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Reducing Spatial Labeling Redundancy for Active
Semi-Supervised Crowd Counting

Yongtuo Liu"’, Sucheng Ren

and Shengfeng He

Abstract—Labeling is onerous for crowd counting as it should annotate
each individual in crowd images. Recently, several methods have been
proposed for semi-supervised crowd counting to reduce the labeling efforts.
Given a limited labeling budget, they typically select a few crowd images
and densely label all individuals in each of them. Despite the promising
results, we argue the None-or-All labeling strategy is suboptimal as the
densely labeled individuals in each crowd image usually appear similar
while the massive unlabeled crowd images may contain entirely diverse
individuals. To this end, we propose to break the labeling chain of previous
methods and make the first attempt to reduce spatial labeling redundancy
for semi-supervised crowd counting. First, instead of annotating all the
regions in each crowd image, we propose to annotate the representative ones
only. We analyze the region representativeness from both vertical and hor-
izontal directions of initially estimated density maps, and formulate them
as cluster centers of Gaussian Mixture Models. Additionally, to leverage
the rich unlabeled regions, we exploit the similarities among individuals in
each crowd image to directly supervise the unlabeled regions via feature
propagation instead of the error-prone label propagation employed in the
previous methods. In this way, we can transfer the original spatial labeling
redundancy caused by individual similarities to effective supervision sig-
nals on the unlabeled regions. Extensive experiments on the widely-used
benchmarks demonstrate that our method can outperform previous best
approaches by a large margin.

Index Terms—Crowd counting, semi-supervised learning, spatial
labeling redundancy.
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I. INTRODUCTION

Crowd counting has drawn increasing attention in the community due
to its essential role in social management, such as crowd monitoring
and crowd congestion warning [1], [3]. Benefiting from the powerful
CNN architectures, lots of works have been proposed and advanced the
performance of crowd counting. Most of them are mainly dedicated
to solving various challenges of crowd counting in a fully-supervised
manner [4], [5], [6], [7], [8]. However, labeling for crowd counting
is quite burdensome as we have to annotate each individual in crowd
images.

To reduce the labeling efforts, we study crowd counting in a semi-
supervised setting where only a small labeling budget is available.
Methods in this line can be mainly grouped into three categories: (i) [9],
[10], [11] leverage self-supervised constraints to learn a generic feature
extractor from unlabeled crowd images. (ii) [12], [13] introduce knowl-
edge transfer to bridge the labeled and unlabeled data. (iii) [14], [15],
[16] exploit temporal labeling redundancy in crowd video scenarios.

Notwithstanding the demonstrated success of the above methods,
they all view each crowd image as a minimum labeling unit and
densely label all individuals in a limited number of crowd images. The
None-or-All labeling strategy is suboptimal considering the labeling
burden and labeling redundancy in each crowd image. (i) Compare to
other computer vision tasks, the labeling burden of crowd counting
mainly resides in each crowd image where hundreds of individuals
may need to be annotated. The existing methods try to alleviate the
labeling burden by decreasing the number of labeled crowd images,
which seems palliative for the crowd counting problem. (ii) Individuals
in each annotated crowd image usually appear similar with lots of
labeling redundancy as they are captured in the same crowd scene.
This makes the annotated individuals lack diversity and cannot adapt to
various crowd scenes, e.g., different camera perspectives, weather and
illumination conditions.

To this end, we propose to break the labeling chain of previous meth-
ods and make the first attempt to reduce spatial labeling redundancy
for semi-supervised crowd counting. First, instead of annotating all the
regions in each crowd image, we propose to annotate the representative
ones only (see Fig. 1). We analyze the region representativeness from
both the vertical and horizontal directions of initially estimated density
maps, and design a Multi-level Density-aware Cluster (MDC) Strategy
to formulate the representative regions as cluster centers of Gaussian
Mixture Models based on their multi-level density vectors. In this way,
our method can effectively reduce the spatial labeling redundancy in
each crowd image and label more crowd images with various crowd
scenes given the same labeling budget. Additionally, to leverage the rich
unlabeled regions, we further exploit the similarities among individuals
in each crowd image to directly supervise the unlabeled regions via
feature propagation in a Crowd Affinity Propagation (CAP) module.

0162-8828 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Given Labeling Budget: 10%
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Fig. 1. Given a limited labeling budget (e.g., 10% of the entire dataset),
all the previous methods adopt a None-or-All labeling strategy and select a
few crowd images to densely label all the individuals which typically appear
similar and lack diversity. Differently, we propose to break the labeling chain
of previous methods and annotate the representative regions only in each crowd
image.

The CAP module propagates crowd features of the unlabeled regions to
update those of the labeled regions based on the feature affinities in the
forward propagation. Then in the backward propagation, the unlabeled
regions can be directly supervised by the labels of the labeled regions
via feature backpropagation. After training, we can optionally remove
the CAP module without performance degradation which makes it
computationally free at the inference stage. By the CAP module, we
can transfer the original spatial labeling redundancy caused by the
individual similarities to effective supervision signals and directly su-
pervise the unlabeled regions without generating the error-prone pseudo
labels. Extensive experiments on widely-used benchmarks demonstrate
our method outperforms previous approaches by a large margin. For
example, our method outperforms the best AL-AC [13] by 9.4%/8.1%
and 8.6%/22.5% for MAE/RMSE in the ShanghaiTec PartA and PartB
datasets, respectively.

The contributions are summarized as follows: 1) We propose to break
the labeling chain of previous methods and reduce the spatial labeling
redundancy by annotating representative regions only for effective
semi-supervised crowd counting. 2) We analyze the region represen-
tativeness from both vertical and horizontal directions and formulate
representative regions as cluster centers of Gaussian Mixture Models.
Furthermore, to leverage the unlabeled regions, we propose to exploit
the similarities among individuals to directly supervise the unlabeled
regions via feature propagation without the error-prone pseudo label
generation. 3) Extensive experiments show that our method can achieve
state-of-the-art performance and outperform previous best approaches
by a large margin.

II. RELATED WORK

A. Crowd Counting

Early methods for crowd counting are based on hand-crafted features
(e.g., SIFT, Fourier Analysis, and HOG). They estimate crowd counts
by either direct regression [17], [18], [19] or human parts detection [20],
[21], [22]. Recently, a lot of CNN-based methods have been proposed
and advanced the performance of crowd counting. Most of them mainly
solve various challenges of crowd counting in a fully-supervised man-
ner, including large scale variations [4], [5], [23], [24], [25], [26], atten-
tive feature extraction [28], [29], [30], [31], [32], label noises [6], [7],
empirical Gaussian kernel [33], [34], [35], estimation uncertainty [36],
[37], structural constraints [8], [38], and etc. These methods require a
great number of labeled data in the training process which are rather
burdensome for crowd counting.
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B. Semi-Supervised Crowd Counting

Recently, several methods are designed to learn a crowd counter
with a limited labeling budget. They can be mainly grouped into three
categories as follows:

Self-supervised Constraints [9], [10], [11]: Liu et al. [9] propose
to exploit unlabeled data by ranking cropped patches according to
their containment relationships. Sam et al. [10] extract useful fea-
ture representations by learning a Grid Winner-Take-ALL (GWTA)
autoencoder from unlabeled crowd images. Liu et al. [11] propose
to leverage surrogate tasks with IRAST constraints to train a generic
feature extractor.

Knowledge Transfer [12], [13]: Sindagi et al. [12] introduce a
Gaussian Process (GP) to generate pseudo labels of the unlabeled data.
Zhao et al. [13] propose to transfer feature representations across
labeled and unlabeled data by a distribution classifier with the mixup
technique.

Temporal Redundancy [14], [15], [16]: Tan et al. [14] propose a
Semi-Supervised Elastic Net (SSEN) to regularize temporally neigh-
boring samples. Loy et al. [15] analyze the geometric structure of
crowd patterns and design the distribution and temporal regularization
for manifold learning. Zhou et al. [16] propose a submodular method
to annotate informative frames in crowd videos and introduce the graph
Laplacian regularization for semi-supervised learning.

Despite the promising results of the above methods, they all adopt
a None-or-All labeling strategy which inevitably introduces lots of
labeling redundancy and lack diversity. Differently, we propose to
annotate the representative regions only in each crowd image and
transfer the labeling redundancy caused by individual similarities to
effective supervision signals on the unlabeled regions.

C. Weakly-Supervised Crowd Counting

There exist two kinds of image-level labels (i.e., total number of
humans [39], [40], and density levels [28]) that are explored in weakly-
supervised counting methods.

For the number labels [39], [40], ideally, we only need numbers
of humans to implement weakly-supervised counting. However, in
practice, we still need to count all the humans one by one to get the final
number in the labeling process, which takes nearly the same effort as
annotating all the head positions in the fully supervised setting. For the
density labels [28], they cannot achieve counting by density labels only.
This is because density labels cannot directly supervise the network
to output an accurate number for counting. For example, the label of
“low density” is undefined numerically. In practice, [28] relies on the
fully annotated human heads in the source domain to achieve counting
in the target domain by additionally labeling density labels. Besides,
the boundaries between different density labels are ambiguous. For
example, how to distinguish “very low density” and “low density” is
still an open problem. Based on the analysis, semi-supervised setting
considered in this paper plays a vital role in reducing the labeling effort
while achieving promising counting performance.

III. METHOD

A. Framework Overview

As shown in Fig. 2, we propose a novel semi-supervised framework
for crowd counting, which contains three major stages, i.e., labeling,
training, and inference.

B. Problem Formulation

In active semi-supervised crowd counting, we are given a limited
labeling budget (e.g., 10% of the training set). During labeling, we
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o o Loss
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Fig.2. Overview of the proposed semi-supervised crowd counting framework, which consists of three stages, i.e., labeling, training, and inference. At the labeling

stage, we design a Multi-level Density-aware Cluster (MDC) strategy to annotate the representative regions only in each crowd image. After labeling, to leverage
the rich unlabeled regions, a Crowd Affinity Propagation (CAP) module is introduced to supervise both the labeled and unlabeled regions via feature propagation
by exploiting the deep feature affinities among individuals. Note that the CAP module can be removed at the inference stage without performance degradation,

which makes it computationally free after training.

gradually gain access to a labeled set which is denoted as S, =
{(x}, )}, where x! and y! denote the i-th annotated crowd image
and its corresponding label, i.e., a set of coordinates pointing out the
positions of head centers. The labeling process involves initially and
randomly annotated warm-up samples which are used to perform initial
training of the crowd counter. Based on the initial crowd counter, we
further select and annotate samples until we get the final labeled set
S;. Besides, the remaining unlabeled samples form an unlabeled set
Su = {(x}) ;V:“‘l. Our goal is to utilize both sets to advance the crowd
counting performance. Note that different from previous methods, we
do not label all the regions in each image, so x} and x} are regions of
crowd images in our context.

C. Crowd Counting Network

Crowd counting networks typically employ density maps as the
intermediate output, which can be generated by convolving annotated
head points with Gaussian kernels [4]

N
25 z — zi,) * Gy, (2), (1)
k=1

where z denotes each pixel in a crowd image x. zj, represents the k-th
annotated point (total N points). G, is a 2D Gaussian kernel with
a bandwidth oy. Therefore, the crowd counting problem is converted
to: F : Z(x) — D(x), which learns a mapping from an image space
Z(x) to a density map space D(x). Following previous works [11],
[12], [13], we employ a general and effective F based on CSRNet [24]
to evaluate the effectiveness of proposed semi-supervised methods. To
train F, we adopt the pixel-wise euclidean loss to measure the distance
between the annotated and estimated density maps

M

Z | F(Zyn; ©) —

m=1

Eden - m Hg ’ (2)

TABLE I
COMPARISON RESULTS OF DIFFERENT SPATIAL RATIOS OF THE LABELED
REGIONS IN EACH CROWD IMAGE. THE EXPERIMENTS ARE CONDUCTED IN THE
SHANGHAITECH PARTA DATASET WITH A 10% LABELING BUDGET. *:*
DENOTES VERTICAL:HORIZONTAL. c0:1 (OR 1:00) REPRESENTS THE SPATIAL
RATIO WITH THE HEIGHT (OR WIDTH) OF THE LABELED REGION EQUAL TO
THAT OF THE ENTIRE IMAGE

Ratio || T:co  1:4 12 1.1 21 41 ool (ours)
MAE || 959 952 938 933 924 913 89.1
RMSE || 148.3 145.8 1445 143.8 142.0 1405 137.5

where O is the learnable parameters of F. Z,, is the m-th training
image (total M images). F(Z,,; ©) and D,,, denote the estimated and
annotated density maps, respectively.

D. Representative Regions Selection Strategy

As we want to label more crowd images with diverse crowd scenes,
we transfer the labeling budget to each crowd image. For example, if
the budget is 10% of the entire dataset, we choose to label all the crowd
images with 10% of each annotated. Then we come to the problem of
how to find the representative regions in each crowd image.

Annotate More in the Vertical or Horizontal Direction? Regions
in crowd images can be categorized into three types: dense, sparse,
and background regions according to different crowd distributions.
The representative regions in each crowd image should cover all the
three types and have as large crowd density variations as possible given
a limited labeling budget. As shown in Fig. 1, large crowd density
variations usually appear in the vertical direction (e.g., from bottom to
top) of each crowd image due to the surveillance camera perspective
and imaging condition.

Therefore, when we are given a labeling budget in each crowd
image, we should label a region which spreads more in the vertical
direction than the horizontal direction (see Table I for an experimental
comparison). Without loss of generality, we define the labeled region
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Multi-level
Density Vectors

Inference Splitting

<— Indexing<— | | <— Find nearest vectors <—

MDC-guided Selected Cluster
Labeling Density Vectors Centers
Fig.3. Illustration of the proposed Multi-level Density-aware Cluster strategy

for representative regions selection.

x; € RH*Wi a5 arectangular region of a crowd image x € RT*W  As
discussed above, H; should be much larger than W; (i.e., H; > W)).
In the extreme case, H; = H and W, varies according to the labeling
budget. In practice, x; may not be a continuous area in x and may
contain n; subregions. Therefore, the representative regions selection
problem is simplified to determine the n; subregions in x.

Multi-level Density-aware Cluster (MDC) Strategy. The MDC
strategy shown in Fig. 3 is designed to determine the n; subre-
gions in x. First, we divide x into n, rectangular subregions x, =
{xL,x2,...,x™} with each x/, € RF*Wu and WJ = Constant.
Then, our goal is to select n; subregions x; = {x},x7,...,x," } from
x,,. Different from the crowd density variations in the vertical direction,
the crowd scene usually changes in the horizontal direction due to the
large-view field of cameras. Therefore, we should select as many crowd
scenes as possible in the horizontal direction. Based on the definition
that the same crowd scene shares the same crowd density distributions
along the horizontal direction, we propose a Multi-level Density-aware
Cluster strategy to cluster the unlabeled regions x,, into multiple crowd
scenes based on their multi-level density vectors. Specifically, to obtain
density distributions of the unlabeled data, we first randomly label a few
crowd images (e.g., 20% of the labeling budget) as warm-up samples to
pretrain a crowd counter. Due to the existence of warm up samples, our
method comes to one of active semi-supervised counting methods. For
each unlabeled region x7 in a crowd image x, we extract its predicted
density maps m/, and calculate the multi-level density vector v, of mJ,
as

Vi = [V (m}), V? (m), ..., V¥ (m))], 3)
where VX (m?)) is the L-th level density vector defined as
VE(md) = [ Sum(mi,[Hy : Hy +1,7),
Sum(m? [Hy * 1:Hp, %2,:]),.. .,
Sum(m,[Hy (L —1):Hp « L,2])], (4

where Sum(-) and * denote the summation and multiplication op-
erations. H, is equal to H integrally divided by L. mJ [:, :] means a
subregion of mJ, where the former and latter dimensions are height and
width. As the initial values in vJ, have different scales, we normalize
each of them to the same scale by V*(m?)/L * k where k and /
denotes the k-th level and the division operation, respectively. With
the multi-level design, vJ, can express both the local and global crowd
density distributions of d7..

Based on the calculated multi-level density vectors, we introduce
a probabilistic cluster algorithm based on Gaussian Mixture Models
(GMM) to cluster the unlabeled regions x,, into multiple crowd scenes.
Details of the clustering algorithm are in the Supplementary Material,
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TABLE II
COMPARISON RESULTS OF DIFFERENT REPRESENTATIVE REGIONS SELECTION
STRATEGIES IN THE SHANGHAITECH PARTA DATASET. EACH RESULT IS IN THE
FORM OF MAE/RMSE. “MDC!” AND “MDC%” DENOTE MDC WITH
K-MEANS AND GMM AS CLUSTERING METHODS, RESPECTIVELY. “EU”
REPRESENTS ENSEMBLE-BASED UNCERTAINTY STRATEGY

Method ||  10% 20% 50% 90%
RANDOM |[89.1/137.5 81.5/128.4 72.6/1205 68.7/116.8
MAX  [190.8/133.3 82.6/126.7 71.9/119.1 69.1/116.3
MDCK  |184.1/132.7 76.9/1254 71.0/118.7 69.3/116.7
MDCY || 83.3/132.1 76.4/125.2 71.2/118.4 68.5/116.6
EU 86.4/133.9 78.1/1269 722/119.5 68.9/117.2
EU + MDC® || 82.8/131.4 76.6/124.7 70.6/117.5 68.7/116.4

which can be found on the Computer Society Digital Library at http:
//doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3232712.

Itis worth noting that Gaussian distributions predefined in GMM can
facilitate the clustering process with an inductive prior. This implies
that in natural crowd scenes, humans are typically distributed in a
Gaussian or near-Gaussian manner. Multi-level density vectors are
calculated based on density values in different regions of density maps,
which express human distribution in each crowd scene. The Gaussian
distribution is assumed on the multi-level density vectors, and thus on
human distribution. Besides GMM, centroid-based clustering methods
(e.g., K-means) are also good alternatives in our case considering the
potential clustering methods should: i) specify the number of clusters
in advance; ii) be effective and simple. We try both K-means and GMM
in our experiments and find GMM can consistently perform better than
K-means in the final counting performance (see Table II).

E. Crowd Affinity Propagation

To leverage the rich unlabeled regions, label propagation is a natural
way. In crowd counting, pseudo labels mean pseudo density maps,
which are typically error-prone as discussed in previous methods [11],
[12], [13], [41]. Therefore, [11], [13], [41] utilize pseudo labels from
surrogate tasks to supervise the feature extractor only. In this paper,
instead of generating noisy pseudo labels, we propose a novel Crowd
Affinity Propagation (CAP) module to directly supervise the unlabeled
regions via feature propagation by exploiting deep feature affinities.
The rationale behind this design is that prediction by comparison is
more effective than direct prediction for the cases with only limited
annotations. Crowd counting typically requires sufficient supervision
to capture the diverse data distributions. However, the affinities between
deep features in the latent space can infer whether they belong to the
same class via relatively low-level semantics, e.g., similar color and
texture.

Specifically, the CAP module contains two phases, e.g., forward
propagation and backward propagation. In the forward propagation,
deep features from the unlabeled regions are transferred to update
those of the labeled regions by leveraging the feature affinities between
them. Let f, € RE*Hw*Wu and f; € RE*H*Wi denote the features
extracted by the crowd counter from the unlabeled and labeled regions
in a crowd image. As f, and f; are extracted synchronously, they share
the same number of channel dimensions C'. The initial values in f,, and
f; may be very large or small, so we first normalize them as follows:

£l =8+ o), =S(fi +¢), ©)

where " and f;* are the normalized features. S(-) denotes the softmax
function along the channel dimension. € is a small value to ensure
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TABLE IIT
ABLATION STUDIES FOR THE CAP MODULE ON THE SHANGHAITECH PARTA
DATASET. RESULTS ARE SHOWN IN THE FORM OF MAE/RMSE. “LP,” “SST,”
AND “DST” REPRESENT DIRECT LABEL PROPAGATION [12],
SEGMENTATION-BASED SURROGATE TASK [11], AND CLASSIFICATION-BASED
SURROGATE TASK [13]

Method | 10% 20% 50%
MDC 83.3/132.1 76.4/1252 71.2/118.4
MDC + LP 84.7/1353 76.9/125.1 71.5/1183
MDC + SST 82.4/131.8 74.9/123.4 70.6/118.0
MDC + CST 82.8/1315 74.2/1229 70.5/117.5
MDC + CAP (train&infer) || 78.8/127.9 72.7/120.6 68.5/116.1
MDC + CAP (train only) ||79.6/127.5 73.2/121.3 69.2/115.7

stability. We reshape f" to R“*N« where N, = H,, x W, and f* to
RE*Ni where N; = H; x W, and then £ = {f} £2 ... fN«} and
fr = {f} £2,..., £V} witheach feature in £ or f* has C dimensions.
Then we calculate the normalized similarity s,; between each feature

£} of f* and each feature fJ of £ as follows:

_ exp(ff - £))
X eap(f] - £5))
The more similar f/ and f7 are, the higher s;;. After calculating the

feature similarities, we propagate all the features of the unlabeled
regions £ to update each feature f; of £

(©)

Sij

Ny

fr=n-) sy B+ (1—7) -, )

j=1

where le is the updated i-th feature f of f. v is a learnable parameter
to fuse the labeled and unlabeled features. After feature updating, the
features of the labeled regions can also contain those of the unlabeled
regions, which can be supervised by the labels of the labeled regions in
the backward propagation. When the training procedure converges, we
can optionally remove the CAP module from the crowd counter without
performance degradation (see Table III for a detailed comparison)
which means the proposed CAP module is computationally free at the
inference stage.

F. Network Optimization

The proposed semi-supervised crowd counting framework contains
three stages: (i) labeling, (ii) training with CAP, and (iii) inference
without CAP. At the labeling stage, we first randomly label a small
portion of the labeling budget as warm-up samples to pretrain a crowd
counter for multi-level density vectors utilized in the MDC strategy.
Then we label the remaining samples by the MDC strategy. After
labeling, we train the crowd counter with the CAP module by all the
labeled samples. At the inference stage, we remove the CAP module
from the crowd counter and estimate density maps and crowd counts
for any given crowd images.

IV. EXPERIMENTS

A. Implementation Details

As image resolutions in crowd counting datasets vary greatly, we
set the batch size as 1 in all experiments. Without loss of generality,
we empirically set the width W7 of each subregion xJ in Sec. 3.4
as 10% of the width of the corresponding crowd image and extract
non-overlapping subregions in all datasets. As we want to label more
crowd images with diverse individuals, we transfer the labeling budget
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ShanghaiTec PartA

None-or-All
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Labeling Budget

Fig.4. Comparison results of the None-or-All and region-level labeling strate-
gies with respect to different labeling budgets in the ShanghaiTech PartA dataset.

to each crowd image. For example, if the budget is 10% of the entire
dataset, we choose to label all the crowd images with 10% of each
annotated. We utilize random cropping and horizontal flipping for data
augmentation. Hyperparameters of the proposed method are chosen via
cross validation. o, in (1) is a fixed bandwidth and is set as 4 for all
datasets. L in (3) is set as 4 to balance the efficiency and computational
cost. € in (5) is set as 107% and v in (7) is initialized as 0.2. Adam
optimizer [42] is employed to optimize the crowd counting network
with the initial learning rate as 10~%. The experiments are conducted
on a NVIDIA GTX 2080Ti GPU. More experimental details and results
can be found in the supplementary materials, available online.

B. Ablation Studies

We conduct extensive ablation studies in the ShanghaiTech PartA
dataset [4] to validate the effectiveness of the proposed semi-supervised
crowd counting method.

Is region-level really better than None-or-All? To validate the effec-
tiveness of the region-level labeling strategy, we randomly label images
(for None-or-All strategy) and regions (for region-level strategy) and
compare their performance with respect to different labeling budgets
in Fig. 4. We can see that the region-level strategy can consistently
outperform the None-or-All strategy. Note that the performance gain
of the region-level strategy is magnified when the labeling budget gets
small. This indicates that it is better to employ the region-level labeling
strategy to annotate more crowd images with various crowd scenes,
especially when the labeling budget is limited.

Annotate more in the vertical or horizontal direction? To validate
the effectiveness of the vertical-first annotation strategy, we fix the
labeling budget (i.e., 10%) in each crowd image and change the spatial
ratios (i.e., vertical:horizontal) of the randomly labeled regions. The
comparison results are shown in Table I. We can see that with more
annotations in the vertical direction (e.g., the extreme case is co: 1 where
the height of the labeled region is equal to that of the entire image), the
counting performance can be enhanced gradually, which confirms the
effectiveness of the vertical-first annotation strategy considering the
large crowd density variations caused by the camera perspectives.

Effectiveness of the MDC strategy for representative regions se-
lection. Based on the verified region-level and vertical-first labeling
strategy, we further evaluate the MDC strategy for representative re-
gions selection. The experiments are conducted with respect to different
region selection strategies, i.e., RANDOM, MAX, and MDC (.e.,
MDCH and MDC®). MAX selects the regions with the maximum
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numbers of people in each crowd image. for MDC, we fix the percentage
of the randomly labeled samples (namely warm-up samples), i.e., 20%
of the labeling budget.

The comparison results are shown in Table II. We can see that the
MDC strategy outperforms the other two strategies consistently when
the labeling budget is limited (e.g., 10% and 20%). When the labeling
budget is abundant (e.g., 90%), the counting performance of the three
labeling strategies is saturated without obvious differences. Note that
the MDC strategy annotates less than the MAX strategy, e.g., when
the labeling budget is 10%, MDC annotates 15,939 human heads while
MAX annotates 20,401. This indicates that the proposed MDC strategy
can achieve superior performance with less annotation burden. Compar-
ing MDCX with MDC®, we can see MDC consistently outperforms
MDCX, which demonstrates the effectiveness of the inductive prior
introduced by GMM for representative regions clustering.

In active learning [43], two aspects (i.e., uncertainty and diversity)
are usually considered for annotation. In this paper, we focus on the di-
versity for annotating diverse crowd scenes, while general uncertainty-
based methods usually introduce extra prediction heads to quantify
uncertainty by predictions inconsistency [44], [45]. To compare with
them, we add an extra prediction head and select the regions with the
largest predictions inconsistency in each crowd image. The method
is named as “EU” in Table II. We can see that our diversity-based
strategy (i.e., MDC®) can achieve better performance compared to the
general uncertainty-based method (i.e., EU). Meanwhile, uncertainty is
also feasible in our framework. Specifically, instead of selecting cluster
centers as representative regions, we select the regions with the largest
uncertainty in each cluster. The method is names as “EU + MDC®” in
Table II. We can see that our framework can integrate uncertainty and
diversity which achieves better performance than each one of them.

Effectiveness of the CAP Module. Based on the well-performed
MDC module, we evaluate the effectiveness of the proposed CAP
module. Two variants are designed to explore the optimal setting of
the CAP module, i.e., “CAP (train&infer)” and “CAP (train only)” in
Table III. “CAP (train&infer)” means to add CAP both at the training
and inference stages, while “CAP (train only)” removes CAP after the
training stage. The comparison results are shown in Table III. We can
see that with the CAP module, the counting performance of both “MDC
+ CAP (train&infer)”” and “MDC + CAP (train only)” can be improved
considerably, which demonstrates the effectiveness of exploited deep
feature affinities to directly supervise the unlabeled regions. Besides,
by the comparison between “MDC + CAP (train&infer)” and “MDC
+ CAP (train only),” we find that the CAP module can be removed at
the inference stage without performance degradation, which indicates
the proposed CAP module can enhance the counting performance
efficiently without extra computational costs after training.

Besides, we compare the proposed CAP module with other strate-
gies of exploiting unlabeled samples, i.e., direct Label Propaga-
tion (LP) [12], Segmentation-based Surrogate Task (SST) [11], and
Classification-based Surrogate Task (CST) [13]. We can see in Table 111
that the proposed feature propagation strategy in CAP can achieve
consistently superior performance compared to the other strategies.

Furthermore, we visualize the learned crowd affinities between
labeled and unlabeled regions in Fig. 5. We can see the affinity maps
can activate areas with the same semantics as the marked position,
e.g, trees, skies, and humans with the same scale and illumination.
This indicates that supervision signals can be effectively applied to the
unlabeled regions via the explicit semantic exploration in CAP.

Whether the proposed MDC and CAP modules can benefit the
existing None-or-All labeling strategy. To verify this, based on the
None-or-All labeling strategy, we cluster images instead of regions for
MDC and propagate features between images for CAP. The experiments
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Fig. 5. Visualization of affinity maps in the CAP module. Labeled regions are
enclosed between two red lines in each crowd image with two representative
positions marked. Crowd affinities between each marked position and all the
positions of unlabeled regions are illustrated in the latter two columns. Warmer
colors mean higher values.

TABLE IV
FURTHER ABLATION STUDIES ON THE PROPOSED MAC AND CAP MODULES
WHEN THEY ARE APPLIED TO THE EXISTING NONE-OR-ALL LABELING
STRATEGY. THE EXPERIMENTS ARE CONDUCTED IN THE SHANGHAITECH
PARTA AND UCF-QNRF DATASETS WITH 10% AND 20% LABELING BUDGETS,

RESPECTIVELY
STPart A | UCF-QNRF
Method HMAE¢ RMSE| [MAE| RMSE|
None-or-All 984 160.1 | 1513 259.0
None-or-All w/ MDC 905 1442 | 1394 2427
None-or-All w/ CAP 91.3 147.8 | 141.0 2454
None-or-All w/ MDC&CAP|| 82.9 133.5 |129.2 227.4

are conducted in the ShanghaiTech PartA and UCF-QNRF datasets with
10% and 20% labeling budgets, respectively. We can see in Table IV
that the proposed MDC and CAP modules can improve the performance
of the existing None-or-All labeling setting, which implies a broader
impact of the proposed semi-supervised modules.

Whether the proposed region-level labeling strategy can benefit
existing semi-supervised counting methods. To verify this, we apply
the proposed labeling strategy to existing semi-supervised counting
methods, i.e., IRAST [11], AL-AC [13], and GP [12]. Specifically,
for IRAST [11], we implement the surrogate segmentation task in
the region level. For AL-AC [13], we actively select regions in each
crowd image by PSSW and achieve region-based feature alignment.
For GP [12], we implement the auxiliary Gaussian Process between
labeled and unlabeled regions in each image. We conduct experiments
in the ShanghaiTech PartA dataset with a 10% labeling budget. We
can see in Table V that the proposed region-level labeling strategy can
further boost the existing semi-supervised methods.

C. Comparison to State-of-the-Art Methods

In this section, we compare our method with state-of-the-art ap-
proaches, including MT [47], UDA [48], L2R [49], IRAST [11], AL-
AC[13], GP[12], and SUA [41]. Among them, MT [47] and UDA [48]
are the widely-used generic semi-supervised methods. L2R [49] is
a self-supervised learning method which exploits unlabeled samples
by ranking. IRAST [11], AL-AC [13], GP [12], and SUA [41] are
semi-supervised crowd counting methods, which are based on the
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TABLE V
FURTHER ABLATION STUDIES ON THE PROPOSED REGION-LEVEL LABELING
STRATEGY WHEN IT IS APPLIED TO THE EXISTING SEMI-SUPERVISED
METHODS. EXPERIMENTS ARE CONDUCTED IN THE SHANGHAITECH PARTA
DATASET WITH A 10% LABELING BUDGET. AS THE METHODS DOES NOT
RELEASE THEIR CODES, WE IMPLEMENT THEM AND SUMMARIZE THE
PERFORMANCE IN THE “NONE-OR-ALL’ COLUMN, WHICH ARE SLIGHTLY
DIFFERENT FROM THE REPORTED ONES

None-or-All | Region-Level

Method - Type||\jAE | RMSE | [MAE] RMSE|

IRAST[11] S || 873 1454 | 83.7 138.1

GP[12] S || 952 1527 | 88.3 1454

AL-AC[13] S* || 89.1 1415 | 84.0 133.9
TABLE VI

COMPARISON WITH STATE-OF-THE-ART METHODS IN THE SHANGHAITECH
PARTA [4] (DENOTED AS STPART A), SHANGHAITECH PARTB [4] (DENOTED
AS STPART B), AND UCF-QNRF [46] DATASETS. THE LABELING BUDGETS
ARE 10%, 10%, AND 20%, RESPECTIVELY. “S.” “S“ > AND “F’ DENOTE
SEMI-SUPERVISED, ACTIVE SEMI-SUPERVISED AND FULLY-SUPERVISED
METHODS, RESPECTIVELY. ITALIC NUMBERS REPRESENT RE-IMPLEMENTATION

Method Type STPart A STPart B UCF-QNRF
MAE| RMSE|MAE| RMSE| | MAE| RMSE|
CSRNet [24] F 68.2 1150 | 10.6 16.0 |121.3 215.2
MT [47] S 945 156.1 | 156 245 |1455 2503
UDA [48] S 93.8 1572 | 157 24.1 |144.7 2559
L2R [49] S 90.3 1535 | 156 244 |1489 2498
IRAST [11] S 86.9 1489 | 147 229 |135.6 2334
AL-AC[13] S” || 879 1395 | 12.7 204 |131.4 229.7
SUA [41] S 85.1 - - - - -
Ours g4 79.6 127.5 | 12.7 203 |128.6 226.4

None-or-All labeling strategy. All the comparison methods are based
on CSRNet [24] with a VGG16 backbone network. The comparison
results are shown in Table VI.

We can see in Table VI that the semi-supervised counting methods
(i.e., IRAST [11], AL-AC [13], and SUA [41]) can achieve superior
performance compared to the general semi-supervised methods (i.e.,
MT [47] and UDA [48]). However, they are still far from the fully-
supervised CSRNet model. Differently, our method can effectively
narrow down the performance gap and enhance the state-of-the-art
semi-supervised counting performance by a large margin. AL-AC [13]
seems comparable to the proposed method in ShanghaiTech PartB
dataset. To show more comparisons with AL-AC, we implement it and
further report their performance on UCF-QNRE. We can see that our
method can outperform AL-AC by a large margin in the ShanghaiTech
PartA and UCF-QNRF datasets. Following GP [12], we also annotate
5% of the entire training set in the ShanghaiTech PartA and UCF-QNRF
datasets. The performance of our method is 89.7/135.6 (PartA) and
138.9/247.1 (UCF-QNRF) in terms of MAE/RMSE which are much
better than 111/159 and 171/293 of GP (the numbers are from Table VI
of GP where CSRNet is utilized as the backbone network).

More Recent Datasets. To verify our method in more recent datasets
(i.e., JHU-CROWD++ [50] and NWPU [51]), we report the perfor-
mance in Table VII. As only SUA [41] explores the two datasets, we
fix the labeling budget (i.e., 50%) following SUA and compare with
it in Table VII. We can see that our method can also achieve superior
performance in these two larger and more challenging datasets.
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TABLE VII
COMPARISON RESULTS IN JHU-CROWD++ [50] AND NWPU [51] DATASETS.
As ONLY SUA [41] EXPLORES THE TWO DATASETS, WE FOLLOW IT TO SET
THE LABELING BUDGETS AS 50%

JHU-CROWD++| NWPU
Method Type| i\ A" RMSE| |MAE] RMSE]
SUA[41] S || 80.7 290.8 |111.7 4432
Ours S | 802 2875 |109.3 438.1

V. CONCLUSIONS AND LIMITATIONS

In this work, we propose to break the labeling chain of previous meth-
ods and make the first attempt to reduce spatial labeling redundancy
for effective semi-supervised crowd counting. Specifically, we analyze
the region representativeness from both the vertical and horizontal
directions, and formulate the representative regions as cluster centers
of Gaussian Mixture Models based on their multi-level density vectors.
Additionally, we design a Crowd Affinity Propagation (CAP) module
to directly supervise the unlabeled regions via feature propagation
without the error-prone pseudo label generation. Extensive experiments
on widely-used benchmarks demonstrate that our method outperforms
previous best approaches by a large margin.

Our main idea is to annotate the representative regions only in
each crowd image. One limitation is that we still need to annotate
all the human heads in each representative region. Can we annotate
representative humans only in each crowd image without choosing
regions? The setting is more challenging as in this way we do not have
fully-annotated regions to generate density maps for supervision. As
we are the first to break the None-or-All labeling paradigm, we leave
this as a potential future work.
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