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Abstract
We propose a two-stage method for face halluci-
nation. First, we generate facial components of the
input image using CNNs. These components repre-
sent the basic facial structures. Second, we synthe-
size fine-grained facial structures from high resolu-
tion training images. The details of these structures
are transferred into facial components for enhance-
ment. Therefore, we generate facial components to
approximate ground truth global appearance in the
first stage and enhance them through recovering de-
tails in the second stage. The experiments demon-
strate that our method performs favorably against
state-of-the-art methods1.

1 Introduction
Face Hallucination (FH) is a domain specific problem which
generates high resolution (HR) face images from low resolu-
tion (LR) inputs. Different from generic image super resolu-
tion (SR) methods, FH exploits specific facial structures and
textures. It generates high quality face images compared with
generic image SR methods. This activates a series of FH ap-
plications ranging from image editing to video surveillance.
More generally, FH is taken as a preprocessing step for face
related applications.

The state-of-the-art FH methods transfer facial details from
HR training images to LR inputs. They aim to exploit the re-
lationship between LR and HR images either globally or lo-
cally. One of the solutions is to align face images in pixel-
wise precision between the input and training images. So
dense correspondences on the training images can be estab-
lished and HR facial details can be transferred into LR in-
put image in the form of bayesian inference [Tappen and Liu,
2012] or image gradient [Yang et al., 2013]. The transferred
result usually contains more details on the facial component
compared with the ones generated using generic image SR
techniques.

Despite the demonstrated success, the quality of FH results
greatly relies on feature matching between training and input
images. Because of the limited texture on the LR input (e.g.,

1Complete experimental results and our implementation are pro-
vided on the authors’ webpage.

(a) Input (NN) (b) SFH (c) SRCNN
PSNR / SSIM 31.13 / 0.85 32.98 / 0.89

(d) SRResNet (e) Ours (f) Ground Truth
33.47 / 0.89 34.40 / 0.90 +∞ / 1

Figure 1: The performance of FH and image SR methods.

60 × 80), it is difficult to extract handcrafted features such
as SIFT [Lowe, 2004] to make a precise description, espe-
cially around facial components (i.e., nose, eyes, and mouth).
Such a limitation prevents these features to accurately estab-
lish the HR correspondence in the training images. It leads to
the incorrect detail transfer and the results will be erroneous.
As shown in Figure 1, the nose generated from [Yang et al.,
2013] in (b) is in different shape from that of the ground truth
in (f).

Recently, Convolutional Neural Network (CNN) has been
demonstrated effective in image SR [Dong et al., 2015]. It is
formulated as a general form of sparsity representation [Yang
et al., 2010] and aims to minimize the pixel-wise difference
between network output and ground truth. It achieves state-
of-the-art performance on natural images where texture pat-
terns uniformly reside in low frequency base and high fre-
quency details. However, direct applying CNN for FH will
blur the facial structure because of the uniqueness of com-
ponent details. As shown in Figure 1(c) and (d), the results
generated using CNN [Dong et al., 2015] or ResNet [Ledig
et al., 2017] models cannot enrich the high frequency details

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4537



around noses. Meanwhile, finetuning their model using face
images can not make a noticeable improvement. This indi-
cates that CNN based models can not be directly adopted on
FH due to the domain specific properties.

In this paper, we Learn to hallucinate face images via
Component Generation and Enhancement (LCGE). Differ-
ent from existing end-to-end CNN networks, we propose a
two-stage framework for FH. The first stage learns a map-
ping function to reconstruct the facial structure of the LR in-
put, which benefits the establishment of HR correspondences.
This mapping process is formulated via five CNNs. Each
CNN corresponds to one facial component (i.e., eyes, eye-
brows, noses, mouth and the remaining region). The in-
put face image is thus divided into five subregions and re-
constructed independently using CNN. The advantage of the
learned facial component is that the texture information is en-
riched, which alleviates the matching difficulty of LR images.
In the second stage, we generate facial components for both
training and input images. And a patch-wise K-NN search is
performed for each input component. In this way, we can ac-
curately establish HR correspondences without facial align-
ment. Then we regress to synthesize HR facial structures with
fine grained details. However, the regression is conducted on
different subjects, which synthesizes HR structures in differ-
ent illuminations from our desired output. Finally, the details
from the HR structures are transferred to the facial compo-
nents based on edge-aware image filtering. It can successfully
recover the missing details to enhance the components. As a
result, the output image well approximates the ground-truth
image in both global appearance and facial details.

The contributions of this work are summarized as follows:
• We propose to learn deep facial components, which con-

tain basic structure for output and ease the matching dif-
ficulty of LR images.
• We propose a component enhancement method. The

fine grained facial structures can be effectively extracted
from training dataset and their details will be transferred
to enhance deep components.
• Quantitative evaluations on the standard benchmarks

indicate that the proposed method performs favorably
against state-of-the-art approaches.

2 Related Work
Learning based framework is widely adopted in FH methods
[Wang et al., 2014; Song et al., 2014; Wang et al., 2017].
They aim to learn the transformation between LR and HR
to recover the missing details from the input. In [Gunturk
et al., 2003; Wang and Tang, 2005] generalized approaches
on eigen domain are proposed to map both LR and HR image
spaces. Tensor based approaches are introduced in [Liu et al.,
2005; Jia and Gong, 2008]. They can well upsample multi-
ple model face images across different poses and expressions.
In [Liu et al., 2007] Principle Component Analysis (PCA)
based linear constraints are learned from training images and
a patch-based Markov Random Field (MRF) is used to recon-
struct the residues. Instead of directly using patch match [Ma
et al., 2010] to find correspondence, FH methods adopt im-
age alignment where HR images are matched to LR ones by

SIFT flow [Tappen and Liu, 2012] or gradient [Yang et al.,
2013]. The quality of output results depends on image align-
ment, which sometimes fails when poses and expressions are
different between training and input images. The convolu-
tion neural networks have been adopted in image SR [Dong
et al., 2015; Kim et al., 2016] and FH [Zhou et al., 2015;
Yu and Porikli, 2016]. Different from existing methods, ours
takes the superior performance of CNN to model global ap-
pearance and enriches local details through feature matching.
It combines the advantage of image SR and FH methods to
improve the face image quality.

3 Proposed Algorithm
We present the pipeline of LCGE in Figure 2. We use CNN
to generate deep facial components for the input LR image.
They contain basic structure of the output while details are
not recovered completely. These components benefit the es-
tablishment of LR-HR correspondences and thus fine grained
structures can be effectively extracted. The details of these
structures are added back to enhance deep facial components
to generate the output result.

3.1 Deep Facial Component Generation
We categorize face image into five subregions. Four of them
are defined as facial components covering eyes, eyebrows,
noses and mouths. The last one is defined as the remain-
ing region. These subregions can be easily obtained using
component mask generated by facial landmarks. For an input
LR image, we first upsample it to the same resolution as the
output using bicubic interpolation and obtain five subregion
patches. Then we take each patch as input to the correspond-
ing CNN to generate deep facial component. We have five
CNNs in total, each of them contains three convolutional lay-
ers. The network structure and training process are similar
with those of SRCNN [Dong et al., 2015].

Discussion. We generate the deep facial components for two
purposes. First, CNN is effective to minimize the pixel dif-
ference between its output and the ground truth. We divide
face image into different components and train one CNN for
each component independently. Each CNN is set to capture
the specific feature of one facial component and generate ba-
sic structures of output. Meanwhile, deep facial component
is set as an intermediate state between bicubic upsampling
of LR input and the ground truth HR image. It is effective
to recover the majority of basic structures except some tiny
high frequency details. So the remaining work aims to cap-
ture such missing details to enhance deep facial component.
In this way, the output will approximate ground truth in both
global appearance and local details.

Second, deep facial components are able to transform both
input and training images into a similar condition, which en-
ables the accurate establishment of HR correspondences so
that fine grained facial structures can be effectively extracted.
We downsample facial components from HR training images
as input. So we can generate deep facial counterpart for each
facial component of training images and formulate a train-
ing pair with the HR corresponding component. The training
pairs formulation is effective to synthesize HR facial structure
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Figure 2: Pipeline of the LCGE algorithm. The LR input image is divided into five facial components. Each of them is upsampled using
corresponding CNN to generate deep facial component. Fine grained structures can be extracted from HR training images. We transfer their
details to enhance deep facial component to generate output result.

through component searching. We compare the similarity of
the deep facial component between LR input and LR training
images. Once similar components are identified we locate
the corresponding HR facial components. Different from the
prior art which performs feature matching between LR of in-
put and training images, deep facial component enriches fa-
cial texture information and thus can accurately establish the
HR correspondences. We use intensity and structure based
metric for matching (as shown in Equation 1) and find it per-
forms well in practice. The main reason is that deep facial
component is descriptive enough to distinguish the ambiguity
from LR. As such, there is no need to use SIFT [Lowe, 2004]
or CNN features [Girshick et al., 2014].

3.2 Component Enhancement
Although deep facial component generation enriches struc-
ture information for LR input patches, blur effect still occurs
and high frequency details cannot be recovered. Here we pro-
pose a component enhancement method to recover high fre-
quency details for the components. It consists of two steps.
First, we extract fine grained facial structure from precon-
structed training pairs. Then we transfer structure details to
enhance deep facial component to generate the output.

Structure Extraction. We aim to extract facial structure
from HR training images where the subjects are different
from that on an input image. Inspired by [Hertzmann et al.,
2001] which involves training image pairs to transfer image
style, we construct a training component dataset for facial
structure extraction. For each categorized component of the
training images, we downsample it into LR and upsample us-
ing bicubic interpolation. Then we use the upsampled com-
ponent as input to obtain deep facial component. As a result
training component pairs can be generated which consist of
well aligned deep facial components and corresponding HR
components.

Figure 3: Structure extraction through dataset synthesis. We use
CNN to generate deep facial component for both training and input
images. Then for each input component patch we establish corre-
spondences from the training dataset. We learn a linear regression
function F through the component patches, and use F to map HR
training patches to generate extracted result.

Given an input image we divide it into different compo-
nents represented by local patches. For one patch centered
on pixel p, we perform a K nearest neighbor search (K-NN)
on the deep facial component of the training pairs to find the
corresponding patches. The patch similarity metric is defined
as the combination of normalized cross correlation Dncc and
absolute difference Dabs:

Dp = α · (1−Dncc) + (1− α) ·Dabs, (1)

where α is set as 0.2 and K is set as 5 in our experiments.
We normalize image pixel value to [0, 1] in order to set two
metrics into the same range.

After K-NN search we select K candidate patches from
deep components. Let T̄i

p (i ∈ [1, · · · ,K]) denote one vector
containing all the pixel values of the ith candidate patch, and
Īp denote a vector containing the pixel values of the input
patch. We also denote the linear regression function as Fp =
[F 1

p , · · · , FK
p ]T where F i

p (i ∈ [1, · · · ,K]) is each coefficient
of Fp. The energy function is defined as:

Edata
p = ||T̄p · Fp − Īp||2, (2)
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(a) Input (b) Deep facial component (c) Extracted structure (d) GF on (b) using (c)

(e) GF on (c) using (c) (f) Detail: (c)-(e) (g) Output: (d)+(f) (h) Ground Truth
Figure 4: Texture transfer. Input LR face image is shown in (a). We generate deep structure shown in (b). Extracted texture is shown in (c).
We perform guided filtering on (b) using (c) as guidance shown in (d). We also filter (c) using guided filtering in (e). The lost facial details
through filtering can be identified in (f), which is the difference between (c) and (e). We add the details back to (c) to generate the output
shown in (g). The ground truth image is shown in (h).

where T̄p = [T̄1
p, T̄

2
p, · · · , T̄K

p ]. It is a linear regression prob-
lem and we can compute Fp as

Fp = (T̄T
p · T̄p)−1T̄p · Īp. (3)

We can efficiently compute Fp when the patches contain tex-
ture (i.e., the pixel values in T̄p should not be similar with
each other). However, in some cases when p is on the smooth
region (e.g, nose) T̄T

p may be singular and thus Fp becomes
outliers. We resolve the problem by adding a regularization
term as:

Ep = Edata
p + Ereg

p = ||T̄p · Fp − Īp||2 + λ||Fp||2, (4)

where λ is the weight controlling the influence of regulariza-
tion term. It is set as the number of pixels in input patch. We
can solve the above energy function as:

Fp = (T̄T
p · T̄p + λ1)−1T̄p · Īp, (5)

where 1 is the identity matrix.
Once we calculate the regression function Fp, we map the

HR training patches into the extracted patch. Let Ti
p (i ∈

[1, · · · ,K]) denote one vector containing the pixel values of
the corresponding HR training patches. The extracted patch
Rp can be computed as:

Rp =
K∑
i=1

F i
p · Ti

p. (6)

We compute the extracted patch for each pixel on the input
patch. For the overlapping areas between different patches,
we perform the averaging to generate the result shown in Fig-
ure 3. It can effectively extract fine grained structures through
synthesizing from the HR training images.

Detail Transfer. The extracted facial structure contains high
frequency details lost in the deep facial component. How-
ever, it can not be directly adopted as the output. This is
because we extract structure from several training patches
which belong to different subjects. The illumination of
each subject is different from each other, which results in
different grayscale values between extracted structure and
ground truth (e.g., Figure 4 (c) and (h)). We notice that
the missing details mostly reside in high frequency (e.g.,
eyes in Figure 4). To recover the missing details to enhance
deep facial component, we propose a detail transfer method
based on edge-preserving filtering [Petschnigg et al., 2004;
Eisemann and Durand, 2004]. It can effectively extract the

missing details and transfer them back to the deep facial com-
ponent.

The main steps of detail transfer are shown in Figure 4.
We have a deep facial component patch shown in (b) and a
extracted structure shown in (c). We use guided filter [He et
al., 2013] to smooth (b) using (c) as guidance. As such, the
facial structure of (c) can be transferred into (b). However,
the filtered result is likely to be smoothed (as shown in Fig-
ure 4 (d)) through guided filtering process. Nevertheless, we
can capture the missing details with the help of (c) to create
a similar blurry scenario. First, we smooth (c) using guided
filtering with itself as guidance shown in (e). Then missing fa-
cial details can be captured through subtracting the smoothed
image using (c). As shown in (f), the missing details mainly
reside around facial components (e.g, eyes). We add (f) to
(d) to recover the missing facial details shown in (g). As a
result, both global appearance and facial details of the out-
put component patch is similar to the ground truth shown in
(h). After we transfer all the component patches we combine
them to generate the output face image.

4 Experiments
We conduct experiments on four datasets: Multi-PIE [Gross
et al., 2010] frontal, Multi-PIE pose, PubFig [Kumar et al.,
2009] and Multi-PIE HR datasets. In the Multi-PIE pose
dataset, face images are taken with pose around 45 degrees
while in the other datasets all face images are taken in frontal
view. In the PubFig datasets, input images are captured in real
world wild condition while in other datasets the inputs are
in the lab controlled environment. The resolution of ground
truth images in all datasets except Multi-PIE HR is 320×240,
and we set the scaling factor as 4. In Multi-PIE HR dataset
the resolution of HR images is 800×600, and we set the scal-
ing factor as 10 to evaluate the performance of different algo-
rithms in such an extreme case.

In Multi-PIE frontal dataset, we keep the same setting with
that in [Yang et al., 2013] where 2184 images are taken
as training and 342 images are taken as input. For Multi-
PIE pose and Multi-PIE HR datasets, we adopt leave-one-out
strategy for 84 images and 249 images, respectively. For pub-
Fig dataset, we use training images from Multi-PIE frontal to
generate 400 output images, which indicates the generality of
each method for the real world images. The proposed LCGE
method is compared with the state-of-the-art FH methods in-
cluding FHTP [Liu et al., 2007], SFH [Yang et al., 2013]
and four image SR methods including bicubic interpolation,
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Table 1: Multi-PIE Frontal Dataset

Bicubic FHTP SRSC SFH SRCNN SRResNet Ours

PSNR 32.43 30.13 33.54 31.60 33.89 34.10 35.17
SSIM 0.89 0.82 0.90 0.86 0.90 0.90 0.92

Table 2: Multi-PIE Pose Dataset

Bicubic FHTP SCSR SFH SRCNN SRResNet Ours

PSNR 33.97 24.59 35.14 32.84 35.45 35.64 37.55
SSIM 0.90 0.72 0.91 0.86 0.91 0.92 0.94

Table 3: PubFig Dataset

Bicubic FHTP SCSR SFH SRCNN SRResNet Ours

PSNR 29.55 26.56 30.74 28.51 31.03 31.23 31.70
SSIM 0.86 0.71 0.88 0.82 0.88 0.88 0.89

Table 4: Multi-PIE HR Dataset

Bicubic FHTP SCSR SFH SRCNN SRResNet Ours

PSNR 30.38 24.98 30.50 28.71 30.41 30.72 31.24
SSIM 0.73 0.66 0.75 0.64 0.75 0.74 0.76

Quantitative evaluations on benchmark datasets. Our method per-
forms favorably against state-of-the-art methods in general.

SCSR [Yang et al., 2010], SRCNN [Dong et al., 2015] and
SRResNet [Ledig et al., 2017]. PSNR and SSIM [Wang et
al., 2004] are used to measure image quality.

Table 1 reports the quantitative performance on Multi-PIE
frontal dataset under each metric. It shows that bicubic inter-
polation achieves higher PSNR value than existing FH meth-
ods (i.e, FHTP and SFH). This is because FH methods estab-
lish HR correspondences through image alignment which is
based on hand crafted features such as SIFT flow [Liu et al.,
2011]. As the resolution of the input image is low, existing
handcrafted features cannot accurately locate HR correspon-
dences. So mismatch occurs and incorrect facial structure
will be transferred. As a result, around facial component ar-
eas, we will find the distortion of the shape, shifting of the
location or change of the lightness, as shown in Figure 5 (b)
and (c). These artifacts deteriorate the image quality. The
SCSR, SRCNN and SRResNet methods achieve high PSNR
values due to their global optimization scheme. However,
blur occurs around high frequency facial components includ-
ing eyes, noses, and mouth, which limits the image quality as
well. The proposed LCGE method recovers the original im-
age content in both low and high frequencies. It enables the
similarity of global appearance and local details, which leads
to higher numerical values. The remaining datasets indicate
similar quantitative performance in Table 2-Table 4. SCSR,
SRCNN, and SRResNet are shown to favor better numerical
scores than FH methods. But they are still not as good as the
performance of proposed LCGE method.

The qualitative evaluation is shown in Figure 5. The re-
sult of FHTP shown in (b) contains noisy and ghosting arti-
facts (e.g, facial skin) as well as over smoothed facial com-
ponents (e.g, eyes). The image SR method SRResNet can
achieve high numerical scores because of the global optimiza-
tion scheme. However, they cannot capture high frequency

(a) Input (Bic) (b) FHTP (c) SFH
32.29 / 0.88 29.96 / 0.81 31.41 / 0.85

(d) SRResNet (e) Ours (f) Ground Truth
34.45 / 0.90 35.34 / 0.91 PSNR / SSIM

Figure 5: Qualitative evaluation for 4× upsampled face images in
Multi-PIE frontal dataset.

facial details. As shown in (d), the eyeball and eyelid are
blurred, as well as noses and mouths. In comparison, SFH
can generate high quality facial components shown in (c).
This is because SFH selects the most similar component from
the dataset and transfer its gradient to recover high frequency
details. However, the facial component correspondence can
not be well established in LR. In this case, gradient trans-
fer leads to the dissimilar generation of the facial component.
The lighting, shape, and position of the left eye in (c) is differ-
ent from that in (f) in the close ups although they look sim-
ilar. In addition, noise is included due to incorrect match-
ing around the mouth region. This limitation is solved by
the proposed LCGE method where we synthesize from HR
images. Through regression we can correctly generate fine
grained structures and transfer their details back to the deep
facial component. As a result, LCGE will maintain facial de-
tails and thus achieve better quantitative values shown in (g).
In addition, Figure 6 and 7 demonstrate similar performance
in varying pose and real world conditions, respectively.

The proposed LCGE performs favorably against existing
methods in large scaling factors. As shown in Figure 8 the
evaluation is conducted under upscaling factor of 10, which
is not conducted by previous FH methods. The visual perfor-
mance indicates SCSR and SRCNN produce blur on the re-
sults shown in (b) and (d). It is because under such a high up-
scaling factor sparse coding and CNN based methods can not
model the relationship between LR and HR well. The result
obtained from SFH in (c) contains high frequency details (e.g,
eye) when facial components are correctly matched. How-
ever, artifacts occur on the mismatched components (e.g.,
nose and mouth). In comparison, LCGE generates high qual-
ity facial structures through HR synthesis and transferring
their details to enhance deep component, which maintains
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(a) Input (Bic) (b) SCSR (c) SFH
34.54 / 0.92 35.61 / 0.93 33.20 / 0.88

(d) SRResNet (e) Ours (f) Ground Truth
36.38 / 0.94 38.04 / 0.95 PSNR / SSIM

Figure 6: Qualitative evaluation for 4× upsampled face images in
Multi-PIE pose dataset.

(a) Input (Bic) (b) SFH (c) SRCNN
29.41 / 0.91 28.82 / 0.87 31.25 / 0.93

(d) SRResNet (e) Ours (f) Ground Truth
32.11 / 0.93 33.01 / 0.94 PSNR / SSIM

Figure 7: Qualitative evaluation for 4× upsampled face images in
PubFig dataset.

high quality global appearance and facial details shown in (e).

5 Concluding Remarks
We propose a FH method named LCGE which integrates
global appearance modeling and local feature matching. Dif-
ferent from existing FH methods which adopt handcrafted
features for patch matching, LCGE generates deep facial

(a) Input (Bic) (b) SCSR
30.76 / 0.74 31.66 / 0.78

(c) SFH (d) SRCNN
29.60 / 0.67 31.69 / 0.77

(e) Ours (f) Ground Truth
32.43 / 0.79 PSNR / SSIM

Figure 8: Qualitative evaluation for 10× upsampled face image in
Multi-PIE HR dataset.

components to narrow down the gap between LR input and
HR correspondences. As such, the facial texture is enriched,
which eases the matching difficulty. Then fine grained fa-
cial structure can be effectively extracted and their details
are transferred back to generate the output result. Extensive
experiments demonstrate the effectiveness of the proposed
LCGE method compared with state-of-the-art approaches.
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