runs LPN-wPRF FB
K to encrypt b as an index ciphertext Eb (Lines 2–5).

– The DO selects a string str ∈ {0, 1}λ such that its first l-bit is 0 and then parses its last
λ − l bits into two strings str1, str2 (Line 6). Based on the string str1, the DO computes the
secret key skD j

that will be used to encrypt D j . Based on the string str2, the DO computes
the pointer pD j

and links it to the ciphertext c j (Lines 7–8). The pointer pD j
serves as an

indirect address to locate the entry storing c j . Here, H1 : {0, 1}∗ → {0, 1}t , H2 : {0, 1}∗

→ {0, 1}�log N � are two hash functions.
– For the policy vector p, the DO obtains the set YD j

and encrypts the string str as a key
ciphertext Ek (Lines 9–10). In addition, the DO transforms YD j

as a d-dimensional binary

vector bv (Line 11). Note that the matrix in Zt
2 is converted to a t-bit string by default in

the XOR operation.

Q. Tong et al.

ALGORITHM 2: Search Process

Input: Parameter shares 〈P〉, index shares 〈I〉, query shares 〈Q〉, identity H3 (id)
Output: Desired result set R

1 CSPs P0, P1:

2 Find Eu via H3 (id);

3 Compute 〈tkadd〉 , 〈tkval〉 via Equation (12);

4 Reconstruct tkadd = FB
K

(H (w)) and locate the index list 〈Lw 〉� ;

5 for 〈CD j
〉� ∈ 〈Lw 〉� do

6 Compute Ind(�) ,Att(�) via Equations (8) and (9), respectively;

7 Compute
〈
str′
〉
� = (〈tkval〉� ⊕ Ind(�)) ⊕ (〈Ek〉� ⊕ Att(�));

8 〈R〉� = 〈R〉� ∪ {
〈
str′
〉
� }; // 〈R〉� is initialized as ∅

9 QU:

10 for
〈
str
′〉
� ∈ 〈R〉� do

11 Reconstruct str′ =
〈
str′
〉
0 ⊕
〈
str′
〉
1;

12 if the first l-bit of str
′ is 0 then

13 Extract the last λ − l bits of the string str′ and derive skD j
and pD j

;

14 Retrieve c j using pD j
and obtain D j = Sym.Dec(skD j

, c j);

15 R = R ∪ {D j }; // R is initialized as ∅

16 return R.

• Index construction. The DO builds an inverted index I containing M pairs 〈address, value〉.
The address field stores the ciphertext Ewi of each keyword wi ∈ W , and the value field
stores an index list Li of the documents {D j |D j ∈ DB(wi)} (Line 13).

• Splitting and uploading. For each contentCD j
, the DO first splits Eb, Ek, bv into Eb(�), 〈Ek〉� ,

〈bv〉� , respectively, to obtain 〈CD j
〉� (Lines 15–20). Then, the DO replaces CD j

with 〈CD j
〉�

to obtain the index share 〈I〉� (Lines 21–22). Finally, the DO uploads the index share 〈I〉�
and encrypted database EDB to CSP P� for � ∈ {0, 1}.

QueryIssue(Q): When the QU with identity id attempts to issue a search query Q , he or she
generates the query shares 〈Q〉 as follows. First, the QU randomly selects a keyword w from the
search query Q and additively splits its hashed value H (w) into 〈H (w)〉 (Lines 1–2). Next, the QU
representsQ as a query vectorq as Section 5.1 does, which is then additively split into

〈
q
〉

(Line 3).
In addition, the QU generates an NB-dimensional vector q∗ satisfying q∗[i] = H (q[i]| |i) if q[i] = 1
and q∗[i] = H (w | |i) otherwise, and then splits it into

〈
q∗
〉

(Lines 4–7). Finally, the QU encodes its
identity id asH3 (id) and sends it along with the query share 〈Q〉� = (〈H (w)〉� ,

〈
q∗
〉
� ,
〈
q
〉
�) to CSP

P� for � ∈ {0, 1}.
Search(〈P〉 , 〈I〉 , 〈Q〉 ,H3 (id)): Upon receiving the search request, CSPs P0, P1 first find the at-

tribute ciphertext Eu via H3 (id). Then, they generate a secret-shared search token and use it to
perform privacy-preserving retrieval to find the document that is accessible to the QU and con-
tains all query keywords. The specific search process is shown in Algorithm 2, which can be divided
into the following four steps in Figure 8:

• Token generation. CSPs P0, P1 cooperatively run DLPN-wPRFon to generate the search token
shares 〈tk〉 = (〈tkadd〉 , 〈tkval〉) as shown in Equation (12) (Line 3).

〈tkadd〉 ← DLPN-wPRFon (〈P〉 , 〈H (w)〉),
〈tkval〉 ← ⊕i ∈[NB]DLPN-wPRFon (〈P〉 , 〈q∗〉). (12)

14

Owner-free Distributed SSE Supporting Conjunctive Queries 15

Fig. 8. Example of search process.

• address field retrieval. CSP P� reconstructs tkadd and uses it to locate the index list 〈Lw 〉� for
� ∈ {0, 1} (Line 4).
• value field retrieval. For each content share 〈CD j

〉� in the index list 〈Lw 〉� , CSP P� first lo-

cally computes Ind(�) and Att(�) , then uses them to compute the share 〈str′〉� according to
Equation (10) and returns it to the QU (Lines 5–8). One potential drawback of the retrieval
process is that CSP P� reveals the number of documents containing the specific query key-
wordw , known as volume pattern leakage. Fortunately, existing schemes such as [10, 24, 33]
offer solutions for implementing volume-hiding retrieval, which can be used in our scheme
to hide the leakage.
• Decryption. The QU reconstructs str′ = 〈str′〉0 ⊕ 〈str′〉1 (Line 11). If the first l-bit of str′ is

0, the QU first extracts the strings str1, str2 to derive the secret key skD j
and pointer pD j

,
respectively, then uses skD j

to decrypt the ciphertext c j to obtain the desired document D j

(Lines 12–15). Note that the ciphertext c j can be retrieved using the pointer pD j
via keyword-

based private information retrieval (PIR), which has been extensively studied in recent
literature such as [1, 22]. By leveraging keyword-based PIR, our scheme ensures that CSPs
are unable to determine which specific document satisfies the search request by monitoring
memory access. It guarantees adaptive simulation security.

Correctness. We prove that str′ = str if the document D j matches the QU’s search query Q
(i.e., b[i] = q[i] for ∀i ∈ Yq = {i |q[i] = 1}) and the QU’s attribute set S satisfies the access policy
ΓD j

(i.e., a[i] = p[i] for ∀i ∈ YD j
), simultaneously:

str′ =
〈
str′
〉

0 ⊕
〈
str′
〉

1

=tkval ⊕ (Ind(0) ⊕ Ind(1)) ⊕ (Att(0) ⊕ Att(1)) ⊕ Ek

=(⊕i ∈Yq tkval[i]) ⊕ (⊕i ∈Yq Eb[i]) ⊕ (⊕i ∈YDj
Eu[i]) ⊕ Ek

= ⊕i ∈Yq

(
FB

K

(
H (b[i]| |i)

)
⊕ FB

K

(
H (q[i]| |i)

))

⊕
(
⊕i ∈YDj

FB
K

(
H (a[i]| |(NB + i))

)
⊕ FB

K

(
H (p[i]| |(NB + i))

)
⊕ str

)
.

We present a toy example of single document retrieval. The document D = {w1,w2,w3} with
the access policy ΓD = {Orthopedics,Nurse, ∗} is encoded as b = (1, 1, 1) and ΓD is encoded as
p = (6, 1, ∗). The search queryQ = {w1,w3} for the QU with attribute set S = {Orthopedics,Nurse,

Q. Tong et al.

Director } is encoded asq = (1, 0, 1) and S is encoded asa = (6, 1, 5). For privacy-preserving owner-
free retrieval, the DO, QU, and CSPs do as follows.

DO: The DO first encrypts b = (1, 1, 1) as the index ciphertext Eb = (y1,y2,y3), where yi =

FB
K (H (b[i]| |i)) = FB

K (H (1| |i)). Then, the DO computes ki = FB
K (H (w1 | |i)) for i ∈ [3] and splits

Eb as two matrices Eb(0), Eb(1) , as shown in Equation (13). Next, the DO encrypts the secret key
skD under the policy vector p = (6, 1, ∗) to obtain the key ciphertext Ek = y4 ⊕ y5 ⊕ skD , where
y4 = FB

K (H (6| |4)), y5 = FB
K (H (1| |5)). In addition, the DO transforms p = (6, 1, ∗) into the binary

vector bv = (1, 1, 0) and splits it into two vectors 〈bv〉0 = (1, 0, 0), 〈bv〉1 = (0, 1, 0). Finally, the

content share 〈CD〉� = (Eb(�), 〈Ek〉� , 〈bv〉�) is sent to CSP P� .

Eb(0) =

⎡⎢⎢⎢⎢⎢⎣
〈k1〉0 y1 ⊕ 〈k1〉1
〈k2〉0 y2 ⊕ 〈k2〉1
〈k3〉0 y3 ⊕ 〈k3〉1

⎤⎥⎥⎥⎥⎥⎦
, Eb(1) =

⎡⎢⎢⎢⎢⎢⎣
〈k1〉1 y1 ⊕ 〈k1〉0
〈k2〉1 y2 ⊕ 〈k2〉0
〈k3〉1 y3 ⊕ 〈k3〉0

⎤⎥⎥⎥⎥⎥⎦
. (13)

QU: For the query vector q = (1, 0, 1), the QU first splits it into
〈
q
〉

0 = (0, 1, 1),
〈
q
〉

1 = (1, 1, 0).
Then, the QU generates q∗ = (H (1| |1), FB

K (w1 | |2),H (1| |3)) and additively splits it into
〈
q∗
〉

0 ,
〈
q∗
〉

1.
After that, the QU sends the query share 〈Q〉� = {〈H (w1)〉� ,

〈
q∗
〉
� ,
〈
q
〉
� } to CSP P� . In addition, the

QU’s attribute vector a = (6, 1, 5) is encrypted as the attribute ciphertext Eu = (y4,y5,y6), where
y6 = FB

K (H (5| |6)).
CSPs: After receiving the search request, two CSPs cooperatively generate a secret-shared

search token 〈tk〉 satisfying tk = (y1,k2,y3) via πDLPN-wPRF, and CSP P� obtains the search to-
ken share 〈tk〉� =

〈
y1
〉
� ⊕ 〈k2〉� ⊕

〈
y3
〉
� . Then, P� locally computes 〈sk ′〉� and sends it to the QU,

who then reconstructs sk ′ in Equation (14), which is equal to skD .

sk ′ =
(
tk ⊕ (Eb ◦ q)

)
⊕
(
Ek ⊕ (Eu � bv)

)

=
(
(y1 ⊕ y3 ⊕ k2) ⊕ (y1 ⊕ y3 ⊕ k2)

)
⊕
(
(y4 ⊕ y5 ⊕ skD) ⊕ (y4 ⊕ y5)

)

=skD .

(14)

Remark. ODiSC can also be deployed in multi-cloud architecture (s > 2 is the number of CSPs),
which enhances security at the expense of performance. To achieve this, it is necessary to generate
a secret-shared search token 〈tk〉 = {〈tk〉1 , . . . , 〈tk〉s } and to split the index ciphertext Eb into s
shares. The scheme [13] has demonstrated that the distributed LPN-wPRF protocol πDLPN-wPRF

can work securely for any number of parties, indicating that the search token shares 〈tk〉 can be
generated when the query vectorq and secret keyK are secretly shared among s clouds. Moreover,
the index ciphertext Eb of each document D j can be split into s NB × 2-dimensional matrices

Eb(�) (� ∈ [s]) such that

Eb(�)[i][0] = ki, �, Eb(�)[i][1] = yi ⊕ (⊕j ∈[s]\{� }ki, j), i ∈ [NB], (15)

where ki,1,ki,2, . . . ,ki,s are s random numbers whose sum is equal to FB
K (H (w | |i)), and w is a key-

word extracted from the document D and stored in the address field. Then, privacy-preserving

conjunctive query among s CSPs can be achieved by computing ⊕�∈[s] (〈tk〉� ⊕ Ind(�)). In s cloud
setting, the security of ODiSC can be ensured as long as at least one CSP does not conspire. How-
ever, the communication overhead for the DO and QUs, as well as the computation overhead for s
clouds, increases by a factor of s/2 compared to the dual-cloud architecture.

5.3 Discussion

In the algorithm Search, CSP P� (∀� ∈ {0, 1}) retrieves the attribute ciphertext Eu using the identity
H3 (id) sent by the QU and then utilizes Eu to locate accessible search results. The operation may
result in data privacy leakage. That is, CSP P� may impersonate the QU’s identity id and send a

16

Owner-free Distributed SSE Supporting Conjunctive Queries 17

search request to the other CSP P1−� . Then, P1−� performs the algorithm Search to return the search
result share set R1−� to CSP P� . With the complete result shares, CSP P� can reconstruct the secret
keys of the documents accessible to QU id . To prevent this, we perform identity authentication
using the RSA algorithm and ASS before retrieval.

We secretly share the private key Kpr i of the RSA algorithm among θ users/agents. In each
query, the QU with identity id generates a new identity signature Sid,δ by interacting with θ − 1
users/agents. Upon receiving the search request, each CSP P� (� ∈ {0, 1}) verifies that the identity
signature is newly generated (i.e., not being used before). Under the assumption that the number
of corrupted users/agents is less than θ , CSPs cannot reconstruct the private key Kpr i , and thus
cannot generate a new signature. Therefore, if the identity signature is newly generated, then
a corresponding search request is made by the QU. Otherwise, the search request is made by a
certain CSP P� with previous identity signatures, and the other CSP P1−� terminates the retrieval.
Without the search result share set 〈R〉1−� returned by CSP P1−� , CSP P� is unable to learn any useful
information from his or her set 〈R〉� . The detailed process of identity authentication is shown as
follows:

• In the registration phase, the DO generates a pair of RSA public and private keys (Kpub ,Kpr i)

for the registered QU and secretly shares Kpr i into θ shares 〈Kpr i 〉 satisfying
∑θ

i=1〈Kpr i 〉� =
Kpr i . Then, the DO sends Kpub to each CSP, one key share 〈Kpr i 〉0 to the registered QU, and
the last shares to θ − 1 users/agents, respectively.
• When the QU with identity id attempts to issue a search request, he or she first sends (δ ·
H3 (id))r to θ −1 users/agents, where δ , r are two random elements. Then, θ −1 users/agents
locally compute the signature shares

〈
Sid,δ
〉

lj
(j ∈ [θ − 1]) in Equation (16) and send them

to the QU. It is worth noting that δ needs to be different for each query to prevent CSP from
using previous identity signatures to pass identity authentication.〈

Sid,δ
〉

lj
= Sign(〈Kpr i 〉lj

, (δH3 (id))r). (16)

• After receiving θ − 1 signature shares, the QU reconstructs the identity signature Sid,δ in
Equation (17) and sends the tuple (H3 (id), Sid,δ) along with the query share 〈Q〉� to CSP P�
for � ∈ {0, 1}.

Sid,δ = Sign(〈Kpr i 〉l0
,δH3 (id)) · ���

θ−1∏
j=1

〈
Sid,δ
〉

lj

��
�

1/r

= Sign(Kpr i ,δH3 (id)). (17)

• When receiving the search request, each CSP P� (� ∈ {0, 1}) verifies the user identity by
extracting the element δ in Equation (18).

δ = Ver(Kpub , Sid,δ)/H3 (id). (18)

If δ is an unused element, each CSP P� performs subsequent retrieval as the algorithm Search

does. Otherwise, the signature Sid,δ has been used before, which indicates that one CSP P�
impersonates the QU’s identity id . In this case, the other CSP P1−� terminates the search,
and thus CSP P� cannot reconstruct the desired results.

6 SECURITY ANALYSIS

Before analyzing the security of the protocol πDLPN-wPRF, we introduce the following lemmas.

Lemma 1 ([3]). A protocol is perfectly simulatable if all its sub-protocols are perfectly simulatable.

Lemma 2 ([4]). If a random element r is uniformly distributed on Zp and independent from any

variable x ∈ Zp , r ± x is also uniformly random and independent from x .

Q. Tong et al.

According to Lemma 1, if the sub-protocols π 2
Add
,πB,2

Lin
, π

p

BL
,π (2,3)

Convert
,π (3,2)

Convert
are proved secure

or simulatable, then πDLPN-wPRF is secure. Thus, we prove the security of πDLPN-wPRF in Theorem 1.

Theorem 1. πDLPN-wPRF is secure in the honest-but-curious model if Lemmas 1 and 2 hold.

Proof. The sub-protocols π 2
Add

and πB,2
Lin

are performed without interaction, and thereby their

inputs and parameters can be replaced by randomness. Thus, π 2
Add
,πB,2

Lin
are secure in the honest-

but-curious model and we prove the security of π
p

BL
,π (2,3)

Convert
, and π (3,2)

Convert
below.

For the sub-protocol π
p

BL
, P� (� ∈ {0, 1}) holds the view viewBL,i = {〈K〉�, 〈x〉� , 〈K̂〉�, 〈x̂〉�,

〈K̃〉�, 〈x̃〉�, 〈K̃x̃〉�, K̂ , x̂ }, where 〈K̂〉� = 〈K〉� + 〈K̃〉�, 〈x̂〉� = 〈x〉� + 〈x̃〉� , K̂ = 〈K̂〉� + 〈K̂〉1−�, x̂ =
〈x̂〉� + 〈x̂〉1−� . The parameters 〈K̃〉�, 〈x̃〉� , 〈K̃x̃〉� are randomly generated by the DO. The inputs

〈K〉�, 〈x〉� are uniformly random on Zm×n
p and Zn

p , respectively. 〈K̂〉�, 〈x̂〉� , K̂ , x̂ can be derived

by the linear computations of 〈K̃〉�, 〈x̃〉� , 〈K〉� , 〈x〉� such that they are also uniformly random ac-

cording to Lemma 2. The output outBL,i = {〈u〉� } is derived by the linear computations of 〈K̃〉�,
〈x̃〉� , 〈K̃x̃〉� 〈K〉� , 〈x〉� , which is also uniformly random according to Lemma 2. Thus, both view

and output of P� (� ∈ {0, 1}) are simulatable by the simulator S, which proves that π
p

BL
is secure in

the honest-but-curious model.
For the sub-protocol π (2,3)

Convert
, P� (� ∈ {0, 1}) holds the view viewConv(2,3),i = {〈x〉� , 〈x̃〉� , x̂ ,

〈r̃1〉� , 〈r̃2〉� }, where x̂ = x + x̃ . The parameters 〈x̃〉� , 〈r1〉� , 〈r2〉� are randomly generated by the
DO. The input 〈x〉� is uniformly random on Zn

2 (or Zm×n
2), and x̂ can be derived by the linear

computations of 〈x〉� , 〈x̃〉� such that it is also uniformly random according to Lemma 2. The out-
put outConv(2,3),i = {〈x∗〉� } is derived by the linear computations of x̂ , 〈r̃1〉� , 〈r̃2〉� . According to
Lemma 2, the output outConv(2,3),i is also uniformly random. Thus, the simulator S can simulate

the view and output of P� (� ∈ {0, 1}), which proves that π (2,3)
Convert

is secure in the honest-but-curious
model.

For the sub-protocol π (3,2)
Convert

, P� (� ∈ {0, 1}) holds the view viewConv(3,2),i = {〈v̄〉� , 〈v∗〉� , v̂∗,
〈r̄1〉� , 〈r̄2〉� }, where v̂∗ = v∗ + v̄ . The parameters 〈v̄〉� , 〈r̄1〉� , 〈r̄2〉� are randomly generated by the
DO. The input 〈v∗〉� is uniformly random on Zm

3 . v̂∗ can be derived by the linear computations of
〈v̄〉� , 〈v∗〉� such that it is also uniformly random according to Lemma 2. The output outConv(3,2),i =

{〈v〉� } is derived by the linear computations of v̂∗, 〈r̄1〉� , 〈r̄2〉� . According to Lemma 2, the output
outConv(3,2),i is also uniformly random. Thus, the simulator S can simulate the view and output of

P� (� ∈ {0, 1}), which proves that π (3,2)
Convert

is secure in the honest-but-curious model.
Therefore, the protocol πDLPN-wPRF is secure in the honest-but-curious model. �

Theorem 2. ODiSC Π is adaptively simulation-secure if LPN-wPRF FB
K is indistinguishable from

random function and πDLPN-wPRF is secure in the honest-but-curious model.

Proof. Given the leakage functions L1,L2 defined in Section 4.3, the simulator S = (S0, . . . ,
Sq (λ)) generates ViewA,Sim = {〈P∗〉� , 〈I∗〉� , EDB∗, {Eu∗ι ,

〈
tk∗ι
〉

i }ι∈[q (λ)]} as follows:

S0 (1λ ,L1 (DB)): S0 first randomly samples

〈K〉� , 〈K̃〉�
$← Zm×n

2 , 〈x̃〉�
$← Zn

2 ,

〈K̄〉� , 〈R̃1〉� , 〈R̃2〉�
$← Zm×n

3 ,

〈x̄〉� , 〈r̃1〉� , 〈r̃2〉� , 〈K̄x̄ + v̄〉�
$← Zm

3 ,

〈K̃x̃〉� , 〈r̄1〉� , 〈r̄2〉�
$← Zm

2 ,

18

Owner-free Distributed SSE Supporting Conjunctive Queries 19

then sets 〈P∗〉� = {〈K〉� , 〈K̃〉�, 〈x̃〉� , 〈K̄〉�, 〈R̃1〉�, 〈R̃2〉�, 〈x̄〉� , 〈r̃1〉� , 〈r̃2〉� , 〈K̄x̄ + v̄〉�, 〈K̃x̃〉�, 〈r̄1〉� ,
〈r̄2〉� }.

To simulate the index share 〈I〉� , S0 randomly samples yi,0,yi,1 from {0, 1}λ for i ∈ [NB] and
constructs an inverted index 〈I∗〉� containing M address-value pairs. For the ϱth address-value
pair,S0 randomly samples eϱ from {0, 1}λ and stores it in the address field. In addition,S0 simulates

the list L∗ϱ = {(Eb
(�)
i , 〈Eki 〉� , 〈bvi 〉�)}i ∈[Nwϱ] and stores it in the value field. Specifically, S0 first

generates Nwϱ
null matrices of the size NB × 2. Then, for each i ∈ [NB], S0 randomly samples

ki from {0, 1}λ ; additively splits it into two random shares 〈ki 〉� , 〈ki 〉1−� ; arranges (〈ki 〉� ,yi,0 ⊕
〈ki 〉1−�) to the ith row of n

ϱ,i
0 matrices randomly selected from the null matrix set; and arranges

(〈ki 〉� ,yi,1 ⊕ 〈ki 〉1−�) to the ith row of the rest of the n
ϱ,i
1 matrices. In this way, S0 obtains Nwϱ

index ciphertext shares {Eb
(�)
i }i ∈[Nwϱ]. In addition, S0 randomly generates a d-dimensional binary

vector 〈bvi 〉� and randomly samples 〈Eki 〉� from {0, 1}t for i ∈ [Nwϱ
].

To simulate the encrypted database EDB, S0 randomly samples a string c∗i from {0, 1} |ci | for
i ∈ [N] and outputs the simulated database cipherext EDB∗ = {c∗1, c∗2, . . . , c∗N }.
S1 (L2 (DB,Q1, S1)): For the selected key wϱ in the search query Q1, S1 sets eϱ as its ciphertext

according to the leakage function L2 (DB,Q1, S1), then randomly samples 〈tk∗add〉� from {0, 1}t and
sets 〈tk∗add〉1−� = eϱ ⊕ 〈tk∗add〉� . To simulate the sub-token 〈tkval〉� , S1 randomly samples ξi from
{0, 1}t for i ∈ [NB], then sets 〈tk∗val〉� = ⊕i ∈[NB]ξi . To simulate the attribute ciphertext Eu1, S1 ran-

domly samples a d-dimensional vector from Zd
2t as Eu∗1. In addition, S1 remembers the association

between S1[ι] and Eu∗1[ι]. Finally, S1 sends Eu∗1 and 〈tk∗1〉� toA, where 〈tk∗1〉� = (〈tk∗add〉�, 〈tk
∗
val〉�).

Si (L2 (DB,Q1, . . . ,Qi , S1, . . . , Si)): For the user attribute set Si (i ≥ 2), Si checks whether the
attribute Si [j](j ∈ [d]) has appeared before based on the leakage function L2 (DB,Q1, . . . ,Qi , S1,
. . . , Si). Let U be the attribute set not appearing before. Si randomly samples дι from {0, 1}t for
ι ∈ [|U |] and combines them with the ciphertexts of appeared attributes to obtain the attribute
ciphertext vector Eu∗i . For the search query Qi (i ≥ 2), Si generates

〈
tk∗i
〉
� the same way S1 does.

The indistinguishability of the simulated view ViewA,Sim from the real view ViewA,Real follows
directly from the following facts:

• Since the PPT distinguisherD does not know the secret key of AES, the CPA-security of AES
will guarantee that the simulated ciphertext c∗i and real ciphertext ci are indistinguishable

for D, which has been proved in [11]. Formally, AdvAES (D (ci , c
∗
i)) ≤ neg1 (1λ). Thus, we

have
Adv(D (EDB, EDB∗)) = 1 − (1 − AdvAES (D (ci , c

∗
i)))N

≤ 1 − (1 − neg1 (λ))N ≤ neg1 (λ).

• Since the PPT distinguisherD does not know the secret key K and the inputs of LPN-wPRF
are independently uniformly random strings ensured by the collision-free hash function H ,
the output of LPN-wPRF is indistinguishable from the output of a truly random function, i.e.,
AdvLPN-wPRF (D (yi ,y

∗
i)) ≤ neg2 (1λ), which has been proven in [13]. The difference between

the real index share 〈I〉� and the simulated index share 〈I∗〉� is to replace all outputs of
LPN-wPRF with randomness. Thus, we have Equation (19). For the same reason, we also
have Adv(D (〈Eui 〉�, 〈Eu∗i 〉�)) ≤ neg2 (λ).

Adv(D (〈I〉� ,
〈I∗〉�)) = 1 − (1 − AdvLPN-wPRF (D (yi ,y

∗
i)))2NB

≤ 1 − (1 − neg2 (λ))2NB ≤ neg2 (λ).
(19)

• Theorem 1 proves that the output of the protocol πDLPN-wPRF is uniformly random. Thus, we
have Adv(D (〈tki 〉�, 〈tk∗i 〉�)) ≤ neg3 (λ).

Q. Tong et al.

Table 4. Theoretical Computation and Communication Costs in Different Schemes

Types Schemes IndexBuild QueryIssue Search

Comp.
costs

MRSF 2MN · TDOT 2M · TDOT 2N · TDOT

NIMC-SSE-Π1
NW (3TPRF + TEXP) + NTABE.Enc

+M (TPRF + TInv)
NwNQ · (2TPRF

+3TEXP)
NwNQ TEXP

ODiSC
(2NB + Nd +M +MNB)
· (TLPN-wPRF + TSHA)

NB · TSHA
(NB + 1)TDLPN-wPRF

+Nw (2NB + d)TXOR

Comm.
costs

MRSF 2MN · bFloat 2M · bFloat −
NIMC-SSE-Π1 NW (|Zp | + 2d |G | + |GT |) NwNQ |G | + t NCQ (2d |G | + |GT |)

ODiSC 2(NW (2NB · t + d + t) +Mt) 2NB (n + 1) + 2n NB (8n + 2m) + 2Nw · t
Notes. TDOT: Time complexity of inner product; TPRF: Time complexity of PRF; TEXP: Time complexity of modular

exponentiation; TInv: Time complexity of inverse operation; bFloat: Size of a floating number; |Zp |, |G |, |GT |: Element

length in the groups Zp, G, GT ; NQ : Number of query keywords; NCQ: Number of search results.

Therefore, we have Equation (20), which means that ODiSC is adaptively simulation-secure.

|Pr[D (ViewA,Real) = 1] − Pr[D (ViewA,Sim) = 1]|

= Adv(D (EDB, EDB∗)) + Adv
(
D (〈I〉� ,

〈I∗〉�)
)

+ Adv
(
D (〈Eui 〉� ,

〈
Eu∗i
〉
�)
)
+ Adv

(
D (〈tki 〉� ,

〈
tk∗i
〉
�)
)

≤ neg1 (λ) + 2neg2 (λ) + neg3 (λ)
def
= neg(λ).

(20)

�

7 PERFORMANCE ANALYSIS

We analyze the performance of ODiSC theoretically and experimentally by comparing it with
MRSF [17] and NIMC-SSE-Π1 [28].

7.1 Theoretical Analysis

We present the computation and communication costs of ODiSC and comparison schemes in
Table 4.

As for the computation cost in ODiSC, we mainly consider several time-consuming operations,
i.e., LPN-wPRF, DLPN-wPRFon, hash function. Let TLPN-wPRF, TDLPN-wPRF, TSHA be correspond-
ing time complexities. In IndexBulid, the DO first encrypts NB-dimensional data vector and d-
dimensional policy vector for each outsourced data, which costs (2NB + Nd) (TLPN-wPRF +TSHA).
Then, the DO encrypts M keywords and generates M ·NB noises {kϱ,l } to split the lists {Lwϱ

}ϱ ∈[M],
which costs M (TLPN-wPRF + TSHA) and MNB (TLPN-wPRF + TSHA), respectively. In QueryIssue, the
QU computes n-bit digest for each dimension of a query vector and then converts the digest to
an n-dimensional vector, which costs NBTSHA. In Search, CSPs first cooperate to execute (NB + 1)
DLPN-wPRFon, which costs (NB + 1) · TDLPN-wPRF. Then, each CSP executes Nw (2NB + d) XOR
operations to compute Nw key shares, where Nw denotes the size of the selected list in address

field retrieval.
As for the communication cost of ODiSC, we represent the number of (keyword, id) pairs ex-

tracted from the outsourced database as NW . The protocol DLPN-wPRFon needs three rounds of
communication to open the masked intermediate values. When the secret key K is a generator ma-
trix of quasi-cyclic codes, the cost per party is 2n bits in the first and second rounds, andm bits in
the third round. In IndexBulid, the communication cost is derived from uploading two index shares.
The size of each index share is NW (2NB · t +d + t) +M · t bits. In QueryIssue, the communication
cost originates from sending two query shares. The size of each query share isn+NB ·n+NB bits. In

20

Owner-free Distributed SSE Supporting Conjunctive Queries 21

Fig. 9. Computation cost of IndexBulid.

Table 5. Communication Cost of IndexBulid When N = 104

M 300 600 900 1,200 1,500

NB 205 322 380 410 497
NW 7,756 14,112 19,549 27,195 34,998
MRSF (MB) 25.18 48.07 70.95 93.84 116.73
NIMC-SSE-Π1 (MB) 86.30 157.03 217.53 302.61 389.44
ODiSC (MB) 97.37 277.94 454.24 681.69 1,063.13

Search, the communication cost stems from executing (NB + 1) DLPN-wPRFon in token generation

and returning search results in value field retrieval, which costs (NB + 1)· 2(4n +m) and Nw · 2t ,
respectively, when the secret key K is a generator matrix of quasi-cyclic codes. Note that in the
theoretical analysis and the following tests, we do not consider the encryption time and storage
cost of the outsourced database because ODiSC and the comparison schemes have the same.

7.2 Experimental Tests

We conduct experiments on a server with 3.20 GHz 3.19 GHz Intel(R) Core(TM) i7-8700K CPU
using Python and the Paring-based Cryptography (PBC) library. We randomly choose 10,000
business data from the Yelp dataset6 as the test dataset. We extract 1,761 unique keywords from
their category descriptions. The maximum number of extracted keywords in each data is ω = 19,
and the number of (keyword, id) pairs is NW = 42,156. Each data also contains 44 attributes. We
set the size of the Bloom filter (BF) in ODiSC as NB = −16ω/ ln(1 − (10−6)1/16), such that the
false positive of the BF constructed from 16 independent hash functions is about 10−6. We set the
number of access roles and random numbers in MRSF as 30. We select Type A elliptic curve for
NIMC-SSE-Π1, where the parameters p and q are set to 160 bits and 512 bits, respectively. Then,
we have |Zp | = 160 bits and |G | = |GT | = 1,024 bits. In addition, we set the security parameter as
λ = 128 bits, thenm = 256,n = 256, t = 128. Note that the index structure of ODiSC is maintained
via key-value storage.

Figures 9(a) and 9(b) show that the index construction time of ODiSC increases with the size of
database N and the size of dictionary M , but is at least 10× faster than that of NIMC-SSE-Π1. The
index construction time of MRSE is about the same as ODiSC, and it grows faster than ODiSC as the
size of the database increases. When N = 10,000,M = 1,761, ODiSC takes a few minutes to build
the secure index. Table 5 shows that the communication cost of ODiSC in the index construction

6https://www.yelp.com/dataset

https://www.yelp.com/dataset

Q. Tong et al.

Fig. 10. Performance of QueryIssue.

phase super-linearly increases with the number of (keyword, id) pairs NW . This is because the
length of the Bloom filter increases with NW to maintain the false positive at 10−6. Besides, we
find the communication cost of ODiSC is higher than that of MRSF and NIMC-SSE-Π1. Fortunately,
index outsourcing is performed once only.

Figure 10 shows that the query generation time and outsourcing cost in ODiSC both increase
with the size of dictionary M but are not affected by the number of query keywords NQ and the
size of selected list Nw , which are opposite to NIMC-SSE-Π1. Compared with MRSF, ODiSC is
efficient in query generation but consumes more communication cost. When M = 1,761, ODiSC
takes about 30 ms to generate a secret-shared query and 35 KB to sends it to CSPs, which is at least
180× faster and 1× more communication cost saving than NIMC-SSE-Π1. The microsecond-level
query generation time and KB-level query size are friendly to resource-limited devices.

Figures 11(a) and 11(b) show that the search time of ODiSC is almost not affected by the size
of database N and the size of selected list Nw , which indicates that the search time of ODiSC is
mainly derived from the execution of NB + 1 DLPN-wPRFon and the effect of XOR operation is
negligible. When N = 10,000,M = 1,761, ODiSC takes about 0.7 s for retrieval, which is about
7× faster than MRSF. Figures 11(c) and 11(d) show that the search time of ODiSC increases with
the size of dictionary M but is not affected by the number of query keywords NQ . When M =
1,761,NQ = 5,Nw = 100, the search time of ODiSC is higher than that of NIMC-SSE-Π1, but it
is less than 1 s. Figures 11(e) and 11(f) show that the communication cost of ODiSC in Search

increases with M but is not affected by the number of search results NCQ. Table 6 shows that the
communication cost of returning search results is negligible compared with the communication
cost in search token generation. When M = 1,761,NCQ = 100,Nw = 100, the communication cost
of ODiSC is about 0.2 MB, which is at least 4× more cost saving than NIMC-SSE-Π1.

8 CONCLUSION

In this work, we proposed an owner-free distributed SSE scheme supporting conjunctive queries,
namely ODiSC. In ODiSC, search tokens were generated with the data owner free from sharing

22

Owner-free Distributed SSE Supporting Conjunctive Queries 23

Fig. 11. Performance of Search.

Table 6. Communication Cost of Search When M = 1, 761

Size of Selected List Nw 50 100 150 200 250

NIMC-SSE-Π1 (MB) 1.0986 1.0986 1.0986 1.0986 1.0986
ODiSC (MB) 0.1712 0.1727 0.1743 0.1758 0.1773

key or staying online via the distributed LPN-wPRF protocol. Moreover, it realized fine-grained
conjunctive query in the distributed architecture by combining additive secret sharing with
symmetric-key hidden vector encryption, such that ciphertext retrieval is achieved without unau-
thorized access and result decryption is completed without assistance from the data owner. Both
security and performance analysis demonstrated that ODiSC could guarantee data confidentiality
and achieve efficient retrieval.

As part of our future work, we will focus on achieving volume-hiding retrieval and providing
fault tolerance for stored data.

REFERENCES

[1] Asra Ali, Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth, and Kevin

Yeo. 2021. Communication–computation trade-offs in PIR. In Proc. USENIX Security Symposium (USENIX’21).

1811–1828.

[2] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization. In Proc. Annual International Cryp-

tology Conference (CRYPTO’91). Springer, 420–432.

[3] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A framework for fast privacy-preserving computa-

tions. In Proc. European Symposium on Research in Computer Security (ESORICS’08). Springer, 192–206.

[4] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. 2012. High-performance secure multi-party compu-

tation for data mining applications. International Journal of Information Security 11, 6 (2012), 403–418.

[5] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David Wu. 2018. Exploring crypto dark matter: New simple

PRF candidates and their applications. In Proc. Theory of Cryptography Conference (TCC’18), Vol. 11240. Springer,

699–729.

Q. Tong et al.

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cǎtǎlin Roşu, and Michael

Steiner. 2014. Dynamic searchable encryption in very-large databases: Data structures and implementation. Proc. An-

nual Network and Distributed System Security Symposium (NDSS’14) (2014), 1–16.

[7] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and Michael Steiner. 2013.

Highly-scalable searchable symmetric encryption with support for boolean queries. In Proc. Annual Cryptology Con-

ference (CRYPTO’13). Springer, 353–373.

[8] Ke Cheng, Yantian Hou, and Liangmin Wang. 2018. Secure similar sequence query on outsourced genomic data. In

Proc. Asia Conference on Computer and Communications Security (AsiaCCS’18). ACM, 237–251.

[9] Jie Cui, Han Zhou, Yan Xu, and Hong Zhong. 2019. OOABKS: Online/offline attribute-based encryption for keyword

search in mobile cloud. Information Sciences 489 (2019), 63–77.

[10] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable symmetric encryption: Improved

definitions and efficient constructions. In Proc. ACM Conference on Computer and Communications Security (CCS’06).

ACM, 79–88.

[11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable symmetric encryption: Improved

definitions and efficient constructions. Journal of Computer Security 19, 5 (2011), 895–934.

[12] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A framework for efficient mixed-protocol secure

two-party computation. In Proc. Annual Network and Distributed System Security Symposium (NDSS’15). The Internet

Society, 1–15.

[13] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek Sharma, and Greg Zaverucha. 2021.

MPC-friendly symmetric cryptography from alternating moduli: Candidates, protocols, and applications. In Proc. An-

nual International Cryptology Conference (CRYPTO’21). Springer, 517–547.

[14] Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner. 2013. Outsourced symmetric

private information retrieval. In Proc. ACM SIGSAC Conference on Computer & Communications Security (CCS’13).

ACM, 875–888.

[15] Shabnam Kasra Kermanshahi, Joseph K. Liu, Ron Steinfeld, Surya Nepal, Shangqi Lai, Randolph Loh, and Cong Zuo.

2021. Multi-client cloud-based symmetric searchable encryption. IEEE Transactions on Dependable and Secure Com-

puting 18, 5 (2021), 2419–2437.

[16] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopadhyay, Ron Steinfeld, Shi-Feng Sun,

Dongxi Liu, and Cong Zuo. 2018. Result pattern hiding searchable encryption for conjunctive queries. In Proc. ACM

SIGSAC Conference on Computer and Communications Security (CCS’18). ACM, 745–762.

[17] Jiayi Li, Jianfeng Ma, Yinbin Miao, Ruikang Yang, Ximeng Liu, and Kim-Kwang Raymond Choo. 2020. Practical multi-

keyword ranked search with access control over encrypted cloud data. IEEE Transactions on Cloud Computing 10,

3 (2020), 2005–2019.

[18] Hsiao-Ying Lin and Wen-Guey Tzeng. 2011. A secure erasure code-based cloud storage system with secure data for-

warding. IEEE Transactions on Parallel and Distributed Systems 23, 6 (2011), 995–1003.

[19] Lin Liu, Jinshu Su, Ximeng Liu, Rongmao Chen, Kai Huang, Robert H. Deng, and Xiaofeng Wang. 2019. Toward highly

secure yet efficient KNN classification scheme on outsourced cloud data. IEEE Internet of Things Journal 6, 6 (2019),

9841–9852.

[20] Xueqiao Liu, Guomin Yang, Yi Mu, and Robert H. Deng. 2018. Multi-user verifiable searchable symmetric encryption

for cloud storage. IEEE Transactions on Dependable and Secure Computing 17, 6 (2018), 1322–1332.

[21] Yang Liu, Zhuo Ma, Ximeng Liu, Siqi Ma, and Kui Ren. 2022. Privacy-preserving object detection for medical images

with faster R-CNN. IEEE Transactions on Information Forensics and Security 17 (2022), 69–84.

[22] Rasoul Akhavan Mahdavi and Florian Kerschbaum. 2022. Constant-weight PIR: Single-round keyword PIR via

constant-weight equality operators. In Proc. 31st USENIX Security Symposium (USENIX’22). 1723–1740.

[23] Yinbin Miao, Robert H. Deng, Kim-Kwang Raymond Choo, Ximeng Liu, Jianting Ning, and Hongwei Li. 2019. Opti-

mized verifiable fine-grained keyword search in dynamic multi-owner settings. IEEE Transactions on Dependable and

Secure Computing 18, 4 (2019), 1804–1820.

[24] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating leakage in secure cloud-hosted data struc-

tures: Volume-hiding for multi-maps via hashing. In Proc. ACM SIGSAC Conference on Computer and Communications

Security (CCS’19). 79–93.

[25] Sikhar Patranabis and Debdeep Mukhopadhyay. 2017. Lightweight symmetric-key hidden vector encryption without

pairings. Cryptology ePrint Archive (2017).

[26] Thomas Schneider and Oleksandr Tkachenko. 2019. EPISODE: Efficient privacy-preserving similar sequence queries

on outsourced genomic databases. In Proc. ACM Asia Conference on Computer and Communications Security (Asi-

aCCS’19). ACM, 315–327.

[27] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical techniques for searches on encrypted data.

In Proc. IEEE Symposium on Security and Privacy (S&P’00). IEEE, 44–55.

24

Owner-free Distributed SSE Supporting Conjunctive Queries 25

[28] Shi-Feng Sun, Cong Zuo, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, Tsz Hon Yuen, Xingliang Yuan, and Dawu

Gu. 2022. Non-interactive multi-client searchable encryption: Realization and implementation. IEEE Transactions on

Dependable and Secure Computing 19, 1 (2022), 452–467.

[29] Qiuyun Tong, Xinghua Li, Yinbin Miao, Ximeng Liu, Jian Weng, and Robert Deng. 2023. Privacy-preserving boolean

range query with temporal access control in mobile computing. IEEE Transactions on Knowledge and Data Engineering

35, 5 (2023), 5159–5172.

[30] Qiuyun Tong, Yinbin Miao, Lei Chen, Jian Weng, Ximeng Liu, Kim-Kwang Raymond Choo, and Robert H. Deng.

2021. Vfirm: Verifiable fine-grained encrypted image retrieval in multi-owner multi-user settings. IEEE Transactions

on Services Computing 15, 6 (2021), 3606–3619.

[31] Qiuyun Tong, Yinbin Miao, Ximeng Liu, Kim-Kwang Raymond Choo, Robert H. Deng, and Hongwei Li. 2020. VPSL:

Verifiable privacy-preserving data search for cloud-assisted Internet of Things. IEEE Transactions on Cloud Computing

10, 4 (2020), 2964–2976.

[32] Qiuyun Tong, Yinbin Miao, Jian Weng, Ximeng Liu, Kim-Kwang Raymond Choo, and Robert Deng. 2023. Verifiable

fuzzy multi-keyword search over encrypted data with adaptive security. IEEE Transactions on Knowledge and Data

Engineering 35, 5 (2023), 5386–5399.

[33] Jianfeng Wang, Shi-Feng Sun, Tianci Li, Saiyu Qi, and Xiaofeng Chen. 2022. Practical volume-hiding encrypted multi-

maps with optimal overhead and beyond. In Proc. ACM SIGSAC Conference on Computer and Communications Security

(CCS’22). 2825–2839.

[34] Mingyue Wang, Yinbin Miao, Yu Guo, Cong Wang, Hejiao Huang, and Xiaohua Jia. 2021. Attribute-based encrypted

search for multi-owner and multi-user model. In Proc. IEEE International Conference on Communications (ICC’21). IEEE,

1–7.

[35] Xiangyu Wang, Jianfeng Ma, Ximeng Liu, Robert H. Deng, Yinbin Miao, Dan Zhu, and Zhuoran Ma. 2020. Search me

in the dark: Privacy-preserving boolean range query over encrypted spatial data. In Proc. IEEE Conference on Computer

Communications (INFOCOM’20). IEEE, 2253–2262.

[36] Yijie Wang and Sijun Li. 2006. Research and performance evaluation of data replication technology in distributed

storage systems. Computers & Mathematics with Applications 51, 11 (2006), 1625–1632.

[37] Zhihua Xia, Qi Gu, Lizhi Xiong, Wenhao Zhou, and Jian Weng. 2020. Privacy-preserving image retrieval based on

additive secret sharing. arXiv preprint arXiv:2009.06893 (2020).

[38] Yang Yang, Ke Mu, and Robert H. Deng. 2022. Lightweight privacy-preserving GAN framework for model training

and image synthesis. IEEE Transactions on Information Forensics and Security 17 (2022), 1083–1098.

[39] Kai Zhang, Mi Wen, Rongxing Lu, and Kefei Chen. 2020. Multi-client sub-linear boolean keyword searching for en-

crypted cloud storage with owner-enforced authorization. IEEE Transactions on Dependable and Secure Computing 18,

6 (2020), 2875–2887.

[40] Yandong Zheng, Rongxing Lu, Yunguo Guan, Songnian Zhang, Jun Shao, and Hui Zhu. 2022. Efficient and privacy-

preserving similarity query with access control in eHealthcare. IEEE Transactions on Information Forensics and Security

17 (2022), 880–893.

[41] Lu Zhou, Youwen Zhu, and Aniello Castiglione. 2017. Efficient k-NN query over encrypted data in cloud with limited

key-disclosure and offline data owner. Computers & Security 69 (2017), 84–96.

[42] Youwen Zhu, Rui Xu, and Tsuyoshi Takagi. 2013. Secure k-NN computation on encrypted cloud data without sharing

key with query users. In Proc. International workshop on Security in Cloud Computing (AsiaCCS Workshop’13). ACM,

55–60.

