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Abstract— The COVID-19 pandemic has caused a dramatic
change in the demand composition of restaurants and, at the same
time, catalyzed on-demand food delivery (OFD) services—such
as DoorDash, Grubhub, and Uber Eats—to a large extent. With
massive amounts of data on customers, drivers, and merchants,
OFD platforms can achieve higher efficiency with better strategic
and operational decisions; these include dynamic pricing, order
bundling and dispatching, and driver relocation. Some of these
decisions, and especially proactive decisions in real time, rely on
accurate and reliable short-term predictions of demand ranges or
distributions. In this paper, we develop a Poisson-based distribu-
tion prediction (PDP) framework equipped with a double-hurdle
mechanism to forecast the range and distribution of potential
customer demand. Specifically, a multi-objective function is
designed to learn the likelihood of zero demand and approximate
true demand and label distribution. An uncertainty-based multi-
task learning technique is further employed to dynamically
assign weights to different objective functions. The proposed
model, evaluated by numerical experiments based on a real-world
dataset collected from an OFD platform in Singapore, is shown
to outperform several benchmarks by achieving more reliable
demand range forecasting.

Index Terms— Short-term demand forecasting, demand dis-
tribution, label distribution learning, on-demand food delivery,
Poisson distribution.

I. INTRODUCTION

THE outbreak of the COVID-19 pandemic has brought
about significant shifts in the demand dynamics of

restaurants, concurrently fueling the growth of on-demand
food delivery (OFD) services. OFD platforms, such as Uber
Eats, Grubhub, and DoorDash, stand out by serving people’s
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demand for online food ordering and delivery. These OFD
platforms provide intermediate services that connect cus-
tomers, drivers, and restaurants and build their revenue by
charging commissions to restaurants and/or customers [1].
The global market size of the OFD industry is estimated
to surpass $200 billion by 2025 [2], and is a representative
transportation-enabled urban service [3]. Because the food
delivery industry deals with large volumes of perishable prod-
ucts, accurate and robust demand forecasting is critical for the
strategic and operational decisions of OFD platforms, such
as dynamic pricing, order bundling and dispatching, driver
routing, and relocations.

Although demand forecasting has been extensively studied
in diverse contexts, such as ride-hailing [4], [5], [6] and
taxi [7], demand forecasting for OFD platforms deserves
additional attention because of these services’ unique features.
First, OFD platforms may be more concerned with the range
of possible demand rather than an estimated point value. Since
food is perishable, an estimation of demand range with upper
and lower bounds can help the platform make more robust
operational decisions. For example, by knowing the upper
bound of customer demand in the next 10 minutes within
a region, the platform can infer the maximum waiting time
for customers and design proactive operational strategies—
for instance, dispatching more drivers from other regions to
this region and adjusting the delivery price/wage to balance
supply and demand. Therefore, robust optimization requires
information on the upper and lower bounds of customer
demand.

Second, unlike some travel demand patterns that are rela-
tively stable over a day, such as consistent demand for public
transportation, OFD demand exhibits a strong intermittent and
temporal pattern—i.e., the number of delivery orders is very
imbalanced in different time periods. As shown in Figure 1
based on a real-world dataset collected from an OFD platform
in Singapore, most delivery orders are placed during lunchtime
(around 12:00 pm) and dinnertime (around 6:00 pm), and
demand at other times is very low. Despite high demand
in peak hours, the occurrences of high demand across the
entire dataset are particularly low, showing a clear long-
tail distribution. This renders OFD demand prediction more
challenging.

Third, customers’ willingness to order food online with
delivery is heavily affected by weather and other real-time
conditions. For example, when it is cold or raining, customers
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Fig. 1. OFD demand variation on an OFD platform in Singapore within a week and the occurrence distribution of OFD demand in the whole dataset (Y-axis
of (a) and X-axis of (b) are rescaled as required by the industry collaborator).

may prefer ordering food for delivery rather than dining in a
restaurant. When developing a demand forecasting model for
OFD services, therefore, data on weather and other real-time
information should be an indispensable input.

Most of the existing demand forecasting methods focus on
a scalar or point prediction—namely, the prediction output
is a single value, which has no prediction for the range or
distribution of demand. A good solution to this problem could
be label distribution learning (LDL) [8], [9]. LDL converts the
ground truth to a discrete distribution and trains a model by
fitting the entire distribution. LDL has two major advantages.
On the one hand, the output of LDL is a distribution, which
contains information on the reliability of the prediction as
well as the upper and lower bounds of the predicted demand.
Since demand uncertainty is a critical concern for many design
and operational decisions in the general context of on-demand
transportation and delivery, such as fleet sizing [10], [11],
spatial and temporal pricing [12], order dispatching [13], [14],
routing and scheduling [15], reward mechanism [16], demand-
supply coordination [17], [18], ride-pooling [19], [20], supply
management [21], [22], [23], and driver relocation [24], [25],
the prediction of demand ranges is of great importance to OFD
platforms for more robust and reliable decisions. In addition,
unlike some traditional demand distribution estimation meth-
ods that assume that demand within the same time period or
location is distributed with the same parameters, LDL easily
derives a unique distribution of OFD demand for each time
period and each location in real time.

On the other hand, the OFD demand samples exhibit a
long-tailed distribution, where demands in peak hours have
only a few samples but the others are associated with massive
sample points. In this case, most scalar prediction models
are easily biased towards low demand with massive training
data, resulting in poor performance on high demand during
peak hours with limited data. LDL puts a distribution over an
ambiguous label, i.e., label smoothing or data augmentation on
the label side, which could beneficially prevent overfitting and
promote generalization [26]. This helps improve regression
performance and may be very helpful in mitigating the long-
tail effect. In literature, LDL techniques are mostly used for
facial age estimation and other computer vision tasks and
have seldom been used for customer demand prediction; this

includes OFD demand prediction. A method based on and
adapted from LDL techniques is certainly worth investigat-
ing and would potentially improve short-term demand range
forecasting for OFD services.

However, LDL generally assumes that the labels of
instances obey Gaussian distributions with the same standard
deviation, which is not realistic because the heterogeneity
among instances is not negligible. In addition, the standard
deviation of the Gaussian distributions must be predefined as
a hyperparameter to train the models, which requires additional
model tuning and the resolution of potential overfitting issues.
To tackle such issues related to LDL methods, we define the
label distributions of instances based on a Poisson distribution,
the only parameter of which is calibrated by ground truth; thus,
no hyperparameter of the Poisson distribution is needed for
model training. In addition, the Poisson distribution is typically
used to characterize the probability of a given number of
events occurring within a fixed period of time and region, and
it can naturally characterize the arrivals of customer orders for
food delivery services and thus be suitable for OFD demand
forecasting.

In this paper, we develop a novel Poisson-based distribution
prediction (PDP) framework integrated with a double-hurdle
mechanism and uncertainty-based multi-task learning tech-
niques to address the challenges described above. Given the
characteristics of customers’ arrivals for placing food delivery
orders, we assume that the OFD demand in each region
and each time period follows a Poisson distribution whose
parameter is calibrated by the ground truth, and thus covert
label scalar into label distribution. We then develop a neural
network with multiple outputs to learn the likelihood of
demand being zero and approximate the label distribution.
A multi-objective function is designed to achieve three goals:
(1) minimizing the Binary Cross Entropy (BCE) between the
binarized demand and the predicted probability of the demand
being non-zero, (2) minimizing the Kullbac-kLeibler (KL)
divergence between the distribution drawn from the ground
truth and the distribution predicted by the neural network, and
(3) minimizing the difference between the ground truth value
and the peak value (i.e., the value with highest probability
density) of the predicted distribution. An uncertainty-based
multi-task learning technique is applied to organize different

  



learning objectives. By doing this, the algorithm can generate
a demand distribution that is as close as possible to the real
demand in terms of both the peak value and the distribution
itself. We also incorporate real-time information in the pre-
diction, which includes temperature and rainfall. The main
contributions of this paper are listed as follows:

• We introduce a label distribution learning technique in
OFD demand forecasting. To the best of our knowledge,
this is the first attempt to develop a distribution prediction
method for OFD demand range forecasting.

• We develop a novel Poisson-based distribution prediction
framework equipped with a double-hurdle mechanism
to solve the data imbalance problem. Additionally, the
PDP framework incorporates an uncertainty-based multi-
task learning technique to coordinate different learning
objectives adaptively.

• We conduct extensive experiments based on a real dataset
from an on-demand food delivery platform in Singapore.
Experiments show that PDP-based methods outperform
several benchmarks by achieving more reliable demand
range forecasting. Moreover, further ablation experiments
demonstrate the efficient design of the proposed PDP
framework.

The remainder of the paper is organized as follows.
In Section II we review the relevant literature. In Section III
we formally define the OFD demand distribution prediction
problem and propose the PDP framework. In Section IV we
conduct a set of numerical experiments and discuss the abla-
tion experiments. Section V concludes with recommendations
for future studies.

II. LITERATURE REVIEW

Our work is closely related to the literature on short-term
demand forecasting in urban transportation systems, which
includes a series of statistical and machine learning algo-
rithms to capture the spatial and temporal correlations of
transportation demand. It is also related to the literature on
label distribution learning, which is mainly used for facial age
estimation, gesture detection, and pre-release movie prediction
in the field of computer vision.

A. Demand Forecasting for Urban Transportation Systems

Passenger demand forecasting plays an important role in
alleviating the imbalance between demand and supply in urban
transportation systems and has received much attention in
recent decades. Earlier studies focused on various time-series
forecasting models, including auto-regressive integrated mov-
ing average (ARIMA) [27]; Kalman filtering models [28];
fuzzy neural networks [29]; and recurrent neural networks
(RNN) [30], [31]. Li et al. [32] build a multitask learn-
ing framework based on a long short-term memory network
(LSTM) for multimodal demand co-prediction. These methods
do not consider spatial correlations.

Due to their ability to capture both temporal and spatial
dependencies simultaneously, grid-based deep learning neural
networks (DNN) have quickly become popular in recent
years [4], [33]. Demands scattered in different grid cells can

be treated as images, after which convolutional operations are
used to characterize spatial correlations [34], [35], [36]; and
RNN [7], [37] or temporal convolutional networks (TCN) [38],
[39] are used to capture temporal dependencies. On the
basis of grid division using regular hexagons, Ke et al. [40]
develop a hexagon-based CNN to improve demand prediction
performance for on-demand ride-hailing services. Despite its
superior performance, Grid-based DNN only captures local
spatial correlations between adjacent areas and fails to examine
non-Euclidean pair-wise correlations between distant areas [6].

Motivated by the great success of graph neural net-
works on non-Euclidean data, graph-based methods, such
as graph convolutional networks [41] and graph attention
networks [42], have recently been introduced to demand
forecasting. To address the challenge of heterogeneous spatial
dependencies between areas, a variety of spatiotemporal graph
neural networks [43] have been developed. Tang et al. [44]
integrate a spatiotemporal graph convolutional network with
a community detection algorithm to predict regional-level
passenger demand. Ke et al. [45] propose a multi-graph-
based approach to predict demand for different service
modes. Another representative graph-based method is the
dynamic graph [46], which can automatically deduce hidden
interdependencies between nodes from data. For instance,
Zhang et al. [47] design a dynamic node-edge attention net-
work to capture the temporal evolution of node topologies.
Bai et al. [48] propose an adaptive graph convolutional recur-
rent network for traffic forecasting, which includes a node
adaptive parameter learning module for learning node-specific
patterns and a data adaptive graph generation module for
automatically inferring node embedding among different series
of traffic.

Although the algorithms developed in previous studies have
shown promising results in terms of demand forecasting, little
effort has been devoted to demand distribution prediction.
Only a few studies [49], [50] investigate the problem of
on-demand food delivery service demand prediction, and none
of them pay attention to demand distribution forecasting.

B. Label Distribution Learning

Label distribution learning enhances regression performance
through data augmentation on the label side [26], which has
been demonstrated to be efficient in a variety of tasks. These
include facial age estimation [51], head pose estimation [52],
and pre-release prediction of movies [53]. LDL defines the
label distribution of an instance as a vector, where each prob-
ability in the vector represents the likelihood that the instance
is equal to each label [9]. Geng et al. [54] propose an LDL
learning algorithm for facial age estimation based on a max-
imum entropy model. To resolve the inconsistency between
the training stage and the evaluation stage, Gao et al. [55]
combine LDL and expectation regression into an end-to-end
learning framework.

These LDL methods are majorly used for computer vision
tasks, such as facial age estimation and head pose estimation.
They generally convert the label into probability distribution
by assuming that facial age or head pose in each image
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follows a Gaussian distribution centered on the label with
the same standard deviation. Although the assumption of
Gaussian distribution is valid for face age estimation and head
pose estimation, it may not be suitable for OFD demand
estimation. In contrast, the arrivals of customer orders for
food delivery services are better characterized by a Poisson
distribution. Additionally, considering the influence of indi-
vidual differences such as gender, ethnicity, and photography
habit, it is unreasonable to assume that the standard deviation
of the age/head pose label distribution of all samples is the
same. Therefore, necessary adjustments should be made to
adapt LDL techniques to the task of short-term OFD demand
distribution estimation.

III. METHODOLOGY

In this section, we first describe the notation and define the
problem of demand distribution learning. Then, we propose
and discuss the Poisson-based distribution prediction (PDP)
framework in depth. Finally, we compare the scalar prediction
model, the Gaussian-based LDL method, and the proposed
PDP framework.

A. Notation and Problem Definition

The goal of this paper is to predict the short-term demand
distribution within a specific region based on historical demand
observations and real-time information such as rainfall and
temperature. We use non-bold lowercase letters to denote
scalars, bold lowercase letters to denote vectors, and bold
capital letters to denote matrices.

Definition 1: Feature matrix X = {d, r, τ , s}. The feature
matrix represents the model’s inputs, which contain three
parts: historical demand sequence (d), historical weather
sequences (r and τ ), and static features (s). We denote the
demand in time period t as dt , which refers to the number
of OFD orders placed in time period t . Considering the
strong periodicity (both daily and weekly) of OFD demand,
similar to [33], we truncate three time-series segments of
length tr , td , and tw along the time axis as inputs of recent,
daily-period, and weekly-period components, respectively.
We concatenate the three segments into a vector d =

{dt−tw∗week, · · · , dt−1∗week, dt−td∗day, · · ·, dt−1∗day, dt−tr , · · ·,

dt−1}. The weather information considered in this paper
includes rainfall and temperature, both of which are also time
series data. Following the same procedure as for the OFD
demand sequence, we define and obtain rainfall vector r and
temperature vector τ . Finally, we incorporate some static
features s to assist prediction, including day of week, hour of
day, and location ID.

Definition 2: Proxy label distribution p. For an ordinary
demand forecasting problem, the ground-truth demand y
(i.e., label) is a scalar and the aim is to minimize the difference
(i.e., mean square error) between the predicted demand ŷ and
label y. For the problem of demand distribution forecasting,
instead of taking a scalar as the label, we discretize the
range of possible demand values into segments and generate
a discrete probability distribution for the label value within a

TABLE I
NOTATION

range. Since OFD demand is an integer value, we then define
the ordered label set as:

l = {1, 2, · · · , |l|},
|l| = (1 + e) ∗ ymax, (1)

where |l| denotes the length of ordered label set, ymax denotes
the largest label value in the dataset, and e is the hyperparam-
eter that controls the range of possible demand value. Then,
a probability mass function (pmf) is chosen to describe the
proxy label distribution p ∈ R|l| over the |l| segments.

Table I summarizes the definitions of notation.
Ideally, the proxy label distribution p generated from the

ground truth y should be unimodal and the probability of the
integer closest to y in distribution p should be the largest.
Conceptually, this not only ensures that the ground truth is the
peak of the label distribution but also causes the probability
of demand taking other values to decrease with the distance
from y. Although there are other probability distributions that
meet the requirements, we choose the Poisson distribution for
three reasons:

• The Poisson distribution normally describes the number
of events that occur in a given time period, such as the
number of telephone calls per minute. OFD demand refers
to the number of delivery orders within a fixed-length
time interval and within a given region, which is well
described by a Poisson distribution.

• The Poisson distribution has only one parameter λ (the
expected number of event occurrences in the period), and
a Poisson distribution has the largest probability density
when the random variable takes a value close to λ. Thus,
a natural way to derive a label distribution is to set λ

as the ground truth. Other than λ (which is also the
expectation), we do not need any other parameters, such
as the standard deviation in Gaussian distribution.

• When the total number of event occurrences follows a
Poisson distribution, the inter-arrival time between suc-
cessive events follows exponential distribution, which has
a memoryless property and improves tractability when
used in any follow-up analytical model [56].

Based on the assumption of Poisson distribution, we can
calculate the probability for each label in l using the proba-
bility density function of Poisson distribution. To ensure that

 
 



Fig. 2. Poisson-based distribution prediction framework.

the sum of the probabilities of all labels in l is 1, we normalize
each probability to get the proxy label distribution p:

p =
{

p1, p2, · · · , pk, · · · , p|l|
}
, (2)

where pk is the probability of label k in l and calculated as:

pk =

yk

k!
e−y∑|l|

i=1
yi

i ! e−y
=

yk

k!
∑|l|

i
yi

i !

. (3)

Problem Definition: we formulate the problem as learning
a mapping function F to predict the proxy label distribution
p based on the feature matrix X :

p = F(X). (4)

B. Poisson-Based Distribution Prediction Framework

In this section, we propose the PDP framework. As shown
in Figure 2, the framework contains two modules: a feature
extraction module and a loss module. The feature extraction
module aims to learn valuable information from historical
demand sequences, historical weather sequences, and static
features. It generates two outputs: the probability of the pre-
dicted demand being zero and the predicted demand distribu-
tion. Introducing the probability of the predicted demand being
zero is inspired by the traditional double-hurdle model [57],
which is often used to deal with data with a large number of
zero values and is especially applicable to our case. This sta-
tistical model involves two steps: a binary model estimates the
probability of the outcome being zero or non-zero, followed
by a separate model to estimate the non-zero observations.
Similarly, in our approach, if the probability of the predicted
demand being zero exceeds 0.5, we predict the demand as
zero. Otherwise, we utilize the demand value with the highest
probability density derived from the predicted demand distri-
bution, as our final prediction. This approach is referred to as
the double-hurdle mechanism in our study. Subsequently, the
loss module calculates the difference between the ground truth
and the outputs generated by the feature extraction module.

1) Feature Extraction Module: Given a sample (X, y, p),
the feature extraction module takes X as input and uses a
neural network to extract features. Since the neural network
is essentially a function, it can be denoted as f (·, θ) where θ

represents the parameters of the neural network. The output
of the neural network is represented as f (X; θ). Based on the
features extracted by f (·, θ), we first use a fully connected

layer with a sigmoid activation to predict the likelihood that
the OFD demand is equal to non-zero, that is,

ŷb =
1

1 + e−ws T f θ (X)+bs
. (5)

To keep the dimensions of the predicted label distribution
consistent with the dimensions of proxy label distribution,
f (X; θ) is fed to a fully connected layer with |l| neurons.
Setting a separate fully-connected layer instead of including
it in the neural network f (·, θ) can remove the restriction on
the structure of f (·, θ), making our model more generalized.
Then, a softmax function is applied to convert the outputs
from the fully connected layer, denoted as z, into a probability
distribution p̂; that is,

z =
[
z1, z2, · · · , zk, · · · , z|l|

]T
= W T f θ (X) + b,

p̂k
=

ezk∑|l|
i=1 ezi

,

p̂ =

{
p̂1, p̂2, · · · , p̂k, · · · p̂|l|

}
, (6)

where both W =
[
w1, w2, · · · , wk, · · · w|l|

]T
∈ R?×|l| and

b ∈ R|l| are learnable parameters in the fully connected layer.
Since the proxy label distribution is generated from a Poisson
distribution parameterized by the ground truth, which is only
a proxy for the real distribution (which is unknown to us),
there could be an inconsistency between the training objective
and evaluation metric. To reduce this inconsistency, we jointly
learn the demand distribution and peak demand scalar in an
end-to-end manner. Since the output from the softmax function
is the predicted distribution p̂, we can infer the estimated
peak demand ŷ from the distribution p̂. Given that the proxy
label distribution p reaches its peak at the value of ground
truth y, applying the argmax function is a natural choice to
infer the estimated peak demand scalar ŷ from the predicted
label distribution p̂, i.e., the predicted demand is the demand
that corresponds to the largest probability in the prediction
distribution:

ŷ = argmaxi=1,2,··· ,|l| p̂i . (7)

However, the argmax function is non-differentiable; thus
if argmax is directly used to obtain predicted demand, the
gradients cannot be backpropagated from the loss function to
the trainable parameters. To address this problem, we then use
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the soft-argmax operation [58], which is a smoothed version of
argmax that preserves end-to-end differentiability as follows:

ŷ = argmaxi=1,2,··· ,|l| p̂i
≈

|l|∑
j=1

j · softmax
(
β p̂ j

)

=

|l|∑
j=1

jeβ p̂ j∑|l|
i=1 eβ p̂i

, (8)

where β ≥ 1 is a hyperparameter.
2) Loss Module: The loss function used to evaluate the

prediction performance consists of three parts: distribution
loss, regression loss, and classification loss. As depicted in
Figure 2, the KL divergence is used to measure the difference
between proxy label distribution and predicted label distri-
bution. We employ two commonly used metrics, i.e., mean
squared error (MSE) and Binary Cross Entropy (BCE), to mea-
sure the regression loss and classification loss, respectively.
Formally,

Lkl =

|l|∑
k=1

pk
· ln

pk

p̂k ,

Lmse = (y − ŷ)2,

Lbce = −(yb · log ŷb + (1 − yb) · log (1 − ŷb)). (9)

Integrating multiple loss functions within a composite loss
function can pose several challenges. Each loss function
may have a different scale or magnitude. Determining the
appropriate weights for each loss becomes a challenge, often
requiring extensive experimentation to achieve the desired
balance. To tackle this issue, we apply an advanced multi-task
learning technique that learns optimal loss weights based
on the homoscedastic uncertainty of different learning objec-
tives [59]. This multi-task learning technique uses a Gaussian
distribution to model the homoscedastic uncertainty associ-
ated with each task. The homoscedastic uncertainty, which
remains constant across all input data but varies between
different tasks, is then used to determine the weight assigned
to each task’s loss. In our study, three tasks are involved,
corresponding to three loss functions, namely, Lkl , Lmse, and
Lbce. The final loss function can be represented as the negative
log-likelihood of joint probabilities for different tasks, namely,

L (W, σ1, σ2, σ3)

= − log p
(

p̂, ŷ, ŷb| f W (X)
)

= − log [N
(

p̂; f W , σ 2
1

)
N

(
ŷ; f W , σ 2

2

)
N

(
ŷb; f W , σ 2

3

)
]

∝
1

2σ 2
1
Lkl +

1
2σ 2

2
Lmse +

1
2σ 2

3
Lbce + log (σ1σ2σ3), (10)

where W denotes all parameters in the model, f W (·) denotes
the entire feature extraction module, and σi represents the
model’s observation noise parameter, measuring the uncer-
tainty in the i-th task. The coefficient term 1/2σ 2

i can be
interpreted as the relative weight assigned to the i-th task, indi-
cating its importance in the overall loss function. Besides, the
term log σ1σ2σ3 serves as a regularizer, preventing the value

Algorithm 1 calculation of Upper and Lower Bounds
Input: p̂, ŷ, Pthre
Output: predicted upper and lower bounds a and b

1 Initialize Pcum = p̂ ŷ, b = ŷ − 1, a = ŷ + 1;
2 while Pcum < Pthre do
3 Pcum = Pcum + p̂b

+ p̂a ;
4 b = max{b − 1, 0};
5 a = min{a + 1, |l|};
6 end

of σi from excessively increasing. By leveraging this uncer-
tainty, the technique dynamically adjusts the loss weights,
giving more importance to tasks with lower uncertainty and
effectively balancing the learning process across multiple
tasks.

3) Range Estimation: Since many strategic and operational
decisions by OFD platforms, such as robust dynamic pricing,
require knowing the upper and lower bounds (denoted as a
and b) of the predicted demand, we define another metric that
quantifies the model’s performance in predicting such upper
and lower bounds. Specifically, we need to find a way to
infer reasonable upper and lower bounds using the predicted
probability distribution p̂ =

{
p̂1, p̂2, · · · , p̂k, · · · p̂|l|} (note

that p̂k represents the probability that the model believes the
predicted demand is k), and then propose a metric to evaluate
the accuracy of the predicted upper and lower bounds. The
method of choosing the upper and lower bounds is explained
in detail in Algorithm 1; simply put, starting from the most
probable predicted value (i.e., the ŷ value), we move one
unit to the left and right simultaneously and accumulate the
corresponding probabilities until the accumulated probability
Pcum exceeds a preset threshold Pthre. The cumulative proba-
bility Pcum represents the probability that the model believes
that the predicted demand is within the range [b, a], and the
preset threshold Pthre represents the operator’s requirement for
confidence.

4) Relationship Between Different Methods: In this
subsection, we discuss the relationship between PDP, LDL,
and the scalar prediction. Figure 3 compares the predictions
and labels of the three methods. These three methods are
learned by minimizing the difference between predictions
and labels. Assume that the OFD demand follows a latent
distribution, whose parameters vary over time and space.
A scalar prediction model assumes that the expectation of the
latent distribution is the observed demand (i.e., the label) and
is learned by minimizing the difference (e.g., mean square
error) between the label and the predicted demand. LDL is a
neural network-based learning paradigm that assumes that the
latent distribution is a Gaussian distribution with a mean as
the observed demand and variance as a fixed hyperparameter.
In detail, LDL first converts the observed demand into a
discrete probability distribution (label distribution) based on
the Gaussian distribution assumption, and the demand is then
learned by minimizing the KL divergence between the label
distribution and the neural network output. The proposed PDP
is an improved version of LDL that takes into account the

  



Fig. 3. Comparison of the predictions and labels.

characteristics of OFD demand. It assumes that the latent dis-
tribution is Poisson distribution parameterized by the observed
demand. PDP also considers the argmax over the predicted
distribution and the predicted demand is learned by balancing
the tradeoff between the KL divergence and mean square
error. Hence, the difference between the three methods is
based on different inherent assumptions and different objective
functions.

IV. NUMERICAL EXPERIMENTS

In this section, we first present the datasets and experi-
ment details. Then we compare the proposed PDP framework
with several benchmark methods. Lastly, we evaluate the
effectiveness of our PDP framework using a set of ablation
experiments.

A. Datasets

The datasets used in this paper are obtained from
a crowd-sourcing delivery platform in Asia.1 It includes
real order information over a period of 10 months from
November 8, 2020 to October 21, 2021. Each order record
includes the requesting time and pickup location ID. The
location ID has five possible values that represent the five
Community Development Councils (CDC) of Singapore: the
North East CDC, North West CDC, South East CDC, South
West CDC, and Central Singapore CDC. To identify the impact
of weather conditions on OFD demand forecasting, we further
crawl temperature and rainfall data from the Singapore Gov-
ernment Technology Agency2 (collected at hourly intervals).
To ensure consistency, we average the temperature and rainfall
values from the weather stations associated with each CDC.
These averaged values are then considered as the temperature
and rainfall for the orders within the respective CDC dur-
ing the corresponding time interval. The temperature range
observed in the data is between 22.1◦C and 35.9◦C , while
the rainfall range spans from 0mm to 62.5mm. By aggregating
the number of orders from the same location ID within each
hour, we get OFD demand. Each OFD demand is described
by six columns, including demand value, average temperature,
average rainfall, location ID, day of week, and hour of day.
Finally, using the time-series generation method described in
Section III-A, we generate demand, rainfall, and temperature
series. We select data from September 24, 2021 to October
21, 2021 as the test set and data from September 10, 2021 to
September 23, 2021 as the validation set. The remaining data
are used as the training set.

1Some data is rescaled as required by the industry collaborator.
2https://data.gov.sg/

B. Evaluation Metrics

Three common regression evaluation metrics—mean abso-
lute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE)—are used to eval-
uate the predictive accuracy for the scalar demand. The
formulas of MAE, RMSE, and MAPE are given as
follows:

MAE =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣ ,

RMSE =

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2
,

MAPE =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣

yi
, (11)

where N is size of the test set.
Additionally, three commonly used metrics for interval

prediction are used to evaluate the performance of the models
in predicting demand ranges, including Prediction Interval
Coverage Probability (PICP), Prediction Interval Normalized
Average Width (PINAW), and Interval Score (IS) [60], [61].
PICP measures the accuracy in range, i.e., how many samples
in the test set fall within their corresponding predicted demand
ranges. PINAW, on the other hand, evaluates the range width
and is normalized by dividing the possible range (i.e., |l|) of
the real demand.

PICP =
1
N

N∑
i=1

δ (yi , [bi , ai ]) ,

δ (yi , [bi , ai ]) =

{
1, yi ∈ [bi , ai ] ,

0, otherwise

PINAW =
1
N

N∑
i=1

ai − bi

|l|
. (12)

A higher PICP indicates that more observed labels in the test
set are located in the predicted range. PINAW measures the
width of the predicted range of demand. We expect a higher
PICP and a lower PINAW, so that we can more accurately
predict stochastic demand with a more narrow predicted range.
IS takes into account the balance between a more accurate
prediction and a more narrow range, thereby providing a more
comprehensive assessment of range prediction [62], [63]. The
formula of IS is given by:

IS = PINAW +
2η

N · Pthre

N∑
i=1

(yi − ai ) + (bi − yi ), (13)

where η is a hyperparameter that determines how much penalty
is imposed on the estimated range that does not contain the
ground truth. The indicator function δ(a) returns 1 if a ≥

0, otherwise return 0. Also, the term 2
Pthre

is used to give
more penalty when confidence is lower. We can find from
Equation 13 that IS is equal to PINAW when the observed
labels are within the estimated range. But when the estimated
range cannot cover the observed labels, IS combines PINAW
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with a penalty term, the size of which depends on how much
the label exceeds the estimated range. By doing so, IS is able
to balance the trade-off between accuracy and range width.

C. Benchmarks and Implementation Details

Our PDP framework can be integrated with any neural net-
work used for feature extraction (see Figure 2). In this paper,
we choose three classical neural network architectures—MLP,
TCN, and LSTM—for comparison. To demonstrate the effec-
tiveness of the proposed PDP framework, we compare the
three PDP-based models with the following eight benchmarks:

• HA: Historical average (HA) is a basic time-series fore-
casting method, which uses the average of historical
observations within a moving period as prediction results.
We take the average of the components in the demand
series d as the output of HA.

• ARIMA: Autoregressive integrated moving average is
one of the most widely used statistical methods in
time-series forecasting. It combines autoregressive com-
ponents and the moving average method. We use the
statsmodel package3 (version 0.12.2) in Python to imple-
ment ARIMA, in which the order of autoregressive is
set to 5, the degree of difference to 1, and the moving
average to 0.

• RF: Random forest (RF) is a classic machine learn-
ing method that uses the bootstrap sampling method
to assemble different decision trees. RF is implemented
using the scikit-learn package4 (version 0.24.2) in Python
with default settings.

• XGBoost: eXtreme gradient boosting (XGBoost) is a
powerful ensemble method and has been successfully
used in a wide range of applications. XGBoost is imple-
mented using the xgboost package5 (version 1.4.2) in
Python with default settings.

• MLP: Multi-layer perceptron (MLP) is a basic feedfor-
ward neural network that consists of an input layer, one
or more hidden layers, and an output layer. We use one
hidden layer and the number of hidden units is set to 64.

• TCN: Temporal Convolutional Network (TCN) captures
long-term temporal dependencies through dilated con-
volution operations and achieves satisfactory results on
some time series prediction tasks. A two-layer TCN with
a kernel size of 2 is adopted.

• LSTM: Long short-term memory (LSTM) is a special
recurrent neural network with complex gating mecha-
nisms to capture long-term dependencies. There is only
one layer in LSTM with 64 hidden units.

• QReg: Quantile Regression (QReg) studies the relation-
ship between the independent variable and the conditional
quantile of the dependent variable, which can further infer
the conditional probability distribution of the dependent
variable. QR is implemented using the statsmodels pack-
age in Python with default settings.

3https://www.statsmodels.org/stable/
4https://scikit-learn.org/stable/
5https://xgboost.readthedocs.io/en/latest/

TABLE II
OVERALL COMPARISON OF PDP-BASED METHODS

AND BENCHMARK METHODS

We integrate the three neural networks (MLP, TCN, and
LSTM) with the PDP framework to obtain three PDP-based
prediction models: PDP_MLP, PDP_TCN, and PDP_LSTM,
respectively. All three PDP models are implemented using
PyTorch6 (version 1.9.1) on a server with two NVIDA RTX
3090. The learning rate are set to 0.01 for all three PDP
models. These neural networks are trained using the Adam
optimizer with an early stopping mechanism to determine the
number of epochs when abort training. The early stopping
patience is set to 10 and the batch size is set to 64. MLP,
TCN, and LSTM are trained under the same environment and
setting. In this paper, e is set to 0.1, β is set to 100, η is set
to 10, and tr , td , and tw are set to 12, 7, and 3, respectively.

D. Model Comparison

We first compare the proposed PDP-based neural networks
with seven scalar prediction methods, which are shown in
Table II. Despite good interpretability, classical time-series
forecasting methods (i.e., HA and ARIMA) perform poorly
with a low predictive accuracy. In contrast, machine learning
methods (e.g., RF and XGBoost) and neural networks (e.g.,
MLP, TCN, and LSTM) outperform HA and ARIMA in terms
of MAE, RMSE, and MAPE due to better prediction capabil-
ity. For the three neural network methods, TCN and LSTM
achieve better prediction performance than MLP because they
are more suitable for exploring correlations of features in
time sequences. Compared with MLP, TCN, and LSTM,
we find that their corresponding PDP-based model (PDP_MLP,
PDP_TCN, and PDP_LSTM, respectively) achieve a signifi-
cant reduction in MAE, RMSE, and MAPE. This indicates
that, although a neural network integrated with the PDP frame-
work is designed to forecast the distributions of future demand,
it can also achieve higher accuracy in predicting the actual
scalar demand than its counterpart. This is because PDP-based
methods try to learn the latent distribution by involving a KL
divergence term in the loss function, while scalar prediction
models focuses on predicting the expectation of the labels.
Learning the entire latent distribution is equivalent to imposing
data augmentation on the label side, helping to provide a more
robust demand range and enhance prediction performance.
In addition, the integration of the double-hurdle mechanism

6https://pytorch.org/
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TABLE III
OVERALL COMPARISON OF PDP-BASED METHODS

AND BENCHMARK METHODS

may help alleviate the problem of data imbalance, thereby
improving prediction accuracy.

Next, we compare the proposed PDP-based neural networks
with a classical method for range estimation, quantitle regres-
sion. Quantitle regression obtains the lower and upper bounds
of the estimated range by taking two quantiles as labels; for
example, an estimated range at a 90% confidence level takes
the prediction result of the 5% quantile regression as the
lower bound, and the prediction result of the 95% quantile
regression as the upper bound. The PDP-based method can
quickly derive the estimated range under any confidence level7

after obtaining the predicted demand distribution, while the
quantile regression method has to be retrained twice each time
to obtain the estimated range under each confidence level.

The calculation of PICP, PINAW and IS depends on the
estimated range, which is determined by a predefined con-
fidence level. That is, each confidence level corresponds to
a PICP, PINAW and IS. We compute PICP, PINAW and
IS at different confidence levels—55%, 60%, · · · , 90%,
95%—and then average them to get mean PICP (MPINP),
mean PINAW (MPINAW), and mean IS (MIS), which are pre-
sented in Table III. We can observe that PDP-based methods
achieve much higher accuracy in range (reflected by much
larger MPICP) by sacrificing a little range width (reflected
by slightly smaller MPINAW). With a smaller MIS, which
is a more comprehensive assessment factor considering accu-
racy and range width simultaneously, the PDP-based models
are shown to have a better performance than the quantile
regression model. Figure 4 shows the comparison of estimated
ranges, predicted demands and ground-truth demands for the
three PDP-based neural networks and quantile regression
(QReg) at the 80% confidence level. It can be observed that
the demand range estimated by QReg fails to capture demand
in peak hours and cannot well identify the lower bound of
demand range. In contrast, the demand ranges estimated by
the three PDP-based methods have higher accuracy in range
and the lower bounds do not always remain 0, which is more
reasonable.

E. Ablation Study

In this subsection, we verify the effectiveness of the pro-
posed framework in terms of the integration of weather infor-
mation, double-hurdle mechanism, inference strategy (i.e., the
way we derive predicted demand from the predicted label dis-
tribution), and probability distribution type selection through
a variety of ablation experiments.

7Here we treat Pthre as the equivalent of confidence level.

Fig. 4. Comparison of estimated ranges of PDP-based neural networks and
Quantile regression over a test week.

TABLE IV
OVERALL COMPARISON OF PDP-BASED METHODS AND THEIR VARIANTS

WITH HISTORICAL WEATHER SEQUENCES MISSING

1) Impact of Weather Information: To examine the impact
of weather information on model performance, we compare
three PDP-based methods and their variants. These variants
include NwMLP, NwTCN, and NwLSTM, which are obtained
by removing historical weather sequences from the model
input. Table IV presents a comparison of PDP-based neural
networks and their variants, those without historical weather
sequences as input, across various metrics. The results indicate
that the removal of weather information from model inputs
results in a decline in the scalar prediction performance. Addi-
tionally, in the absence of weather information, we observe a
notable increase in MPINAW accompanied by a slight increase
in MPICP. As a consequence, the overall MIS score also
increased, indicating a reduction in the comprehensive per-
formance of range estimation. Figure 5 further illustrates the
comparisons of estimated ranges at the 80% confidence level.
Notably, when weather information is absent from the input,
the model exhibits a considerable decrease in its capability to
capture demand during peak hours.

2) Effect of Double-Hurdle Mechanism: As previously
mentioned, the primary challenge in OFD demand forecasting
is the issue of data imbalance. The majority of customers’
OFD demand is concentrated during lunch and dinner time,
resulting in high demand during peak hours and zero demand
during many other time periods. To address this challenge,
in addition to employing the LDL technique for label aug-
mentation, we also incorporate a double-hurdle mechanism
into the model to effectively identify a large number of
cases where demand is zero. To evaluate the effectiveness of
this double-hurdle mechanism, we first compare the proposed
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Fig. 5. Comparison of estimated ranges of PDP-based neural networks and
their variants with historical weather sequences missing over a test week.

models with their variants where the double-hurdle mechanism
is removed (NdMLP, NdTCN, and NdLSTM), as shown in
Table V. The variants (NdMLP, NdTCN, NdLSTM) without
the double-hurdle mechanism are essentially a combination of
ordinary neural networks and the PDP framework.8 To assess
the impact of the proposed PDP framework on OFD demand
forecasting performance, we first compare the three regression
evaluation metrics of NdMLP/NdTCN/NdLSTM in Table V
with those of MLP/TCN/LSTM in Table II. The results clearly
demonstrate the substantial improvement achieved by incorpo-
rating the PDP framework. For example, NdMLP exhibits a
15% lower MAE, 12% lower RMSE, and 30% lower MAPE in
comparison to the MLP model. This significant enhancement
in performance highlights the effectiveness and potential of
the PDP framework in improving OFD demand forecasting
accuracy.

Our results in Table V also show a significant decline in
performance for all three neural networks in terms of scalar
prediction and range estimation when the double-hurdle mech-
anism is removed from the input, which provides evidence
supporting the effectiveness of the double-hurdle mecha-
nism in improving model performance. To further assess the
effectiveness of the proposed method in addressing the data
imbalance issue in Figure 6, we compare all six metrics of
the proposed methods and their variants during peak hours
(11 am to 1 pm and 5 pm to 7 pm) as well as off-peak
hours. As shown in Figure 6, the prediction error of the model
during peak hours is notably higher than that during off-peak
hours. This observation confirms our previous statement that
the long-tailed distribution makes peak demand challenging to

8For variants without the double-hurdled mechanism, we add 1 to all
demands during model training and subtract 1 during testing.

TABLE V
OVERALL COMPARISON OF PDP-BASED METHODS AND THEIR VARIANTS

WITH DOUBLE-HURDLE MECHANISM MISSING

Fig. 6. Comparison of six metrics of PDP-based neural networks and their
variants with double-hurdle mechanism missing during peak and off-peak
hours.

predict accurately. And although PDP-MLP, PDP-TCN, and
PDP-LSTM still exhibit higher prediction errors during peak
hours than off-peak hours, we observe a significant reduction
in error compared to their respective variants without the
double-hurdle mechanism, from all metrics except MPICP.
Notably, the improvement in performance during peak hours
surpasses that during off-peak hours. This finding highlights
the effectiveness of our proposed method in mitigating the
impact of data imbalance.

3) Effect of Inference Strategy: In the proxy label dis-
tribution generation, we calibrate the parameter λ of the
Poisson distribution with the real demand. For the Poisson
distribution, both the expectation and the value corresponding
to the maximum probability are close to λ. Therefore, both
argmax and mean operations are reasonable when deriving a
value from the predicted distribution as the predicted demand.
The difference between the predicted demand and the real
demand is a part of the final loss function, so the strategy
of inferring ŷ from p̂ has an impact on the performance of
the proposed framework. To investigate the effectiveness of the
argmax inference strategy, we compare the argmax operation
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TABLE VI
PERFORMANCE COMPARISON UNDER DIFFERENT

INFERENCE STRATEGIES

Fig. 7. Comparison of ground truth and estimated range over a test week
under different inference strategies.

with the mean operation, which uses the mean values of the
predicted distributions as predicted demand.

ŷmean =

|l|∑
k=1

k · p̂k . (14)

Table VI compares the results of PDP_MLP under different
inference strategies. The RMSE of PDPargmax is slightly
higher than that of PDPmean , but the MAE and MAPE are
much lower, indicating that PDPargmax achieves better scalar
prediction performance. PDPargmax also performs better on
demand range estimation. The estimated ranges of PDPargmax
and PDPmean have similar coverage (with similar MPICP),
but PDPargmax has a narrower range width (with smaller
MPINAW), resulting in a lower MIS. Figure 7 compares the
ground truth and estimated ranges with a 80% Pthre on the test
set over a week. We can observe that the width of the estimated
range of PDPargmax is shorter than that of PDPmean , and
the estimated range of both methods can accurately cover
all ground-truth demand observations during this week. These
results demonstrate that the argmax operation is more effective
than the mean operation in predicting the short-term demand
range in our experiment.

4) Effect of Probability Distribution Type: In the proposed
PDP framework, the proxy label distribution is assumed to
be Poisson distribution. In real life, the actual distribution is
unknown. In this subsection, we study the performance of
PDP when the true distribution takes other forms. Three types
of probability distributions—Gaussian distribution, Uniform
distribution, and Negative binomial distribution—are tested
and evaluated. Each of the three baseline distributions have
two parameters. Since we calibrate one of the parameters by
using the ground truth y, the other parameter must be treated as
a hyperparameter, as shown in Table VII. It is worth noting that
Poisson distribution does not bring a hyperparameter, because
it only has one parameter λ, which can be calibrated by the
ground truth y.

By changing the method of generating proxy label distribu-
tion, we can obtain a Gaussian-based distribution prediction

TABLE VII
PARAMETER SETTINGS FOR DIFFERENT PROBABILITY DISTRIBUTIONS

TABLE VIII
PERFORMANCE COMPARISON UNDER DIFFERENT

PROBABILITY DISTRIBUTIONS

(GDP) framework, a Uniform-based distribution prediction
(UDP) framework, and a Negative binomial-based distribution
prediction (NDP) framework. Table VIII presents different
metrics achieved by PDP_MLP, GDP_MLP, UDP_MLP, and
NDP_MLP, respectively. Although PDP_MLP has a slightly
lower MPICP, it outperforms the other three distributions in
both scalar prediction and range estimation. As σ increases,
the scalar prediction of GDP_MLP is more accurate (which
can be told from the first four metrics), but the width of
the estimated range also increases rapidly, resulting in a
significant increase in MIS. The same can be observed from
UDP_MLP, whose performance on scalar prediction and range
estimation conflict as c increases. The situation is different
for the negative binomial distribution. When the probability
of success p is equal to 0.4, the overall performance of
NDP_MLP on the six evaluation metrics is better than the
other two p settings (i.e., 0.3 and 0.5). This suggests that the
probability of success under the Negative binomial assumption
may be closer to 0.4. Compared with GDP_MLP, UDP_MLP,
and NDP_MLP, which are greatly affected by hyperparameter
settings in the probability distribution, the PDP_MLP does
not require tunning of a hyperparameter (the only parameter
is calibrated by the ground truth) and can avoid potential
overfitting issues. In this sense, the models using Poission
distribution should be more generalized than the models using
the three baseline distributions.

Figure 8 shows the changes of the three range evalua-
tion indicators under different Pthre. We can observe that
while the PICP of PDP_MLP is slightly lower compared
to other methods, all methods achieve high PICP values,
exceeding 96%. The difference in PICP between PDP_MLP
and other methods is less than 3%. However, the range width
of PDP_MLP are consistently narrower than other methods
regardless of the Pthre value, leading to a lower IS. We further
visualize the estimated ranges of PDP_MLP and the other
three distributions with optimal parameter settings that yield
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Fig. 8. Comparison of range estimation performance under different Pthre over a test week.

Fig. 9. Average reduction in MIE over different hours for PDP_MLP
compared to GDP_MLP and UDP_MLP on the test set.

the minimum MIS. As shown in Figure 9, we can find that
the reason for the wider demand ranges estimated by the other
three distributions is different. GDP_MLP tends to estimate a
higher demand upper bound during off-peak hours, which may
be because the Gaussian distribution cannot well describe the
sparse OFD demand. As the variance (i.e., σ ) increases, the
Gaussian distribution becomes more spread out, which results
in a wider estimated range. On the contrary, UDP_MLP and
NDP _MLP estimate demand ranges during peak hours with
a higher upper bound and a lower bound closer to 0. The
probability of demand occurring during peak periods (i.e., the
probability of success p) is different from that during off-
peak periods, which is difficult to capture by the Negative
binomial distribution. The Uniform distribution assumes that
the probability of OFD demand within a specific range of
values is uniform. However, when the observed OFD demand

falls outside this range, methods relying on the assumption of
a uniform distribution may not yield satisfactory results. And
thus UDP_MLP achieves poor performance during peak hours
because demand peaks are often outside the interval in which
most OFD demands fall. All in all, PDP_MLP can generally
achieve comparable accuracy in range with narrower range
width than the models based on other distributions.

V. CONCLUSION

In this paper, we study the problem of demand distribution
forecasting for online food delivery platforms. We propose
a novel Poisson-based distribution prediction (PDP) frame-
work with a double-hurdle mechanism to tackle the issue
of data imbalance. Our framework utilizes a neural net-
work with multiple outputs to estimate the likelihood of
zero demand and approximate label distribution. We use an
uncertainty-based multi-task learning technique to strike a
balance between BCE loss, KL divergence, and MSE loss.
Extensive experiments are conducted based on a real dataset
from a crowd-sourcing delivery platform in Asia. Experimen-
tal results show that PDP-based methods outperform several
benchmarks by achieving more reliable demand range fore-
casting. Moreover, further ablation experiments highlight the
effectiveness of the proposed PDP framework in improving
demand forecasting performance, particularly during peak
hours.

However, it is important to acknowledge the limitation
regarding the lack of diverse OFD order datasets, which
hinders a comprehensive assessment of our approach across
different operating contexts. Further research should focus on
obtaining and analyzing additional datasets to explore the gen-
eralizability of our method to various OFD scenarios. Another
future research direction would be integrating advanced deep
learning algorithms, such as graph convolutional neural net-
works, into the proposed PDP framework to further improve

  



the predictive performance. Moreover, expanding the proposed
demand distribution learning framework to more scenarios,
such as multi-step-ahead prediction, also merits investigation
in future studies.
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